JP2022001013A - 積層コアおよび積層コアの製造方法 - Google Patents

積層コアおよび積層コアの製造方法 Download PDF

Info

Publication number
JP2022001013A
JP2022001013A JP2021097022A JP2021097022A JP2022001013A JP 2022001013 A JP2022001013 A JP 2022001013A JP 2021097022 A JP2021097022 A JP 2021097022A JP 2021097022 A JP2021097022 A JP 2021097022A JP 2022001013 A JP2022001013 A JP 2022001013A
Authority
JP
Japan
Prior art keywords
laminated
steel sheet
steel sheets
electromagnetic steel
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021097022A
Other languages
English (en)
Inventor
一郎 田中
Ichiro Tanaka
和年 竹田
Kazutoshi Takeda
美菜子 福地
Minako Fukuchi
真介 高谷
Shinsuke Takaya
修一 山崎
Shuichi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2022001013A publication Critical patent/JP2022001013A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

【課題】積層コアにおける磁気特性を改善する。【解決手段】絶縁被膜3を有する複数の電磁鋼板40が積層されて形成された積層コアであって、複数の電磁鋼板40のうち、積層方向の第1側D1の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、および、積層方向の第2側D2の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、のうちの少なくとも片方が、積層方向に隣り合う電磁鋼板40のティース部同士が互いに接着された第1積層鋼板51を形成し、第1積層鋼板51のティース部同士では、各電磁鋼板40の絶縁被膜3同士が接着されている。【選択図】図2

