WO2021256537A1 - 積層コアの製造方法 - Google Patents

積層コアの製造方法 Download PDF

Info

Publication number
WO2021256537A1
WO2021256537A1 PCT/JP2021/023047 JP2021023047W WO2021256537A1 WO 2021256537 A1 WO2021256537 A1 WO 2021256537A1 JP 2021023047 W JP2021023047 W JP 2021023047W WO 2021256537 A1 WO2021256537 A1 WO 2021256537A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
punching
insulating film
manufacturing
veneer
Prior art date
Application number
PCT/JP2021/023047
Other languages
English (en)
French (fr)
Inventor
一郎 田中
和年 竹田
美菜子 福地
真介 高谷
修一 山崎
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202180021601.9A priority Critical patent/CN115298774A/zh
Priority to MX2022010916A priority patent/MX2022010916A/es
Priority to BR112022016208A priority patent/BR112022016208A2/pt
Priority to CA3165613A priority patent/CA3165613A1/en
Priority to KR1020227030907A priority patent/KR102664817B1/ko
Priority to EP21825536.2A priority patent/EP4170876A4/en
Priority to JP2021559782A priority patent/JP7176648B2/ja
Priority to US17/800,851 priority patent/US12005487B2/en
Publication of WO2021256537A1 publication Critical patent/WO2021256537A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/14Dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/22Notching the peripheries of circular blanks, e.g. laminations for dynamo-electric machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a method for manufacturing a laminated core.
  • the present application claims priority based on Japanese Patent Application No. 2020-104252 filed in Japan on June 17, 2020, the contents of which are incorporated herein by reference.
  • the laminated core used for a motor is manufactured by punching an electromagnetic steel sheet into a predetermined shape by punching and then laminating it in a die.
  • thinned electrical steel sheets have been used in these products in order to reduce iron loss in motor products.
  • the thinned electrical steel sheet has a problem that has not arisen in the conventional method for manufacturing a laminated core.
  • the number of punching may increase. This is because if the thickness of the electrical steel sheet is reduced to half that of the conventional one, the number of punching times is doubled.
  • As the thickness of the electrical steel sheet becomes thinner it is necessary to narrow the clearance of the punching die, and increasing the punching speed has a limit in ensuring the life of the punching die.
  • Patent Document 1 describes a method for manufacturing a laminated iron core. Patent Document 1 describes a technique of laminating two or more electrical steel sheets and then punching them in order to improve productivity. However, in Patent Document 1, since the adhesive layer formed between the electromagnetic steel sheets is heated to be completely cured or incompletely cured, the productivity cannot be sufficiently improved.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a method for manufacturing a laminated core having excellent productivity.
  • the gist of the present invention is as follows.
  • a core single plate is obtained by punching an electromagnetic steel strip provided with an insulating film, and the laminated core is manufactured by laminating the core single plate. How to do Immediately before the punching process, two or more magnetic steel strips are pressed with a guide roller to temporarily bond them.
  • the core single plate is obtained by inserting the two or more electrical steel strips after the temporary bonding into a punching die and then performing the punching process.
  • the surface temperature of the two or more electrical steel strips at the time of temporary bonding may be 15 to 50 ° C.
  • the pressing force at the time of pressurization by the guide roller may be 2.0 to 10.0 MPa.
  • the method for manufacturing a laminated core according to any one of (1) to (3) above may be carried out by heating the core veneer to 180 to 250 ° C. after the punching process to achieve main bonding. good.
  • the insulating coating may have an adhesive ability.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. It is a top view of the material which forms the laminated core.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG. It is an enlarged view of the part C of FIG. It is a side view of the manufacturing apparatus used for manufacturing the laminated core. It is a flow chart of the manufacturing method of the laminated core which concerns on this embodiment.
  • a method for manufacturing a laminated core according to an embodiment of the present invention will be described with reference to the drawings.
  • a laminated core manufactured by the method for manufacturing a laminated core according to the present embodiment, a rotary electric machine provided with the laminated core, and a material forming the laminated core will be described.
  • an electric motor as a rotary electric machine specifically an AC electric motor, more specifically a synchronous electric motor, and more specifically, a permanent magnet field type electric motor will be described as an example.
  • This type of motor is suitably adopted for, for example, an electric vehicle.
  • the rotary electric machine 10 includes a stator 20, a rotor 30, a case 50, and a rotary shaft 60.
  • the stator 20 and rotor 30 are housed in a case 50.
  • the stator 20 is fixed in the case 50.
  • the rotary electric machine 10 adopts an inner rotor type in which the rotor 30 is located inside the stator 20 in the radial direction.
  • an outer rotor type in which the rotor 30 is located outside the stator 20 may be adopted.
  • the rotary electric machine 10 is a 12-pole 18-slot three-phase AC motor.
  • the rotary electric machine 10 can rotate at a rotation speed of 1000 rpm, for example, by applying an exciting current having an effective value of 10 A and a frequency of 100 Hz to each phase.
  • the stator 20 includes an adhesive laminated core for a stator (hereinafter referred to as a stator core) 21 and a winding not shown.
  • the stator core 21 includes an annular core back portion 22 and a plurality of teeth portions 23.
  • the central axis O direction of the stator core 21 (or core back portion 22) is referred to as an axial direction
  • the radial direction of the stator core 21 (or core back portion 22) (direction orthogonal to the central axis O) is referred to as a radial direction
  • the circumferential direction (direction that orbits around the central axis O) of the stator core 21 (or core back portion 22) is referred to as a circumferential direction.
  • the core back portion 22 is formed in an annular shape in a plan view of the stator 20 when viewed from the axial direction.
  • the plurality of tooth portions 23 project radially inward from the inner circumference of the core back portion 22 (toward the central axis O of the core back portion 22 along the radial direction).
  • the plurality of tooth portions 23 are arranged at equal angular intervals in the circumferential direction. In the present embodiment, 18 tooth portions 23 are provided at every 20 degrees of the central angle centered on the central axis O.
  • the plurality of tooth portions 23 are formed to have the same shape and the same size as each other. Therefore, the plurality of tooth portions 23 have the same thickness dimension as each other.
  • the winding is wound around the teeth portion 23.
  • the winding may be a centralized winding or a distributed winding.
  • the rotor 30 is arranged radially inside the stator 20 (stator core 21).
  • the rotor 30 includes a rotor core 31 and a plurality of permanent magnets 32.
  • the rotor core 31 is formed in an annular shape (annular ring) arranged coaxially with the stator 20.
  • the rotating shaft 60 is arranged in the rotor core 31.
  • the rotating shaft 60 is fixed to the rotor core 31.
  • the plurality of permanent magnets 32 are fixed to the rotor core 31.
  • a set of two permanent magnets 32 form one magnetic pole.
  • the plurality of sets of permanent magnets 32 are arranged at equal angular intervals in the circumferential direction. In this embodiment, 12 sets (24 in total) of permanent magnets 32 are provided at every 30 degrees of the central angle centered on the central axis O.
  • an embedded magnet type motor is adopted as a permanent magnet field type motor.
  • the rotor core 31 is formed with a plurality of through holes 33 that penetrate the rotor core 31 in the axial direction.
  • the plurality of through holes 33 are provided corresponding to the arrangement of the plurality of permanent magnets 32.
  • Each permanent magnet 32 is fixed to the rotor core 31 in a state of being arranged in the corresponding through hole 33.
  • the fixing of each permanent magnet 32 to the rotor core 31 can be realized, for example, by adhering the outer surface of the permanent magnet 32 and the inner surface of the through hole 33 with an adhesive.
  • a surface magnet type motor may be adopted instead of the embedded magnet type.
  • both the stator core 21 and the rotor core 31 are laminated cores.
  • the stator core 21 is formed by laminating a plurality of core veneers 40 in the laminating direction.
  • the product thickness (total length along the central axis O) of each of the stator core 21 and the rotor core 31 is, for example, 50.0 mm.
  • the outer diameter of the stator core 21 is, for example, 250.0 mm.
  • the inner diameter of the stator core 21 is, for example, 165.0 mm.
  • the outer diameter of the rotor core 31 is, for example, 163.0 mm.
  • the inner diameter of the rotor core 31 is, for example, 30.0 mm.
  • the product thickness, outer diameter and inner diameter of the stator core 21, and the product thickness, outer diameter and inner diameter of the rotor core 31 are not limited to these values.
  • the inner diameter of the stator core 21 is based on the tip end portion of the teeth portion 23 in the stator core 21. That is, the inner diameter of the stator core 21 is the diameter of a virtual circle inscribed in the tips of all the teeth portions 23.
  • Each core veneer 40 forming the stator core 21 and the rotor core 31 is formed, for example, by punching out the material 1 as shown in FIGS. 4 to 6.
  • the material 1 is a steel plate (electromagnetic steel plate) that is a base material of the core veneer 40.
  • Examples of the material 1 include strip-shaped steel plates and cut plates. Although the explanation of the laminated core is in the middle, the material 1 will be described below.
  • the strip-shaped steel plate serving as the base material of the core veneer 40 may be referred to as a material 1 or an electromagnetic steel strip 1.
  • a steel plate having a shape used for a laminated core by punching a material 1 or an electromagnetic steel strip 1 may be referred to as a core single plate 40.
  • the material 1 is handled, for example, in a state of being wound around the coil 1A.
  • non-oriented electrical steel sheets are used as the material 1.
  • JIS C 2552 2014 non-oriented electrical steel strip
  • a grain-oriented electrical steel sheet may be used instead of the non-oriented electrical steel sheet.
  • JIS C 2553 2019 grain-oriented electrical steel strip
  • JIS C 2558 2015 non-oriented electrical steel strips and grain-oriented electrical steel strips can be adopted.
  • the upper and lower limit values of the average plate thickness t0 of the material 1 are set as follows, for example, in consideration of the case where the material 1 is used as the core veneer 40. As the material 1 becomes thinner, the manufacturing cost of the material 1 increases. Therefore, in consideration of the manufacturing cost, the lower limit of the average plate thickness t0 of the material 1 is 0.10 mm, preferably 0.15 mm, and more preferably 0.18 mm. On the other hand, if the material 1 is too thick, the manufacturing cost becomes good, but when the material 1 is used as the core veneer 40, the eddy current loss increases and the core iron loss deteriorates.
  • the upper limit of the average plate thickness t0 of the material 1 is 0.65 mm, preferably 0.35 mm, and more preferably 0.30 mm.
  • 0.20 mm can be exemplified as a material that satisfies the above range of the average plate thickness t0 of the material 1.
  • the average plate thickness t0 of the material 1 includes not only the thickness of the base steel plate 2 described later but also the thickness of the insulating film 3. Further, the method for measuring the average plate thickness t0 of the material 1 is, for example, the following measuring method. For example, when the material 1 is wound into the shape of the coil 1A, at least a part of the material 1 is wound into a flat plate shape. In the material 1 unwound into a flat plate shape, a predetermined position in the longitudinal direction of the material 1 (for example, a position separated from the longitudinal edge of the material 1 by 10% of the total length of the material 1). Select. At this selected position, the material 1 is divided into five regions along the width direction thereof. The plate thickness of the material 1 is measured at four locations that are boundaries of these five regions. The average value of the plate thicknesses at the four locations can be set to the average plate thickness t0 of the material 1.
