WO2021256532A1 - 電磁鋼板、積層コア及び回転電機 - Google Patents

電磁鋼板、積層コア及び回転電機 Download PDF

Info

Publication number
WO2021256532A1
WO2021256532A1 PCT/JP2021/023028 JP2021023028W WO2021256532A1 WO 2021256532 A1 WO2021256532 A1 WO 2021256532A1 JP 2021023028 W JP2021023028 W JP 2021023028W WO 2021256532 A1 WO2021256532 A1 WO 2021256532A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
electromagnetic steel
core
logarithmic decrement
insulating coating
Prior art date
Application number
PCT/JP2021/023028
Other languages
English (en)
French (fr)
Inventor
真介 高谷
和年 竹田
一郎 田中
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202180026905.4A priority Critical patent/CN115398568B/zh
Priority to MX2022012029A priority patent/MX2022012029A/es
Priority to US17/913,865 priority patent/US20230113264A1/en
Priority to BR112022019592A priority patent/BR112022019592A2/pt
Priority to KR1020227033536A priority patent/KR102493101B1/ko
Priority to EP21826256.6A priority patent/EP4170690A4/en
Priority to JP2021559781A priority patent/JP7095819B2/ja
Priority to CA3171849A priority patent/CA3171849A1/en
Publication of WO2021256532A1 publication Critical patent/WO2021256532A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/148Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using epoxy-polyolefin systems in mono- or multilayers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/10Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to electrical steel sheets, laminated cores and rotary electric machines. This application claims priority based on Japanese Patent Application No. 2020-104232 filed in Japan on June 17, 2020, the contents of which are incorporated herein by reference.
  • a core iron core
  • a laminated core in which a plurality of electromagnetic steel sheets are joined to each other and laminated
  • Caulking and welding are known as methods for joining electrical steel sheets to each other.
  • the magnetic properties of electrical steel sheets may deteriorate due to mechanical stress and thermal stress during machining, as well as interlayer short circuits, and the performance of laminated cores may deteriorate.
  • Patent Documents 1 and 2 disclose an electromagnetic steel sheet in which the peak temperature of the logarithmic decrement of a coating film is controlled.
  • Patent Document 3 discloses a laminated electromagnetic steel sheet in which the maximum value of the logarithmic decrement of the adhesive layer (insulating film) is controlled.
  • the present invention manufactures a laminated core having improved core performance from one or more of the respective viewpoints such as workability and lamination accuracy at the time of punching of electrical steel sheet, noise reduction by suppressing uneven curing, and both space factor and adhesive strength. It is an object of the present invention to provide an electromagnetic steel sheet that can be made, a laminated core using the electromagnetic steel sheet, and a rotary electric machine.
  • the present invention has the following configurations.
  • [2] The difference between the peak temperature of the logarithmic decrement of the insulating coating and the curing start temperature is less than 80 ° C., and the difference between the logarithmic decrement of the peak temperature and the logarithmic decrement of the curing start temperature is 0.
  • the electromagnetic steel plate according to [1] which is 1 or more.
  • the present invention is a laminated core with improved core performance from one or more of the respective viewpoints such as improvement of workability and lamination accuracy at the time of punching of electrical steel sheet, noise reduction by suppressing hardening unevenness, and both space factor and adhesive strength. It is an object of the present invention to provide an electromagnetic steel sheet capable of manufacturing a product, a laminated core using the electromagnetic steel sheet, and a rotary electric machine.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. It is a top view of the material which forms the laminated core.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG. It is an enlarged view of the part C of FIG. It is a side view of the manufacturing apparatus used for manufacturing the laminated core. It is a figure which showed the temperature-logarithmic decrement curve measured about the insulation film of Example 1.
  • an electric motor as a rotary electric machine specifically an AC electric motor, more specifically a synchronous electric motor, and more specifically, a permanent magnet field type electric motor will be described as an example.
  • This type of motor is suitably adopted for, for example, an electric vehicle.
  • the rotary electric machine 10 includes a stator 20, a rotor 30, a case 50, and a rotary shaft 60.
  • the stator 20 and the rotor 30 are housed in the case 50.
  • the stator 20 is fixed in the case 50.
  • the rotary electric machine 10 adopts an inner rotor type in which the rotor 30 is located inside the stator 20 in the radial direction.
  • an outer rotor type in which the rotor 30 is located outside the stator 20 may be adopted.
  • the rotary electric machine 10 is a 12-pole 18-slot three-phase AC motor.
  • the rotary electric machine 10 can rotate at a rotation speed of 1000 rpm, for example, by applying an exciting current having an effective value of 10 A and a frequency of 100 Hz to each phase.
  • the stator 20 includes an adhesive laminated core for a stator (hereinafter referred to as a stator core) 21 and a winding not shown.
  • the stator core 21 includes an annular core back portion 22 and a plurality of teeth portions 23.
  • the central axis O direction of the stator core 21 (or core back portion 22) is referred to as an axial direction
  • the radial direction of the stator core 21 (or core back portion 22) (direction orthogonal to the central axis O) is referred to as a radial direction
  • the circumferential direction (direction that orbits around the central axis O) of the stator core 21 (or core back portion 22) is referred to as a circumferential direction.
  • the core back portion 22 is formed in an annular shape in a plan view of the stator 20 when viewed from the axial direction.
  • the plurality of tooth portions 23 project radially inward from the inner circumference of the core back portion 22 (toward the central axis O of the core back portion 22 along the radial direction).
  • the plurality of tooth portions 23 are arranged at equal angular intervals in the circumferential direction. In the present embodiment, 18 tooth portions 23 are provided at every 20 degrees of the central angle centered on the central axis O.
  • the plurality of tooth portions 23 are formed to have the same shape and the same size as each other. Therefore, the plurality of tooth portions 23 have the same thickness dimension as each other.
  • the winding is wound around the teeth portion 23.
  • the winding may be a centralized winding or a distributed winding.
  • the rotor 30 is arranged radially inside the stator 20 (stator core 21).
  • the rotor 30 includes a rotor core 31 and a plurality of permanent magnets 32.
  • the rotor core 31 is formed in an annular shape (annular ring) arranged coaxially with the stator 20.
  • the rotating shaft 60 is arranged in the rotor core 31.
  • the rotating shaft 60 is fixed to the rotor core 31.
  • the plurality of permanent magnets 32 are fixed to the rotor core 31.
  • a set of two permanent magnets 32 form one magnetic pole.
  • the plurality of sets of permanent magnets 32 are arranged at equal angular intervals in the circumferential direction. In this embodiment, 12 sets (24 in total) of permanent magnets 32 are provided at every 30 degrees of the central angle centered on the central axis O.
  • an embedded magnet type motor is adopted as a permanent magnet field type motor.
  • the rotor core 31 is formed with a plurality of through holes 33 that penetrate the rotor core 31 in the axial direction.
  • the plurality of through holes 33 are provided corresponding to the arrangement of the plurality of permanent magnets 32.
  • Each permanent magnet 32 is fixed to the rotor core 31 in a state of being arranged in the corresponding through hole 33.
  • the fixing of each permanent magnet 32 to the rotor core 31 can be realized, for example, by adhering the outer surface of the permanent magnet 32 and the inner surface of the through hole 33 with an adhesive.
  • a surface magnet type motor may be adopted instead of the embedded magnet type.
  • both the stator core 21 and the rotor core 31 are laminated cores.
  • the stator core 21 is formed by laminating a plurality of electromagnetic steel sheets 40 in the laminating direction.
  • the product thickness (total length along the central axis O) of each of the stator core 21 and the rotor core 31 is, for example, 50.0 mm.
  • the outer diameter of the stator core 21 is, for example, 250.0 mm.
  • the inner diameter of the stator core 21 is, for example, 165.0 mm.
  • the outer diameter of the rotor core 31 is, for example, 163.0 mm.
  • the inner diameter of the rotor core 31 is, for example, 30.0 mm.
  • the product thickness, outer diameter and inner diameter of the stator core 21, and the product thickness, outer diameter and inner diameter of the rotor core 31 are not limited to these values.
  • the inner diameter of the stator core 21 is based on the tip end portion of the teeth portion 23 in the stator core 21. That is, the inner diameter of the stator core 21 is the diameter of a virtual circle inscribed in the tips of all the teeth portions 23.
  • Each of the electromagnetic steel sheets 40 forming the stator core 21 and the rotor core 31 is formed, for example, by punching the material 1 as shown in FIGS. 4 to 6.
  • Material 1 is a steel sheet (electrical steel sheet) that is a base material of the electromagnetic steel sheet 40.
  • Examples of the material 1 include strip-shaped steel plates and cut plates. Although the explanation of the laminated core is in the middle, the material 1 will be described below.
  • the strip-shaped steel sheet that is the base material of the electromagnetic steel sheet 40 may be referred to as material 1.
  • a steel sheet having a shape used for a laminated core by punching the material 1 may be referred to as an electromagnetic steel sheet 40.
  • the material 1 is handled, for example, in a state of being wound around the coil 1A shown in FIG. 7.
  • non-oriented electrical steel sheets are used as the material 1.
  • JIS C 2552: 2014 non-oriented electrical steel strip can be adopted.
  • a grain-oriented electrical steel sheet may be used instead of the non-oriented electrical steel sheet.
  • JIS C 2553: 2019 grain-oriented electrical steel strip can be adopted.
  • a non-oriented thin electromagnetic steel strip or a directional thin electromagnetic steel strip of JIS C 2558: 2015 can be adopted.
  • the upper and lower limit values of the average plate thickness t0 of the material 1 are set as follows, for example, in consideration of the case where the material 1 is used as the electromagnetic steel sheet 40. As the material 1 becomes thinner, the manufacturing cost of the material 1 increases. Therefore, in consideration of the manufacturing cost, the lower limit of the average plate thickness t0 of the material 1 is 0.10 mm, preferably 0.15 mm, and more preferably 0.18 mm. On the other hand, if the material 1 is too thick, the manufacturing cost becomes good, but when the material 1 is used as the electromagnetic steel sheet 40, the eddy current loss increases and the core iron loss deteriorates.
  • the upper limit of the average plate thickness t0 of the material 1 is 0.65 mm, preferably 0.35 mm, and more preferably 0.30 mm.
  • 0.20 mm can be exemplified as a material that satisfies the above range of the average plate thickness t0 of the material 1.
  • the average plate thickness t0 of the material 1 includes not only the thickness of the base steel plate 2 described later but also the thickness of the insulating film 3. Further, the method for measuring the average plate thickness t0 of the material 1 is, for example, the following measuring method. For example, when the material 1 is wound into the shape of the coil 1A, at least a part of the material 1 is unwound into a flat plate shape. In the material 1 unraveled into a flat plate shape, a predetermined position in the longitudinal direction of the material 1 (for example, a position 10% of the total length of the material 1 away from the longitudinal edge of the material 1) is selected. do. At this selected position, the material 1 is divided into five regions along the width direction thereof. The plate thickness of the material 1 is measured at four locations that are boundaries of these five regions. The average value of the plate thicknesses at the four locations can be set to the average plate thickness t0 of the material 1.
  • a predetermined position in the longitudinal direction of the material 1 for example, a position 10% of the total length of the material
  • the upper and lower limit values of the average plate thickness t0 of the material 1 can be naturally adopted as the upper and lower limit values of the average plate thickness t0 of the electrical steel sheet 40.
  • the method for measuring the average plate thickness t0 of the electrical steel sheet 40 is, for example, the following measuring method.
  • the thickness of the laminated core is measured at four locations (that is, every 90 degrees around the central axis O) at equal intervals in the circumferential direction.
  • Each of the measured product thicknesses at the four locations is divided by the number of laminated electromagnetic steel sheets 40 to calculate the plate thickness per sheet.
  • the average value of the plate thicknesses at the four locations can be set to the average plate thickness t0 of the electromagnetic steel sheet 40.
  • the material 1 includes a base steel plate 2 and an insulating coating 3.
  • the material 1 is formed by covering both sides of a strip-shaped base steel plate 2 with an insulating coating 3.
  • most of the material 1 is formed of the base steel plate 2, and the insulating film 3 thinner than the base steel plate 2 is laminated on the surface of the base steel plate 2.
  • the chemical composition of the base steel sheet 2 contains 2.5% to 4.5% Si in mass%, as shown below in mass% units.
  • the yield strength of the material 1 (electrical steel sheet 40) can be set to, for example, 380 MPa or more and 540 MPa or less.
  • the insulating film 3 When the material 1 is used as the electromagnetic steel sheet 40, the insulating film 3 exhibits insulation performance between the electromagnetic steel sheets 40 adjacent to each other in the stacking direction. Further, in the present embodiment, the insulating coating 3 has an adhesive ability and adheres the electromagnetic steel sheets 40 adjacent to each other in the laminating direction.
  • the insulating coating 3 may have a single-layer structure or a multi-layer structure. More specifically, for example, the insulating coating 3 may have a single-layer structure having both insulating performance and adhesive ability, and may include a base insulating coating having excellent insulating performance and a ground insulating coating having excellent adhesive performance. It may have a multi-layer structure including.