Description

本発明は、積層コアおよび積層コアの製造方法に関する。
従来、電磁鋼板を2枚以上、接着により積層固定して積層コアを構成することが知られている。一般的に、積層方向に隣り合う電磁鋼板同士を接着剤で接着させると、接着剤は硬化時に収縮し、電磁鋼板に圧縮応力が付与される。圧縮応力が付与されると、電磁鋼板に歪が生じる。この場合、接着される位置によっては、積層コアの磁気特性が低下する虞がある。接着剤を用いて電磁鋼板を接着し積層する技術において、上記圧縮応力の悪影響を考慮し、特定部位だけに接着剤を塗布し接着する、下記特許文献1、2に記載の技術が知られている。
また、加熱および/又は加圧により接着可能な(接着能を有する)絶縁被膜を備える、下記特許文献3、4に記載の絶縁被膜付き電磁鋼板が知られている。
国際公開第2020/129928号 特開2021−019376号公報 特開2012−171111号公報 特開2012−174739号公報
上記のように特定部位のみに接着剤を塗布することで接着部位を限定する方法は不用意な歪の発生回避に効果はあるものの、接着能を有する絶縁被膜を備えている電磁鋼板を加熱および/又は加圧により接着した積層コアにおける有効性には未解明の部分がある。加熱および/又は加圧により接着可能な(接着能を有する)絶縁被膜を備えている電磁鋼板の使用に際し、積層コアの特性を向上させる最適な被膜構成とその製造方法の提供が望まれている。
本願発明者は、この種の絶縁被膜付き電磁鋼板を、コアバック部(ヨーク部)およびティース部を備える積層コアに適用したときに、積層コアにおける磁気特性を改善できることを見出した。
本発明は、前述した事情に鑑みてなされたものであって、積層コアにおける磁気特性を改善することを目的とする。
前記課題を解決するために、本発明は以下の手段を提案している。
(1)本発明の一態様に係る積層コアは、絶縁被膜を有する複数の電磁鋼板が積層されて形成された積層コアであって、前記複数の電磁鋼板はそれぞれ、環状のコアバック部と、前記コアバック部から前記コアバック部の径方向に突出するとともに、前記コアバック部の周方向に間隔をあけて配置された複数のティース部と、を備え、前記複数の電磁鋼板のうち、積層方向の第1側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、および、積層方向の第2側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、のうちの少なくとも片方が、積層方向に隣り合う電磁鋼板のティース部同士が互いに接着された第1積層鋼板を形成し、前記第1積層鋼板の前記ティース部同士では、各電磁鋼板の絶縁被膜同士が接着されている。
複数の電磁鋼板のうち、積層方向の端に位置する電磁鋼板のティース部が接着されていないと、ティース部の浮き上がりが生じるおそれがある。この場合、積層方向に隣り合う電磁鋼板においてティース部同士が離れてしまい、積層コアの磁気特性が低下するおそれがある。
本態様に係る積層コアによれば、積層方向の第1側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、および、積層方向の第2側の最も端に位置する電磁鋼板を含む一部の電磁鋼板のうちの少なくとも片方が、第1積層鋼板を形成している。言い換えると、積層方向の第1側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、および、積層方向の第2側の最も端に位置する電磁鋼板を含む一部の電磁鋼板では、ティース部同士が接着されている。そのため、積層コアのうち、積層方向の第1側の端、および、積層方向の第2側の端のうちの少なくとも片方において、ティース部の浮き上がりを抑制することができる。よって、ティース部の浮き上がりによる磁気特性の低下の影響を抑えることができる。
しかも、ティース部の浮き上がりが、かしめや溶接ではなく、接着によって規制されている。ここで、かしめの場合には機械的応力が生じ、溶接の場合には熱応力が生じる。これらの機械的応力や熱応力は、歪による影響以上に磁気特性に影響を与える。また、かしめ、溶接のいずれの場合においても、層間短絡によって電磁鋼板の磁気特性が劣化するおそれがある。よって、ティース部の浮き上がりを接着により規制することで、磁気特性の低下の影響を抑えることができる。
更に本態様に係る積層コアによれば、第1積層鋼板を形成する電磁鋼板同士が、積層方向に隣り合う各電磁鋼板の表面を覆っていた絶縁被膜が一体化し均質となることによって接着されている。すなわち、電磁鋼板同士が、電磁鋼板とは別に設けられた接着剤によって接着されているのではない。ここで、電磁鋼板同士が接着剤によって接着される場合、隣り合う電磁鋼板の間に接着剤が配置されることから、隣り合う電磁鋼板が、接着剤の厚み分、離れてしまう。このため積層コアにおける占積率が低下してしまう。さらに、隣り合う電磁鋼板の全面に接着剤が塗布されず、部分的に接着される場合、非接着領域において隣り合う電磁鋼板同士の接触状態が弱くなる。このため、積層コアが回転電機に組付けられて動作する際の該非接着領域の不用意な振動が増大してロータの回転が不安定化し、回転電機全体の磁気特性が低下する。これに対して、本態様にかかる積層コアのように、積層方向に隣り合う電磁鋼板同士が、電磁鋼板の絶縁被膜によって接着されている場合、隣り合う電磁鋼板が、前述のような接着剤を起因として離れることがない。このため、隣り合う電磁鋼板が部分的に接着され非接着領域が存在する場合においても、隣り合う電磁鋼板との強い接触状態が実現される。そのため、磁気特性の低下の影響を抑えることができる。
以上より、ティース部の浮き上がりによる磁気特性の低下の影響、接着剤の配置による磁気特性の低下の影響をいずれも抑えることができる。結果として、積層コアにおける磁気特性を改善することができる。
(2)上記(1)に係る積層コアでは、前記複数の電磁鋼板のうち、一部の電磁鋼板は、前記第1積層鋼板を形成し、前記第1積層鋼板を形成していない残りの電磁鋼板は、積層方向に隣り合う電磁鋼板のティース部同士が互いに接着されていない第2積層鋼板を形成している、構成を採用してもよい。
積層コアにおいて、積層方向に隣り合う電磁鋼板同士が接着すると、電磁鋼板(母材鋼板)のうち、接着された部分に歪が生じる。電磁鋼板に歪が生じると、積層コアの鉄損が大きくなり、積層コアの磁気特性が低下する。特に、ティース部の磁束密度は、コアバック部の磁束密度に比べて高い。そのため、ティース部では、歪の発生による磁気特性の低下の影響が大きい。よって、積層コアのティース部では、浮き上がりを抑制できる範囲で、電磁鋼板同士ができるだけ接着されていないことが好ましい。
本態様に係る積層コアによれば、第2積層鋼板では、ティース部同士が接着されていない。よって、第2積層鋼板において、歪の発生による磁気特性の低下の影響を抑えることができる。
以上より、ティース部の浮き上がりによる磁気特性の低下の影響、接着剤の配置による磁気特性の低下の影響をいずれも抑えることに加えて、歪の発生による磁気特性の低下の影響も抑えることができる。結果として、積層コアにおける磁気特性を更に改善することができる。
(3)上記(2)に係る積層コアでは、前記複数の電磁鋼板のうち、積層方向の第1側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、および、積層方向の第2側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、がいずれも、前記第1積層鋼板を形成し、前記複数の電磁鋼板のうち、積層方向の中央に位置する残りの電磁鋼板が、前記第2積層鋼板を形成している、構成を採用してもよい。
積層方向の第1側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、および、積層方向の第2側の最も端に位置する電磁鋼板を含む一部の電磁鋼板の両方において、積層方向に隣り合う電磁鋼板のティース部同士が接着されている。そのため、積層コアのうち、積層方向の第1側の端、および、積層方向の第2側の端の両方において、ティース部の浮き上がりを抑制することができる。よって、ティース部の浮き上がりによる磁気特性の低下の影響を効果的に抑えることができる。
(4)上記(3)に係る積層コアでは、積層方向の中央の前記第2積層鋼板を形成する電磁鋼板の枚数は、積層方向の第1側の前記第1積層鋼板を形成する電磁鋼板の枚数以上であり、かつ、積層方向の第2側の前記第1積層鋼板を形成する電磁鋼板の枚数以上である、構成を採用してもよい。
積層方向の中央の第2積層鋼板を形成する電磁鋼板の枚数(以下、枚数N3という)が、積層方向の第1側の第1積層鋼板を形成する電磁鋼板の枚数(以下、枚数N1という)以上であり、かつ、積層方向の第2側の第1積層鋼板を形成する電磁鋼板の枚数(以下、枚数N2という)以上である。よって、積層コア全体において、ティース部が接着されている電磁鋼板の枚数の比率を低くすることができる。その結果、歪の発生による積層コアの磁気特性の低下の影響を一層抑えることができる。
(5)上記(3)または(4)に係る積層コアでは、積層方向の第1側の前記第1積層鋼板を形成する電磁鋼板の枚数、および、積層方向の第2側の前記第1積層鋼板を形成する電磁鋼板の枚数は、いずれも前記複数の電磁鋼板の全枚数の1/3以下である、構成を採用してもよい。
枚数N1および枚数N2が、いずれも複数の電磁鋼板の全枚数(以下、枚数N0という)の1/3以下である。よって、積層コア全体において、ティース部が接着されている電磁鋼板の枚数の比率を低くすることができる。その結果、歪の発生による積層コアの磁気特性の低下の影響を一層抑えることができる。
(6)上記(3)から(5)のいずれか1項に係る積層コアでは、積層方向の第1側の前記第1積層鋼板を形成する電磁鋼板の枚数と、積層方向の第2側の前記第1積層鋼板を形成する電磁鋼板の枚数と、が等しい、構成を採用してもよい。
枚数N1と枚数N2とが等しい。したがって、積層コアにおいて、積層方向の第1側における磁気特性と第2側における磁気特性との間に相違が生じるのを抑えることができる。これにより、積層コアの取り扱い性を高めることができる。
(7)上記(6)に係る積層コアでは、積層方向の第1側の前記第1積層鋼板を形成する電磁鋼板の枚数、および、積層方向の第2側の前記第1積層鋼板を形成する電磁鋼板の枚数が、積層方向の中央の前記第2積層鋼板を形成する電磁鋼板の枚数が等しい、構成を採用してもよい。
枚数N1および枚数N2が、枚数N3と等しい。したがって、第1側の第1積層鋼板、第2側の第1積層鋼板、中央の第2積層鋼板のどの部分を製造する過程においても、同じ枚数の電磁鋼板を積み重ねればよい。結果として、積層コアの製造の更なる簡素化を図ることができる。
(8)上記(1)に係る積層コアでは、前記複数の電磁鋼板の全てが、前記第1積層鋼板を形成している、構成を採用してもよい。
複数の電磁鋼板の全てにおいて、積層方向に隣り合う電磁鋼板のティース部同士が接着されている。よって、ティース部の浮き上がりによる磁気特性の低下の影響を効果的に抑えることができる。
(9)上記(1)から(8)のいずれか1項に係る積層コアでは、前記第1積層鋼板では、積層方向に隣り合う電磁鋼板のティース部同士が互いにかしめられておらず、かつ、溶接されていない、構成を採用してもよい。
第1積層鋼板では、積層方向に隣り合う電磁鋼板のティース部同士が互いにかしめられておらず、かつ、溶接されていない。すなわち、接着と、かしめや溶接と、を併用するのではなく、接着のみによりティース部の浮き上がりを規制する。これにより、ティース部の浮き上がりによる磁気特性の低下の影響を効果的に抑えることができる。
(10)上記(1)から(9)のいずれか1項に係る積層コアでは、前記第1積層鋼板の前記ティース部同士では、前記ティース部のうち、少なくとも前記径方向の先端を含む部分同士が接着されている、構成を採用してもよい。
一般的に、積層コアにおける積層方向の端では、ティース部のうちの先端が特に浮き上がりやすい。なお、ティース部の径方向の先端とは、ティース部のうち、径方向に沿ってコアバック部の反対側に位置する端をいう。
本態様に係る積層コアによれば、第1積層鋼板において、積層方向に隣り合う電磁鋼板のティース部同士では、ティース部のうち、少なくとも先端を含む部分同士が接着されている。よって、ティース部の浮き上がりを効果的に抑制することができる。しかも、浮き上がりを効果的に抑制することで、浮き上がりの抑制に必要となる接着面積を小さく抑えることができる。結果として、歪の発生による積層コアの磁気特性の低下の影響を一層抑えることができる。
(11)上記(1)から(10)のいずれか1項に係る積層コアでは、前記第1積層鋼板では、積層方向に隣り合う電磁鋼板のコアバック部同士が互いに接着されていない、構成を採用してもよい。
第1積層鋼板では、積層方向に隣り合う電磁鋼板のコアバック部同士が互いに接着されていない。したがって、歪の発生による積層コアの磁気特性の低下の影響を一層抑えることができる。
(12)上記(1)から(11)のいずれか1項に係る積層コアでは、前記第1積層鋼板では、積層方向に隣り合う電磁鋼板における複数組のティース部同士のうち、一部のティース部同士が互いに接着され、残りのティース部同士が互いに接着されていない、構成を採用してもよい。
第1積層鋼板では、積層方向に隣り合う電磁鋼板における複数組のティース部同士のうち、一部のティース部同士が互いに接着され、残りのティース部同士が互いに接着されていない。よって、一部のティース部における浮き上がりを抑えつつ、残りのティース部における歪の発生を抑えることができる。
(13)上記(1)から(12)のいずれか1項に係る積層コアでは、前記複数の電磁鋼板それぞれの板厚は、0.10mm以上0.30mm以下である、構成を採用してもよい。
複数の電磁鋼板それぞれの板厚が、0.10mm以上0.30mm以下である。これにより、積層コアの製造効率を確保しつつ、鉄損を低減することができる。