  • the upper and lower limit values of the average plate thickness t0 of the material 1 can be naturally adopted as the upper and lower limit values of the average plate thickness t0 as the core veneer 40.
  • the method for measuring the average plate thickness t0 of the core veneer 40 is, for example, the following measurement method.
  • the thickness of the laminated core is measured at four locations (that is, every 90 degrees around the central axis O) at equal intervals in the circumferential direction. Divide each of the measured product thicknesses at the four locations by the number of laminated core veneers 40 to calculate the plate thickness per plate.
  • the average value of the plate thicknesses at the four locations can be set to the average plate thickness t0 of the core veneer 40.
  • the material 1 includes a base steel plate 2 and an insulating coating 3.
  • the material 1 is formed by covering both sides of a strip-shaped base steel plate 2 with an insulating coating 3.
  • most of the material 1 is formed of the base steel plate 2, and an insulating film 3 thinner than the base steel plate 2 is formed on the surface of the base steel plate 2.
  • the chemical composition of the base steel sheet 2 contains 2.5% to 4.5% Si in mass%, as shown below in mass% units.
  • the yield strength of the material 1 can be set to, for example, 380 to 540 MPa.
  • the insulating coating 3 When the material 1 is used as the core veneer 40, the insulating coating 3 exhibits insulation performance between the core veneers 40 adjacent to each other in the stacking direction. Further, in the present embodiment, the insulating coating 3 has an adhesive ability and adheres the core veneers 40 adjacent to each other in the stacking direction.
  • the insulating coating 3 may have a single-layer structure or a multi-layer structure. More specifically, for example, the insulating coating 3 may have a single-layer structure having both insulating performance and adhesive ability, and may include a base insulating coating having excellent insulating performance and a ground insulating coating having excellent adhesive performance. It may have a multi-layer structure including.
  • the insulating coating 3 covers both sides of the base steel plate 2 without gaps over the entire surface.
  • a part of the layers of the insulating coating 3 may not cover both sides of the base steel plate 2 without gaps.
  • a part of the layer of the insulating film 3 may be intermittently provided on the surface of the base steel sheet 2.
  • both sides of the base steel plate 2 need to be covered with the insulating film 3 so that the entire surface is not exposed.
  • the insulating coating 3 does not have a base insulating coating having excellent insulating performance and has a single-layer structure having both insulating performance and adhesive ability, the insulating coating 3 has no gap over the entire surface of the base steel plate 2. Must be formed.
  • the insulating film 3 has a multi-layer structure including a base insulating film having excellent insulating performance and a ground insulating film having excellent adhesiveness, both the base insulating film and the ground insulating film are made of a base steel sheet. In addition to forming the base insulating film without gaps over the entire surface of No. 2, even if the base insulating film is formed without gaps over the entire surface of the base steel sheet and the upper ground insulating film is intermittently provided, both the insulating performance and the adhesive ability can be achieved.
  • the coating composition for forming the underlying insulating film is not particularly limited, and for example, a general treatment agent such as a chromic acid-containing treatment agent or a phosphate-containing treatment agent can be used.
  • the insulating film having adhesive ability is formed by applying a coating composition for an electromagnetic steel sheet, which will be described later, onto a base steel sheet.
  • the insulating film having an adhesive ability is, for example, a single-layer insulating film having both insulating performance and adhesive ability, or a ground insulating film provided on an underlying insulating film.
  • the insulating film having adhesive ability is in an uncured state or a semi-cured state (B stage) before heat crimping at the time of manufacturing a laminated core, and the curing reaction proceeds by heating during heat crimping to develop adhesive ability. ..
  • a normal insulating film has insulating performance, but does not have adhesive ability.
  • the insulating film according to the present embodiment is significantly different from a normal insulating film and an adhesive layer formed by an adhesive in that it has adhesive ability and insulating performance.
  • a method of adhering the base steel plates 2 having an insulating film having no adhesive ability to each other there is a method of adhering the base steel plates 2 to each other with an adhesive made of a thermosetting resin exhibiting adhesiveness.
  • the core veneer 40 bonded and manufactured by this method two or more base steel plates 2 are bonded to each other before the punching process, so that the core veneer 40 itself is bonded, but two sheets are bonded.
  • the core veneers 40 in a state where more than that are adhered are not adhered to each other. Therefore, a step of separately applying an adhesive to either the front or back surface of the core veneers 40 is required, which is inferior in productivity.
  • an adhesive is further used for the insulating film having adhesive ability and insulating performance, the space factor decreases, so that the laminated core has inferior magnetic characteristics.
  • the coating composition for electrical steel sheets is not particularly limited, and examples thereof include a composition containing an epoxy resin and an epoxy resin curing agent. That is, as an insulating film having an adhesive ability, a film containing an epoxy resin and an epoxy resin curing agent can be mentioned as an example.
  • epoxy resin a general epoxy resin can be used, and specifically, any epoxy resin having two or more epoxy groups in one molecule can be used without particular limitation.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, and glycidyl amine type epoxy.
  • examples thereof include resins, hydride-in type epoxy resins, isocyanurate type epoxy resins, acrylic acid-modified epoxy resins (epoxy acrylates), phosphorus-containing epoxy resins, halides thereof (bromination epoxy resins and the like), hydrogen additives and the like.
  • the epoxy resin one type may be used alone, or two or more types may be used in combination.
  • the coating composition for electrical steel sheets may contain an acrylic resin.
  • the acrylic resin is not particularly limited.
  • the monomer used for the acrylic resin include unsaturated carboxylic acids such as acrylic acid and methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and cyclohexyl (meth).
  • Examples of (meth) acrylates such as meta) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and hydroxypropyl (meth) acrylate can be mentioned.
  • the (meth) acrylate means acrylate or methacrylate.
  • the acrylic resin one type may be used alone, or two or more types may be used in combination.
  • the acrylic resin may have a structural unit derived from a monomer other than the acrylic monomer.
  • examples of other monomers include ethylene, propylene, styrene and the like.
  • the other monomer one type may be used alone, or two or more types may be used in combination.
  • an acrylic resin when used, it may be used as an acrylic modified epoxy resin obtained by grafting an acrylic resin onto an epoxy resin.
  • the coating composition for electrical steel sheets it may be contained as a monomer forming an acrylic resin.
  • epoxy resin curing agent a heat-curing type having potential can be used.
  • aromatic polyamines acid anhydrides, phenolic curing agents, dicyandiamides, boron trifluoride-amine complexes, and organic acid hydrazides can be used. And so on.
  • aromatic polyamine include meta-phenylenediamine, diaminodiphenylmethane, diaminodiphenyl sulfone and the like.
  • phenol-based curing agent include phenol novolac resin, cresol novolak resin, bisphenol novolak resin, triazine-modified phenol novolac resin, phenol resol resin and the like.
  • the epoxy resin curing agent a phenol-based curing agent is preferable, and a phenol-resole resin is more preferable.
  • the epoxy resin curing agent one type may be used alone, or two or more types may be used in combination.
  • the content of the epoxy resin curing agent in the coating composition for electrical steel sheets is preferably 5 to 35 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the coating composition for electrical steel sheets may contain additives such as a curing accelerator (curing catalyst), an emulsifier, and an antifoaming agent.
  • a curing accelerator curing catalyst
  • an emulsifier emulsifier
  • an antifoaming agent emulsifier
  • the additive only one kind may be used, or two or more kinds may be used in combination.
  • the upper and lower limit values of the average thickness t1 of the insulating film 3 are set as follows, for example, in consideration of the case where the material 1 is used as the core veneer 40.
  • the average thickness t1 of the insulating coating 3 is the insulation performance between the core veneers 40 laminated with each other. And adjust so that the adhesive ability can be secured.
  • the average thickness t1 (thickness per surface of the core single plate 40 (material 1)) of the insulating coating 3 can be, for example, 1.5 ⁇ m or more and 8.0 ⁇ m or less.
  • the average thickness of the underlying insulating coating can be, for example, 0.3 ⁇ m or more and 1.2 ⁇ m or less, preferably 0.7 ⁇ m or more and 0.9 ⁇ m or less.
  • the average thickness of the upper insulating film can be, for example, 1.5 ⁇ m or more and 8.0 ⁇ m or less.
  • the method of measuring the average thickness t1 of the insulating coating 3 in the material 1 is the same as that of the average plate thickness t0 of the material 1, and the thicknesses of the insulating coatings 3 at a plurality of locations can be obtained and obtained as the average of those thicknesses. can.
  • the upper and lower limit values of the average thickness t1 of the insulating coating 3 in the material 1 can be naturally adopted as the upper and lower limit values of the average thickness t1 of the insulating coating 3 in the core veneer 40.
  • the method for measuring the average thickness t1 of the insulating coating 3 on the core veneer 40 is, for example, the following measuring method. For example, among the plurality of core veneers 40 forming the laminated core, the core veneer 40 located on the outermost side in the laminating direction (core veneer 40 whose surface is exposed in the laminating direction) is selected.
  • a predetermined position in the radial direction (for example, a position just intermediate (center) between the inner peripheral edge and the outer peripheral edge of the core veneer 40) is selected.
  • the thickness of the insulating coating 3 of the core veneer 40 is measured at four locations (that is, every 90 degrees around the central axis O) at equal intervals in the circumferential direction.
  • the average value of the measured thicknesses at the four locations can be taken as the average thickness t1 of the insulating coating 3.
  • the reason why the average thickness t1 of the insulating coating 3 is measured in the core veneer 40 located on the outermost side in the laminating direction is that the thickness of the insulating coating 3 is measured at the laminating position along the laminating direction of the core veneer 40. This is because the insulating film 3 is built so that it hardly changes.
  • the core single plate 40 is manufactured by punching the material 1 as described above, and the laminated core (stator core 21 and rotor core 31) is manufactured by the core single plate 40.
  • the description of the laminated core will be returned.
  • the plurality of core veneers 40 forming the stator core 21 are laminated via the insulating coating 3.
  • the core veneers 40 adjacent to each other in the stacking direction are adhered over the entire surface by the insulating film 3.
  • the surface of the core veneer 40 facing the stacking direction (hereinafter referred to as the first surface) is an adhesive region over the entire surface.
  • the core veneers 40 adjacent to each other in the stacking direction may not be adhered to the entire surface.
  • the adhesive region 41a and the non-adhesive region (not shown) may coexist on the first surface of the core veneer 40.