  • Whether or not the insulating film 3 has an adhesive ability can be confirmed by, for example, the following method. Two rectangular electrical steel sheets having a width of 30 mm and a length of 60 mm are cut out from the electrical steel sheet 40, and the tip portions having a width of 30 mm and a length of 10 mm are overlapped with each other. To make a sample by adhering with. Then, the shear tensile strength of the sample is measured at an atmospheric temperature of 25 ° C. and a tensile speed of 3 mm / min, and the value divided by the adhesive area is taken as the adhesive strength (MPa). If the obtained adhesive strength is 2.5 MPa or more, it can be determined that the insulating film 3 has an adhesive ability.
  • MPa adhesive strength
  • the insulating coating 3 covers both sides of the base steel plate 2 without gaps over the entire surface.
  • a part of the layers of the insulating coating 3 may not cover both sides of the base steel plate 2 without gaps.
  • a part of the layer of the insulating film 3 may be provided intermittently on the surface of the base steel sheet 2.
  • both sides of the base steel plate 2 need to be covered with the insulating film 3 so that the entire surface is not exposed.
  • the insulating coating 3 does not have a base insulating coating having excellent insulating performance and has a single-layer structure having both insulating performance and adhesive ability, the insulating coating 3 has no gap over the entire surface of the base steel plate 2. Must be formed.
  • the insulating film 3 has a multi-layer structure including a base insulating film having excellent insulating performance and a ground insulating film having excellent adhesiveness, both the base insulating film and the ground insulating film are made of a base steel sheet. In addition to forming the base insulating film without gaps over the entire surface of No. 2, even if the base insulating film is formed without gaps over the entire surface of the base steel sheet and the upper ground insulating film is intermittently provided, both the insulating performance and the adhesive ability can be achieved.
  • the coating composition for forming the underlying insulating film is not particularly limited, and for example, a general treatment agent such as a chromic acid-containing treatment agent or a phosphate-containing treatment agent can be used.
  • the insulating film having adhesive ability is formed by applying a coating composition for an electromagnetic steel sheet, which will be described later, onto a base steel sheet.
  • the insulating film having an adhesive ability is, for example, a single-layer insulating film having both insulating performance and adhesive ability, or a ground insulating film provided on an underlying insulating film.
  • the insulating film having adhesive ability is in an uncured state or a semi-cured state (B stage) before heat crimping at the time of manufacturing a laminated core, and the curing reaction proceeds by heating during heat crimping to develop adhesive ability. ..
  • the insulating coating 3 satisfies any one or more of the following three conditions (1) to (3).
  • Condition (1) The logarithmic decrement in the temperature range of 25 to 100 ° C. is 0.3 or less.
  • Condition (2) The difference (T1-T2) between the peak temperature T1 (° C.) of the logarithmic decrement and the curing start temperature T2 (° C.) is less than 80 ° C., and the logarithmic decrement of the peak temperature ( ⁇ 1).
  • the difference ( ⁇ 1- ⁇ 2) from the logarithmic decrement ( ⁇ 2) of the curing start temperature is 0.1 or more.
  • the peak temperature T1 corresponds to the glass transition temperature of the insulating coating having excellent adhesiveness, and is hardly affected by the underlying insulating coating even in the case of the multi-layer structure.
  • Condition (3) The logarithmic decrement in the temperature range of 200 to 250 ° C. is 0.9 or less.
  • the logarithmic decrement of conditions (1) to (3) is measured at a heating rate of 10 ° C./sec by a rigid pendulum test using a rigid pendulum at the cylinder edge according to ISO12013-2.
  • the logarithmic decrement can be measured using a commercially available rigid pendulum type physical property tester, for example, RPT-3000W manufactured by A & D.
  • the measurement temperature range of the logarithmic decrement can be appropriately set, for example, from room temperature (25 ° C.) to 300 ° C.
  • the condition (1) defines the characteristics in the temperature range of 25 to 100 ° C. corresponding to the glass region of the insulating coating 3. "The logarithmic decrement in the temperature range of 25 to 100 ° C. is 0.3 or less" means that the logarithmic decrement is always 0.3 or less in the temperature range of 25 to 100 ° C. That is, it means that the maximum value ⁇ max (1) of the logarithmic decrement in the temperature range of 25 to 100 ° C. is 0.3 or less.
  • the logarithmic decrement in the temperature range of 25 to 100 ° C. is preferably 0.25 or less, more preferably 0.2 or less.
  • Condition (2) defines the characteristics in the temperature range from the peak temperature of the logarithmic decrement to the curing start temperature, which corresponds to the rubber region of the insulating coating 3.
  • the difference between the peak temperature of the logarithmic decay rate and the curing start temperature (T1-T2) is less than 80 ° C., and the difference between the logarithmic decay rate of the peak temperature and the logarithmic decay rate of the curing start temperature ( ⁇ 1- ⁇ 2).
  • the curing speed of the insulating coating 3 at the time of heat crimping between the electromagnetic steel plates 40 is high, and uneven curing is unlikely to occur.
  • the difference in adhesive strength between the plurality of steel plates is unlikely to occur, and the rigidity unevenness is less likely to occur in the core, so that noise during operation is reduced.
  • the upper limit of the difference (T1-T2) is preferably 75 ° C., more preferably 70 ° C. from the viewpoint that curing unevenness of the insulating film 3 is unlikely to occur and the noise reduction effect is high.
  • the lower limit of the difference (T1-T2) is preferably 30 ° C, more preferably 40 ° C, in that cracks of the insulating coating 3 due to rapid curing can be easily suppressed.
  • the lower limit of the difference ( ⁇ 1- ⁇ 2) is preferably 0.1, more preferably 0.2, from the viewpoint that curing unevenness of the insulating film 3 is unlikely to occur and the noise reduction effect is high.
  • the upper limit of the difference ( ⁇ 1- ⁇ 2) is preferably 0.5, more preferably 0.4, in that cracking of the insulating coating 3 is easily suppressed.
  • the temperature-logarithmic decrement curve obtained in the rigid pendulum test shows that the absolute value of the slope decreases toward zero in the decreasing region after the peak temperature. There is a singular point (inflection point) that grows again.
  • the temperature corresponding to the inflection point (the point where the logarithmic decrement turns to a sharp decrease) in the decrease region after the peak temperature in this temperature-logarithmic decrement curve is defined as the curing start temperature T2.
  • the lower limit of the peak temperature T1 of the logarithmic decrement is preferably 100 ° C, more preferably 110 ° C.
  • the upper limit of the peak temperature T1 of the logarithmic decrement is preferably 140 ° C, more preferably 130 ° C.
  • the lower limit of the curing start temperature T2 is preferably 160 ° C, more preferably 170 ° C.
  • the upper limit of the curing start temperature T2 is preferably 200 ° C, more preferably 190 ° C.
  • the condition (3) defines the characteristics in the temperature range of 200 to 250 ° C. corresponding to the region of the insulating coating 3 after the start of curing.
  • the logarithmic decrement in the temperature range of 200 to 250 ° C. is 0.9 or less means that the logarithmic decrement is always 0.9 or less in the temperature range of 200 to 250 ° C. That is, it means that the maximum value ⁇ max (2) of the logarithmic decrement in the temperature range of 200 to 250 ° C. is 0.9 or less.
  • the logarithmic decrement is 0.9 or less in the temperature range of 200 to 250 ° C.
  • the cured insulating coating 3 is hard, and even if the thickness of the insulating coating 3 is reduced, the electromagnetic steel sheets 40 have high adhesive strength. Be glued. Therefore, the space factor of the core and the adhesive strength between the electromagnetic steel sheets 40 can be compatible with each other.
  • the logarithmic decrement in the temperature range of 200 to 250 ° C. is preferably 0.85 or less, more preferably 0.80 or less.
  • the logarithmic decrement rate can be controlled by the type of the coating composition for electrical steel sheets used for forming the insulating film 3, the baking conditions (temperature, time, etc.) of the coating composition for electrical steel sheets on the base steel sheet. For example, the higher the baking temperature, the lower the logarithmic decrement tends to be. The longer the baking time, the lower the logarithmic decrement tends to be.
  • the coating composition for electrical steel sheets is not particularly limited, and examples thereof include a composition containing an epoxy resin and an epoxy resin curing agent. That is, as an insulating film having an adhesive ability, a film containing an epoxy resin and an epoxy resin curing agent can be mentioned as an example.
  • epoxy resin a general epoxy resin can be used, and specifically, any epoxy resin having two or more epoxy groups in one molecule can be used without particular limitation.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, and glycidyl amine type epoxy.
  • examples thereof include resins, hydride-in type epoxy resins, isocyanurate type epoxy resins, acrylic acid-modified epoxy resins (epoxy acrylates), phosphorus-containing epoxy resins, halides thereof (bromination epoxy resins and the like), hydrogen additives and the like.
  • the epoxy resin one type may be used alone, or two or more types may be used in combination.
  • the coating composition for electrical steel sheets may contain an acrylic resin.
  • the acrylic resin is not particularly limited.
  • the monomer used for the acrylic resin include unsaturated carboxylic acids such as acrylic acid and methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and cyclohexyl (meth).
  • Examples of (meth) acrylates such as meta) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and hydroxypropyl (meth) acrylate can be mentioned.
  • the (meth) acrylate means acrylate or methacrylate.
  • the acrylic resin one type may be used alone, or two or more types may be used in combination.
  • the acrylic resin may have a structural unit derived from a monomer other than the acrylic monomer.
  • examples of other monomers include ethylene, propylene, styrene and the like.
  • the other monomer one type may be used alone, or two or more types may be used in combination.
  • an acrylic resin when used, it may be used as an acrylic modified epoxy resin obtained by grafting an acrylic resin onto an epoxy resin.
  • the coating composition for electrical steel sheets it may be contained as a monomer forming an acrylic resin.
  • epoxy resin curing agent a heat-curing type having potential can be used.
  • aromatic polyamines acid anhydrides, phenolic curing agents, dicyandiamides, boron trifluoride-amine complexes, and organic acid hydrazides can be used. And so on.
  • aromatic polyamine include meta-phenylenediamine, diaminodiphenylmethane, diaminodiphenyl sulfone and the like.
  • phenol-based curing agent include phenol novolac resin, cresol novolak resin, bisphenol novolak resin, triazine-modified phenol novolac resin, phenol resol resin and the like.
  • the epoxy resin curing agent a phenol-based curing agent is preferable, and a phenol-resole resin is more preferable.
  • the epoxy resin curing agent one type may be used alone, or two or more types may be used in combination.
  • the content of the epoxy resin curing agent in the coating composition for electrical steel sheets is preferably 5 to 35 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the coating composition for electrical steel sheets may contain additives such as a curing accelerator (curing catalyst), an emulsifier, and an antifoaming agent.
  • a curing accelerator curing catalyst
  • an emulsifier emulsifier
  • an antifoaming agent emulsifier
  • the additive only one kind may be used, or two or more kinds may be used in combination.
  • the insulating film 3 can be formed, for example, by applying a coating composition for an electromagnetic steel sheet to the surface of a base steel sheet, drying it, and baking it.
  • the lower limit of the temperature reached during baking is preferably 120 ° C, more preferably 130 ° C, and even more preferably 150 ° C.
  • the upper limit of the temperature reached during baking is preferably 200 ° C, more preferably 190 ° C, and even more preferably 160 ° C.
  • the lower limit of the baking time is preferably 20 seconds, more preferably 30 seconds.
  • the upper limit of the baking time is preferably 70 seconds, more preferably 60 seconds.
  • the baking temperature is preferably in the range of Tg + 20 ° C. to Tg + 50 ° C., where Tg is the glass transition temperature of the insulating coating 3.
  • Tg is the glass transition temperature of the insulating coating 3.
  • the logarithmic decrement of the insulating film 3 in the temperature range of 25 to 100 ° C. can be set to 0.3 or less.
  • the rate of temperature rise during baking is preferably 5 ° C / s to 20 ° C / s.
  • the logarithmic decrement of the insulating coating 3 in the temperature range of 25 to 100 ° C. can be set to 0.3 or less.
  • the upper and lower limit values of the average thickness t1 of the insulating film 3 are set as follows, for example, in consideration of the case where the material 1 is used as the electromagnetic steel sheet 40.
  • the average thickness t1 of the insulating film 3 is the insulation performance and adhesive ability between the electrical steel sheets 40 laminated with each other. Adjust so that can be secured.
  • the average thickness t1 (thickness per one side of the electromagnetic steel sheet 40 (material 1)) of the insulating coating 3 can be, for example, 1.5 ⁇ m or more and 8.0 ⁇ m or less.
  • the average thickness of the underlying insulating coating can be, for example, 0.3 ⁇ m or more and 1.2 ⁇ m, preferably 0.7 ⁇ m or more and 0.9 ⁇ m or less.
  • the average thickness of the upper insulating film can be, for example, 1.5 ⁇ m or more and 8.0 ⁇ m or less.
  • the method of measuring the average thickness t1 of the insulating coating 3 in the material 1 is the same as that of the average plate thickness t0 of the material 1, and the thicknesses of the insulating coatings 3 at a plurality of locations can be obtained and obtained as the average of those thicknesses. can.
  • the upper and lower limit values of the average thickness t1 of the insulating coating 3 in the material 1 can be naturally adopted as the upper and lower limit values of the average thickness t1 of the insulating coating 3 in the electrical steel sheet 40.