すなわち、電磁鋼板を素材から打ち抜く場合、電磁鋼板の板厚は素材の板厚に依存し、素材の板厚は電磁鋼板の板厚と等しい。電磁鋼板の板厚が0.10mm未満である場合、素材の板厚も0.10mm未満となる。この場合、素材から電磁鋼板を打ち抜くときに、所定の積厚とする際の打ち抜き枚数(打ち抜き回数)が増加することとなり、積層コアの生産効率が低下する。また、積層コアにおいて電磁鋼板(母材鋼板)の占める割合である占積率が低下することとなり、積層コアの磁気特性が低下するおそれがある。
一方、電磁鋼板の板厚が0.30mm超である場合、電磁鋼板が厚すぎて、積層コアの鉄損が高まるおそれがある。なお、電磁鋼板の板厚は、0.27mm以下であることが好ましい。
(14)本発明の一態様に係る積層コアの製造方法は、上記(1)から(13)のいずれか1項に係る積層コアを製造する方法であって、積層された前記電磁鋼板の前記ティース部を加熱して前記絶縁被膜に接着能を発揮させることで、前記第1積層鋼板を形成する第1工程を含む。
第1工程では、積層された電磁鋼板のティース部を加熱して絶縁被膜に接着能を発揮させることで、積層方向に隣り合う電磁鋼板のティース部同士を接着させて第1積層鋼板を形成する。したがって、例えば、電磁鋼板に接着剤を塗布し、接着剤によって電磁鋼板を接着させる場合などに比べて、積層コアを簡易に製造することができる。
(15)本発明の一態様に係る積層コアの製造方法は、上記(2)から(7)のいずれか1項に係る積層コアを製造する方法であって、積層された前記電磁鋼板の前記ティース部を加熱して前記絶縁被膜に接着能を発揮させることで、前記第1積層鋼板を形成する第1工程と、前記第1工程における加熱の影響を受けない状態で前記電磁鋼板を積層し、前記第2積層鋼板を形成する第2工程と、前記第1工程および前記第2工程の後、前記第1積層鋼板と前記第2積層鋼板とを積み重ねる第3工程と、を含む。
第1工程における加熱の影響を受けない状態で電磁鋼板を積層し、第2積層鋼板を形成する。したがって、第2積層鋼板を形成する電磁鋼板同士が意図せず接着するのを抑制することができる。
本発明によれば、積層コアにおける磁気特性を改善することができる。
本発明の第1実施形態に係る積層コアを備えた回転電機の断面図である。 同積層コアの側面図である。 図2のA−A断面図である。 同積層コアを形成する素材の平面図である。 図4のB−B断面図である。 図5のC部の拡大図である。 同積層コアを製造するために用いられる製造装置の側面図である。 本発明の第1変形例に係る積層コアを構成する電磁鋼板の平面図である。 本発明の第2変形例に係る積層コアを構成する電磁鋼板の平面図である。 本発明の第3変形例に係る積層コアを構成する電磁鋼板の平面図である。 本発明の第4変形例に係る積層コアを構成する電磁鋼板の平面図である。 本発明の第5変形例に係る積層コアを構成する電磁鋼板の平面図である。 本発明の第6変形例に係る積層コアの側面図である。
以下、図面を参照し、本発明の一実施形態に係る積層コアと、この積層コアを備えた回転電機と、この積層コアを形成する素材について説明する。なお、本実施形態では、回転電機として電動機、具体的には交流電動機、より具体的には同期電動機、より一層具体的には永久磁石界磁型電動機を一例に挙げて説明する。この種の電動機は、例えば、電気自動車などに好適に採用される。
(回転電機10)
図1に示すように、回転電機10は、ステータ20と、ロータ30と、ケース50と、回転軸60と、を備える。ステータ20およびロータ30は、ケース50内に収容される。ステータ20は、ケース50内に固定される。
本実施形態では、回転電機10として、ロータ30がステータ20の径方向内側に位置するインナーロータ型を採用している。しかしながら、回転電機10として、ロータ30がステータ20の外側に位置するアウターロータ型を採用してもよい。また、本実施形態では、回転電機10が、12極18スロットの三相交流モータである。しかしながら、極数、スロット数、相数などは、適宜変更することができる。
回転電機10は、例えば、各相に実効値10A、周波数100Hzの励磁電流を印加することにより、回転数1000rpmで回転することができる。
ステータ20は、ステータ用接着積層コア(以下、ステータコア)21と、図示しない巻線と、を備える。
ステータコア21は、環状のコアバック部22と、複数のティース部23と、を備える。以下では、ステータコア21(又はコアバック部22)の中心軸線O方向を軸方向と言い、ステータコア21(又はコアバック部22)の径方向(中心軸線Oに直交する方向)を径方向と言い、ステータコア21(又はコアバック部22)の周方向(中心軸線O回りに周回する方向)を周方向と言う。
コアバック部22は、ステータ20を軸方向から見た平面視において円環状に形成されている。
複数のティース部23は、コアバック部22の内周から径方向内側に向けて(径方向に沿ってコアバック部22の中心軸線Oに向けて)突出する。複数のティース部23は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角20度おきに18個のティース部23が設けられている。複数のティース部23は、互いに同等の形状でかつ同等の大きさに形成されている。よって、複数のティース部23は、互いに同じ厚み寸法を有している。
前記巻線は、ティース部23に巻回されている。前記巻線は、集中巻きされていてもよく、分布巻きされていてもよい。
ロータ30は、ステータ20(ステータコア21)に対して径方向の内側に配置されている。ロータ30は、ロータコア31と、複数の永久磁石32と、を備える。
ロータコア31は、ステータ20と同軸に配置される環状(円環状)に形成されている。ロータコア31内には、前記回転軸60が配置されている。回転軸60は、ロータコア31に固定されている。
複数の永久磁石32は、ロータコア31に固定されている。本実施形態では、2つ1組の永久磁石32が1つの磁極を形成している。複数組の永久磁石32は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角30度おきに12組(全体では24個)の永久磁石32が設けられている。
本実施形態では、永久磁石界磁型電動機として、埋込磁石型モータが採用されている。ロータコア31には、ロータコア31を軸方向に貫通する複数の貫通孔33が形成されている。複数の貫通孔33は、複数の永久磁石32の配置に対応して設けられている。各永久磁石32は、対応する貫通孔33内に配置された状態でロータコア31に固定されている。各永久磁石32のロータコア31への固定は、例えば永久磁石32の外面と貫通孔33の内面とを接着剤により接着すること等により、実現できる。なお、永久磁石界磁型電動機として、埋込磁石型に代えて表面磁石型モータを採用してもよい。
ステータコア21およびロータコア31は、いずれも積層コアである。例えばステータコア21は、図2に示すように、複数の電磁鋼板40が積層方向に積層されることで形成されている。
なお、ステータコア21およびロータコア31それぞれの積厚(中心軸線Oに沿った全長)は、例えば50.0mm〜200.0mm、好ましくは60.0mm〜170.00mmとされる。ステータコア21の外径は、200.0mm〜300.0mm、例えば250.0mmとされる。ステータコア21の内径は、130.0mm〜180.0mm、例えば165.0mmとされる。ロータコア31の外径は、例えば163.0mmとされる。ロータコア31の内径は、例えば30.0mmとされる。ただし、これらの値は一例であり、ステータコア21の積厚、外径や内径、およびロータコア31の積厚、外径や内径は、これらの値のみに限られない。ここで、ステータコア21の内径は、ステータコア21におけるティース部23の先端部を基準とする。すなわち、ステータコア21の内径は、全てのティース部23の先端部に内接する仮想円の直径である。
ステータコア21およびロータコア31を形成する各電磁鋼板40は、例えば、図4から図6に示すような素材1を打ち抜き加工すること等により形成される。素材1は、電磁鋼板40の母材となる鋼板(電磁鋼板)である。素材1としては、例えば、帯状の鋼板や切り板などが挙げられる。
積層コアの説明の途中ではあるが、以下では、この素材1について説明する。なお本明細書において、電磁鋼板40の母材となる帯状の鋼板を素材1という場合がある。素材1を打ち抜き加工して積層コアに用いられる形状にした鋼板を電磁鋼板40という場合がある。
(素材1)
素材1は、例えば、コイル1Aに巻き取られた状態で取り扱われる。本実施形態では、素材1として、無方向性電磁鋼板を採用している。無方向性電磁鋼板としては、JIS C 2552:2014の無方向性電磁鋼帯を採用できる。しかしながら、素材1として、無方向性電磁鋼板に代えて方向性電磁鋼板を採用してもよい。この場合の方向性電磁鋼板としては、JIS C 2553:2019の方向性電磁鋼帯を採用できる。また、JIS C 2558:2015の無方向性薄電磁鋼帯や方向性薄電磁鋼帯を採用できる。
素材1の平均板厚t0の上下限値は、素材1が電磁鋼板40として用いられる場合も考慮して、例えば以下のように設定される。
素材1が薄くなるに連れて素材1の製造コストは増す。そのため、製造コストを考慮すると、素材1の平均板厚t0の下限値は、0.10mm、好ましくは0.15mm、より好ましくは0.18mmとなる。
一方で素材1が厚すぎると、製造コストは良好になるが、素材1が電磁鋼板40として用いられた場合に、渦電流損が増加してコア鉄損が劣化する。そのため、コア鉄損と製造コストを考慮すると、素材1の平均板厚t0の上限値は、0.65mm、好ましくは0.35mm、より好ましくは0.30mmとなる。
素材1の平均板厚t0の上記範囲を満たすものとして、0.20mmを例示できる。
なお、素材1の平均板厚t0は、後述する母材鋼板2の厚さだけでなく、絶縁被膜3の厚さも含まれる。また、素材1の平均板厚t0の測定方法は、例えば、以下の測定方法による。例えば、素材1がコイル1Aの形状に巻き取られている場合、素材1の少なくとも一部を平板形状に巻きだす。平板形状に巻き出された素材1において、素材1の長手方向の所定の位置(例えば、素材1の長手方向の端縁から、素材1の全長の10%分の長さ、離れた位置)を選定する。この選定した位置において、素材1を、その幅方向に沿って5つの領域に区分する。これらの5つの領域の境界となる4か所において、素材1の板厚を測定する。4か所の板厚の平均値を、素材1の平均板厚t0とすることができる。
この素材1の平均板厚t0についての上下限値は、電磁鋼板40としての平均板厚t0の上下限値としても当然に採用可能である。なお、電磁鋼板40の平均板厚t0の測定方法は、例えば、以下の測定方法による。例えば、積層コアの積厚を、周方向に同等の間隔をあけて4か所において(すなわち、中心軸線Oを中心とした90度おきに)測定する。測定した4か所の積厚それぞれを、積層されている電磁鋼板40の枚数で割って、1枚当たりの板厚を算出する。4か所の板厚の平均値を、電磁鋼板40の平均板厚t0とすることができる。
図5および図6に示すように、素材1は、母材鋼板2と、絶縁被膜3と、を備えている。素材1は、帯状の母材鋼板2の両面が絶縁被膜3によって被覆されてなる。本実施形態では、素材1の大部分が母材鋼板2によって形成され、母材鋼板2の表面に、母材鋼板2よりも薄い絶縁被膜3が積層されている。
母材鋼板2の化学組成は、以下に質量%単位で示すように、質量%で2.5%〜4.5%のSiを含有する。なお、化学組成をこの範囲とすることにより、素材1(電磁鋼板40)の降伏強度を、例えば、380MPa以上540MPa以下に設定することができる。
Si:2.5%〜4.5%
Al:0.001%〜3.0%
Mn:0.05%〜5.0%
残部:Fe及び不純物
素材1が電磁鋼板40として用いられるときに、絶縁被膜3は、積層方向に隣り合う電磁鋼板40間での絶縁性能を発揮する。また本実施形態では、絶縁被膜3は、接着能を備えていて、積層方向に隣り合う電磁鋼板40を接着する。絶縁被膜3は、単層構成であってもよく、複層構成であってもよい。より具体的には、例えば、絶縁被膜3は、絶縁性能と接着能とを兼ね備えた単層構成であってもよく、絶縁性能に優れる下地絶縁被膜と、接着性能に優れる上地絶縁被膜とを含む複層構成であってもよい。
本実施形態では、絶縁被膜3は、母材鋼板2の両面を全面にわたって隙間なく覆っている。しかしながら、前述の絶縁性能や接着能が確保される範囲において、絶縁被膜3の一部の層は、母材鋼板2の両面を隙間なく覆っていなくてもよい。言い換えると、絶縁被膜3の一部の層が、母材鋼板2の表面に間欠的に設けられていてもよい。ただし、絶縁性能を確保するには、母材鋼板2の両面は全面が露出しないように絶縁被膜3によって覆われている必要がある。具体的には、絶縁被膜3が絶縁性能に優れる下地絶縁被膜を有さず、絶縁性能と接着能を兼ね備えた単層構成である場合は、絶縁被膜3は母材鋼板2の全面にわたって隙間なく形成されている必要がある。これに対し、絶縁被膜3が、絶縁性能に優れる下地絶縁被膜と、接着能に優れる上地絶縁被膜とを含む複層構成である場合、下地絶縁被膜と上地絶縁被膜の両方を母材鋼板2の全面にわたって隙間なく形成する他に、下地絶縁被膜を母材鋼板の全面にわたって隙間なく形成し、上地絶縁被膜を間欠的に設けても、絶縁性能と接着能の両立が可能である。
下地絶縁被膜を形成するコーティング組成物としては、特に限定されず、例えば、クロム酸含有処理剤、リン酸塩含有処理等の一般的な処理剤を使用できる。
接着能を備える絶縁被膜は、後述の電磁鋼板用コーティング組成物が母材鋼板上に塗布されてなる。接着能を備える絶縁被膜は、例えば、絶縁性能と接着能を兼ね備えた単層構成の絶縁被膜や、下地絶縁被膜上に設けられる上地絶縁被膜である。接着能を備える絶縁被膜は、積層コア製造時の加熱圧着前においては、未硬化状態又は半硬化状態(Bステージ)であり、加熱圧着時の加熱によって硬化反応が進行して接着能が発現する。