  • the plurality of core veneers forming the rotor core 31 are fixed to each other by the caulking 42 (dowel) shown in FIG.
  • the plurality of core veneers forming the rotor core 31 may also have a laminated structure fixed by the insulating coating 3 as in the stator core 21.
  • the laminated core such as the stator core 21 and the rotor core 31 may be formed by so-called rotating stacking.
  • FIGS. 7 and 8 are side views of a manufacturing apparatus used for manufacturing a laminated core
  • FIG. 8 is a flow chart of a method for manufacturing a laminated core according to the present embodiment.
  • the laminated core manufacturing apparatus 100 hereinafter, simply referred to as the manufacturing apparatus 100
  • the material 1 is temporarily bonded by the guide roller 2A while the material 1 is sent out from the two coils 1A (hoops) toward the upstream side in the transport direction (right side in FIG. 7).
  • the two temporarily bonded materials 1 are further sent out toward the upstream side in the transport direction, they are punched a plurality of times by the dies arranged on each stage to gradually form the shape of the core veneer 40.
  • the punched core veneers 40 are laminated, transported to a heating device (not shown), and pressurized while raising the temperature.
  • the core veneers 40 adjacent to each other in the stacking direction are bonded by the insulating coating 3 (that is, the portion of the insulating coating 3 located in the bonding region 41a is exerted with an adhesive ability), and the main bonding is completed.
  • the manufacturing apparatus 100 includes two coils 1A, but may include three or more coils 1A. Further, the manufacturing apparatus 100 includes a plurality of stages of punching stations 110.
  • the punching station 110 may have two stages or three or more stages.
  • the punching station 110 of each stage includes a female die 111 arranged below the material 1 and a male die 112 arranged above the material 1.
  • the plurality of punching stations 110 may be collectively referred to as a punching die.
  • the method for manufacturing a laminated core is a method of obtaining a core veneer by punching an electromagnetic steel strip having an insulating film and laminating the core veneer to manufacture a laminated core. Immediately before the punching process, two or more electrical steel strips are temporarily bonded by pressurizing them with a guide roller, and the two or more electrical steel strips after the temporary bonding are inserted into the punching die. The core veneer is obtained by performing the punching process. The details will be described below.
  • the material 1 to be temporarily adhered has an insulating film 3 on both sides.
  • the insulating coating 3 is preferably formed so that the average thickness t1 is within the above-mentioned range. Further, as described above, the insulating coating 3 has insulating performance and adhesive ability.
  • the guide roller 2A is a roller for transporting the material 1 to the punching die, and is arranged on the upstream side (left side in FIG. 7) of the punching die in the transport direction. Further, immediately before the punching process means that no processing is performed after the temporary bonding and before the punching process.
  • temporary bonding means that two or more materials 1 before punching are bonded by pressure without heating. After the temporary bonding, the materials are temporarily fixed to each other. The two or more temporarily bonded materials 1 are punched and then main-bonded by heating, which will be described later.
  • no adhesive is used when adhering two or more materials 1 to each other.
  • the space factor decreases, resulting in a laminated core with inferior magnetic properties. Therefore, it is not desirable to use an adhesive.
  • the surface temperature of the two or more materials 1 at the time of temporary bonding may be room temperature, for example, 15 to 50 ° C.
  • the surface temperature of the material 1 is obtained by measuring the temperature of the central portion of two or more materials 1 in the width direction at the time of temporary bonding using an infrared radiation thermometer and calculating the average value thereof.
  • the pressing force by the guide roller 2A at the time of temporary bonding is preferably 2.0 to 10.0 MPa. By setting the pressing force in this range, it is possible to reliably temporarily bond two or more materials 1.
  • Whether or not two or more materials 1 are temporarily bonded is determined by the following method.
  • a test piece of a predetermined size is collected and subjected to a tensile test (shear tensile test according to JIS K 6850: 1999).
  • a tensile test shear tensile test according to JIS K 6850: 1999.
  • the peel strength per unit area obtained by the tensile test is 5 N / cm 2 or more, it is determined that two or more materials 1 are temporarily bonded.
  • Two or more temporarily bonded materials 1 are inserted into a punching die (multi-stage punching station 110 in FIG. 7) by a guide roller 2A, and gradually punched into a desired shape.
  • the desired shape is, for example, the shape of the core veneer 40 having the shape of the stator core 21 or the rotor core 31.
  • the core veneer 40 punched into a desired shape is laminated in the female mold 111 located in the most downstream direction of the punched dies.
  • the laminated core veneer 40 is conveyed to a heating device (not shown) and heated to a temperature range of, for example, 180 to 250 ° C. by the heating device to perform main bonding. By this heating, the adhesive (insulating film 3) is cured and the adhesive region 41a is formed.
  • the laminated core veneer 40 may be sandwiched and held from both sides in the stacking direction by a jig (not shown), and then transported.
  • the laminated core can be manufactured by the method described above.
  • whether or not the core veneer 40 is in the main bonded state is determined by performing a shear tensile test in the same manner as in the determination of temporary bonding.
  • the peel strength is 250 N / cm 2 or more, it is determined that the core veneer 40 is in a fully bonded state.
  • Example 1 As an aspect of the present invention, two coils of non-oriented electrical steel strips having a plate thickness of 0.20 mm and having an insulating film formed on the surface and processed to a predetermined slit width were prepared.
  • the non-oriented electrical steel strip one having Si: 3.3%, Al: 0.7%, Mn: 0.2% in mass% and the balance being Fe and impurities was used.
  • the insulating film was a single-layer insulating film having insulating performance and adhesive ability.
  • the average thickness of the insulating coating was 1.5 ⁇ m or more and 8.0 ⁇ m or less per surface of the core veneer.
  • the two non-oriented electrical steel strips were temporarily bonded by applying pressure using a guide roller.
  • the pressing force of the guide roller was 2.0 to 10.0 MPa, and the surface temperature of the non-oriented electrical steel strip at the time of temporary bonding was 15 to 50 ° C.
  • the peel strength per unit area obtained was 5 N / cm 2 or more.
  • the non-oriented electrical steel strip after temporary bonding was inserted into a punching die, and punched into a predetermined core veneer shape while being temporarily bonded.
  • the core veneer was laminated in the female die located in the most downstream direction among the punching dies.
  • the laminated core veneer was transferred to a heating device and heated to 180 to 250 ° C. for main bonding.
  • the non-oriented electrical steel sheet after the main bonding was subjected to a shear tensile test according to JIS K 6850: 1999, the peel strength per unit area obtained was 250 N / cm 2 or more.
  • An insulating film having adhesive ability was formed on the non-oriented electrical steel strip. Therefore, by heating the core veneer laminated in the female mold with a heating device, the main bonded laminated core was obtained.
  • Example 2 By mass%, it has Si: 3.3%, Al: 0.7%, Mn: 0.2%, the balance is Fe and impurities, and has an insulating film on the surface. Plate thickness: 0.20 mm None A directional electromagnetic steel strip was prepared.
  • a chromic acid-containing treatment agent was used as a coating composition for forming the underlying insulating film, and an insulating film having insulating performance and adhesive ability was formed as the ground insulating film provided on the underlying insulating film. ..
  • the average thickness of the underlying insulating film of the insulating film was 0.3 ⁇ m or more and 1.2 ⁇ m or less, and the average thickness of the upper ground insulating film was 1.5 ⁇ m or more and 8.0 ⁇ m or less.
  • This non-oriented electrical steel strip was cut into 25 mm ⁇ 200 mm, overlapped with an area of 25 mm ⁇ 25 mm, and pressurized with various pressures shown in Table 1. Then, it was subjected to a shear tensile test according to JIS K 6850: 1999 at a test speed of 3 mm / min in the direction in which the overlapped portion was sheared.
  • Example 3 Two coils of non-oriented electrical steel strips processed to a predetermined slit width and having a plate thickness of 0.20 mm were prepared.
  • the non-oriented electrical steel strip one having Si: 3.3%, Al: 0.7%, Mn: 0.2% in mass% and the balance being Fe and impurities was used.
  • an insulating film was formed on the surface.
  • This insulating film was a single-layer insulating film having insulating performance and adhesive ability.
  • the average thickness of the insulating coating was 1.5 ⁇ m or more and 8.0 ⁇ m or less per surface of the core veneer. No. For No. 8, no insulating film was formed.
  • the pressing force of the guide roller was 2.0 to 10.0 MPa.
  • the surface temperature of the non-oriented electrical steel strip at the time of pressurization was over 50 ° C.
  • a thermosetting resin exhibiting adhesiveness was used as an adhesive, and the surface temperature of the non-oriented electrical steel strip at the time of pressurization was 15 to 50 ° C.
  • the non-oriented electrical steel strip after pressurization was inserted into a punching die and punched into a predetermined core veneer shape.
  • the core veneer was laminated in the female die located in the most downstream direction among the punching dies.
  • the laminated core veneers were transferred to a heating device and heated to 180 to 250 ° C. to bond them.
  • No. Regarding No. 8 since the non-oriented electrical steel strips were adhered to each other with an adhesive without forming an insulating film, No. 8 was used. Similar to No. 7, the non-oriented electrical steel strips before the punching process were bonded, but the core veneers after the punching process were not bonded to each other. Further, since the insulating film was not formed, the insulating property was inferior and the magnetic characteristics were inferior.
  • the shape of the stator core 21 is not limited to the form shown in the above embodiment. Specifically, the dimensions of the outer diameter and inner diameter of the stator core 21, the stacking thickness, the number of slots, the dimensional ratio between the circumferential direction and the radial direction of the teeth portion 23, the dimensional ratio in the radial direction between the teeth portion 23 and the core back portion 22, etc. Can be arbitrarily designed according to the characteristics of the desired rotary electric machine.
  • a pair of permanent magnets 32 form one magnetic pole, but the present invention is not limited to this embodiment.
  • one permanent magnet 32 may form one magnetic pole, or three or more permanent magnets 32 may form one magnetic pole.
  • the permanent magnet field type electric machine has been described as an example of the rotary electric machine 10, but the structure of the rotary electric machine 10 is not limited to this as illustrated below, and is not further exemplified below. Various known structures can also be adopted.
  • the permanent magnet field type motor has been described as an example of the rotary electric machine 10, but the present invention is not limited to this.
  • the rotary electric machine 10 may be a reluctance type electric machine or an electromagnet field type electric machine (winding field type electric machine).
  • the synchronous motor has been described as an example as the AC motor, but the present invention is not limited to this.
  • the rotary electric machine 10 may be an induction motor.
  • the AC electric machine has been described as an example of the rotary electric machine 10, but the present invention is not limited to this.
  • the rotary electric machine 10 may be a DC motor.
  • the rotary electric machine 10 has been described by taking an electric machine as an example, but the present invention is not limited to this.
  • the rotary electric machine 10 may be a generator. It may also be applied to a transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