  • the method for measuring the average thickness t1 of the insulating coating 3 on the electrical steel sheet 40 is, for example, the following measuring method. For example, among a plurality of electrical steel sheets forming a laminated core, the electrical steel sheet 40 located on the outermost side in the laminated direction (the electrical steel sheet 40 whose surface is exposed in the laminated direction) is selected.
  • a predetermined position in the radial direction (for example, a position just intermediate (center) between the inner peripheral edge and the outer peripheral edge of the electrical steel sheet 40) is selected.
  • the thickness of the insulating coating 3 of the electrical steel sheet 40 is measured at four locations (that is, every 90 degrees around the central axis O) at equal intervals in the circumferential direction. The average value of the measured thicknesses at the four locations can be taken as the average thickness t1 of the insulating coating 3.
  • the reason why the average thickness t1 of the insulating coating 3 was measured on the outermost electromagnetic steel sheet 40 in the laminating direction is that the thickness of the insulating coating 3 is the laminating position along the laminating direction of the electromagnetic steel sheet 40. This is because the insulating film 3 is built so that it hardly changes.
  • the electromagnetic steel sheet 40 is manufactured by punching the material 1 as described above, and the adhesive core (stator core 21 and rotor core 31) is manufactured by the electromagnetic steel sheet 40.
  • the plurality of electrical steel sheets 40 forming the stator core 21 are laminated via the insulating coating 3.
  • the electromagnetic steel sheets 40 adjacent to each other in the stacking direction are adhered over the entire surface by the insulating coating 3.
  • the surface of the electromagnetic steel sheet 40 facing the stacking direction (hereinafter referred to as the first surface) is the bonding region 41a over the entire surface.
  • the electromagnetic steel sheets 40 adjacent to each other in the stacking direction may not be adhered over the entire surface.
  • the adhesive region 41a and the non-adhesive region may coexist on the first surface of the electrical steel sheet 40.
  • the plurality of electrical steel sheets forming the rotor core 31 are fixed to each other by the caulking 42 (dowel) shown in FIG.
  • the plurality of electrical steel sheets forming the rotor core 31 may also have a laminated structure fixed by the insulating coating 3 as in the stator core 21.
  • the laminated core such as the stator core 21 and the rotor core 31 may be formed by so-called rotating stacking.
  • the stator core 21 is manufactured, for example, by using the manufacturing apparatus 100 shown in FIG. 7.
  • the laminated core manufacturing apparatus 100 (hereinafter, simply referred to as the manufacturing apparatus 100) will be described.
  • the manufacturing apparatus 100 while the material 1 is sent out from the coil 1A (hoop) in the direction of the arrow F, the material 1 is punched a plurality of times by the dies arranged on each stage to gradually form the shape of the electromagnetic steel sheet 40. go. Then, the punched electrical steel sheets 40 are laminated and pressurized while raising the temperature.
  • the electromagnetic steel sheets 40 adjacent to each other in the laminating direction are adhered by the insulating coating 3 (that is, the portion of the insulating coating 3 located in the adhesive region 41a exerts an adhesive ability), and the adhesion is completed.
  • the manufacturing apparatus 100 includes a plurality of stages of punching stations 110.
  • the punching station 110 may have two stages or three or more stages.
  • the punching station 110 of each stage includes a female die 111 arranged below the material 1 and a male die 112 arranged above the material 1.
  • the manufacturing apparatus 100 further includes a stacking station 140 at a position downstream of the most downstream punching station 110.
  • the laminating station 140 includes a heating device 141, an outer peripheral punching female die 142, a heat insulating member 143, an outer peripheral punching male die 144, and a spring 145.
  • the heating device 141, the outer peripheral punched female die 142, and the heat insulating member 143 are arranged below the material 1.
  • the outer peripheral punching die 144 and the spring 145 are arranged above the material 1.
  • Reference numeral 21 indicates a stator core.
  • the material 1 is sequentially sent out from the coil 1A in the direction of the arrow F in FIG. Then, the material 1 is sequentially punched by a plurality of punching stations 110. By these punching processes, the shape of the electromagnetic steel sheet 40 having the core back portion 22 and the plurality of tooth portions 23 shown in FIG. 3 is obtained on the material 1. However, since it is not completely punched at this point, the process proceeds to the next step along the arrow F direction.
  • the material 1 is sent out to the laminating station 140, punched out by the outer peripheral punching die 144, and laminated with high accuracy.
  • the electromagnetic steel sheet 40 receives a constant pressing force by the spring 145.
  • the laminated core formed by stacking the electromagnetic steel sheets 40 in this way is heated to, for example, a temperature of 200 ° C. by the heating device 141.
  • the heating device 141 may not be arranged on the outer peripheral punched female die 142.
  • the electromagnetic steel sheets 40 laminated by the outer peripheral punched female die 142 may be taken out of the outer peripheral punched female die 142.
  • the outer peripheral punched female die 142 may not have the heat insulating member 143.
  • the stacked electromagnetic steel sheets 40 before bonding may be sandwiched and held from both sides in the stacking direction by a jig (not shown), and then transported or heated.
  • the stator core 21 is completed by each of the above steps.
  • the insulating film having the adhesive ability of the magnetic steel sheet satisfies any one or more of the conditions (1) to (3).
  • the condition (1) the workability and stacking accuracy at the time of punching of the electromagnetic steel sheets are improved, and the effect of reducing noise and improving the adhesive strength between the electromagnetic steel sheets can be obtained by improving the stacking accuracy.
  • the condition (2) the noise reduction effect by suppressing the curing unevenness can be obtained.
  • both the space factor and the adhesive strength between the electromagnetic steel sheets can be achieved at the same time. If all the conditions (1) to (3) are satisfied, the core performance such as workability at the time of punching of electrical steel sheets, stacking accuracy of electrical steel sheets, noise reduction, space factor, and adhesive strength between electrical steel sheets is improved. The core is obtained.
  • the technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the shape of the stator core is not limited to the form shown in the above embodiment. Specifically, the dimensions of the outer diameter and inner diameter of the stator core, the product thickness, the number of slots, the dimensional ratio between the circumferential direction and the radial direction of the tooth portion, the dimensional ratio in the radial direction between the tooth portion and the core back portion, etc. are desired. It can be arbitrarily designed according to the characteristics of the rotary electric machine.
  • a set of two permanent magnets 32 form one magnetic pole, but the present invention is not limited to this.
  • one permanent magnet 32 may form one magnetic pole, or three or more permanent magnets 32 may form one magnetic pole.
  • the permanent magnet field type motor has been described as an example of the rotary electric machine, but the structure of the rotary electric machine is not limited to this as illustrated below, and various publicly known structures not further exemplified below. The structure of can also be adopted.
  • the permanent magnet field type motor has been described as an example of the rotary electric machine, but the present invention is not limited to this.
  • the rotary electric machine may be a reluctance type electric machine or an electromagnet field type electric machine (winding field type electric machine).
  • the synchronous motor has been described as an example of the AC motor, but the present invention is not limited to this.
  • the rotary electric machine may be an induction motor.
  • the AC motor has been described as an example of the motor, but the present invention is not limited to this.
  • the rotary electric machine may be a DC motor.
  • the electric machine has been described as an example of the rotary electric machine, but the present invention is not limited to this.
  • the rotary electric machine may be a generator.
  • the laminated core according to the present invention is applied to the stator core, but it can also be applied to the rotor core. It is also possible to use a laminated core for a transformer instead of a rotary electric machine. In this case, it is preferable to use grain-oriented electrical steel sheets instead of grain-oriented electrical steel sheets.
  • a laminated core (stator core) was produced by laminating 130 electromagnetic steel sheets manufactured in the above [workability during punching] test and adhering them at a steel sheet temperature of 200 ° C., a pressure of 10 MPa, and a pressurizing time of 1 hour.
  • the outer peripheral end of the core back portion of the stator core is vibrated in the radial direction by an impact hammer, and the tip of the teeth portion and the central portion of the core back portion in the direction of 180 ° in the axial direction with respect to the vibration source are used as measurement points. , Modal analysis of noise and vibration was performed.
  • Adhesive strength Two rectangular steel sheets having a width of 30 mm and a length of 60 mm were cut out from the electrical steel strips manufactured in each example, and the tip portions having a width of 30 mm and a length of 10 mm were overlapped with each other, and the steel plate temperature was 180 ° C. and the pressure was 10 MPa. A sample was prepared by adhering with a pressurization time of 1 hour. The shear tensile strength was measured at an ambient temperature of 25 ° C. and a tensile speed of 3 mm / min, and the value divided by the adhesive area was taken as the adhesive strength (MPa). Adhesive strength of 2.5 MPa or more was regarded as acceptable.
  • Example 1 As a base steel sheet, in mass%, Si: 3.0%, Mn: 0.2%, Al: 0.5%, the balance is composed of Fe and impurities, and the plate thickness is 0.25 mm and the width is 300 mm. An electrical steel sheet was used. The surface of the base steel sheet was subjected to a base treatment using a non-chromium-based base treatment agent so that the coating amount was 1.0 g / m 2, and a base insulating film was formed.
  • a coating composition for an electromagnetic steel plate was prepared by mixing 100 parts by mass of a liquid bisphenol F type epoxy resin and 25 parts by mass of a liquid phenol resol resin as an epoxy resin curing agent.
  • the obtained coating composition for electrical steel sheets is applied onto the underlying insulating film so that the coating amount is 1.0 g / m 2 , the temperature is raised to 160 ° C. at a heating rate of 10 ° C./min, and then 160 ° C. It was baked for 60 seconds to form an insulating coating on the ground, and an electromagnetic steel strip was obtained.
  • FIG. 8 shows the results of measuring the logarithmic decrement of the formed multi-layered insulating film by a rigid pendulum test.
  • Examples 2-9 An electromagnetic steel strip was obtained in the same manner as in Example 1 except that the heating rate at the time of baking and the baking temperature (the temperature reached at the time of baking) were changed as shown in Table 1.
  • Table 1 shows the baking temperature of the coating composition for electrical steel sheets at the time of manufacture in each example, the measurement results of the rigid pendulum test for the insulating film, and the evaluation results.
  • difference (T1-T2) indicates the difference (° C.) between the peak temperature (T1) and the curing start temperature (T2) of the logarithmic decrement.
  • the Tg at the difference (° C.) between the baking temperature and Tg in Table 1 is the peak temperature (T1) (° C.).
  • the “difference ( ⁇ 1- ⁇ 2)” indicates the difference between the logarithmic decrement of the peak temperature ( ⁇ 1) and the logarithmic decrement of the curing start temperature ( ⁇ 2).
  • ⁇ max (1) means the maximum value of the logarithmic decrement in the temperature range of 25 to 100 ° C.
  • ⁇ max (2) means the maximum value of the logarithmic decrement in the temperature range of 200 to 250 ° C.
  • Adhesive strength of 2.5 MPa or more was regarded as acceptable.
  • Table 1 in Examples 1 and 2 in which ⁇ max (1) is 0.3 or less, the work at the time of punching the electrical steel sheet is compared with Example 3 in which ⁇ max (1) is more than 0.3. The properties were excellent, the stacking accuracy was high, the noise of the laminated core was reduced, and the adhesive strength between the electromagnetic steel sheets was also high. Further, in Examples 1 and 2 in which ⁇ max (2) is 0.9 or less, the space factor of the laminated core and the adhesive strength between the electromagnetic steel sheets are compared with those in Example 3 in which ⁇ max (2) exceeds 0.9. In that respect, the core performance has improved.
  • Example 4 In Example 4 in which ⁇ max (1) was 0.3 or less, the workability at the time of punching was excellent and the adhesive strength was excellent. In Example 5 in which ⁇ max (2) was 0.9 or less, the space factor and the adhesive strength were excellent.
  • Example 6 in which the difference (T1-T2) is less than 80 ° C., the difference ( ⁇ T1- ⁇ 2) is 0.1 or more, and the difference ( ⁇ max (2)) is 0.9 or less is a tapping sound test. It was excellent in product ratio and adhesive strength.
  • ⁇ max (1) is 0.3 or less, the difference (T1-T2) is less than 80 ° C., and the difference ( ⁇ T1- ⁇ 2) is 0.1 or more. It had excellent adhesive strength.
  • Example 8 having a heating rate of 3 ° C./s did not satisfy any of the requirements of the present invention, and the adhesive strength did not satisfy 2.5 MPa.
  • Example 9 having a heating rate of 25 ° C./s did not satisfy any of the requirements of the present invention, and the adhesive strength did not satisfy 2.5 MPa.
  • the core performance is improved from one or more of the viewpoints such as improvement of workability and stacking accuracy at the time of punching of electrical steel sheet, noise reduction by suppressing hardening unevenness, and both space factor and adhesive strength.
  • the viewpoints such as improvement of workability and stacking accuracy at the time of punching of electrical steel sheet, noise reduction by suppressing hardening unevenness, and both space factor and adhesive strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Soft Magnetic Materials (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

