WO2020129942A1 - 積層コアおよび回転電機 - Google Patents

積層コアおよび回転電機 Download PDF

Info

Publication number
WO2020129942A1
WO2020129942A1 PCT/JP2019/049294 JP2019049294W WO2020129942A1 WO 2020129942 A1 WO2020129942 A1 WO 2020129942A1 JP 2019049294 W JP2019049294 W JP 2019049294W WO 2020129942 A1 WO2020129942 A1 WO 2020129942A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
electromagnetic steel
region
laminated core
core
Prior art date
Application number
PCT/JP2019/049294
Other languages
English (en)
French (fr)
Inventor
平山 隆
竹田 和年
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980081465.5A priority Critical patent/CN113169640A/zh
Priority to JP2020538146A priority patent/JP6863525B2/ja
Priority to SG11202108887TA priority patent/SG11202108887TA/en
Priority to BR112021008960-8A priority patent/BR112021008960A2/pt
Priority to EP19898202.7A priority patent/EP3902120A4/en
Priority to CA3131500A priority patent/CA3131500A1/en
Priority to KR1020217017199A priority patent/KR102605370B1/ko
Priority to EA202192075A priority patent/EA202192075A1/ru
Priority to US17/294,202 priority patent/US20220014051A1/en
Publication of WO2020129942A1 publication Critical patent/WO2020129942A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a laminated core and a rotating electric machine.
  • the present application claims priority based on Japanese Patent Application No. 2018-235857 filed in Japan on December 17, 2018, the contents of which are incorporated herein by reference.
  • Patent Document 1 Conventionally, a laminated core as described in Patent Document 1 below is known. In this laminated core, electromagnetic steel sheets adjacent to each other in the laminating direction are bonded.
  • the conventional laminated core has room for improvement in improving magnetic properties.
  • the present invention has been made in view of the above-mentioned circumstances, and an object thereof is to improve the magnetic characteristics of a laminated core.
  • One aspect of the present invention includes a plurality of electromagnetic steel sheets stacked on each other, and an adhesive portion that is provided between the electromagnetic steel sheets that are adjacent to each other in the stacking direction and that bonds the electromagnetic steel sheets to each other.
  • the electromagnetic steel sheet has an annular core back portion and a plurality of teeth portions extending from the core back portion in the radial direction of the core back portion and arranged at intervals in the circumferential direction of the core back portion.
  • the teeth portion of the electromagnetic steel plate is a laminated core having a bonding area provided with a band-shaped bonding portion extending along the circumferential direction.
  • the tooth portion of the electromagnetic steel sheet has the bonding area in which the band-shaped bonding portion is provided. Since the strip-shaped adhesive portion extends along one direction, it is possible to increase the adhesive area of the adhesive portion and increase the adhesive strength as compared with the case where the dot-shaped adhesive portions are intermittently provided in the same range. .. In the area of the electromagnetic steel sheet that comes into contact with the bonded portion, strain due to curing shrinkage of the adhesive occurs, and the iron loss of the electromagnetic steel sheet increases in that area.
  • the area of the electromagnetic steel sheet in which the iron loss increases due to the strain by contacting the adhesion area is referred to as a “deteriorated area”.
  • the adhesive portion since the adhesive portion has a strip shape extending in the circumferential direction and is provided in the tooth portion, the deteriorated region extends in the circumferential direction in the tooth portion. Since the magnetic flux flowing in the teeth portion is along the radial direction, the path length of the magnetic flux passing through the deteriorated area is shortened by extending the deteriorated area in the circumferential direction. Therefore, the magnetic resistance to each magnetic flux in the magnetic circuit is reduced, and deterioration of the magnetic characteristics of the laminated core can be suppressed.
  • the adhesion region may be formed closer to the core back portion than the vicinity of the tip of the tooth portion.