電磁鋼板用コーティング組成物としては、特に限定されず、例えば、エポキシ樹脂と、エポキシ樹脂硬化剤と、を含有する組成物が挙げられる。すなわち、接着能を備える絶縁被膜としては、エポキシ樹脂と、エポキシ樹脂硬化剤と、を含有する膜が、一例として挙げられる。
エポキシ樹脂としては、一般的なエポキシ樹脂が使用でき、具体的には、一分子中にエポキシ基を2個以上有するエポキシ樹脂であれば特に制限なく使用できる。このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、アクリル酸変性エポキシ樹脂(エポキシアクリレート)、リン含有エポキシ樹脂、及びこれらのハロゲン化物(臭素化エポキシ樹脂等)や水素添加物等が挙げられる。エポキシ樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
電磁鋼板用コーティング組成物は、アクリル樹脂を含有してもよい。
アクリル樹脂としては、特に限定されない。アクリル樹脂に用いるモノマーとしては、例えば、アクリル酸、メタクリル酸等の不飽和カルボン酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリレートを例示できる。なお、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。アクリル樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
アクリル樹脂は、アクリルモノマー以外の他のモノマーに由来する構成単位を有していてもよい。他のモノマーとしては、例えば、エチレン、プロピレン、スチレン等が挙げられる。他のモノマーとしては、1種を単独で使用してもよく、2種以上を併用してもよい。
アクリル樹脂を用いる場合、エポキシ樹脂にアクリル樹脂をグラフトさせたアクリル変性エポキシ樹脂として用いてもよい。電磁鋼板用コーティング組成物においては、アクリル樹脂を形成するモノマーとして含まれていてもよい。
エポキシ樹脂硬化剤としては、潜在性を持つ加熱硬化タイプのものが使用可能であり、例えば、芳香族ポリアミン、酸無水物、フェノール系硬化剤、ジシアンジアミド、三フッ化ホウ素−アミン錯体、有機酸ヒドラジッド等が挙げられる。芳香族ポリアミンとしては、例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等が挙げられる。フェノール系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、トリアジン変性フェノールノボラック樹脂、フェノールレゾール樹脂等が挙げられる。なかでも、エポキシ樹脂硬化剤としては、フェノール系硬化剤が好ましく、フェノールレゾール樹脂がより好ましい。エポキシ樹脂硬化剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。
電磁鋼板用コーティング組成物中のエポキシ樹脂硬化剤の含有量は、エポキシ樹脂100質量部に対して、5〜35質量部が好ましく、10〜30質量部がより好ましい。
電磁鋼板用コーティング組成物は、硬化促進剤(硬化触媒)、乳化剤、消泡剤等の添加剤が配合されていてもよい。添加剤としては、1種のみを使用してもよく、2種以上を併用してもよい。
絶縁被膜3の平均厚みt1の上下限値は、素材1が電磁鋼板40として用いられる場合も考慮して、例えば以下のように設定される。
素材1が電磁鋼板40として用いられる場合において、絶縁被膜3の平均厚みt1(電磁鋼板40(素材1)片面あたりの厚さ)は、互いに積層される電磁鋼板40間での絶縁性能及び接着能を確保できるように調整する。
単層構成の絶縁被膜3の場合、絶縁被膜3の平均厚みt1(電磁鋼板40(素材1)片面あたりの厚さ)は、例えば、1.5μm以上8.0μm以下とすることができる。
複層構成の絶縁被膜3の場合、下地絶縁被膜の平均厚みは、例えば、0.3μm以上1.2μm以下とすることができ、0.7μm以上0.9μm以下が好ましい。上地絶縁被膜の平均厚みは、例えば、1.5μm以上8.0μm以下とすることができる。
なお、素材1における絶縁被膜3の平均厚みt1の測定方法は、素材1の平均板厚t0と同様の考え方で、複数箇所の絶縁被膜3の厚みを求め、それらの厚みの平均として求めることができる。
この素材1における絶縁被膜3の平均厚みt1についての上下限値は、電磁鋼板40における絶縁被膜3の平均厚みt1の上下限値としても当然に採用可能である。なお、電磁鋼板40における絶縁被膜3の平均厚みt1の測定方法は、例えば、以下の測定方法による。例えば、積層コアを形成する複数の電磁鋼板のうち、積層方向の最も外側に位置する電磁鋼板40(表面が積層方向に露出している電磁鋼板40)を選定する。選定した電磁鋼板40の表面において、径方向の所定の位置(例えば、電磁鋼板40における内周縁と外周縁との丁度中間(中央)の位置)を選定する。選定した位置において、電磁鋼板40の絶縁被膜3の厚みを、周方向に同等の間隔をあけて4か所において(すなわち、中心軸線Oを中心とした90度おきに)測定する。測定した4か所の厚みの平均値を、絶縁被膜3の平均厚みt1とすることができる。
なお、このように絶縁被膜3の平均厚みt1を、積層方向の最も外側に位置する電磁鋼板40において測定した理由は、絶縁被膜3の厚みが、電磁鋼板40の積層方向に沿った積層位置で殆ど変わらないように、絶縁被膜3が作り込まれているからである。
以上のような素材1を打ち抜き加工することで電磁鋼板40が製造され、電磁鋼板40によって積層コア(ステータコア21やロータコア31)が製造される。
(積層コアの積層方法)
以下、積層コアの説明に戻る。ステータコア21を形成する複数の電磁鋼板40は、図3に示すように、絶縁被膜3を介して積層されている。
ここで図2に示すように、本実施形態では、複数の電磁鋼板40のうち、一部の電磁鋼板40は、第1積層鋼板51を形成し、第1積層鋼板51を形成していない残りの電磁鋼板40は、第2積層鋼板52を形成している。
図3に示すように、第1積層鋼板51では、積層方向に隣り合う電磁鋼板40のティース部23同士が互いに接着されている。第1積層鋼板51のティース部23同士では、ティース部23のうち、少なくとも径方向の先端23aを含む部分同士が接着されている。
ここで、ティース部23の径方向の先端23aとは、ティース部23のうち、径方向に沿ってコアバック部22の反対側に位置する端をいう。本実施形態では、ティース部23の径方向の先端23aとは、ティース部23のうち、径方向の最も内側に位置する部分である。図示の例では、ティース部23は、平面視において径方向に長い矩形状に形成されている。ティース部23の径方向の先端23aは、平面視において、径方向の内側に位置する辺に相当する部分となる。なお本実施形態とは異なり、ティース部23がコアバック部22から径方向の外側に突出している場合、ティース部23の径方向の先端23aとは、ティース部23のうち、径方向の最も外側に位置する部分となる。
なお図示の例では、複数のティース部23全てが接着されていて、接着されていないティース部23がない。また、各ティース部23のうち、径方向に沿って中央よりも先端23a寄りの半分が、接着されている。各ティース部23の接着面積率は、50%である。
第1積層鋼板51の前記ティース部23同士では、各電磁鋼板40の絶縁被膜3同士が接着されている。言い換えると、積層方向に隣り合う電磁鋼板40同士の間に、接着剤が配置されていないが、電磁鋼板40同士が接着されている。絶縁被膜3は、前述したように母材鋼板2の両面を全面にわたって覆っているものの、絶縁被膜3のうち、接着されている部分は、全面ではなくて一部である。
すなわち、積層方向に隣り合う電磁鋼板40は、絶縁被膜3によって局所的に接着されている。言い換えると、電磁鋼板40において積層方向を向く面(以下、第1面という)では、接着領域41aと非接着領域41bとが混在している。
なお接着領域41aとは、電磁鋼板40の第1面において、絶縁被膜3が、隣り合う他の電磁鋼板40の絶縁被膜3と一体に界面なく接着されている領域を意味する。非接着領域41bとは、電磁鋼板40の第1面において、絶縁被膜3が、隣り合う他の電磁鋼板40の絶縁被膜3に接着されていない領域を意味する。すなわち、非接着領域41bでは、積層方向に隣り合う電磁鋼板40の絶縁被膜3の表面同士が、互いに接触しているだけで、接着されていない。
なお、電磁鋼板40の第1面における接着領域41aと非接着領域41bとの確認方法は、例えば以下の方法による。すなわち、絶縁被膜3を介して接着されている電磁鋼板40同士を引きはがす。引きはがされた電磁鋼板40の第1面を観察し、接着領域41aの剥離に伴って生じる絶縁被膜3の接着痕が残っている領域を接着領域41aと判定し、接着痕が残っていない領域を非接着領域41bと判定することができる(前述のように粘着性によって固着されている領域には接着痕が残らない)。この判定に際しては、コンピュータや人工知能を利用した画像処理を用いてもよい。
なお、第1積層鋼板51では、積層方向に隣り合う電磁鋼板40のティース部23同士が、接着以外の接合方法(例えば、かしめや溶接など)によっても接合されていない。すなわち、前記ティース部23同士は、互いに接着されておらず、互いにかしめられておらず、互いに溶接されてもいない。言い換えると、前記ティース部23同士には、互い嵌め合わされたかしめ用の凹部や凸部が形成されておらず、溶接金属も形成されていない。
そして本実施形態では、図2に示すように、複数の電磁鋼板40のうち、積層方向の第1側D1の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、および、積層方向の第2側D2の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、のうちの少なくとも片方が、前記第1積層鋼板51を形成している。本実施形態では、複数の電磁鋼板40のうち、積層方向の第1側D1の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、および、積層方向の第2側D2の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、がいずれも、第1積層鋼板51を形成している。
第2積層鋼板52では、積層方向に隣り合う電磁鋼板40のティース部23同士が互いに接着されていない。これらのティース部23同士は、接着以外の接合方法(例えば、かしめや溶接など)によっても接合されていない。すなわち、前記ティース部23同士は、互いに接着されておらず、互いにかしめられておらず、互いに溶接されてもいない。本実施形態では、複数の電磁鋼板40のうち、積層方向の中央に位置する残りの電磁鋼板40が、第2積層鋼板52を形成している。第2積層鋼板52を形成する電磁鋼板40には、接着領域41aが形成されていない。
なお、第1積層鋼板51および第2積層鋼板52では、積層方向に隣り合う電磁鋼板40のコアバック部22同士が互いに接着されていない。また、第1積層鋼板51および第2積層鋼板52では、電磁鋼板40が接着以外の接合方法(例えば、かしめや溶接など)によっても接合されていない。さらに、第1積層鋼板51と第2積層鋼板52との間は、接着されておらず、接着以外の接合方法によっても接合されていてない。
ここで、積層方向の第1側D1の第1積層鋼板51(以下、第1積層鋼板51aともいう)を形成する電磁鋼板40の枚数をN1とする。積層方向の第2側D2の第1積層鋼板51(以下、第1積層鋼板51bともいう)を形成する電磁鋼板40の枚数をN2とする。積層方向の中央の第2積層鋼板52を形成する電磁鋼板40の枚数をN3とする。複数の電磁鋼板40の全枚数をN0とする。
本実施形態では、枚数N1と枚数N2とが等しい(すなわち、N1=N2)。枚数N3は、枚数N1以上であり、かつ、枚数N2以上である(すなわち、N3≧N1かつN3≧N2)。さらに、枚数N1および枚数N2が、枚数N3と等しい(すなわち、N1=N2=N3)。枚数N1および枚数N2は、枚数N0の1/3以下であり(すなわち、N1≦((N0)/3)かつN2≦((N0)/3))、より具体的には、枚数N0の1/3である(すなわち、N1=((N0)/3)かつN2=((N0)/3))。
本実施形態では、ロータコア31を形成する方の複数の電磁鋼板は、図1に示すかしめ42(ダボ)によって互いに固定されている。しかしながら、ロータコア31を形成する複数の電磁鋼板も、ステータコア21と同様に絶縁被膜3により固定した積層構造を有してもよい。
また、ステータコア21やロータコア31などの積層コアは、いわゆる回し積みにより形成されていてもよい。
(積層コアの製造方法)
前記ステータコア21は、例えば、図7に示す製造装置100を用いて製造される。以下では、製造方法の説明にあたり、まず先に、積層コアの製造装置100(以下、単に製造装置100という)について説明する。
製造装置100では、コイル1A(フープ)から素材1を矢印F方向に向かって送り出しつつ、各ステージに配置された金型により複数回の打ち抜きを行って電磁鋼板40の形状に徐々に形成していく。そして、打ち抜いた電磁鋼板40を積層して昇温させながら加圧する。その結果、積層方向に隣り合う電磁鋼板40を絶縁被膜3によって接着させ(すなわち、絶縁被膜3のうちの接着領域41aに位置する部分に接着能を発揮させ)、接着が完了する。
図7に示すように、製造装置100は、複数段の打ち抜きステーション110を備えている。打ち抜きステーション110は、二段であってもよく、三段以上であってもよい。各段の打ち抜きステーション110は、素材1の下方に配置された雌金型111と、素材1の上方に配置された雄金型112とを備える。
製造装置100は、さらに、最も下流の打ち抜きステーション110よりも下流位置に積層ステーション140を備える。この積層ステーション140は、第1加熱装置141a(図3参照)と、外周打ち抜き雌金型142と、外周打ち抜き雄金型144と、スプリング145と、を備えている。