この電磁鋼板は、母材鋼板のいずれか一方又は両方の表面の少なくとも一部が、接着能を有する絶縁被膜により被覆された電磁鋼板であって、前記絶縁被膜の25~100℃の温度範囲の対数減衰率が0.3以下である。

Description

電磁鋼板、積層コア及び回転電機
 本発明は、電磁鋼板、積層コア及び回転電機に関する。本願は、2020年6月17日に、日本に出願された特願2020-104232号に基づき優先権を主張し、その内容をここに援用する。
 回転電機に使用されるコア(鉄心)として、複数の電磁鋼板が互いに接合されて積層された積層コアが知られている。電磁鋼板同士の接合方法としては、かしめや溶接が知られている。しかし、かしめや溶接では、加工時の機械的応力や熱応力、さらには層間短絡によって電磁鋼板の磁気特性が劣化し、積層コアの性能が低下することがある。
 かしめ、溶接以外の接合方法としては、例えば、表面に接着能を有する絶縁被膜を有する電磁鋼板を積層して互いに接着させる方法が知られている。特許文献1、2には、被膜の対数減衰率のピーク温度を制御した電磁鋼板が開示されている。特許文献3には、接着層(絶縁被膜)の対数減衰率の最大値を制御した積層電磁鋼板が開示されている。
日本国特開2000-173816号公報 日本国特許第6037055号公報 日本国特許第6086098号公報
 近年、更なるモータの効率向上が要求されており、より一層のコア性能の向上が求められている。そのため、接着能を有する絶縁被膜を備える電磁鋼板の更なる性能向上が重要である。
 本発明は、電磁鋼板の打ち抜き時の作業性と積層精度、硬化ムラの抑制による騒音低減、占積率と接着強度の両立といったそれぞれの観点の1つ以上でコア性能が向上した積層コアを製造できる電磁鋼板、前記電磁鋼板を用いた積層コア及び回転電機を提供することを目的とする。
 本発明は、以下の構成を有する。
[1]母材鋼板のいずれか一方又は両方の表面の少なくとも一部が、接着能を有する絶縁被膜により被覆され、前記絶縁被膜の25~100℃の温度範囲の対数減衰率が0.3以下である、電磁鋼板。
[2]前記絶縁被膜の対数減衰率のピーク温度と硬化開始温度との差が80℃未満であり、かつ前記ピーク温度の対数減衰率と前記硬化開始温度の対数減衰率との差が0.1以上である、[1]に記載の電磁鋼板。
[3]前記絶縁被膜の200~250℃の温度範囲の対数減衰率が0.9以下である、[1]又は[2]に記載の電磁鋼板。
[4]母材鋼板のいずれか一方又は両方の表面の少なくとも一部が、接着能を有する絶縁被膜により被覆され、前記絶縁被膜の対数減衰率のピーク温度と硬化開始温度との差が80℃未満であり、かつ前記ピーク温度の対数減衰率と前記硬化開始温度の対数減衰率との差が0.1以上である、電磁鋼板。
[5]前記絶縁被膜の200~250℃の温度範囲の対数減衰率が0.9以下である、[4]に記載の電磁鋼板。
[6]母材鋼板のいずれか一方又は両方の表面の少なくとも一部が、接着能を有する絶縁被膜により被覆され、前記絶縁被膜の200~250℃の温度範囲の対数減衰率が0.9以下である、電磁鋼板。
[7][1]~[6]のいずれかに記載の電磁鋼板が複数積層され、互いに接着されている、積層コア。
[8][7]に記載の積層コアを備える回転電機。
 本発明は、電磁鋼板の打ち抜き時の作業性と積層精度の向上、硬化ムラの抑制による騒音低減、占積率と接着強度の両立といったそれぞれの観点の1つ以上でコア性能が向上した積層コアを製造できる電磁鋼板、前記電磁鋼板を用いた積層コア及び回転電機を提供することを目的とする。
本発明の第1実施形態に係る積層コアを備えた回転電機の断面図である。 同積層コアの側面図である。 図2のA-A断面図である。 同積層コアを形成する素材の平面図である。 図4のB-B断面図である。 図5のC部の拡大図である。 同積層コアを製造するために用いられる製造装置の側面図である。 実施例1の絶縁被膜について測定された温度-対数減衰率曲線を示した図である。
 以下、図面を参照し、本発明の一実施形態に係る積層コアと、この積層コアを備えた回転電機と、この積層コアを形成する素材について説明する。なお、本実施形態では、回転電機として電動機、具体的には交流電動機、より具体的には同期電動機、より一層具体的には永久磁石界磁型電動機を一例に挙げて説明する。この種の電動機は、例えば、電気自動車などに好適に採用される。
(回転電機10)
 図1に示すように、回転電機10は、ステータ20と、ロータ30と、ケース50と、回転軸60と、を備える。ステータ20及びロータ30は、ケース50内に収容される。ステータ20は、ケース50内に固定される。
 本実施形態では、回転電機10として、ロータ30がステータ20の径方向内側に位置するインナーロータ型を採用している。しかしながら、回転電機10として、ロータ30がステータ20の外側に位置するアウターロータ型を採用してもよい。また、本実施形態では、回転電機10が、12極18スロットの三相交流モータである。しかしながら、極数、スロット数、相数などは、適宜変更することができる。
 回転電機10は、例えば、各相に実効値10A、周波数100Hzの励磁電流を印加することにより、回転数1000rpmで回転することができる。
 ステータ20は、ステータ用接着積層コア(以下、ステータコア)21と、図示しない巻線と、を備える。
 ステータコア21は、環状のコアバック部22と、複数のティース部23と、を備える。以下では、ステータコア21(又はコアバック部22)の中心軸線O方向を軸方向と言い、ステータコア21(又はコアバック部22)の径方向(中心軸線Oに直交する方向)を径方向と言い、ステータコア21(又はコアバック部22)の周方向(中心軸線O回りに周回する方向)を周方向と言う。
 コアバック部22は、ステータ20を軸方向から見た平面視において円環状に形成されている。
 複数のティース部23は、コアバック部22の内周から径方向内側に向けて(径方向に沿ってコアバック部22の中心軸線Oに向けて)突出する。複数のティース部23は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角20度おきに18個のティース部23が設けられている。複数のティース部23は、互いに同等の形状でかつ同等の大きさに形成されている。よって、複数のティース部23は、互いに同じ厚み寸法を有している。
 前記巻線は、ティース部23に巻回されている。前記巻線は、集中巻きされていてもよく、分布巻きされていてもよい。
 ロータ30は、ステータ20(ステータコア21)に対して径方向の内側に配置されている。ロータ30は、ロータコア31と、複数の永久磁石32と、を備える。
 ロータコア31は、ステータ20と同軸に配置される環状(円環状)に形成されている。ロータコア31内には、前記回転軸60が配置されている。回転軸60は、ロータコア31に固定されている。
 複数の永久磁石32は、ロータコア31に固定されている。本実施形態では、2つ1組の永久磁石32が1つの磁極を形成している。複数組の永久磁石32は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角30度おきに12組(全体では24個)の永久磁石32が設けられている。
 本実施形態では、永久磁石界磁型電動機として、埋込磁石型モータが採用されている。ロータコア31には、ロータコア31を軸方向に貫通する複数の貫通孔33が形成されている。複数の貫通孔33は、複数の永久磁石32の配置に対応して設けられている。各永久磁石32は、対応する貫通孔33内に配置された状態でロータコア31に固定されている。各永久磁石32のロータコア31への固定は、例えば永久磁石32の外面と貫通孔33の内面とを接着剤により接着すること等により、実現できる。なお、永久磁石界磁型電動機として、埋込磁石型に代えて表面磁石型モータを採用してもよい。
 ステータコア21及びロータコア31は、いずれも積層コアである。例えばステータコア21は、図2に示すように、複数の電磁鋼板40が積層方向に積層されることで形成されている。
 なお、ステータコア21及びロータコア31それぞれの積厚(中心軸線Oに沿った全長)は、例えば50.0mmとされる。ステータコア21の外径は、例えば250.0mmとされる。ステータコア21の内径は、例えば165.0mmとされる。ロータコア31の外径は、例えば163.0mmとされる。ロータコア31の内径は、例えば30.0mmとされる。ただし、これらの値は一例であり、ステータコア21の積厚、外径や内径、及びロータコア31の積厚、外径や内径は、これらの値のみに限られない。ここで、ステータコア21の内径は、ステータコア21におけるティース部23の先端部を基準とする。すなわち、ステータコア21の内径は、全てのティース部23の先端部に内接する仮想円の直径である。
 ステータコア21及びロータコア31を形成する各電磁鋼板40は、例えば、図4から図6に示すような素材1を打ち抜き加工すること等により形成される。素材1は、電磁鋼板40の母材となる鋼板(電磁鋼板)である。素材1としては、例えば、帯状の鋼板や切り板などが挙げられる。
 積層コアの説明の途中ではあるが、以下では、この素材1について説明する。なお本明細書において、電磁鋼板40の母材となる帯状の鋼板を素材1という場合がある。素材1を打ち抜き加工して積層コアに用いられる形状にした鋼板を電磁鋼板40という場合がある。
(素材1)
 素材1は、例えば、図7に示すコイル1Aに巻き取られた状態で取り扱われる。本実施形態では、素材1として、無方向性電磁鋼板を採用している。無方向性電磁鋼板としては、JIS C 2552:2014の無方向性電磁鋼帯を採用できる。しかしながら、素材1として、無方向性電磁鋼板に代えて方向性電磁鋼板を採用してもよい。この場合の方向性電磁鋼板としては、JIS C 2553:2019の方向性電磁鋼帯を採用できる。また、JIS C 2558:2015の無方向性薄電磁鋼帯や方向性薄電磁鋼帯を採用できる。
 素材1の平均板厚t0の上下限値は、素材1が電磁鋼板40として用いられる場合も考慮して、例えば以下のように設定される。
 素材1が薄くなるに連れて素材1の製造コストは増す。そのため、製造コストを考慮すると、素材1の平均板厚t0の下限値は、0.10mm、好ましくは0.15mm、より好ましくは0.18mmとなる。
 一方で素材1が厚すぎると、製造コストは良好になるが、素材1が電磁鋼板40として用いられた場合に、渦電流損が増加してコア鉄損が劣化する。そのため、コア鉄損と製造コストを考慮すると、素材1の平均板厚t0の上限値は、0.65mm、好ましくは0.35mm、より好ましくは0.30mmとなる。