  • the magnetic flux diffuses and extends from the tips of the teeth to both sides in the circumferential direction. Therefore, in the vicinity of the tips of the teeth, magnetic flux is likely to concentrate at both ends in the circumferential direction. If the deteriorated region is provided in the region where the magnetic flux is concentrated, the iron loss is likely to increase remarkably. Therefore, if the deteriorated region is provided near the tip of the tooth portion, iron loss tends to increase. According to the above configuration, since the adhesion region is located closer to the core back portion side than the vicinity of the tip of the tooth portion, the deteriorated region can be arranged away from the region having a high magnetic flux density, and the increase in iron loss can be suppressed.
  • the adhesive region has a radial width dimension that increases from the circumferential center of the tooth portion toward the circumferential end of the tooth portion.
  • the configuration may be increased.
  • the magnetic flux diffuses and extends from the tips of the teeth to both sides in the circumferential direction. Also, the magnetic flux tends to flow through the shortest distance. Therefore, the magnetic flux density of the tooth portion becomes higher toward the end portion side in the circumferential direction. If the variation in the magnetic flux density of the teeth portion in the circumferential direction increases, the magnetic characteristics of the laminated core may deteriorate. According to the above-described configuration, the radial width dimension of the adhesive region increases from the central portion of the tooth portion toward the circumferential end portion side. That is, the radial length of the deteriorated region becomes longer from the central portion of the tooth portion toward the circumferential end portion side.
  • the magnetic resistance of the tooth portion increases toward the outer side in the circumferential direction, and it becomes difficult for the magnetic flux to flow on the end portion side in the circumferential direction.
  • the adhesive region may be configured to extend in an arc shape along the circumferential direction.
  • the adhesive part can be applied uniformly along the circumferential direction, so that the manufacturing process can be simplified.
  • the adhesive portion may extend over the entire width of the tooth portion.
  • the adhesive portion extends over the entire width of the tooth portion, it is easy to secure the adhesive strength between the tooth portions.
  • the average thickness of the adhesive portion may be 1.0 ⁇ m to 3.0 ⁇ m.
  • the average tensile elastic modulus E of the adhesive portion may be 1500 MPa to 4500 MPa.
  • the adhesive portion is a room temperature adhesive type acrylic adhesive containing SGA made of an elastomer-containing acrylic adhesive. May be.
  • the melting point of the adhesive portion may be 180° C. or higher.
  • a rotary electric machine includes the laminated core according to any one of (1) to (9).
  • the magnetic characteristics of the laminated core can be improved.
  • FIG. 4 is a schematic diagram of an electromagnetic steel plate and a bonding region of the stator shown in FIGS. 2 and 3.
  • FIG. 8 is a schematic diagram of a bonding area of a stator of Modification 1.
  • FIG. 9 is a schematic diagram of an adhesion region of a stator of modification 2.
  • FIG. 9 is a schematic diagram of an adhesion region of a stator of modification 3;
  • FIG. 9 is a schematic diagram of a bonding area of a stator of Modification 4;
  • FIG. 11 is a schematic diagram of a bonding area of a stator of Modification 5.
  • Model No. 1 to model No. It is a graph which shows the simulation result of the iron loss of No. 4.
  • an electric motor specifically an AC electric motor, more specifically a synchronous electric motor, and more specifically, a permanent magnet field type electric motor will be described as an example of the rotating electric machine.
  • This type of electric motor is preferably used in, for example, an electric vehicle.
  • the rotary electric machine 10 includes a stator 20, a rotor 30, a case 50, and a rotary shaft 60.
  • the stator 20 and the rotor 30 are housed in the case 50.
  • the stator 20 is fixed to the case 50.
  • the rotating electric machine 10 an inner rotor type in which the rotor 30 is located inside the stator 20 is adopted.
  • the rotating electric machine 10 may be an outer rotor type in which the rotor 30 is located outside the stator 20.
  • the rotary electric machine 10 is a three-phase AC motor having 12 poles and 18 slots.
  • the number of poles, the number of slots, the number of phases, etc. can be appropriately changed.
  • the stator 20 includes a stator core (laminated core) 21 and windings (not shown).
  • the stator core 21 includes an annular core back portion 22 and a plurality of teeth portions 23.