第1加熱装置141a、外周打ち抜き雌金型142、断熱部材143は、素材1の下方に配置されている。一方、外周打ち抜き雄金型144及びスプリング145は、素材1の上方に配置されている。
以上説明の構成を有する製造装置100において、まずコイル1Aより素材1を図7の矢印F方向に順次送り出す。そして、この素材1に対し、複数段の打ち抜きステーション110による打ち抜き加工を順次行う。これら打ち抜き加工により、素材1に、図3に示したコアバック部22と複数のティース部23を有する電磁鋼板40の形状を得る。ただし、この時点では完全には打ち抜かれていないので、矢印F方向に沿って次工程へと進む。
そして最後に、素材1は積層ステーション140へと送り出され、外周打ち抜き雄金型144により打ち抜かれて精度良く、積層される。この積層の際、電磁鋼板40はスプリング145により一定の加圧力を受ける。以上説明のような、打ち抜き工程、積層工程、を順次繰り返すことで、所定枚数の電磁鋼板40を積み重ねることができる。
ここで本実施形態では、ステータコア21の製造方法が、以下に示す第1工程から第3工程を更に含む。
第1工程では、積層された電磁鋼板40のティース部23を加熱して絶縁被膜3に接着能(融着能)を発揮させることで、第1積層鋼板51を形成する。この第1工程は、第1側D1の第1積層鋼板51a、第2側D2の第1積層鋼板51bそれぞれを形成するために2回実施する。
第2工程では、第1工程における加熱の影響を受けない状態で電磁鋼板40を積層し、第2積層鋼板52を形成する。
第3工程では、第1工程および第2工程の後、第1積層鋼板51と第2積層鋼板52とを積み重ねる。
具体的には、第1工程では、前述の打ち抜き工程、積層工程を繰り返し、所定枚数(N1枚またはN2枚)の電磁鋼板40を積層する。このとき、電磁鋼板40は、外周打ち抜き雌金型142内で積層される。その後、積層された電磁鋼板40の径方向の内側に、図3に破線で示すような第1加熱装置141aを配置する。なお、第1加熱装置141aは、積層された電磁鋼板40を外周打ち抜き雌金型142内に配置したまま、積層された電磁鋼板40の内側に配置されてもよく、積層された電磁鋼板40を外周打ち抜き雌金型142から取り出した後、積層された電磁鋼板40の内側に配置されてもよい。
第1加熱装置141aは、ティース部23の先端23aに、径方向の内側から対向する。第1加熱装置141aは、ティース部23を、ティース部23の先端23aから加熱する。第1加熱装置141aは、例えば、発熱体やコイルなどによって形成される。第1加熱装置141aは、熱伝導や熱輻射、誘導加熱などによって、ティース部23を加熱する。ティース部23が加熱されることで、積層方向に隣り合う電磁鋼板40におけるティース部23の絶縁被膜3同士が接着(融着)する。
なお第1加熱装置141aは、一例として、ティース部23の先端23aを、ティース部23の先端23aが200℃以上800℃以下の状態に、30秒以上600秒以下加熱することができる。このようにティース部23の先端23aを短時間の間に急速加熱した場合、ティース部23が余計な熱歪みの影響などを受けることなく、ティース部23を部分的に接着させることができる。
以上により、第1積層鋼板51が形成される。
第2工程では、第1工程における加熱の影響を受けない状態で電磁鋼板40を積層し、第2積層鋼板52を形成する。このとき、第1積層鋼板51が形成されるときと同様に、外周打ち抜き雌金型142内に電磁鋼板40が積層される。しかしながら、前述した第1加熱装置141aは使用しない。第2工程を実施することで形成された第2積層鋼板52は、外周打ち抜き雌金型142内から外部に搬出される。
第3工程では、例えば、外周打ち抜き雌金型142の外部に位置する他のステーションで、第1積層鋼板51と第2積層鋼板52とを積み上げる。なおこのとき、第1積層鋼板51と第2積層鋼板52とを、例えば120°ごとに回し積みしてもよい。
以上の各工程により、ステータコア21が完成する。
なお、完成したステータコア21は、例えば、図示しない治具によりコアバック部22を積層方向の両側から挟んで、確実に保持しておくことが好ましい。前記治具により形状を保持したステータコア21に巻線を施すと、ステータ20が製造される。巻線後、ステータ20から治具を取り外しても、巻線によりステータコア21の形状が保持される。
ここで、このような治具は、完成したステータコア21に適用するだけでなく、積層された電磁鋼板40であって接着されていない電磁鋼板40に適用することもできる。すなわち、第1積層鋼板51を形成する電磁鋼板40であって、積層後、接着前の電磁鋼板40を、前記治具によって保持してもよい。また、第2積層鋼板52であって、積層後、第1積層鋼板51と組み合わせる前の第2積層鋼板52を、前記治具によって保持してもよい。
もっとも、上記製造方法は一例であり、他の方法によってステータコア21を製造することも可能である。例えば、積層された電磁鋼板40のうちの一部のティース部23を局所的に加熱して、その一部の電磁鋼板40における絶縁被膜3に接着能(融着能)を発揮させてもよい。この場合、その一部の電磁鋼板40のティース部23が互いに接着されて第1積層鋼板51となり、残りの電磁鋼板40が第2積層鋼板52となる。このような製造方法において、積層された電磁鋼板40の全てのティース部23を加熱して、全ての電磁鋼板40のティース部23を接着し全ての電磁鋼板40によって第1積層鋼板51を形成し、後述する第6変形例に係るステータ20A(図13参照)のステータコア21を形成してもよい。これらのどちらの場合においても、積層された加熱前の電磁鋼板40を、前記治具によって保持していてもよい。
ところで、ステータコア21において、積層方向に隣り合う電磁鋼板40同士が接着すると、電磁鋼板40(母材鋼板2)のうち、接着された部分に歪が生じる。電磁鋼板40に歪が生じると、ステータコア21の鉄損が大きくなり、ステータコア21の磁気特性が低下する。特に、ティース部23の磁束密度は、コアバック部22の磁束密度に比べて高い。そのため、ティース部23では、歪の発生による磁気特性の低下の影響が大きい。よって、ステータコア21のティース部23では、電磁鋼板40同士ができるだけ接着されていないことが好ましい。
本実施形態に係るステータコア21によれば、第2積層鋼板52では、ティース部23同士が接着されていない。よって、第2積層鋼板52において、歪の発生による磁気特性の低下の影響を抑えることができる。
一方で、複数の電磁鋼板40のうち、積層方向の端に位置する電磁鋼板40のティース部23が接着されていないと、ティース部23の浮き上がりが生じるおそれがある。この場合、積層方向に隣り合う電磁鋼板40において、ティース部23同士が離れてしまう。結果として、ステータコア21の磁気特性が、歪による影響以上に低下するおそれがある。
本実施形態に係るステータコア21によれば、積層方向の第1側D1の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、および、積層方向の第2側D2の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40のうちの少なくとも片方が、第1積層鋼板51を形成している。言い換えると、積層方向の第1側D1の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、および、積層方向の第2側D2の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40では、ティース部23同士が接着されている。そのため、ステータコア21のうち、積層方向の第1側D1の端、および、積層方向の第2側D2の端のうちの少なくとも片方において、ティース部23の浮き上がりを抑制することができる。よって、ティース部23の浮き上がりによる磁気特性の低下の影響を抑えることができる。
しかも、ティース部23の浮き上がりが、かしめや溶接ではなく、接着によって規制されている。本実施形態では、接着と、かしめや溶接と、を併用するのではなく、接着のみにより、ティース部23の浮き上がりを規制する。ここで、かしめの場合には機械的応力が生じ、溶接の場合には熱応力が生じる。これらの機械的応力や熱応力は、歪による影響以上に磁気特性に影響を与える。また、かしめ、溶接のいずれの場合においても、層間短絡によって電磁鋼板40の磁気特性が劣化するおそれがある。よって、ティース部23の浮き上がりを接着により規制することで、磁気特性の低下の影響を抑えることができる。
更に本実施形態に係るステータコア21によれば、第1積層鋼板51を形成する電磁鋼板40同士が、電磁鋼板40の絶縁被膜3によって接着されている。すなわち、電磁鋼板40同士が、電磁鋼板40とは別に設けられた接着剤によって接着されているのではない。ここで、電磁鋼板40同士が接着剤によって接着される場合、隣り合う電磁鋼板40の間に接着剤が配置されることから、隣り合う電磁鋼板40が、接着剤の厚み分、離れてしまう。これに対して、本実施形態にかかるステータコア21のように、積層方向に隣り合う電磁鋼板40同士が、電磁鋼板40の絶縁被膜3によって接着されている場合、隣り合う電磁鋼板40が、前述のような接着剤を起因として離れることがない。そのため、ステータコア21における占積率の低下を回避できるばかりか、ステータコア21が回転電機に組付けられて動作する際の非接着領域の不用意な振動を抑制し、回転電機全体の磁気特性の低下の影響を抑えることができる。
以上より、歪の発生による磁気特性の低下の影響、ティース部23の浮き上がりによる磁気特性の低下の影響、接着剤の配置による磁気特性の低下の影響をいずれも抑えることができる。結果として、ステータコア21における磁気特性を改善することができる。
積層方向の第1側D1の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、および、積層方向の第2側D2の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40の両方において、積層方向に隣り合う電磁鋼板40のティース部23同士が接着されている。そのため、ステータコア21のうち、積層方向の第1側D1の端、および、積層方向の第2側D2の端の両方において、ティース部23の浮き上がりを抑制することができる。よって、ティース部23の浮き上がりによる磁気特性の低下の影響を効果的に抑えることができる。
枚数N3が、枚数N1以上であり、かつ、枚数N2以上である。よって、ステータコア21全体において、ティース部23が接着されている電磁鋼板40の枚数の比率を低くすることができる。その結果、歪の発生によるステータコア21の磁気特性の低下の影響を一層抑えることができる。
枚数N1および枚数N2が、いずれも複数の電磁鋼板40の全枚数(以下、枚数N0という)の1/3以下である。よって、ステータコア21全体において、ティース部23が接着されている電磁鋼板40の枚数の比率を低くすることができる。その結果、歪の発生によるステータコア21の磁気特性の低下の影響を一層抑えることができる。
枚数N1と枚数N2とが等しい。したがって、ステータコア21において、積層方向の第1側D1における磁気特性と第2側D2における磁気特性との間に相違が生じるのを抑えることができる。これにより、ステータコア21の取り扱い性を高めることができる。
枚数N1および枚数N2が、枚数N3と等しい。したがって、第1側D1の第1積層鋼板51、第2側D2の第1積層鋼板51、中央の第2積層鋼板52のどの部分を製造する過程においても、同じ枚数の電磁鋼板40を積み重ねればよい。結果として、ステータコア21の製造の更なる簡素化を図ることができる。
一般的に、ステータコア21における積層方向の端では、ティース部23のうちの先端23aが特に浮き上がりやすい。
本実施形態に係るステータコア21によれば、第1積層鋼板51において、積層方向に隣り合う電磁鋼板40のティース部23同士では、ティース部23のうち、少なくとも先端23aを含む部分同士が接着されている。よって、ティース部23の浮き上がりを効果的に抑制することができる。しかも、浮き上がりを効果的に抑制することで、浮き上がりの抑制に必要となる接着面積を小さく抑えることができる。結果として、歪の発生によるステータコア21の磁気特性の低下の影響を一層抑えることができる。
第1積層鋼板51および第2積層鋼板52では、積層方向に隣り合う電磁鋼板40のコアバック部22同士が互いに接着されていない。したがって、歪の発生によるステータコア21の磁気特性の低下の影響を一層抑えることができる。
複数の電磁鋼板40それぞれの板厚が、0.10mm以上0.30mm以下である。これにより、ステータコア21の製造効率を確保しつつ、鉄損を低減することができる。
すなわち、電磁鋼板40を素材1から打ち抜く場合、電磁鋼板40の板厚は素材1の板厚に依存し、素材1の板厚は電磁鋼板40の板厚と等しい。電磁鋼板40の板厚が0.10mm未満である場合、素材1の板厚も0.10mm未満となる。この場合、素材1から電磁鋼板40を打ち抜くときに、所定の積厚とする際の打ち抜き枚数(打ち抜き回数)が増加することとなり、ステータコア21の生産効率が低下する。また、ステータコア21において電磁鋼板40(母材鋼板2)の占める割合である占積率が低下することとなり、ステータコア21の磁気特性が低下するおそれがある。
一方、電磁鋼板40の板厚が0.30mm超である場合、電磁鋼板40が厚すぎて、ステータコア21の鉄損が高まるおそれがある。なお、電磁鋼板40の板厚は、0.27mm以下であることが好ましい。
第1工程では、積層された電磁鋼板40のティース部23を加熱して絶縁被膜3に接着能を発揮させることで、積層方向に隣り合う電磁鋼板40のティース部23同士を接着させて第1積層鋼板51を形成する。したがって、例えば、電磁鋼板40に接着剤を塗布し、接着剤によって電磁鋼板40を接着させる場合などに比べて、ステータコア21を簡易に製造することができる。