 素材1の平均板厚t0の上記範囲を満たすものとして、0.20mmを例示できる。
 なお、素材1の平均板厚t0は、後述する母材鋼板2の厚さだけでなく、絶縁被膜3の厚さも含まれる。また、素材1の平均板厚t0の測定方法は、例えば、以下の測定方法による。例えば、素材1がコイル1Aの形状に巻き取られている場合、素材1の少なくとも一部を平板形状にほどく。平板形状にほどかれた素材1において、素材1の長手方向の所定の位置(例えば、素材1の長手方向の端縁から、素材1の全長の10%分の長さ、離れた位置)を選定する。この選定した位置において、素材1を、その幅方向に沿って5つの領域に区分する。これらの5つの領域の境界となる4か所において、素材1の板厚を測定する。4か所の板厚の平均値を、素材1の平均板厚t0とすることができる。
 この素材1の平均板厚t0についての上下限値は、電磁鋼板40としての平均板厚t0の上下限値としても当然に採用可能である。なお、電磁鋼板40の平均板厚t0の測定方法は、例えば、以下の測定方法による。例えば、積層コアの積厚を、周方向に同等の間隔をあけて4か所において(すなわち、中心軸線Oを中心とした90度おきに)測定する。測定した4か所の積厚それぞれを、積層されている電磁鋼板40の枚数で割って、1枚当たりの板厚を算出する。4か所の板厚の平均値を、電磁鋼板40の平均板厚t0とすることができる。
 図5及び図6に示すように、素材1は、母材鋼板2と、絶縁被膜3と、を備えている。素材1は、帯状の母材鋼板2の両面が絶縁被膜3によって被覆されてなる。本実施形態では、素材1の大部分が母材鋼板2によって形成され、母材鋼板2の表面に、母材鋼板2よりも薄い絶縁被膜3が積層されている。
 母材鋼板2の化学組成は、以下に質量%単位で示すように、質量%で2.5%~4.5%のSiを含有する。なお、化学組成をこの範囲とすることにより、素材1(電磁鋼板40)の降伏強度を、例えば、380MPa以上540MPa以下に設定することができる。
 Si:2.5%~4.5%
 Al:0.001%~3.0%
 Mn:0.05%~5.0%
 残部:Fe及び不純物
 素材1が電磁鋼板40として用いられるときに、絶縁被膜3は、積層方向に隣り合う電磁鋼板40間での絶縁性能を発揮する。また本実施形態では、絶縁被膜3は、接着能を備えていて、積層方向に隣り合う電磁鋼板40を接着する。絶縁被膜3は、単層構成であってもよく、複層構成であってもよい。より具体的には、例えば、絶縁被膜3は、絶縁性能と接着能とを兼ね備えた単層構成であってもよく、絶縁性能に優れる下地絶縁被膜と、接着性能に優れる上地絶縁被膜とを含む複層構成であってもよい。
 絶縁被膜3が接着能を有しているかどうかは、例えば、以下の方法で確認できる。電磁鋼板40から、幅30mm×長さ60mmの長方形の電磁鋼板を2枚切り出し、互いの幅30mm×長さ10mmの先端部分同士を重ね合わせ、鋼板温度180℃、圧力10MPa、加圧時間1時間で接着してサンプルを作製する。その後、雰囲気温度25℃、引張速度3mm/分としてサンプルの剪断引張強度を測定し、接着面積で除した数値を接着強度(MPa)とする。得られた接着強度が2.5MPa以上であれば、絶縁被膜3が接着能を備えると判定できる。
 本実施形態では、絶縁被膜3は、母材鋼板2の両面を全面にわたって隙間なく覆っている。しかしながら、前述の絶縁性能や接着能が確保される範囲において、絶縁被膜3の一部の層が、母材鋼板2の両面を隙間なく覆っていなくてもよい。言い換えると、絶縁被膜3の一部の層は、母材鋼板2の表面に間欠的に設けられていてもよい。ただし、絶縁性能を確保するには、母材鋼板2の両面は全面が露出しないように絶縁被膜3によって覆われている必要がある。具体的には、絶縁被膜3が絶縁性能に優れる下地絶縁被膜を有さず、絶縁性能と接着能を兼ね備えた単層構成である場合は、絶縁被膜3は母材鋼板2の全面にわたって隙間なく形成されている必要がある。これに対し、絶縁被膜3が、絶縁性能に優れる下地絶縁被膜と、接着能に優れる上地絶縁被膜とを含む複層構成である場合、下地絶縁被膜と上地絶縁被膜の両方を母材鋼板2の全面にわたって隙間なく形成する他に、下地絶縁被膜を母材鋼板の全面にわたって隙間なく形成し、上地絶縁被膜を間欠的に設けても、絶縁性能と接着能の両立が可能である。
 下地絶縁被膜を形成するコーティング組成物としては、特に限定されず、例えば、クロム酸含有処理剤、リン酸塩含有処理等の一般的な処理剤を使用できる。
 接着能を備える絶縁被膜は、後述の電磁鋼板用コーティング組成物が母材鋼板上に塗布されてなる。接着能を備える絶縁被膜は、例えば、絶縁性能と接着能を兼ね備えた単層構成の絶縁被膜や、下地絶縁被膜上に設けられる上地絶縁被膜である。接着能を備える絶縁被膜は、積層コア製造時の加熱圧着前においては、未硬化状態又は半硬化状態(Bステージ)であり、加熱圧着時の加熱によって硬化反応が進行して接着能が発現する。
 絶縁被膜3は、以下の3つの条件(1)~(3)のいずれか1つ以上を満たす。
 条件(1):25~100℃の温度範囲の対数減衰率が0.3以下である。
 条件(2):対数減衰率のピーク温度T1(℃)と硬化開始温度T2(℃)との差(T1-T2)が80℃未満であり、かつピーク温度の対数減衰率(△1)と硬化開始温度の対数減衰率(△2)との差(△1-△2)が0.1以上である。なお、ピーク温度T1は、接着能に優れた絶縁被膜のガラス転移温度に対応しており、複層構成の場合も下地絶縁被膜にはほぼ影響されない。
 条件(3):200~250℃の温度範囲の対数減衰率が0.9以下である。
 条件(1)~(3)の対数減衰率は、ISO12013-2に従い、シリンダーエッジの剛体振り子を用いた剛体振り子試験により、昇温速度10℃/秒で測定される。対数減衰率を測定することにより、被膜の動的粘弾性を評価できる。対数減衰率は、市販の剛体振子型物性試験器、例えばエー・アンド・ディ製RPT-3000Wを用いて測定することができる。対数減衰率の測定温度範囲は適宜設定することができ、例えば、室温(25℃)から300℃とすることができる。
 剛体振り子試験による測定では、被膜が軟らかいほど対数減数率が大きくなる。条件(1)は、絶縁被膜3のガラス領域に対応する25~100℃の温度範囲における特性を規定するものである。「25~100℃の温度範囲の対数減衰率が0.3以下である」とは、25~100℃の温度範囲において対数減衰率が常に0.3以下になっていることを意味する。すなわち、25~100℃の温度範囲における対数減衰率の最大値△max(1)が0.3以下であることを意味する。
 25~100℃の温度範囲において対数減衰率が0.3以下であれば、この温度範囲における温度上昇による対数減衰率の変化が小さくなり、絶縁被膜3の軟化に伴うベタツキが生じにくい。そのため、電磁鋼板40の打ち抜き時の作業性に優れ、また電磁鋼板40の積層精度が高くなる。また、電磁鋼板40の積層精度の悪化によって引き起こされる騒音や電磁鋼板同士の接着強度の低下を抑制することができる。
 25~100℃の温度範囲の対数減衰率は、0.25以下が好ましく、0.2以下がより好ましい。
 剛体振り子試験による対数減衰率の測定において、ガラス領域から昇温していくときに観測されるピーク温度は、被膜のガラス転移温度に対応している。条件(2)は、絶縁被膜3のゴム領域に対応する、対数減衰率のピーク温度から硬化開始温度までの温度範囲における特性を規定するものである。対数減衰率のピーク温度と硬化開始温度との差(T1-T2)が80℃未満であり、かつピーク温度の対数減衰率と硬化開始温度の対数減衰率との差(△1-△2)が0.1以上であれば、電磁鋼板40同士の加熱圧着時における絶縁被膜3の硬化速度が速く、硬化ムラが発生しにくい。これにより、複数の鋼板間で接着強度の差が生じにくく、コア内で剛性ムラが発生しにくくなることから、運転時の騒音が低減される。
 絶縁被膜3の硬化ムラが生じにくく、騒音低減効果が高い点から、差(T1-T2)の上限値は、好ましくは75℃、より好ましくは70℃である。急激な硬化に伴う絶縁被膜3のひび割れを抑制しやすい点では、差(T1-T2)の下限値は、好ましくは30℃、より好ましくは40℃である。
 絶縁被膜3の硬化ムラが生じにくく、騒音低減効果が高い点から、差(△1-△2)の下限値は、好ましくは0.1、より好ましくは0.2である。絶縁被膜3のひび割れを抑制しやすい点では、差(△1-△2)の上限値は、好ましくは0.5、より好ましくは0.4である。
 なお、硬化によって接着能を発現する絶縁被膜の場合、剛体振り子試験で得られる温度-対数減衰率曲線には、ピーク温度以降の減少領域に、傾きの絶対値がゼロに向かって小さくなった後に再び大きくなる特異点(変曲点)が存在する。本発明では、この温度-対数減衰率曲線におけるピーク温度以降の減少領域の変曲点(対数減衰率が急激な減少に転じる点)に対応する温度を硬化開始温度T2とする。
 対数減衰率のピーク温度T1の下限値は、好ましくは100℃、より好ましくは110℃である。また、対数減衰率のピーク温度T1の上限値は、好ましくは140℃、より好ましくは130℃である。
 硬化開始温度T2の下限値は、好ましくは160℃、より好ましくは170℃である。また、硬化開始温度T2の上限値は、好ましくは200℃、より好ましくは190℃である。
 条件(3)は、絶縁被膜3の硬化開始後の領域に対応する、200~250℃の温度範囲における特性を規定するものである。「200~250℃の温度範囲の対数減衰率が0.9以下である」とは、200~250℃の温度範囲において対数減衰率が常に0.9以下になっていることを意味する。すなわち、200~250℃の温度範囲における対数減衰率の最大値△max(2)が0.9以下であることを意味する。
 200~250℃の温度範囲において、対数減衰率が0.9以下であれば、硬化後の絶縁被膜3が硬く、絶縁被膜3の板厚を薄くしても高い接着強度で電磁鋼板40同士が接着される。そのため、コアの占積率と電磁鋼板40同士の接着強度を両立できる。
 200~250℃の温度範囲の対数減衰率は、0.85以下が好ましく、0.80以下がより好ましい。
 対数減衰率は、絶縁被膜3の形成に使用する電磁鋼板用コーティング組成物の種類、電磁鋼板用コーティング組成物の母材鋼板への焼き付け条件(温度、時間等)等によって制御できる。例えば、焼き付け温度を高くするほど対数減衰率は低くなる傾向がある。焼き付け時間を長くするほど対数減衰率は低くなる傾向がある。