この積層コアの製造方法は、絶縁被膜を備える電磁鋼帯を打ち抜き加工することでコア単板を得て、前記コア単板を積層することで積層コアを製造する方法であって、前記打ち抜き加工直前に、ガイドローラーを用いて2枚以上の電磁鋼帯を加圧することで仮接着し、前記仮接着後の前記2枚以上の前記電磁鋼帯を打ち抜き金型に挿入してから、前記打ち抜き加工を行うことで前記コア単板を得る。

Description

積層コアの製造方法
 本発明は、積層コアの製造方法に関する。
 本願は、2020年6月17日に、日本に出願された特願2020-104252号に基づき優先権を主張し、その内容をここに援用する。
 モータ(回転電機)に用いられる積層コアは、打ち抜き加工によって電磁鋼板が所定の形状に打抜かれた後、金型ダイ内で積層されることで製造される。近年、モータの製品における鉄損低減のため、これらの製品には薄手化された電磁鋼板が使用されている。しかし、薄手化された電磁鋼板においては、従来の積層コアの製造方法では生じていなかった課題がある。例えば、打ち抜き回数が増加することが挙げられる。電磁鋼板の板厚を従来の半分に低減した場合には、打ち抜き回数が倍となるためである。従来と同等の生産性を確保するためには、打ち抜きスピードを速くする必要がある。電磁鋼板の板厚が薄くなることで、打ち抜き金型のクリアランスを狭くする必要があり、打ち抜きスピードを速くすることには、打ち抜き金型の寿命を確保する上で限界がある。
 特許文献1には、積層鉄心の製造方法が記載されている。特許文献1では、生産性の向上のため、2枚以上の電磁鋼板を張り合わせてから打ち抜き加工する技術が記載されている。しかし、特許文献1では、電磁鋼板同士の間に形成した接着層を完全硬化または不完全硬化させるために加熱を行っているため、生産性を十分に向上できない。
日本国特開2005-191033号公報
 本発明は上記実情に基づいてなされたものであり、生産性に優れた積層コアの製造方法を提供することを目的とする。
 本発明の要旨は以下の通りである。
(1)本発明の一態様に係る積層コアの製造方法は、絶縁被膜を備える電磁鋼帯を打ち抜き加工することでコア単板を得て、前記コア単板を積層することで積層コアを製造する方法であって、
 前記打ち抜き加工直前に、ガイドローラーを用いて2枚以上の電磁鋼帯を加圧することで仮接着し、
 前記仮接着後の前記2枚以上の前記電磁鋼帯を打ち抜き金型に挿入してから、前記打ち抜き加工を行うことで前記コア単板を得る。
(2)上記(1)に記載の積層コアの製造方法は、前記仮接着時の前記2枚以上の前記電磁鋼帯の表面温度が15~50℃であってもよい。
(3)上記(1)または(2)に記載の積層コアの製造方法は、前記ガイドローラーによる前記加圧時の加圧力が2.0~10.0MPaであってもよい。
(4)上記(1)~(3)のいずれか一項に記載の積層コアの製造方法は、前記打ち抜き加工後に、前記コア単板を180~250℃に加熱することで本接着してもよい。
(5)上記(1)~(4)のいずれか一項に記載の積層コアの製造方法は、前記絶縁被膜が接着能を有してもよい。
 本発明に係る上記態様によれば、生産性に優れた積層コアの製造方法を提供することができる。
積層コアを備えた回転電機の断面図である。 同積層コアの側面図である。 図2のA-A断面図である。 同積層コアを形成する素材の平面図である。 図4のB-B断面図である。 図5のC部の拡大図である。 同積層コアを製造するために用いられる製造装置の側面図である。 本実施形態に係る積層コアの製造方法のフロー図である。
 以下、図面を参照し、本発明の一実施形態に係る積層コアの製造方法について説明する。まず、本実施形態に係る積層コアの製造方法により製造される積層コアと、この積層コアを備えた回転電機と、この積層コアを形成する素材とについて説明する。なお、本実施形態では、回転電機として電動機、具体的には交流電動機、より具体的には同期電動機、より一層具体的には永久磁石界磁型電動機を一例に挙げて説明する。この種の電動機は、例えば、電気自動車などに好適に採用される。
(回転電機10)
 図1に示すように、回転電機10は、ステータ20と、ロータ30と、ケース50と、回転軸60と、を備える。ステータ20およびロータ30は、ケース50内に収容される。ステータ20は、ケース50内に固定される。
 本実施形態では、回転電機10として、ロータ30がステータ20の径方向内側に位置するインナーロータ型を採用している。しかしながら、回転電機10として、ロータ30がステータ20の外側に位置するアウターロータ型を採用してもよい。また、本実施形態では、回転電機10が、12極18スロットの三相交流モータである。しかしながら、極数、スロット数、相数などは、適宜変更することができる。
 回転電機10は、例えば、各相に実効値10A、周波数100Hzの励磁電流を印加することにより、回転数1000rpmで回転することができる。
 ステータ20は、ステータ用接着積層コア(以下、ステータコア)21と、図示しない巻線と、を備える。
 ステータコア21は、環状のコアバック部22と、複数のティース部23と、を備える。以下では、ステータコア21(又はコアバック部22)の中心軸線O方向を軸方向と言い、ステータコア21(又はコアバック部22)の径方向(中心軸線Oに直交する方向)を径方向と言い、ステータコア21(又はコアバック部22)の周方向(中心軸線O回りに周回する方向)を周方向と言う。
 コアバック部22は、ステータ20を軸方向から見た平面視において円環状に形成されている。
 複数のティース部23は、コアバック部22の内周から径方向内側に向けて(径方向に沿ってコアバック部22の中心軸線Oに向けて)突出する。複数のティース部23は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角20度おきに18個のティース部23が設けられている。複数のティース部23は、互いに同等の形状でかつ同等の大きさに形成されている。よって、複数のティース部23は、互いに同じ厚み寸法を有している。
 前記巻線は、ティース部23に巻回されている。前記巻線は、集中巻きされていてもよく、分布巻きされていてもよい。
 ロータ30は、ステータ20(ステータコア21)に対して径方向の内側に配置されている。ロータ30は、ロータコア31と、複数の永久磁石32と、を備える。
 ロータコア31は、ステータ20と同軸に配置される環状(円環状)に形成されている。ロータコア31内には、前記回転軸60が配置されている。回転軸60は、ロータコア31に固定されている。
 複数の永久磁石32は、ロータコア31に固定されている。本実施形態では、2つ1組の永久磁石32が1つの磁極を形成している。複数組の永久磁石32は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角30度おきに12組(全体では24個)の永久磁石32が設けられている。
 本実施形態では、永久磁石界磁型電動機として、埋込磁石型モータが採用されている。ロータコア31には、ロータコア31を軸方向に貫通する複数の貫通孔33が形成されている。複数の貫通孔33は、複数の永久磁石32の配置に対応して設けられている。各永久磁石32は、対応する貫通孔33内に配置された状態でロータコア31に固定されている。各永久磁石32のロータコア31への固定は、例えば永久磁石32の外面と貫通孔33の内面とを接着剤により接着すること等により、実現できる。なお、永久磁石界磁型電動機として、埋込磁石型に代えて表面磁石型モータを採用してもよい。
 ステータコア21およびロータコア31は、いずれも積層コアである。例えばステータコア21は、図2に示すように、複数のコア単板40が積層方向に積層されることで形成されている。
 なお、ステータコア21およびロータコア31それぞれの積厚(中心軸線Oに沿った全長)は、例えば50.0mmとされる。ステータコア21の外径は、例えば250.0mmとされる。ステータコア21の内径は、例えば165.0mmとされる。ロータコア31の外径は、例えば163.0mmとされる。ロータコア31の内径は、例えば30.0mmとされる。ただし、これらの値は一例であり、ステータコア21の積厚、外径や内径、およびロータコア31の積厚、外径や内径は、これらの値のみに限られない。ここで、ステータコア21の内径は、ステータコア21におけるティース部23の先端部を基準とする。すなわち、ステータコア21の内径は、全てのティース部23の先端部に内接する仮想円の直径である。
 ステータコア21およびロータコア31を形成する各コア単板40は、例えば、図4から図6に示すような素材1を打ち抜き加工すること等により形成される。素材1は、コア単板40の母材となる鋼板(電磁鋼板)である。素材1としては、例えば、帯状の鋼板や切り板などが挙げられる。