第1工程における加熱の影響を受けない状態で電磁鋼板40を積層し、第2積層鋼板52を形成する。したがって、第2積層鋼板52を形成する電磁鋼板40同士が意図せず接着するのを抑制することができる。
以上、本発明の一実施形態及び実施例について説明した。ただし、本発明の技術的範囲は前記実施形態及び実施例のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
第1積層鋼板51を形成する電磁鋼板40の接着領域41aは、上記実施形態で示した形態のみに限定されない。例えば、図8から図11に示す各変形例に係る電磁鋼板40A〜40Dの接着領域41aのように構成されていてもよい。
図8に示す第1変形例の電磁鋼板40Aでは、接着領域41aが、図3に示す電磁鋼板40の接着領域41aに比べてティース部23の基端に向けて広がっている。接着領域41aにおいて、径方向の外側に位置する境界線は、径方向の外側に向けて突となる曲線をなす。
図9に示す第2変形例の電磁鋼板40Bでは、ティース部23の全域が接着領域41aとなっている。接着領域41aにおいて、径方向の外側に位置する境界線は、ティース部23とコアバック部22との境界線上に位置する。
図10に示す第3変形例の電磁鋼板40Cでは、ティース部23のうち、先端23aだけでなく、側端23bにも接着領域41aが設けられている。ここで、ティース部23の径方向の先端23aとは、ティース部23のうちの周方向の縁を言う。図示の例では、ティース部23は、平面視において径方向に長い矩形状に形成されている。そして、ティース部23の側端23bとは、平面視において、周方向に位置する辺に相当する部分をいう。なお図示の例では、接着領域41aは、ティース部23の側端23bのうち、径方向の中央よりも先端23a寄りに配置されている。接着領域41aは、平面視において、ティース部23の先端23aおよび側端23bに連続するU字状に形成されている。
図11に示す第4変形例の電磁鋼板40Dでは、図10に示す第3変形例の電磁鋼板40Cと同様に、ティース部23のうち、先端23aだけでなく、側端23bにも接着領域41aが設けられている。ただし、図11に示す電磁鋼板40Dでは、図10に示す電磁鋼板40Cに比べて、接着領域41aが広くなっている。
なお、図10や図11に示す電磁鋼板40C、40Dは、第1積層鋼板51を作成する過程で、図10に破線で示すように、第1加熱装置141aに加えて、第2加熱装置141bを用いることで実現することができる。第2加熱装置141bは、周方向に隣り合うティース部23の間(スロット)に配置される。第2加熱装置141bは、第1加熱装置141aと同様に、発熱体やコイルなどを採用することができる。
なお、前記実施形態および前記各変形例では、いずれも、第1積層鋼板51の電磁鋼板40の各平面内の全ティース部23同士が接着されているが、本発明はこれに限られない。例えば図12に示す第5変形例の電磁鋼板40Eのように、前記平面内のティース部23のうち、一部のティース部23のみが接着されていてもよい。言い換えると、第1積層鋼板51において、積層方向に隣り合う電磁鋼板40Eにおける複数組のティース部23同士のうち、一部のティース部23同士が互いに接着され、残りのティース部23同士が互いに接着されていなくてもよい。これにより、一部のティース部23における浮き上がりを抑えつつ、残りのティース部23における歪の発生を抑えることができる。またこの場合において、例えば図示の例のように、接着されたティース部23と接着されていないティース部23とが、周方向に交互に配置されていてもよい。
第1積層鋼板51を形成するときに、電磁鋼板40を加熱するのに代えて加圧して接着させてもよい。
第1積層鋼板51において、ティース部23の基端同士が接着されていて、ティース部23の先端23a同士が接着されていなくてもよい。
枚数N0、枚数N1、枚数N2、枚数N3の関係は、上記実施形態に示した関係に限られない。
例えば、N1≠((N0)/3)であったり、N2≠((N0)/3)であったり、N1>((N0)/3)であったり、N2>((N0)/3)であったり、N1≠N2であったり、N1≠N3であったり、N2≠N3であったり、N3<N1であったり、N3<N2であったりしてもよい。
複数の電磁鋼板40のうち、積層方向の第1側D1の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、および、積層方向の第2側D2の最も端に位置する電磁鋼板40を含む一部の電磁鋼板40、の片方のみが、第1積層鋼板51を形成していてもよい。言い換えると、前述したN1やN2が0であってもよい。この場合、2つの第1積層鋼板51を形成することに代えて、1つの第1積層鋼板51を形成すればよく、第1工程を1回のみ実施すればよい。第1工程は、ティース部23の加熱に時間を要することから、この変形例においては、第1工程の実施回数が少なくなることで生産性に優れる。
図13に示す第6変形例に係るステータ20Aのように、ステータコア21を、第1積層鋼板51によってのみ形成すること、言い換えると、複数の電磁鋼板40の全てによって、第1積層鋼板51を形成することも可能である。すなわち、第2積層鋼板52がなくてもよく、N3が0であってもよい。この場合、ティース部23の浮き上がりによる磁気特性の低下の影響を効果的に抑えることができる。
例えば、ステータコア21の形状は、上記実施形態で示した形態のみに限定されるものではない。具体的には、ステータコア21の外径および内径の寸法、積厚、スロット数、ティース部23の周方向と径方向の寸法比率、ティース部23とコアバック部22との径方向の寸法比率等は、所望の回転電機の特性に応じて任意に設計可能である。
前記実施形態におけるロータ30では、2つ1組の永久磁石32が1つの磁極を形成しているが、本発明はこの形態のみに限られない。例えば、1つの永久磁石32が1つの磁極を形成していてもよく、3つ以上の永久磁石32が1つの磁極を形成していてもよい。
上記実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、回転電機10の構造は、以下に例示するようにこれのみに限られず、更には以下に例示しない種々の公知の構造も採用可能である。
上記実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、本発明はこれのみに限られない。例えば、回転電機10がリラクタンス型電動機や電磁石界磁型電動機(巻線界磁型電動機)であってもよい。
上記実施形態では、交流電動機として、同期電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が誘導電動機であってもよい。
上記実施形態では、回転電機10として、交流電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が直流電動機であってもよい。
上記実施形態では、回転電機10として、電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が発電機であってもよい。
その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
次に、上記した作用効果を検証する検証試験を実施した。なお本検証試験は、ステータを製造した上で、これらのステータに対して、特許第2740553号記載の方法(回転磁界鉄損測定方法)に基づいて、回転磁界でのエネルギー損失を測定した。そして、このエネルギー損失を、ステータコア(以下、積層コアとも言う)の損失として評価した。
検証試験として、第1の検証試験と、第2の検証試験と、を実施した。
(第1の検証試験)
第1の検証試験では、(1)積層方向の全電磁鋼板が接着されていること、(2)積層方向の両側の電磁鋼板が接着され、中央の電磁鋼板が接着されていないこと、および、(3)積層方向の両側の電磁鋼板が接着能を有する絶縁被膜により接着されていることに基づく作用効果について検証した。
この検証試験では、比較例1、2、3のステータ、実施例1、2、3のステータについて積層コアの損失を評価した。
比較例1、2、3のステータ、実施例1、2、3のステータのいずれについても共通して、上記図1から図6に示す実施形態に係るステータ20を基本構造とし、このステータ20に対して以下点を変更した。すなわち、電磁鋼板の板厚を0.25mmとし、積層コアの電磁鋼板の枚数を99枚とした。
その上で、比較例1のステータでは、99枚の電磁鋼板を全層、非接着とした。比較例2のステータでは、99枚の電磁鋼板を全層、積層過程で電磁鋼板の表面に塗布した接着剤にて接着した。比較例3のステータでは、99枚の電磁鋼板のうち、積層方向の両側に位置する33枚ずつ(全枚数の1/3ずつ)を、積層過程で電磁鋼板の表面に塗布した接着剤にて接着し、積層方向の中央に位置する33枚(全枚数の1/3)を接着しなかった。実施例1のステータでは、99枚の電磁鋼板を全層、接着した。実施例2のステータでは、99枚の電磁鋼板のうち、積層方向の両側に位置する33枚ずつ(全枚数の1/3ずつ)を接着し、積層方向の中央に位置する33枚(全枚数の1/3)を接着しなかった。実施例3のステータでは、99枚の電磁鋼板のうち、積層方向の片側の端から33枚(全枚数の1/3)を接着し、残りの66枚(全枚数の2/3)を接着しなかった。
比較例1、2、3、実施例1、2、3のステータそれぞれについて、積層コアの鉄損と、ティース部の浮き上がりの有無を確認した。
鉄損は、積層コア中で発生するエネルギー損失に基づく。鉄損の元となるエネルギー損失の値としては、コアバック部の周方向の異なる4か所へサーチコイルを施し、これらの4か所の平均で1.0Tとなるよう磁化した際のエネルギー損失の値を採用した。そして、このエネルギー損失と各積層コアの重量とから、鉄損(W/kg)を換算した。上記エネルギー損失は、積層コアを300rpmで回転させた状態で、積層コアの中央部に配置した励磁ヨークに励磁電流を流したときと、励磁電流を切ったときと、の誘起トルクの差から算出した。すなわち、誘起トルクと回転数との積が、積層コア中で発生するエネルギーと等しいとの関係を利用して当該のエネルギー損失を求めた。
ティース部の浮き上がりは、ティース部に1.0MPaの圧力を加えた状態でのティース部積厚T1に対する、除荷した状態でのティース部積厚T2の比(すなわち、T2/T1)で評価した。いずれの積厚T1、T2もノギスで測定し、除荷した状態のティース部積厚T2は、ノギスがティース部鋼板に接した際の測定値とした。前記の比T2/T1が1.06以内を◎、1.06超〜1.15を○、1.15超を×とし、◎、○を良好と判断した。
結果を以下の表1に示す。
Figure 2022001013
以上から、実施例1、2、3では、比較例1、および接着範囲が同じである比較例(実施例1に対する比較例2、実施例2に対する比較例3)に比べて、鉄損の改善がみられた。ここで、実施例3は前記の比T2/T1が良好な範囲に入っているものの、接着していない側のティースに浮き上がりが認められた。そのため、実施例2では実施例3に比べて鉄損の改善がみられた。
また、接着範囲を全層接着とした例(実施例1、比較例2)に対する、接着範囲を両側接着とした例(実施例2、比較例3)における鉄損の改善効果は、接着能を有する絶縁被膜による接着の場合(実施例1:1.57W/kg、実施例2:1.10W/kg)において、接着剤塗布による接着の場合(比較例2:1.73W/kg、比較例3:1.53W/kg)より顕著となった。これは、塗布した接着剤による占積率の低下および前記した非接着領域での振動増加が関係していると考えられる。
(第2の検証試験)
第2の検証試験では、接着される枚数の相違に基づく効果の相違について検証した。
この検証試験では、実施例11〜15のステータについて積層コアの損失を評価した。
実施例11〜15のステータのいずれについても共通して、上記図1から図6に示す実施形態に係るステータ20を基本構造とし、このステータ20に対して以下点を変更した。すなわち、電磁鋼板の板厚を0.25mmとし、積層コアの電磁鋼板の枚数を99枚とした。
その上で、各実施例11〜15のステータを、以下のように設定した。
実施例11のステータでは、99枚の電磁鋼板のうち、積層方向の両側に位置する10枚ずつ(全枚数の10.1%ずつ)を接着し、積層方向の中央に位置する79枚(全枚数の79.8%)を接着しなかった。
実施例12のステータでは、99枚の電磁鋼板のうち、積層方向の両側に位置する20枚ずつ(全枚数の20.2%ずつ)を接着し、積層方向の中央に位置する59枚(全枚数の59.6%)を接着しなかった。
実施例13のステータでは、99枚の電磁鋼板のうち、積層方向の両側に位置する30枚ずつ(全枚数の30.3%ずつ)を接着し、積層方向の中央に位置する39枚(全枚数の39.4%)を接着しなかった。
実施例14のステータでは、99枚の電磁鋼板のうち、積層方向の両側に位置する33枚ずつ(全枚数の1/3ずつ)を接着し、積層方向の中央に位置する33枚(全枚数の1/3)を接着しなかった。
実施例15のステータでは、99枚の電磁鋼板のうち、積層方向の両側に位置する40枚ずつ(全枚数の40.4%ずつ)を接着し、積層方向の中央に位置する19枚(全枚数の19.2%)を接着しなかった。
実施例11〜15のステータそれぞれについて、積層コアの鉄損を評価した。評価方法は、第1の検証試験と同様である。
結果を以下の表2に示す。
Figure 2022001013
以上から、実施例11から14に向かうに従い、鉄損が改善され、かつ、実施例15よりも実施例14における鉄損が改善されていることが確認された。この結果から、枚数N1と枚数N2と枚数N3とがいずれも等しいことがより好ましいことが確認された。
3 絶縁被膜
21 ステータコア
22 コアバック部
23 ティース部
23a 先端
40、40A、40B、40C、40D、40E 電磁鋼板
51 第1積層鋼板
52 第2積層鋼板
D1 第1側
D2 第2側