 電磁鋼板用コーティング組成物としては、特に限定されず、例えば、エポキシ樹脂と、エポキシ樹脂硬化剤と、を含有する組成物が挙げられる。すなわち、接着能を備える絶縁被膜としては、エポキシ樹脂と、エポキシ樹脂硬化剤と、を含有する膜が、一例として挙げられる。
 エポキシ樹脂としては、一般的なエポキシ樹脂が使用でき、具体的には、一分子中にエポキシ基を2個以上有するエポキシ樹脂であれば特に制限なく使用できる。このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、アクリル酸変性エポキシ樹脂(エポキシアクリレート)、リン含有エポキシ樹脂、及びこれらのハロゲン化物(臭素化エポキシ樹脂等)や水素添加物等が挙げられる。エポキシ樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 電磁鋼板用コーティング組成物は、アクリル樹脂を含有してもよい。
 アクリル樹脂としては、特に限定されない。アクリル樹脂に用いるモノマーとしては、例えば、アクリル酸、メタクリル酸等の不飽和カルボン酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリレートを例示できる。なお、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。アクリル樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 アクリル樹脂は、アクリルモノマー以外の他のモノマーに由来する構成単位を有していてもよい。他のモノマーとしては、例えば、エチレン、プロピレン、スチレン等が挙げられる。他のモノマーとしては、1種を単独で使用してもよく、2種以上を併用してもよい。
 アクリル樹脂を用いる場合、エポキシ樹脂にアクリル樹脂をグラフトさせたアクリル変性エポキシ樹脂として用いてもよい。電磁鋼板用コーティング組成物においては、アクリル樹脂を形成するモノマーとして含まれていてもよい。
 エポキシ樹脂硬化剤としては、潜在性を持つ加熱硬化タイプのものが使用可能であり、例えば、芳香族ポリアミン、酸無水物、フェノール系硬化剤、ジシアンジアミド、三フッ化ホウ素-アミン錯体、有機酸ヒドラジッド等が挙げられる。芳香族ポリアミンとしては、例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等が挙げられる。フェノール系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、トリアジン変性フェノールノボラック樹脂、フェノールレゾール樹脂等が挙げられる。なかでも、エポキシ樹脂硬化剤としては、フェノール系硬化剤が好ましく、フェノールレゾール樹脂がより好ましい。エポキシ樹脂硬化剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 電磁鋼板用コーティング組成物中のエポキシ樹脂硬化剤の含有量は、エポキシ樹脂100質量部に対して、5~35質量部が好ましく、10~30質量部がより好ましい。
 電磁鋼板用コーティング組成物は、硬化促進剤(硬化触媒)、乳化剤、消泡剤等の添加剤が配合されていてもよい。添加剤としては、1種のみを使用してもよく、2種以上を併用してもよい。
 絶縁被膜3は、例えば電磁鋼板用コーティング組成物を母材鋼板の表面に塗布して乾燥し、焼き付けることで形成できる。
 焼き付ける際の到達温度の下限値は、好ましくは120℃、より好ましくは130℃、さらに好ましくは150℃である。焼き付ける際の到達温度の上限値は、好ましくは200℃、より好ましくは190℃、さらに好ましくは160℃である。
 焼き付け時間の下限値は、好ましくは20秒、より好ましくは30秒である。焼き付け時間の上限値は、好ましくは70秒、より好ましくは60秒である。
 焼付温度は、絶縁被膜3のガラス転移温度をTgとしたとき、Tg+20℃~Tg+50℃の範囲であることが好ましい。焼付温度がTg+20℃~Tg+50℃の範囲であれば、絶縁被膜3の25~100℃の温度範囲の対数減衰率を0.3以下とすることができる。
 焼き付ける際の昇温速度は5℃/s~20℃/sとすることが好ましい。昇温速度を5℃/s~20℃/sにすることで、絶縁被膜3の25~100℃の温度範囲の対数減衰率を0.3以下とすることができる。
 絶縁被膜3の平均厚みt1の上下限値は、素材1が電磁鋼板40として用いられる場合も考慮して、例えば以下のように設定される。
 素材1が電磁鋼板40として用いられる場合において、絶縁被膜3の平均厚みt1(電磁鋼板40(素材1)片面あたりの厚さ)は、互いに積層される電磁鋼板40間での絶縁性能及び接着能を確保できるように調整する。
 単層構成の絶縁被膜3の場合、絶縁被膜3の平均厚みt1(電磁鋼板40(素材1)片面あたりの厚さ)は、例えば、1.5μm以上8.0μm以下とすることができる。
 複層構成の絶縁被膜3の場合、下地絶縁被膜の平均厚みは、例えば、0.3μm以上1.2μmとすることができ、0.7μm以上0.9μm以下が好ましい。上地絶縁被膜の平均厚みは、例えば、1.5μm以上8.0μm以下とすることができる。
 なお、素材1における絶縁被膜3の平均厚みt1の測定方法は、素材1の平均板厚t0と同様の考え方で、複数箇所の絶縁被膜3の厚みを求め、それらの厚みの平均として求めることができる。
 この素材1における絶縁被膜3の平均厚みt1についての上下限値は、電磁鋼板40における絶縁被膜3の平均厚みt1の上下限値としても当然に採用可能である。なお、電磁鋼板40における絶縁被膜3の平均厚みt1の測定方法は、例えば、以下の測定方法による。例えば、積層コアを形成する複数の電磁鋼板のうち、積層方向の最も外側に位置する電磁鋼板40(表面が積層方向に露出している電磁鋼板40)を選定する。選定した電磁鋼板40の表面において、径方向の所定の位置(例えば、電磁鋼板40における内周縁と外周縁との丁度中間(中央)の位置)を選定する。選定した位置において、電磁鋼板40の絶縁被膜3の厚みを、周方向に同等の間隔をあけて4か所において(すなわち、中心軸線Oを中心とした90度おきに)測定する。測定した4か所の厚みの平均値を、絶縁被膜3の平均厚みt1とすることができる。
 なお、このように絶縁被膜3の平均厚みt1を、積層方向の最も外側に位置する電磁鋼板40において測定した理由は、絶縁被膜3の厚みが、電磁鋼板40の積層方向に沿った積層位置で殆ど変わらないように、絶縁被膜3が作り込まれているからである。
 以上のような素材1を打ち抜き加工することで電磁鋼板40が製造され、電磁鋼板40によって接着コア(ステータコア21やロータコア31)が製造される。
(積層コアの積層方法)
 以下、積層コアの説明に戻る。ステータコア21を形成する複数の電磁鋼板40は、図3に示すように、絶縁被膜3を介して積層されている。
 積層方向に隣り合う電磁鋼板40は、絶縁被膜3によって全面にわたって接着されている。言い換えると、電磁鋼板40において積層方向を向く面(以下、第1面という)は、全面にわたって接着領域41aとなっている。ただし、積層方向に隣り合う電磁鋼板40が、全面にわたって接着されていなくてもよい。言い換えると、電磁鋼板40の第1面において、接着領域41aと非接着領域(不図示)とが混在していてもよい。
 本実施形態では、ロータコア31を形成する方の複数の電磁鋼板は、図1に示すかしめ42(ダボ)によって互いに固定されている。しかしながら、ロータコア31を形成する複数の電磁鋼板も、ステータコア21と同様に絶縁被膜3により固定した積層構造を有してもよい。
 また、ステータコア21やロータコア31などの積層コアは、いわゆる回し積みにより形成されていてもよい。
(積層コアの製造方法)
 前記ステータコア21は、例えば、図7に示す製造装置100を用いて製造される。以下では、製造方法の説明にあたり、まず先に、積層コアの製造装置100(以下、単に製造装置100という)について説明する。
 製造装置100では、コイル1A(フープ)から素材1を矢印F方向に向かって送り出しつつ、各ステージに配置された金型により複数回の打ち抜きを行って電磁鋼板40の形状に徐々に形成していく。そして、打ち抜いた電磁鋼板40を積層して昇温させながら加圧する。その結果、積層方向に隣り合う電磁鋼板40を絶縁被膜3によって接着させ(すなわち、絶縁被膜3のうちの接着領域41aに位置する部分に接着能を発揮させ)、接着が完了する。
 図7に示すように、製造装置100は、複数段の打ち抜きステーション110を備えている。打ち抜きステーション110は、二段であってもよく、三段以上であってもよい。各段の打ち抜きステーション110は、素材1の下方に配置された雌金型111と、素材1の上方に配置された雄金型112とを備える。
 製造装置100は、さらに、最も下流の打ち抜きステーション110よりも下流位置に積層ステーション140を備える。この積層ステーション140は、加熱装置141と、外周打ち抜き雌金型142と、断熱部材143と、外周打ち抜き雄金型144と、スプリング145と、を備えている。
 加熱装置141、外周打ち抜き雌金型142、断熱部材143は、素材1の下方に配置されている。一方、外周打ち抜き雄金型144及びスプリング145は、素材1の上方に配置されている。なお、符号21は、ステータコアを示している。
 以上説明の構成を有する製造装置100において、まずコイル1Aより素材1を図7の矢印F方向に順次送り出す。そして、この素材1に対し、複数段の打ち抜きステーション110による打ち抜き加工を順次行う。これら打ち抜き加工により、素材1に、図3に示したコアバック部22と複数のティース部23を有する電磁鋼板40の形状を得る。ただし、この時点では完全には打ち抜かれていないので、矢印F方向に沿って次工程へと進む。
 そして最後に、素材1は積層ステーション140へと送り出され、外周打ち抜き雄金型144により打ち抜かれて精度良く、積層される。この積層の際、電磁鋼板40はスプリング145により一定の加圧力を受ける。以上説明のような、打ち抜き工程、積層工程、を順次繰り返すことで、所定枚数の電磁鋼板40を積み重ねることができる。さらに、このようにして電磁鋼板40を積み重ねて形成された積層コアは、加熱装置141によって例えば温度200℃まで加熱される。この加熱により、隣り合う電磁鋼板40の絶縁被膜3同士が接着される。