 積層コアの説明の途中ではあるが、以下では、この素材1について説明する。なお本明細書において、コア単板40の母材となる帯状の鋼板を素材1、または電磁鋼帯1という場合がある。素材1または電磁鋼帯1を打ち抜き加工して積層コアに用いられる形状にした鋼板をコア単板40という場合がある。
(素材1)
 素材1は、例えば、コイル1Aに巻き取られた状態で取り扱われる。本実施形態では、素材1として、無方向性電磁鋼板を採用している。無方向性電磁鋼板としては、JIS C 2552:2014の無方向性電磁鋼帯を採用できる。しかしながら、素材1として、無方向性電磁鋼板に代えて方向性電磁鋼板を採用してもよい。この場合の方向性電磁鋼板としては、JIS C 2553:2019の方向性電磁鋼帯を採用できる。また、JIS C 2558:2015の無方向性薄電磁鋼帯および方向性薄電磁鋼帯を採用できる。
 素材1の平均板厚t0の上下限値は、素材1がコア単板40として用いられる場合も考慮して、例えば以下のように設定される。
 素材1が薄くなるに連れて素材1の製造コストは増す。そのため、製造コストを考慮すると、素材1の平均板厚t0の下限値は、0.10mm、好ましくは0.15mm、より好ましくは0.18mmとなる。
 一方で素材1が厚すぎると、製造コストは良好になるが、素材1がコア単板40として用いられた場合に、渦電流損が増加してコア鉄損が劣化する。そのため、コア鉄損および製造コストを考慮すると、素材1の平均板厚t0の上限値は、0.65mm、好ましくは0.35mm、より好ましくは0.30mmとなる。
 素材1の平均板厚t0の上記範囲を満たすものとして、0.20mmを例示できる。
 なお、素材1の平均板厚t0は、後述する母材鋼板2の厚さだけでなく、絶縁被膜3の厚さも含まれる。また、素材1の平均板厚t0の測定方法は、例えば、以下の測定方法による。例えば、素材1がコイル1Aの形状に巻き取られている場合、素材1の少なくとも一部を平板形状に巻きだす。平板形状に巻き出された素材1において、素材1の長手方向の所定の位置(例えば、素材1の長手方向の端縁から、素材1の全長の10%分の長さ、離れた位置)を選定する。この選定した位置において、素材1を、その幅方向に沿って5つの領域に区分する。これらの5つの領域の境界となる4か所において、素材1の板厚を測定する。4か所の板厚の平均値を、素材1の平均板厚t0とすることができる。
 この素材1の平均板厚t0についての上下限値は、コア単板40としての平均板厚t0の上下限値としても当然に採用可能である。なお、コア単板40の平均板厚t0の測定方法は、例えば、以下の測定方法による。例えば、積層コアの積厚を、周方向に同等の間隔をあけて4か所において(すなわち、中心軸線Oを中心とした90度おきに)測定する。測定した4か所の積厚それぞれを、積層されているコア単板40の枚数で割って、1枚当たりの板厚を算出する。4か所の板厚の平均値を、コア単板40の平均板厚t0とすることができる。
 図5および図6に示すように、素材1は、母材鋼板2と、絶縁被膜3と、を備えている。素材1は、帯状の母材鋼板2の両面が絶縁被膜3によって被覆されてなる。本実施形態では、素材1の大部分が母材鋼板2によって形成され、母材鋼板2の表面に、母材鋼板2よりも薄い絶縁被膜3が形成されている。
 母材鋼板2の化学組成は、以下に質量%単位で示すように、質量%で2.5%~4.5%のSiを含有する。なお、化学組成をこの範囲とすることにより、素材1(コア単板40)の降伏強度を、例えば、380~540MPaに設定することができる。
 Si:2.5%~4.5%
 Al:0.001%~3.0%
 Mn:0.05%~5.0%
 残部:Fe及び不純物
 素材1がコア単板40として用いられるときに、絶縁被膜3は、積層方向に隣り合うコア単板40間での絶縁性能を発揮する。また本実施形態では、絶縁被膜3は、接着能を備えていて、積層方向に隣り合うコア単板40を接着する。絶縁被膜3は、単層構成であってもよく、複層構成であってもよい。より具体的には、例えば、絶縁被膜3は、絶縁性能と接着能とを兼ね備えた単層構成であってもよく、絶縁性能に優れる下地絶縁被膜と、接着性能に優れる上地絶縁被膜とを含む複層構成であってもよい。
 本実施形態では、絶縁被膜3は、母材鋼板2の両面を全面にわたって隙間なく覆っている。しかしながら、前述の絶縁性能や接着能が確保される範囲において、絶縁被膜3の一部の層は、母材鋼板2の両面を隙間なく覆っていなくてもよい。言い換えると、絶縁被膜3の一部の層が、母材鋼板2の表面に間欠的に設けられていてもよい。ただし、絶縁性能を確保するには、母材鋼板2の両面は全面が露出しないように絶縁被膜3によって覆われている必要がある。具体的には、絶縁被膜3が絶縁性能に優れる下地絶縁被膜を有さず、絶縁性能と接着能を兼ね備えた単層構成である場合は、絶縁被膜3は母材鋼板2の全面にわたって隙間なく形成されている必要がある。これに対し、絶縁被膜3が、絶縁性能に優れる下地絶縁被膜と、接着能に優れる上地絶縁被膜とを含む複層構成である場合、下地絶縁被膜と上地絶縁被膜の両方を母材鋼板2の全面にわたって隙間なく形成する他に、下地絶縁被膜を母材鋼板の全面にわたって隙間なく形成し、上地絶縁被膜を間欠的に設けても、絶縁性能と接着能の両立が可能である。
 下地絶縁被膜を形成するコーティング組成物としては、特に限定されず、例えば、クロム酸含有処理剤、リン酸塩含有処理等の一般的な処理剤を使用できる。
 接着能を備える絶縁被膜は、後述の電磁鋼板用コーティング組成物が母材鋼板上に塗布されてなる。接着能を備える絶縁被膜は、例えば、絶縁性能と接着能を兼ね備えた単層構成の絶縁被膜や、下地絶縁被膜上に設けられる上地絶縁被膜である。接着能を備える絶縁被膜は、積層コア製造時の加熱圧着前においては、未硬化状態又は半硬化状態(Bステージ)であり、加熱圧着時の加熱によって硬化反応が進行して接着能が発現する。
 通常の絶縁皮膜は絶縁性能を備えるが、接着能を備えない。上述の通り本実施形態に係る絶縁皮膜は、接着能と絶縁性能とを備える点で、通常の絶縁被膜、および接着剤により形成された接着層とは大きく異なる。
 また、接着能を備えない絶縁被膜を形成した母材鋼板2同士を接着する方法として、上記母材鋼板2同士を、接着性を示す熱硬化性樹脂からなる接着剤により接着する方法がある。この方法により接着され、製造されたコア単板40は、打ち抜き加工前に2枚あるいはそれ以上の母材鋼板2同士が接着しているためコア単板40自体は接着しているものの、2枚あるいはそれ以上が接着した状態のコア単板40同士は接着しない。そのため、これらコア単板40同士の表裏面のどちらか一方に別途接着剤を塗布する工程が必要となり、生産性に劣る。接着能と絶縁性能とを備える絶縁被膜に、さらに接着剤を使用した場合は占積率が低下するため、磁気特性に劣った積層コアとなる。
 電磁鋼板用コーティング組成物としては、特に限定されず、例えば、エポキシ樹脂と、エポキシ樹脂硬化剤と、を含有する組成物が挙げられる。すなわち、接着能を備える絶縁被膜としては、エポキシ樹脂と、エポキシ樹脂硬化剤と、を含有する膜が、一例として挙げられる。
 エポキシ樹脂としては、一般的なエポキシ樹脂が使用でき、具体的には、一分子中にエポキシ基を2個以上有するエポキシ樹脂であれば特に制限なく使用できる。このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、アクリル酸変性エポキシ樹脂(エポキシアクリレート)、リン含有エポキシ樹脂、及びこれらのハロゲン化物(臭素化エポキシ樹脂等)や水素添加物等が挙げられる。エポキシ樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 電磁鋼板用コーティング組成物は、アクリル樹脂を含有してもよい。
 アクリル樹脂としては、特に限定されない。アクリル樹脂に用いるモノマーとしては、例えば、アクリル酸、メタクリル酸等の不飽和カルボン酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリレートを例示できる。なお、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。アクリル樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 アクリル樹脂は、アクリルモノマー以外の他のモノマーに由来する構成単位を有していてもよい。他のモノマーとしては、例えば、エチレン、プロピレン、スチレン等が挙げられる。他のモノマーとしては、1種を単独で使用してもよく、2種以上を併用してもよい。
 アクリル樹脂を用いる場合、エポキシ樹脂にアクリル樹脂をグラフトさせたアクリル変性エポキシ樹脂として用いてもよい。電磁鋼板用コーティング組成物においては、アクリル樹脂を形成するモノマーとして含まれていてもよい。