Claims (15)

  1. 絶縁被膜を有する複数の電磁鋼板が積層されて形成された積層コアであって、
    前記複数の電磁鋼板はそれぞれ、環状のコアバック部と、前記コアバック部から前記コアバック部の径方向に突出するとともに、前記コアバック部の周方向に間隔をあけて配置された複数のティース部と、を備え、
    前記複数の電磁鋼板のうち、積層方向の第1側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、および、積層方向の第2側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、のうちの少なくとも片方が、積層方向に隣り合う電磁鋼板のティース部同士が互いに接着された第1積層鋼板を形成し、
    前記第1積層鋼板の前記ティース部同士では、各電磁鋼板の絶縁被膜同士が接着されている、積層コア。
  2. 前記複数の電磁鋼板のうち、一部の電磁鋼板は、前記第1積層鋼板を形成し、前記第1積層鋼板を形成していない残りの電磁鋼板は、積層方向に隣り合う電磁鋼板のティース部同士が互いに接着されていない第2積層鋼板を形成している、請求項1に記載の積層コア。
  3. 前記複数の電磁鋼板のうち、積層方向の第1側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、および、積層方向の第2側の最も端に位置する電磁鋼板を含む一部の電磁鋼板、がいずれも、前記第1積層鋼板を形成し、
    前記複数の電磁鋼板のうち、積層方向の中央に位置する残りの電磁鋼板が、前記第2積層鋼板を形成している、請求項2に記載の積層コア。
  4. 積層方向の中央の前記第2積層鋼板を形成する電磁鋼板の枚数は、積層方向の第1側の前記第1積層鋼板を形成する電磁鋼板の枚数以上であり、かつ、積層方向の第2側の前記第1積層鋼板を形成する電磁鋼板の枚数以上である、請求項3に記載の積層コア。
  5. 積層方向の第1側の前記第1積層鋼板を形成する電磁鋼板の枚数、および、積層方向の第2側の前記第1積層鋼板を形成する電磁鋼板の枚数は、いずれも前記複数の電磁鋼板の全枚数の1/3以下である、請求項3または4に記載の積層コア。
  6. 積層方向の第1側の前記第1積層鋼板を形成する電磁鋼板の枚数と、積層方向の第2側の前記第1積層鋼板を形成する電磁鋼板の枚数と、が等しい、請求項3から5のいずれか1項に記載の積層コア。
  7. 積層方向の第1側の前記第1積層鋼板を形成する電磁鋼板の枚数、および、積層方向の第2側の前記第1積層鋼板を形成する電磁鋼板の枚数が、積層方向の中央の前記第2積層鋼板を形成する電磁鋼板の枚数が等しい、請求項6に記載の積層コア。
  8. 前記複数の電磁鋼板の全てが、前記第1積層鋼板を形成している、請求項1に記載の積層コア。
  9. 前記第1積層鋼板では、積層方向に隣り合う電磁鋼板のティース部同士が互いにかしめられておらず、かつ、溶接されていない、請求項1から8のいずれか1項に記載の積層コア。
  10. 前記第1積層鋼板の前記ティース部同士では、前記ティース部のうち、少なくとも前記径方向の先端を含む部分同士が接着されている、請求項1から9のいずれか1項に記載の積層コア。
  11. 前記第1積層鋼板では、積層方向に隣り合う電磁鋼板のコアバック部同士が互いに接着されていない、請求項1から10のいずれか1項に記載の積層コア。
  12. 前記第1積層鋼板では、積層方向に隣り合う電磁鋼板における複数組のティース部同士のうち、一部のティース部同士が互いに接着され、残りのティース部同士が互いに接着されていない、請求項1から11のいずれか1項に記載の積層コア。
  13. 前記複数の電磁鋼板それぞれの板厚は、0.10mm以上0.30mm以下である、請求項1から12のいずれか1項に記載の積層コア。
  14. 請求項1から13のいずれか1項に記載の積層コアを製造する方法であって、
    積層された前記電磁鋼板の前記ティース部を加熱して前記絶縁被膜に接着能を発揮させることで、前記第1積層鋼板を形成する第1工程を含む、積層コアの製造方法。
  15. 請求項2から7のいずれか1項に記載の積層コアを製造する方法であって、
    積層された前記電磁鋼板の前記ティース部を加熱して前記絶縁被膜に接着能を発揮させることで、前記第1積層鋼板を形成する第1工程と、
    前記第1工程における加熱の影響を受けない状態で前記電磁鋼板を積層し、前記第2積層鋼板を形成する第2工程と、
    前記第1工程および前記第2工程の後、前記第1積層鋼板と前記第2積層鋼板とを積み重ねる第3工程と、を含む、積層コアの製造方法。
JP2021097022A 2020-06-17 2021-06-10 積層コアおよび積層コアの製造方法 Pending JP2022001013A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020104251 2020-06-17
JP2020104251 2020-06-17