 なお、加熱装置141は、外周打ち抜き雌金型142に配置されていなくてもよい。すなわち、外周打ち抜き雌金型142で積層された電磁鋼板40を接着させる前に、外周打ち抜き雌金型142外に取り出してもよい。この場合、外周打ち抜き雌金型142に断熱部材143がなくてもよい。さらにこの場合、積み重ねられた接着前の電磁鋼板40を、図示されない治具で積層方向の両側から挟んで保持した上で、搬送したり加熱したりしてもよい。
 以上の各工程により、ステータコア21が完成する。
 以上説明したように、本発明では、電磁鋼板の接着能を備える絶縁被膜が条件(1)~(3)のいずれか1つ以上を満たす。条件(1)により、電磁鋼板の打ち抜き時の作業性や積層精度が向上し、また積層精度向上によって騒音の低減及び電磁鋼板同士の接着強度の向上といった効果も得られる。条件(2)により、硬化ムラの抑制による騒音の低減効果が得られる。条件(3)により、占積率と電磁鋼板同士の接着強度を両立できる。条件(1)~(3)をすべて満たせば、電磁鋼板の打ち抜き時の作業性、電磁鋼板の積層精度、騒音低減、占積率、電磁鋼板同士の接着強度といったコア性能がいずれも向上した積層コアが得られる。
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 ステータコアの形状は、前記実施形態で示した形態に限定されるものではない。具体的には、ステータコアの外径及び内径の寸法、積厚、スロット数、ティース部の周方向と径方向の寸法比率、ティース部とコアバック部との径方向の寸法比率、などは所望の回転電機の特性に応じて任意に設計可能である。
 前記実施形態におけるロータでは、2つ1組の永久磁石32が1つの磁極を形成しているが、本発明はこれに限られない。例えば、1つの永久磁石32が1つの磁極を形成していてもよく、3つ以上の永久磁石32が1つの磁極を形成していてもよい。
 前記実施形態では、回転電機として、永久磁石界磁型電動機を一例に挙げて説明したが、回転電機の構造は、以下に例示するようにこれに限られず、さらには以下に例示しない種々の公知の構造も採用可能である。
 前記実施形態では、回転電機として、永久磁石界磁型電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機がリラクタンス型電動機や電磁石界磁型電動機(巻線界磁型電動機)であってもよい。
 前記実施形態では、交流電動機として、同期電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機が誘導電動機であってもよい。
 前記実施形態では、電動機として、交流電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機が直流電動機であってもよい。
 前記実施形態では、回転電機として、電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機が発電機であってもよい。
 前記実施形態では、本発明に係る積層コアをステータコアに適用した場合を例示したが、ロータコアに適用することも可能である。
 積層コアを、回転電機に代えて変圧器に採用することも可能である。この場合、電磁鋼板として、無方向電磁鋼板を採用することに代えて、方向性電磁鋼板を採用することが好ましい。
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
 以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
[剛体振り子試験]
 各例で製造した電磁鋼帯から縦50mm、横20mmの試験片を切り出した。前記試験片の絶縁被膜に対し、ISO12013-2に従って、シリンダーエッジの剛体振り子による剛体振り子試験を実施し、温度-対数減衰率曲線を得た。剛体振り子型物性試験機としては、エー・アンド・ディ製RPT-3000Wを用いた。昇温速度は10℃/秒、測定温度範囲は25~300℃とした。
[打ち抜き時の作業性]
 各例で製造した電磁鋼帯から、図3に例示した形状で外径250.0mm、内径165.0mmの電磁鋼板を10枚打ち抜き、以下の評価基準に従って作業性を評価した。
 (評価基準)
 A:絶縁被膜の軟化に伴うベタツキが生じず、打ち抜きが容易であり、積層精度も高かった。
 B:絶縁被膜の軟化に伴うベタツキが生じ、打ち抜きが困難であり、積層精度も悪かった。
[積層精度]
 上記の[打ち抜き時の作業性]の試験で製造した電磁鋼板130枚を積層し、鋼板温度200℃、圧力10MPa、加圧時間1時間で接着して積層コアを作製した。得られた積層コアについて、幅方向に10箇所の積層板厚を測定し、その平均偏差により積層精度を評価した。積層板厚の平均偏差が1枚の電磁鋼板の板厚に対して1/2未満である場合を「優良」、1/2以上1未満である場合を「可」、1以上である場合を「不良」とした。
[打音テスト(騒音評価)]
 上記の[打ち抜き時の作業性]の試験で製造した電磁鋼板130枚を積層し、鋼板温度200℃、圧力10MPa、加圧時間1時間で接着して積層コア(ステータコア)を作製した。
 ステータコアのコアバック部の外周端部をインパクトハンマーによって半径方向に加振し、その加振源に対して軸方向に180°の方向におけるティース部の先端とコアバック部の中央部を測定点として、騒音振動のモーダル解析を行った。また、コアバック部の半径方向の中央部をインパクトハンマーによって軸方向に加振した場合についても、その加振源に対して軸方向に180°の方向におけるティース部の先端とコアバック部の中央部を測定点として、騒音振動のモーダル解析を行った。評価は以下の基準に従って行った。数値が小さいほど騒音を抑制できることを意味する。下記の評価において1~4を合格とし、5を不合格とした。なお、「-」とあるのは測定されないことを示す。
 1:振動ピークが1つないし2つのみ検出される。
 2:振動ピークが数個検出される。
 3:加振方向によっては10個以上の振動ピークが検出される。
 4:主ピークはあるが、10個以上の振動ピークが検出される。
 5:主ピークが無く、10個以上の振動ピークが検出される。
[占積率]
 上記の[打ち抜き時の作業性]の試験で製造した電磁鋼板130枚を積層し、鋼板温度200℃、圧力10MPa、加圧時間1時間で接着して積層コアを作製した。得られた積層コアについて、下記式から占積率(%)を算出した。
 占積率(%)=M/(D・h・S)×100
 ただし、Mは積層コアの質量(kg)、Dは母材鋼板の密度(kg/m)、hは積層コアの平均高さ(m)、Sは平面視における電磁鋼板の面積(m)を表す。電磁鋼板の面積Sは、積層する前の電磁鋼板をスキャナーにより画像として取り込み、画像解析をすることにより求めた。
[接着強度]
 各例で製造した電磁鋼帯から、幅30mm×長さ60mmの長方形の電磁鋼板を2枚切り出し、互いの幅30mm×長さ10mmの先端部分同士を重ね合わせ、鋼板温度180℃、圧力10MPa、加圧時間1時間で接着してサンプルを作製した。雰囲気温度25℃、引張速度3mm/分として剪断引張強度を測定し、接着面積で除した数値を接着強度(MPa)とした。接着強度が2.5MPa以上を合格とした。
[例1]
 母材鋼板として、質量%で、Si:3.0%、Mn:0.2%、Al:0.5%、残部がFe及び不純物からなる板厚0.25mm、幅300mmの帯状の無方向性電磁鋼板を用いた。母材鋼板の表面に、非クロム系の下地処理剤を用いて塗布量が1.0g/mとなるように下地処理を施し、下地絶縁被膜を形成した。
 液状のビスフェノールF型エポキシ樹脂100質量部と、エポキシ樹脂硬化剤として液状のフェノールレゾール樹脂の25質量部とを混合して電磁鋼板用コーティング組成物を調製した。得られた電磁鋼板用コーティング組成物を前記下地絶縁被膜上に塗布量が1.0g/mとなるように塗布し、昇温速度10℃/minで160℃まで温度を上げ、その後160℃で60秒間焼き付けて上地絶縁被膜を形成して電磁鋼帯を得た。形成された複層構成の絶縁被膜に対し、剛体振り子試験により対数減衰率を測定した結果を図8に示す。
[例2~9]
 焼き付ける際の昇温速度、焼き付け温度(焼き付ける際の到達温度)を表1に示すとおりに変更した以外は、例1と同様にして電磁鋼帯を得た。
 各例における製造時の電磁鋼板用コーティング組成物の焼き付け温度、絶縁被膜に対する剛体振り子試験の測定結果、及び評価結果を表1に示す。なお、表1において、「差(T1-T2)」は、対数減衰率のピーク温度(T1)と硬化開始温度(T2)との差(℃)を示す。表1中の焼付温度とTgとの差(℃)におけるTgはピーク温度(T1)(℃)である。「差(△1-△2)」は、ピーク温度の対数減衰率(△1)と硬化開始温度の対数減衰率(△2)との差を示す。△max(1)は、25~100℃の温度範囲における対数減衰率の最大値を意味する。△max(2)は、200~250℃の温度範囲における対数減衰率の最大値を意味する。
Figure JPOXMLDOC01-appb-T000001
 接着強度が2.5MPa以上を合格とした。表1に示すように、△max(1)が0.3以下である例1、2は、△max(1)が0.3超である例3に比べて、電磁鋼板の打ち抜き時の作業性に優れ、積層精度が高く、また積層コアの騒音が低減されており、電磁鋼板同士の接着強度も高かった。また、△max(2)が0.9以下である例1、2は、△max(2)が0.9を超える例3に比べて、積層コアの占積率及び電磁鋼板同士の接着強度の点でコア性能が向上した。△max(1)が0.3以下の例4は、打ち抜き時の作業性に優れ、接着強度に優れていた。△max(2)が0.9以下である例5は、占積率および接着強度が優れていた。差(T1-T2)が80℃未満であり、差(ΔT1-Δ2)が0.1以上であり、かつ、△max(2)が0.9以下である例6は、打音テスト、占積率、接着強度に優れていた。△max(1)が0.3以下であり、差(T1-T2)が80℃未満であり、差(ΔT1-Δ2)が0.1以上である例7は、積層精度、打音テスト、接着強度に優れていた。昇温速度が3℃/sの例8は、本発明のいずれの要件も満足せず、接着強度も2.5MPaを満足しなかった。昇温速度が25℃/sの例9は、本発明のいずれの要件も満足せず、接着強度も2.5MPaを満足しなかった。
 本発明によれば、電磁鋼板の打ち抜き時の作業性と積層精度の向上、硬化ムラの抑制による騒音低減、占積率と接着強度の両立といったそれぞれの観点の1つ以上でコア性能が向上した積層コアを製造できる。よって、産業上の利用可能性は大である。
 1…素材、2…母材鋼板、3…絶縁被膜、10…回転電機、20…ステータ、21…ステータコア、40…電磁鋼板。