  • the axial direction of the stator core 21 (core back portion 22) (direction of the central axis O of the stator core 21) is referred to as the axial direction, and is orthogonal to the radial direction of the stator core 21 (core back portion 22) (the central axis O of the stator core 21).
  • the direction) is referred to as the radial direction
  • the circumferential direction of the stator core 21 (core back portion 22) (the direction in which the stator core 21 rotates around the central axis O) is referred to as the circumferential direction.
  • the core back portion 22 is formed in an annular shape in a plan view when the stator 20 is viewed in the axial direction.
  • the plurality of teeth portions 23 extend from the core back portion 22 inward in the radial direction (toward the central axis O of the core back portion 22 along the radial direction).
  • the plurality of tooth portions 23 are arranged at equal intervals in the circumferential direction.
  • 18 teeth portions 23 are provided at a central angle of 20 degrees about the central axis O.
  • the plurality of teeth portions 23 have the same shape and the same size.
  • the winding is wound around the tooth portion 23.
  • the winding may be concentrated winding or distributed winding.
  • the rotor 30 is arranged radially inward of the stator 20 (stator core 21).
  • the rotor 30 includes a rotor core 31 and a plurality of permanent magnets 32.
  • the rotor core 31 is formed in an annular shape (annular shape) arranged coaxially with the stator 20.
  • the rotating shaft 60 is arranged in the rotor core 31.
  • the rotating shaft 60 is fixed to the rotor core 31.
  • the plurality of permanent magnets 32 are fixed to the rotor core 31. In the present embodiment, two pairs of permanent magnets 32 form one magnetic pole.
  • the plurality of sets of permanent magnets 32 are arranged at equal intervals in the circumferential direction. In the present embodiment, 12 sets (24 in total) of permanent magnets 32 are provided at a central angle of 30 degrees about the central axis O.
  • an embedded magnet type motor is used as the permanent magnet field type electric motor.
  • a plurality of through holes 33 are formed in the rotor core 31 so as to penetrate the rotor core 31 in the axial direction.
  • the plurality of through holes 33 are provided corresponding to the plurality of permanent magnets 32.
  • Each of the permanent magnets 32 is fixed to the rotor core 31 while being arranged in the corresponding through hole 33.
  • the fixing of each permanent magnet 32 to the rotor core 31 can be realized by, for example, bonding the outer surface of the permanent magnet 32 and the inner surface of the through hole 33 with an adhesive agent.
  • a surface magnet type motor may be adopted as the permanent magnet field type electric motor instead of the embedded magnet type.
  • the stator core 21 is a laminated core.
  • the stator core 21 is formed by stacking a plurality of electromagnetic steel plates 40. That is, the stator core 21 includes a plurality of electromagnetic steel plates 40 stacked in the stacking direction.
  • the laminated thickness of the stator core 21 is, for example, 50.0 mm.
  • the outer diameter of the stator core 21 is, for example, 250.0 mm.
  • the inner diameter of the stator core 21 is, for example, 165.0 mm.
  • the inner diameter of the stator core 21 is based on the tip of the tooth portion 23 of the stator core 21.
  • the inner diameter of the stator core 21 is the diameter of an imaginary circle inscribed in the tips of all the teeth 23.
  • Each electromagnetic steel plate 40 forming the stator core 21 and the rotor core 31 is formed, for example, by punching an electromagnetic steel plate serving as a base material.
  • the electromagnetic steel plate 40 a known electromagnetic steel plate can be used.
  • the chemical composition of the electromagnetic steel sheet 40 is not particularly limited.
  • a non-oriented electrical steel sheet is used as the electrical steel sheet 40.
  • a non-oriented electrical steel sheet for example, a non-oriented electrical steel strip according to JIS C 2552:2014 can be adopted.
  • the grain-oriented electrical steel sheet for example, a grain-oriented electrical steel strip according to JIS C 2553:2012 can be adopted.
  • Insulation coatings are provided on both sides of the electromagnetic steel plate 40 to improve the workability of the electromagnetic steel plate and the iron loss of the laminated core.
  • the substance forming the insulating coating for example, (1) an inorganic compound, (2) an organic resin, (3) a mixture of an inorganic compound and an organic resin, or the like can be applied.