 エポキシ樹脂硬化剤としては、潜在性を持つ加熱硬化タイプのものが使用可能であり、例えば、芳香族ポリアミン、酸無水物、フェノール系硬化剤、ジシアンジアミド、三フッ化ホウ素-アミン錯体、有機酸ヒドラジッド等が挙げられる。芳香族ポリアミンとしては、例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等が挙げられる。フェノール系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、トリアジン変性フェノールノボラック樹脂、フェノールレゾール樹脂等が挙げられる。なかでも、エポキシ樹脂硬化剤としては、フェノール系硬化剤が好ましく、フェノールレゾール樹脂がより好ましい。エポキシ樹脂硬化剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 電磁鋼板用コーティング組成物中のエポキシ樹脂硬化剤の含有量は、エポキシ樹脂100質量部に対して、5~35質量部が好ましく、10~30質量部がより好ましい。
 電磁鋼板用コーティング組成物は、硬化促進剤(硬化触媒)、乳化剤、消泡剤等の添加剤が配合されていてもよい。添加剤としては、1種のみを使用してもよく、2種以上を併用してもよい。
 絶縁被膜3の平均厚みt1の上下限値は、素材1がコア単板40として用いられる場合も考慮して、例えば以下のように設定される。素材1がコア単板40として用いられる場合において、絶縁被膜3の平均厚みt1(コア単板40(素材1)片面あたりの厚さ)は、互いに積層されるコア単板40間での絶縁性能及び接着能を確保できるように調整する。
 単層構成の絶縁被膜3の場合、絶縁被膜3の平均厚みt1(コア単板40(素材1)片面あたりの厚さ)は、例えば、1.5μm以上8.0μm以下とすることができる。
 複層構成の絶縁被膜3の場合、下地絶縁被膜の平均厚みは、例えば、0.3μm以上1.2μm以下とすることができ、0.7μm以上0.9μm以下が好ましい。上地絶縁被膜の平均厚みは、例えば、1.5μm以上8.0μm以下とすることができる。
 なお、素材1における絶縁被膜3の平均厚みt1の測定方法は、素材1の平均板厚t0と同様の考え方で、複数箇所の絶縁被膜3の厚みを求め、それらの厚みの平均として求めることができる。
 この素材1における絶縁被膜3の平均厚みt1についての上下限値は、コア単板40における絶縁被膜3の平均厚みt1の上下限値としても当然に採用可能である。なお、コア単板40における絶縁被膜3の平均厚みt1の測定方法は、例えば、以下の測定方法による。例えば、積層コアを形成する複数のコア単板40のうち、積層方向の最も外側に位置するコア単板40(表面が積層方向に露出しているコア単板40)を選定する。選定したコア単板40の表面において、径方向の所定の位置(例えば、コア単板40における内周縁と外周縁との丁度中間(中央)の位置)を選定する。選定した位置において、コア単板40の絶縁被膜3の厚みを、周方向に同等の間隔をあけて4か所において(すなわち、中心軸線Oを中心とした90度おきに)測定する。測定した4か所の厚みの平均値を、絶縁被膜3の平均厚みt1とすることができる。
 このように絶縁被膜3の平均厚みt1を、積層方向の最も外側に位置するコア単板40において測定する理由は、絶縁被膜3の厚みが、コア単板40の積層方向に沿った積層位置で殆ど変わらないように、絶縁被膜3が作り込まれているからである。
 以上のような素材1を打ち抜き加工することでコア単板40が製造され、コア単板40によって積層コア(ステータコア21やロータコア31)が製造される。
(積層コアの積層方法)
 以下、積層コアの説明に戻る。ステータコア21を形成する複数のコア単板40は、図3に示すように、絶縁被膜3を介して積層されている。
 積層方向に隣り合うコア単板40は、絶縁被膜3によって全面にわたって接着されている。言い換えると、コア単板40において積層方向を向く面(以下、第1面という)は、全面にわたって接着領域となっている。ただし、積層方向に隣り合うコア単板40が、全面にわたって接着されていなくてもよい。言い換えると、コア単板40の第1面において、接着領域41aと非接着領域(不図示)とが混在していてもよい。
 本実施形態では、ロータコア31を形成する方の複数のコア単板は、図1に示すかしめ42(ダボ)によって互いに固定されている。しかしながら、ロータコア31を形成する複数のコア単板も、ステータコア21と同様に絶縁被膜3により固定した積層構造を有してもよい。
 また、ステータコア21やロータコア31などの積層コアは、いわゆる回し積みにより形成されていてもよい。
(積層コアの製造方法)
 以下、図7および8を参照しつつ、本発明の一実施形態に係る積層コアの製造方法について説明する。なお、図7は、積層コアを製造するために用いられる製造装置の側面図であり、図8は、本実施形態に係る積層コアの製造方法のフロー図である。以下、製造方法の説明にあたり、まず先に、積層コアの製造装置100(以下、単に製造装置100という)について説明する。
 製造装置100では、2つのコイル1A(フープ)から素材1を搬送方向上流側(図7の右側)に向かって送り出しつつ、ガイドローラー2Aにより2枚の素材1を仮接着する。次に、仮接着した2枚の素材1を更に搬送方向上流側に向かって送り出しつつ、各ステージに配置された金型により複数回の打ち抜きを行ってコア単板40の形状に徐々に形成していく。そして、打ち抜いたコア単板40を積層して、不図示の加熱装置に搬送し、昇温させながら加圧する。その結果、積層方向に隣り合うコア単板40を絶縁被膜3によって接着させ(すなわち、絶縁被膜3のうちの接着領域41aに位置する部分に接着能を発揮させ)、本接着が完了する。
 図7では、製造装置100は、2つのコイル1Aを備えているが、3つ以上のコイル1Aを備えていてもよい。
 また、製造装置100は、複数段の打ち抜きステーション110を備える。打ち抜きステーション110は、二段であってもよく、三段以上であってもよい。各段の打ち抜きステーション110は、素材1の下方に配置された雌金型111と、素材1の上方に配置された雄金型112とを備える。なお、複数段の打ち抜きステーション110を総称して、打ち抜き金型という場合がある。
 本実施形態に係る積層コアの製造方法は、絶縁被膜を備える電磁鋼帯を打ち抜き加工することでコア単板を得て、前記コア単板を積層することで積層コアを製造する方法であって、前記打ち抜き加工直前に、ガイドローラーを用いて2枚以上の電磁鋼帯を加圧することで仮接着し、前記仮接着後の前記2枚以上の前記電磁鋼帯を打ち抜き金型に挿入してから、前記打ち抜き加工を行うことで前記コア単板を得る。
 以下、詳細について説明する。
(加圧による仮接着)
 まず、打ち抜き金型による打ち抜き加工直前に、2枚以上の素材1(電磁鋼帯)を、ガイドローラー2Aを用いた加圧により仮接着する。仮接着される素材1は、両面に絶縁被膜3を有する。この絶縁被膜3は、平均厚みt1が上述した範囲となるように形成されていることが好ましい。また、上述したように、この絶縁被膜3は、絶縁性能および接着能を備える。
 なお、ガイドローラー2Aとは、素材1を打ち抜き金型に搬送するためのローラーであり、打ち抜き金型の搬送方向上流側(図7の左側)に配置される。また、打ち抜き加工直前とは、仮接着後、且つ打ち抜き加工前に何ら加工を行わないことを意味する。
 本実施形態において、仮接着とは、加熱することなく、加圧により打ち抜き加工前の2枚以上の素材1を接着することを意味する。仮接着後は、素材同士が仮止めの状態となる。仮接着された2枚以上の素材1は、打ち抜き加工後、後述する加熱により本接着される。
 なお、本実施形態では、2枚以上の素材1同士を接着するときに、接着剤を使用しない。加圧による仮接着ではなく、接着剤により接着した場合には、占積率が低下するため、磁気特性に劣った積層コアとなる。そのため、接着剤を使用することは望ましくない。
 上述の通り、本実施形態では、仮接着時に2枚以上の素材1を加熱する必要はない。仮接着時に素材1を加熱するためには、加熱装置が必要となり、また素材1の加熱に時間を要するため、生産性が著しく低下する。仮接着時の2枚以上の素材1の表面温度は、常温とすればよく、例えば15~50℃とすればよい。素材1の表面温度は、赤外線放射温度計を用いて、仮接着時の2枚以上の素材1の幅方向の中央部の温度をそれぞれ測定し、それらの平均値を算出することで得る。
 仮接着時のガイドローラー2Aによる加圧力は、2.0~10.0MPaとすることが好ましい。加圧力をこの範囲とすることで、2枚以上の素材1を確実に仮接着することができる。
 2枚以上の素材1が仮接着された状態であるか否かは、以下の方法により判断する。
所定のサイズの試験片を採取し、この試験片を引張試験(JIS K 6850:1999に準じたせん断引張試験)に供する。引張試験により得られた単位面積当たりの剥離強度が5N/cm以上である場合を、2枚以上の素材1が仮接着された状態であると判断する。