Claims (8)

  1.  母材鋼板のいずれか一方又は両方の表面の少なくとも一部が、接着能を有する絶縁被膜により被覆された電磁鋼板であって、
     前記絶縁被膜の25~100℃の温度範囲の対数減衰率が0.3以下である、電磁鋼板。
  2.  前記絶縁被膜の対数減衰率のピーク温度と硬化開始温度との差が80℃未満であり、かつ前記ピーク温度の対数減衰率と前記硬化開始温度の対数減衰率との差が0.1以上である、請求項1に記載の電磁鋼板。
  3.  前記絶縁被膜の200~250℃の温度範囲の対数減衰率が0.9以下である、請求項1又は2に記載の電磁鋼板。
  4.  母材鋼板のいずれか一方又は両方の表面の少なくとも一部が、接着能を有する絶縁被膜により被覆され、
     前記絶縁被膜の対数減衰率のピーク温度と硬化開始温度との差が80℃未満であり、かつ前記ピーク温度の対数減衰率と前記硬化開始温度の対数減衰率との差が0.1以上である、電磁鋼板。
  5.  前記絶縁被膜の200~250℃の温度範囲の対数減衰率が0.9以下である、請求項4に記載の電磁鋼板。
  6.  母材鋼板のいずれか一方又は両方の表面の少なくとも一部が、接着能を有する絶縁被膜により被覆され、
     前記絶縁被膜の200~250℃の温度範囲の対数減衰率が0.9以下である、電磁鋼板。
  7.  請求項1~6のいずれか一項に記載の電磁鋼板が複数積層され、互いに接着されている、積層コア。
  8.  請求項7に記載の積層コアを備える回転電機。
PCT/JP2021/023028 2020-06-17 2021-06-17 電磁鋼板、積層コア及び回転電機 WO2021256532A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202180026905.4A CN115398568B (zh) 2020-06-17 2021-06-17 电磁钢板、层叠铁芯及旋转电机
MX2022012029A MX2022012029A (es) 2020-06-17 2021-06-17 Lamina de acero electrico, nucleo laminado y maquina electrica giratoria.
US17/913,865 US20230113264A1 (en) 2020-06-17 2021-06-17 Electrical steel sheet, laminated core and rotating electric machine
BR112022019592A BR112022019592A2 (pt) 2020-06-17 2021-06-17 Chapa de aço elétrico, núcleo laminado, e, máquina elétrica rotativa
KR1020227033536A KR102493101B1 (ko) 2020-06-17 2021-06-17 전자 강판, 적층 코어 및 회전 전기 기기
EP21826256.6A EP4170690A4 (en) 2020-06-17 2021-06-17 ELECTROMAGNETIC STEEL SHEET, LAMINATED CORE AND ROTARY ELECTRIC MACHINE
JP2021559781A JP7095819B2 (ja) 2020-06-17 2021-06-17 電磁鋼板、積層コア及び回転電機
CA3171849A CA3171849A1 (en) 2020-06-17 2021-06-17 Electrical steel sheet, laminated core and rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-104232 2020-06-17
JP2020104232 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021256532A1 true WO2021256532A1 (ja) 2021-12-23

Family

ID=79268064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023028 WO2021256532A1 (ja) 2020-06-17 2021-06-17 電磁鋼板、積層コア及び回転電機

Country Status (10)

Country Link
US (1) US20230113264A1 (ja)
EP (1) EP4170690A4 (ja)
JP (1) JP7095819B2 (ja)
KR (1) KR102493101B1 (ja)
CN (1) CN115398568B (ja)
BR (1) BR112022019592A2 (ja)
CA (1) CA3171849A1 (ja)
MX (1) MX2022012029A (ja)
TW (1) TWI792355B (ja)
WO (1) WO2021256532A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116742910B (zh) * 2023-07-10 2023-11-17 苏州首栎德技术有限公司 一种电机的定子片涂胶方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238042A (ja) * 1988-07-28 1990-02-07 Kawasaki Steel Corp 加熱接着用表面被覆鋼板の製造方法
JP2000173816A (ja) 1998-12-02 2000-06-23 Nippon Steel Corp 接着用表面被覆電磁鋼板とその製造方法
WO2004070080A1 (ja) * 2003-02-03 2004-08-19 Nippon Steel Corporation 接着用表面被覆電磁鋼板
JP6037055B2 (ja) 2014-07-29 2016-11-30 Jfeスチール株式会社 積層用電磁鋼板、積層型電磁鋼板、積層型電磁鋼板の製造方法、および自動車モーター用鉄心
JP6086098B2 (ja) 2014-06-23 2017-03-01 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
JP2020104232A (ja) 2018-12-28 2020-07-09 不二ラテックス株式会社 関節機構

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037055B2 (ja) 1979-12-29 1985-08-23 昭和電工株式会社 SiCの連続製造法
JPH0653265B2 (ja) * 1988-12-28 1994-07-20 日産自動車株式会社 自動車外板の塗装方法
JP2793253B2 (ja) * 1989-05-18 1998-09-03 日産自動車株式会社 複合塗膜
EP0741154B1 (en) * 1994-10-21 2004-01-07 Sanyo Chemical Industries, Ltd. Curable composition
CN102625818B (zh) * 2009-09-11 2015-03-25 日本帕卡濑精株式会社 用于多层表面处理钢板的粘接层形成用组合物
US10668697B2 (en) * 2016-05-20 2020-06-02 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing metal clad laminated board, method for manufacturing electronic circuit board, and rigid body pendulum type viscoelasticity measuring device
CN114728306B (zh) * 2019-11-14 2024-06-14 共荣社化学株式会社 热固性树脂组合物、固化膜、多层涂膜的形成方法、酯化合物以及聚合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238042A (ja) * 1988-07-28 1990-02-07 Kawasaki Steel Corp 加熱接着用表面被覆鋼板の製造方法
JP2000173816A (ja) 1998-12-02 2000-06-23 Nippon Steel Corp 接着用表面被覆電磁鋼板とその製造方法
WO2004070080A1 (ja) * 2003-02-03 2004-08-19 Nippon Steel Corporation 接着用表面被覆電磁鋼板
JP6086098B2 (ja) 2014-06-23 2017-03-01 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
JP6037055B2 (ja) 2014-07-29 2016-11-30 Jfeスチール株式会社 積層用電磁鋼板、積層型電磁鋼板、積層型電磁鋼板の製造方法、および自動車モーター用鉄心
JP2020104232A (ja) 2018-12-28 2020-07-09 不二ラテックス株式会社 関節機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170690A4

Also Published As

Publication number Publication date
MX2022012029A (es) 2022-10-27
JPWO2021256532A1 (ja) 2021-12-23
CN115398568B (zh) 2024-01-23
EP4170690A4 (en) 2023-11-29
TWI792355B (zh) 2023-02-11
KR102493101B1 (ko) 2023-01-31
BR112022019592A2 (pt) 2022-11-16
KR20220140636A (ko) 2022-10-18
JP7095819B2 (ja) 2022-07-05
EP4170690A1 (en) 2023-04-26
CA3171849A1 (en) 2021-12-23
TW202203262A (zh) 2022-01-16
CN115398568A (zh) 2022-11-25
US20230113264A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
JP7486434B2 (ja) ステータ用接着積層コアおよび回転電機
TWI720745B (zh) 定子用接著積層鐵芯、其製造方法、及旋轉電機
WO2020129935A1 (ja) 積層コアおよび回転電機
WO2021256534A1 (ja) 電磁鋼板、積層コア、及び積層コア製造方法
WO2021256537A1 (ja) 積層コアの製造方法
JP2022000888A (ja) 積層コアの製造方法
JP7095819B2 (ja) 電磁鋼板、積層コア及び回転電機
JP2022001014A (ja) 積層コアおよび積層コアの製造方法
JP7360080B2 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP7343823B2 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP2022000536A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
WO2021256531A1 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP2022000537A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
WO2021256529A1 (ja) 電磁鋼板用コーティング組成物、接着用表面被覆電磁鋼板及び積層鉄心
JP7406061B2 (ja) 積層コアおよびその製造方法、回転電機
JP2022000887A (ja) 電磁鋼板及び積層コア
JP7515403B2 (ja) ステータ用接着積層コア、その製造方法、および回転電機
JP2022001013A (ja) 積層コアおよび積層コアの製造方法
JP2022000538A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
JP2021197860A (ja) 積層コアおよび積層コアの製造方法
JP2021195606A (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021559781

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3171849

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227033536

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022019592

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022019592

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220928

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021826256

Country of ref document: EP

Effective date: 20230117