  • the inorganic compound include (1) a composite of dichromate and boric acid, and (2) a composite of phosphate and silica.
  • the organic resin include epoxy resin, acrylic resin, acrylic styrene resin, polyester resin, silicon resin, and fluorine resin.
  • the thickness of the insulating coating is preferably 0.1 ⁇ m or more.
  • the insulating effect becomes saturated as the insulating coating becomes thicker.
  • the proportion of the insulating coating in the stator core 21 increases, and the magnetic characteristics of the stator core 21 deteriorate. Therefore, the insulating coating is preferably thin as long as the insulating performance can be secured.
  • the thickness of the insulating coating is preferably 0.1 ⁇ m or more and 5 ⁇ m or less, more preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • the thickness of the electromagnetic steel sheet 40 is preferably 0.10 mm or more.
  • the thickness of the electromagnetic steel plate 40 is preferably 0.65 mm or less. Further, as the electromagnetic steel plate 40 becomes thicker, iron loss increases.
  • the thickness of the electromagnetic steel plate 40 is preferably 0.35 mm or less, and more preferably 0.20 mm or 0.25 mm.
  • the thickness of each electromagnetic steel plate 40 is, for example, 0.10 mm or more and 0.65 mm or less, preferably 0.10 mm or more and 0.35 mm or less, and more preferably 0.20 mm or 0.25 mm. is there.
  • the thickness of the electromagnetic steel plate 40 also includes the thickness of the insulating coating.
  • the adhesive part 41 is an adhesive that is provided between the electromagnetic steel plates 40 adjacent to each other in the stacking direction and is hardened without being divided.
  • a thermosetting adhesive by polymerization bonding or the like is used as the adhesive.
  • the adhesive composition (1) acrylic resin, (2) epoxy resin, (3) composition containing acrylic resin and epoxy resin, and the like can be applied.
  • a radical polymerization adhesive or the like can be used as such an adhesive. From the viewpoint of productivity, it is desirable to use a room temperature curing adhesive.
  • the room temperature curable adhesive cures at 20°C to 30°C.
  • An acrylic adhesive is preferable as the room temperature curable adhesive.
  • Typical acrylic adhesives include SGA (Second Generation Acrylic Adhesive. Second Generation Acrylic Adhesive). Any anaerobic adhesive, instant adhesive, or elastomer-containing acrylic adhesive can be used as long as the effects of the present invention are not impaired. It should be noted that the adhesive referred to here is in a state before being cured, and becomes an adhesive portion 41 after the adhesive is cured.
  • the average tensile elastic modulus E of the adhesive portion 41 at room temperature (20° C. to 30° C.) is in the range of 1500 MPa to 4500 MPa. If the average tensile elastic modulus E of the adhesive portion 41 is less than 1500 MPa, the rigidity of the laminated core is reduced. Therefore, the lower limit of the average tensile elastic modulus E of the adhesive portion 41 is set to 1500 MPa, more preferably 1800 MPa. On the contrary, if the average tensile elastic modulus E of the adhesive portion 41 exceeds 4500 MPa, the insulating coating formed on the surface of the electromagnetic steel plate 40 may be peeled off.
  • the upper limit value of the average tensile elastic modulus E of the adhesive portion 41 is set to 4500 MPa, more preferably 3650 MPa.
  • the average tensile elastic modulus E is measured by the resonance method. Specifically, the tensile elastic modulus is measured according to JIS R 1602:1995. More specifically, first, a sample for measurement (not shown) is manufactured. This sample is obtained by bonding the two electromagnetic steel plates 40 together with an adhesive to be measured and curing it to form the bonding portion 41.
  • the adhesive is a thermosetting type
  • this curing is performed by heating and pressing under the heating and pressing conditions in actual operation.
  • the adhesive is a room temperature curing type, it is performed by applying pressure at room temperature.
  • the tensile elastic modulus of this sample is measured by the resonance method.
  • the method of measuring the tensile elastic modulus by the resonance method is performed in accordance with JIS R 1602:1995, as described above.