(打ち抜き加工)
 仮接着された2枚以上の素材1をガイドローラー2Aにより打ち抜き金型(図7の複数段の打ち抜きステーション110)に挿入し、所望の形状に徐々に打ち抜き加工する。所望の形状とは、例えば、ステータコア21またはロータコア31の形状を有するコア単板40の形状である。所望の形状に打抜かれたコア単板40は、打ち抜き金型のなかで最も下流方向に位置する雌金型111内に積層される。以上説明した、打ち抜き加工および積層を順次繰り返すことで、所定枚数のコア単板40を積み重ねる。
(本接着)
 積層されたコア単板40を不図示の加熱装置へ搬送し、加熱装置によって例えば180~250℃の温度域まで加熱することで、本接着する。この加熱により、接着剤(絶縁被膜3)が硬化して接着領域41aが形成される。加熱装置へ搬送する際は、積層されたコア単板40を、図示されない治具で積層方向の両側から挟んで保持した上で、搬送すればよい。
 以上説明した方法により、積層コアを製造することができる。
 なお、本実施形態において、コア単板40が本接着された状態であるか否かは、仮接着の判断時と同様にせん断引張試験を行うことで判断する。剥離強度が250N/cm以上である場合を、コア単板40が本接着された状態であると判断する。
(実施例1)
 本発明の態様として、表面に絶縁被膜を形成させ、所定のスリット幅に加工した板厚:0.20mmの無方向性電磁鋼帯のコイルを二つ準備した。無方向性電磁鋼帯としては、質量%で、Si:3.3%、Al:0.7%、Mn:0.2%を有し、残部がFe及び不純物であるものを使用した。絶縁被膜は、絶縁性能および接着能を備える単層の絶縁被膜とした。絶縁被膜の平均厚みは、コア単板片面あたり1.5μm以上8.0μm以下であった。2枚の無方向性電磁鋼帯を、ガイドローラーを用いて加圧することで仮接着した。なお、ガイドローラーの加圧力は2.0~10.0MPaであり、仮接着時の無方向性電磁鋼帯の表面温度は15~50℃であった。仮接着後の2枚の無方向性電磁鋼帯をJIS K 6850:1999に準じたせん断引張試験に供したところ、得られた単位面積当たりの剥離強度は5N/cm以上であった。
 次に、仮接着後の無方向性電磁鋼帯を打ち抜き金型に挿入し、仮接着状態のまま、所定のコア単板形状に打ち抜いた。この動作を同期して繰り返すことで、打ち抜き金型のなかで最も下流方向に位置する雌金型内にコア単板を積層した。積層したコア単板を加熱装置に搬送し、180~250℃に加熱することで本接着した。本接着後の無方向性電磁鋼板をJIS K 6850:1999に準じたせん断引張試験に供したところ、得られた単位面積当たりの剥離強度は250N/cm以上であった。
 上記無方向性電磁鋼帯には接着能を有する絶縁被膜が形成されていた。そのため、雌金型内に積層されたコア単板を加熱装置により加熱することで、本接着された積層コアが得られた。
(実施例2)
 質量%で、Si:3.3%、Al:0.7%、Mn:0.2%を有し、残部がFe及び不純物であり、表面に絶縁被膜を備える板厚:0.20mmの無方向性電磁鋼帯を用意した。絶縁被膜としては、下地絶縁被膜を形成するコーティング組成物として、クロム酸含有処理剤を使用し、この下地絶縁被膜上に設ける上地絶縁被膜として、絶縁性能および接着能を有する絶縁被膜を形成した。絶縁被膜の下地絶縁被膜の平均厚みは0.3μm以上1.2μm以下であり、上地絶縁被膜の平均厚みは1.5μm以上8.0μm以下であった。この無方向性電磁鋼帯を25mm×200mmに切断し、25mm×25mmの面積で重ね合わせ、表1に示す種々の加圧力で加圧した。その後、重ね合わせ部がせん断される方向へ、3mm/minの試験速度でJIS K 6850:1999に準じたせん断引張試験に供した。
Figure JPOXMLDOC01-appb-T000001
 加圧力の小さい試験番号1および2では十分な剥離強度は得られず、仮接着状態を実現することはできなかった。これに対して、試験番号3~6では加圧力が適正範囲なため、剥離強度が適正範囲となり、良好な仮接着状態が実現された。
(実施例3)
 所定のスリット幅に加工した板厚:0.20mmの無方向性電磁鋼帯のコイルを二つ準備した。無方向性電磁鋼帯としては、質量%で、Si:3.3%、Al:0.7%、Mn:0.2%を有し、残部がFe及び不純物であるものを使用した。
 No.7および9については、表面に絶縁被膜を形成した。この絶縁被膜は、絶縁性能および接着能を備える単層の絶縁被膜とした。絶縁被膜の平均厚みは、コア単板片面あたり1.5μm以上8.0μm以下であった。
 No.8については、絶縁被膜を形成しなかった。
 No.7について、2枚の無方向性電磁鋼帯を加熱した後、ガイドローラーを用いて加圧した。
 No.8について、無方向性電磁鋼帯同士の間に接着剤を塗布してから、ガイドローラーを用いて加圧した。
 No.9について、上記絶縁被膜を備える無方向性電磁鋼帯の間に接着剤を塗布してから、ガイドローラーを用いて加圧した。
 なお、No.7~9について、ガイドローラーの加圧力は2.0~10.0MPaであった。No.7について、加圧時の無方向性電磁鋼帯の表面温度は50℃超であった。No.8および9について、接着剤として、接着性を示す熱硬化性樹脂を使用し、加圧時の無方向性電磁鋼帯の表面温度は15~50℃とした。
 次に、加圧後の無方向性電磁鋼帯を打ち抜き金型に挿入し、所定のコア単板形状に打ち抜いた。この動作を同期して繰り返すことで、打ち抜き金型のなかで最も下流方向に位置する雌金型内にコア単板を積層した。積層したコア単板を加熱装置に搬送し、180~250℃に加熱することで接着した。
 No.7については、加圧前に加熱を行ったため、打ち抜き加工前の無方向性電磁鋼帯は接着しているものの、打ち抜き後のコア単板同士は接着していなかった。このようなコア単板同士を接着するためには、接着剤による接着、カシメ、溶接、溶着等が必要となり、生産性に劣る。
 No.8については、絶縁被膜を形成せずに接着剤により無方向性電磁鋼帯同士を接着したため、No.7と同様に、打ち抜き加工前の無方向性電磁鋼帯は接着しているものの、打ち抜き後のコア単板同士は接着していなかった。また、絶縁被膜が形成されていないことから絶縁性に劣り、磁気特性に劣った。
 No.9については、絶縁皮膜の上に接着剤を塗布したため、接着剤を使用しない実施例1と比較して占積率が劣った。
 以上、本発明の一実施形態及び実施例について説明した。ただし、本発明の技術的範囲は前記実施形態及び実施例のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、ステータコア21の形状は、上記実施形態で示した形態のみに限定されるものではない。具体的には、ステータコア21の外径および内径の寸法、積厚、スロット数、ティース部23の周方向と径方向の寸法比率、ティース部23とコアバック部22との径方向の寸法比率等は、所望の回転電機の特性に応じて任意に設計可能である。
 前記実施形態におけるロータ30では、2つ1組の永久磁石32が1つの磁極を形成しているが、本発明はこの形態のみに限られない。例えば、1つの永久磁石32が1つの磁極を形成していてもよく、3つ以上の永久磁石32が1つの磁極を形成していてもよい。
 上記実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、回転電機10の構造は、以下に例示するようにこれのみに限られず、更には以下に例示しない種々の公知の構造も採用可能である。
 上記実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、本発明はこれのみに限られない。例えば、回転電機10がリラクタンス型電動機や電磁石界磁型電動機(巻線界磁型電動機)であってもよい。
 上記実施形態では、交流電動機として、同期電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が誘導電動機であってもよい。
 上記実施形態では、回転電機10として、交流電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が直流電動機であってもよい。
 上記実施形態では、回転電機10として、電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が発電機であってもよい。また、トランスに適用してもよい。
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
1   素材、電磁鋼帯
1A  コイル
2   母材鋼板
3   絶縁被膜
10  回転電機
21  ステータコア
22  コアバック部
23  ティース部
30  ロータ
31  ロータコア
32  永久磁石
33  貫通孔
40  コア単板
41a 接着領域
50  ケース