Publications (1)

Publication Number Publication Date
JP2022001013A true JP2022001013A (ja) 2022-01-04

Family

ID=79241800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021097022A Pending JP2022001013A (ja) 2020-06-17 2021-06-10 積層コアおよび積層コアの製造方法

Country Status (1)

Country Link
JP (1) JP2022001013A (ja)

Similar Documents

Publication Publication Date Title
JP7486434B2 (ja) ステータ用接着積層コアおよび回転電機
TWI720745B (zh) 定子用接著積層鐵芯、其製造方法、及旋轉電機
JP2023014250A (ja) ステータ用接着積層コアおよび回転電機
WO2020129938A1 (ja) 積層コア、コアブロック、回転電機およびコアブロックの製造方法
WO2020129935A1 (ja) 積層コアおよび回転電機
WO2020129942A1 (ja) 積層コアおよび回転電機
WO2020129928A1 (ja) 積層コアおよび回転電機
WO2021256534A1 (ja) 電磁鋼板、積層コア、及び積層コア製造方法
JP2022000888A (ja) 積層コアの製造方法
JP2022001014A (ja) 積層コアおよび積層コアの製造方法
JP7095819B2 (ja) 電磁鋼板、積層コア及び回転電機
WO2021256537A1 (ja) 積層コアの製造方法
JP7360080B2 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP2022001013A (ja) 積層コアおよび積層コアの製造方法
JP2022000536A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
CA3180892A1 (en) Coating composition for electrical steel sheet, electrical steel sheet, laminated core, and rotary electric machine
JP7498394B2 (ja) 積層コアおよび積層コアの製造方法
JP2022000887A (ja) 電磁鋼板及び積層コア
JP2021197860A (ja) 積層コアおよび積層コアの製造方法
WO2021256531A1 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP7299527B2 (ja) コアブロック、積層コアおよび回転電機、並びにコアブロックの製造方法
WO2021256529A1 (ja) 電磁鋼板用コーティング組成物、接着用表面被覆電磁鋼板及び積層鉄心
JP2022000538A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
JP2022000537A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
JP2021197491A (ja) 電磁鋼板及び積層コア

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240215