  • the tensile elastic modulus of the bonded portion 41 alone is obtained by calculating the influence of the electromagnetic steel plate 40 itself from the tensile elastic modulus (measured value) of the sample. Since the tensile modulus obtained from the sample in this way is equal to the average value of the laminated core as a whole, this value is regarded as the average tensile modulus E.
  • the composition of the average tensile elastic modulus E is set so that the average tensile elastic modulus E hardly changes at the laminating position along the laminating direction or the circumferential position around the central axis of the laminated core. Therefore, the average tensile elastic modulus E can be set to the value obtained by measuring the cured adhesive portion 41 at the upper end position of the laminated core.
  • the motor heats up when it is driven. For this reason, when the melting point of the adhesive portion 41 is low, the adhesive portion 41 is melted by the heat generation of the motor and the shape of the adhesive region 42 is changed, and the desired effect cannot be obtained.
  • the surface of the winding wound around the stator core 21 is provided with an insulating coating (enamel).
  • the heat resistant temperature of this coating is, for example, about 180°C. Therefore, a general motor is driven at 180° C. or lower. That is, the motor can heat up to about 180°C.
  • the melting point of the adhesive portion 41 is preferably 180° C. or higher. Further, the melting point of the adhesive portion 41 is more preferably 200° C. or higher in consideration of the safety factor in which there is a locally high temperature portion.
  • a bonding method for example, a method of applying an adhesive to the electromagnetic steel plate 40 and then bonding by heating or pressure bonding or both can be adopted.
  • the heating means may be any means such as heating in a high temperature tank or an electric furnace, or a method of directly energizing.
  • the thickness of the adhesive portion 41 is preferably 1 ⁇ m or more.
  • the thickness of the adhesive portion 41 exceeds 100 ⁇ m, the adhesive force is saturated. Further, as the adhesive portion 41 becomes thicker, the space factor decreases, and the magnetic characteristics such as iron loss of the laminated core deteriorate. Therefore, the thickness of the adhesive portion 41 is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 1 ⁇ m or more and 10 ⁇ m or less. In the above, the thickness of the adhesive portion 41 means the average thickness of the adhesive portion 41.
  • the average thickness of the adhesive portion 41 is more preferably 1.0 ⁇ m or more and 3.0 ⁇ m or less. If the average thickness of the adhesive portion 41 is less than 1.0 ⁇ m, sufficient adhesive force cannot be secured as described above. Therefore, the lower limit of the average thickness of the adhesive portion 41 is 1.0 ⁇ m, and more preferably 1.2 ⁇ m. On the contrary, if the average thickness of the adhesive portion 41 exceeds 3.0 ⁇ m and becomes thicker, a problem such as a large increase in the amount of distortion of the electrical steel sheet 40 due to shrinkage during thermosetting occurs. Therefore, the upper limit of the average thickness of the adhesive portion 41 is 3.0 ⁇ m, and more preferably 2.6 ⁇ m. The average thickness of the adhesive portion 41 is an average value of the entire laminated core.
  • the average thickness of the adhesive portion 41 hardly changes at the stacking position along the stacking direction or the circumferential position around the central axis of the stacked core. Therefore, the average thickness of the adhesive portion 41 can be set to the average value of the numerical values measured at 10 or more positions in the circumferential direction at the upper end position of the laminated core.
  • the average thickness of the adhesive portion 41 can be adjusted, for example, by changing the amount of adhesive applied. Also, the average tensile elastic modulus E of the adhesive portion 41, for example, in the case of a thermosetting adhesive, can be adjusted by changing one or both of the heating and pressurizing conditions and the type of curing agent applied at the time of adhesion. You can
  • a bonded area 42 and a non-bonded area (blank area) are formed on the surface of the electromagnetic steel plate 40 facing the stacking direction (hereinafter referred to as the first surface of the electromagnetic steel plate 40).
  • the adhesion region 42 is a region of the first surface of the electromagnetic steel plate 40 where the adhesion portion 41 is provided. More specifically, the adhesion region 42 is a region of the first surface of the electromagnetic steel plate 40 where the cured adhesive is provided.