Claims (5)

  1.  絶縁被膜を備える電磁鋼帯を打ち抜き加工することでコア単板を得て、前記コア単板を積層することで積層コアを製造する方法であって、
     前記打ち抜き加工直前に、ガイドローラーを用いて2枚以上の電磁鋼帯を加圧することで仮接着し、
     前記仮接着後の前記2枚以上の前記電磁鋼帯を打ち抜き金型に挿入してから、前記打ち抜き加工を行うことで前記コア単板を得る、ことを特徴とする積層コアの製造方法。
  2.  前記仮接着時の前記2枚以上の前記電磁鋼帯の表面温度が15~50℃である、ことを特徴とする請求項1に記載の積層コアの製造方法。
  3.  前記ガイドローラーによる前記加圧時の加圧力が2.0~10.0MPaである、ことを特徴とする請求項1または2に記載の積層コアの製造方法。
  4.  前記打ち抜き加工後に、前記コア単板を180~250℃に加熱することで本接着する、ことを特徴とする請求項1~3のいずれか一項に記載の積層コアの製造方法。
  5.  前記絶縁被膜が接着能を有する、ことを特徴とする請求項1~4のいずれか一項に記載の積層コアの製造方法。
PCT/JP2021/023047 2020-06-17 2021-06-17 積層コアの製造方法 WO2021256537A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202180021601.9A CN115298774A (zh) 2020-06-17 2021-06-17 层叠铁芯的制造方法
MX2022010916A MX2022010916A (es) 2020-06-17 2021-06-17 Metodo de fabricacion de nucleo laminado.
BR112022016208A BR112022016208A2 (pt) 2020-06-17 2021-06-17 Método para fabricar um núcleo laminado
CA3165613A CA3165613A1 (en) 2020-06-17 2021-06-17 Method of manufacturing laminated core
KR1020227030907A KR102664817B1 (ko) 2020-06-17 2021-06-17 적층 코어의 제조 방법
EP21825536.2A EP4170876A4 (en) 2020-06-17 2021-06-17 METHOD FOR PRODUCING A LAYERED CORE
JP2021559782A JP7176648B2 (ja) 2020-06-17 2021-06-17 積層コアの製造方法
US17/800,851 US12005487B2 (en) 2020-06-17 2021-06-17 Method of manufacturing laminated core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-104252 2020-06-17
JP2020104252 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021256537A1 true WO2021256537A1 (ja) 2021-12-23

Family

ID=79268081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023047 WO2021256537A1 (ja) 2020-06-17 2021-06-17 積層コアの製造方法

Country Status (9)

Country Link
EP (1) EP4170876A4 (ja)
JP (1) JP7176648B2 (ja)
KR (1) KR102664817B1 (ja)
CN (1) CN115298774A (ja)
BR (1) BR112022016208A2 (ja)
CA (1) CA3165613A1 (ja)
MX (1) MX2022010916A (ja)
TW (1) TWI794839B (ja)
WO (1) WO2021256537A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053364A1 (ja) * 2022-09-08 2024-03-14 日本製鉄株式会社 積層鉄心の製造方法、製造装置、積層鉄心及び回転電機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191033A (ja) 2003-12-24 2005-07-14 Matsushita Electric Ind Co Ltd 積層鉄心の製造方法
JP2006049719A (ja) * 2004-08-06 2006-02-16 Jfe Steel Kk 積層コアの製造方法
JP2016009710A (ja) * 2014-06-23 2016-01-18 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
JP2020104252A (ja) 2018-12-27 2020-07-09 聖杰國際股▲ふん▼有限公司Sanjet International Co.,Ltd. 工作機械の刃物の自動交換機構及びその制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100476030C (zh) * 2003-02-03 2009-04-08 新日本制铁株式会社 粘接用表面涂覆电磁钢板
JP2005297393A (ja) * 2004-04-13 2005-10-27 Nippon Steel Corp 低鉄損複数層電磁鋼板とその製造方法及び装置
PL2366810T3 (pl) * 2008-11-27 2019-12-31 Nippon Steel Corporation Blacha elektrotechniczna i sposób jej wytwarzania
JP6032230B2 (ja) 2014-03-06 2016-11-24 Jfeスチール株式会社 絶縁被膜付き電磁鋼板および積層電磁鋼板
JP6587800B2 (ja) * 2014-12-26 2019-10-09 Jfeスチール株式会社 積層鉄心の製造方法
JP6210058B2 (ja) * 2014-12-26 2017-10-11 Jfeスチール株式会社 積層鉄心用の打抜き加工方法及び積層鉄心の製造方法
JP5958565B2 (ja) * 2015-01-14 2016-08-02 Jfeスチール株式会社 打抜き加工方法、打抜き加工装置、および積層鉄心の製造方法
JP6589172B1 (ja) 2019-01-11 2019-10-16 吉川工業株式会社 積層鉄心

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191033A (ja) 2003-12-24 2005-07-14 Matsushita Electric Ind Co Ltd 積層鉄心の製造方法
JP2006049719A (ja) * 2004-08-06 2006-02-16 Jfe Steel Kk 積層コアの製造方法
JP2016009710A (ja) * 2014-06-23 2016-01-18 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
JP2020104252A (ja) 2018-12-27 2020-07-09 聖杰國際股▲ふん▼有限公司Sanjet International Co.,Ltd. 工作機械の刃物の自動交換機構及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4170876A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053364A1 (ja) * 2022-09-08 2024-03-14 日本製鉄株式会社 積層鉄心の製造方法、製造装置、積層鉄心及び回転電機

Also Published As

Publication number Publication date
CA3165613A1 (en) 2021-12-23
JPWO2021256537A1 (ja) 2021-12-23
US20230080376A1 (en) 2023-03-16
TW202220345A (zh) 2022-05-16
TWI794839B (zh) 2023-03-01
EP4170876A4 (en) 2023-12-06
MX2022010916A (es) 2022-09-29
KR20220137100A (ko) 2022-10-11
JP7176648B2 (ja) 2022-11-22
CN115298774A (zh) 2022-11-04
BR112022016208A2 (pt) 2023-01-17
EP4170876A1 (en) 2023-04-26
KR102664817B1 (ko) 2024-05-10

Similar Documents

Publication Publication Date Title
JP7486434B2 (ja) ステータ用接着積層コアおよび回転電機
CN113228479A (zh) 定子用粘接层叠铁芯、其制造方法、及旋转电机
TWI769867B (zh) 電磁鋼板、積層鐵芯及積層鐵芯製造方法
JP2022000888A (ja) 積層コアの製造方法
WO2021256537A1 (ja) 積層コアの製造方法
JP2022001014A (ja) 積層コアおよび積層コアの製造方法
JP7095819B2 (ja) 電磁鋼板、積層コア及び回転電機
JP7360080B2 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP7343823B2 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP2022000536A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
US12005487B2 (en) Method of manufacturing laminated core
RU2812241C1 (ru) Способ изготовления слоистого сердечника
JP2022000537A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
WO2021256531A1 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
WO2021256529A1 (ja) 電磁鋼板用コーティング組成物、接着用表面被覆電磁鋼板及び積層鉄心
JP2021197860A (ja) 積層コアおよび積層コアの製造方法
JP2022000538A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
JP2022000887A (ja) 電磁鋼板及び積層コア
JP2022001013A (ja) 積層コアおよび積層コアの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021559782

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3165613

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016208

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227030907

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022016208

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220815

WWE Wipo information: entry into national phase

Ref document number: 2022124246

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021825536

Country of ref document: EP

Effective date: 20230117