  • the non-bonding region is a region of the first surface of the electromagnetic steel sheet where the bonding portion 41 is not provided.
  • One adhesive portion 41 is provided for each tooth portion 23.
  • the adhesive part 41 is provided on each of the plurality of tooth parts 23.
  • the plurality of bonding portions 41 are provided discretely along the circumferential direction as the entire electromagnetic steel plate 40. Thereby, the magnetic steel plates 40 can be fixed in a well-balanced manner.
  • the adhesive portion 41 is formed in a strip shape that extends linearly along the circumferential direction. Therefore, the adhesive region 42 is also formed in a strip shape linearly extending along the circumferential direction, like the adhesive portion 41. That is, the adhesion region 42 extends in the direction orthogonal to the direction in which the teeth portion 23 extends.
  • the width dimension of the bonding area 42 is uniform over the entire length of the bonding area 42.
  • the adhesive area 42 is located near the tip of the tooth portion 23.
  • the vicinity of the tip of the tooth portion 23 means a range from the tip of the tooth portion 23 to 1/10 of the radial length of the tooth portion 23 along the radial length of the tooth portion 23.
  • the direction in which the tooth portion 23 extends (that is, the radial direction) may be referred to as the length direction of the tooth portion 23, and the direction orthogonal to the length direction may be referred to as the width direction of the tooth portion 23.
  • the “strip shape” as the shape in which the adhesive portion 41 extends means a shape extending in one direction and having a width of 1.5% or more of the outer diameter of the stator core 21. .. When the width of the adhesive portion 41 is 1.5% or more of the outer diameter of the stator core 21, the adhesive strength between the electromagnetic steel plates 40 can be sufficiently secured.
  • width dimension of the adhesion region 42 is uniform over the entire length of the adhesion region 42 has been described.
  • the width dimension of the adhesion region 42 does not necessarily have to be uniform.
  • both ends in the width direction of the adhesive region 42 may extend meandering along the length direction.
  • the adhesive portion 41 has a substantially rectangular shape whose longitudinal direction is a direction orthogonal to the radial direction in a plan view. According to the present embodiment, the bonding area 41 has a shape that extends along one direction, so that the bonding area of the bonding section 41 is smaller than that in the case where the dot-shaped bonding sections 41 are intermittently provided in the same range. It can be increased to increase the adhesive strength.
  • the width dimension d1 of the adhesive portion 41 is a dimension in the lateral direction of the adhesive portion 41 formed in a band shape, and is a dimension in the radial direction of the adhesive portion 41 in the present embodiment.
  • the adhesive region 42 is a region where the adhesive portion 41 is provided on the first surface of the electromagnetic steel plate 40, and therefore the width dimension of the adhesive region 42 and the width dimension of the adhesive portion 41 are the same.
  • the adhesive portion 41 extends over the entire width of the tooth portion 23.
  • the adhesive portion 41 is formed in the shape of a band extending over the entire width of the tooth portion 23, so that the adhesive strength between the tooth portions 23 can be easily secured.
  • the adhesive shrinks when cured. Therefore, in the region of the electromagnetic steel plate 40 that contacts the adhesion region 42, strain due to curing shrinkage of the adhesive occurs, and the iron loss of the electromagnetic steel plate 40 increases in the region.
  • a region that comes into contact with the adhesive portion 41 and whose iron loss increases due to strain is called a deteriorated region 29.
  • the deterioration region 29 is a region that overlaps with the adhesion region 42 when viewed in the stacking direction.
  • the degraded region 29 has a higher magnetic resistance than other regions (non-degraded region).
  • an increase in the value of the iron loss may be referred to as “deterioration of the iron loss”.
  • a magnetic flux B is formed on the electromagnetic steel plate 40 by passing an electric current through the winding wire (not shown) of the stator 20.
  • the magnetic flux B forms a magnetic circuit that passes through the teeth portion 23 and the core back portion 22.
  • the magnetic flux B extends in the tooth portion 23 along the radial direction.
  • the adhesive area 42 is formed in the tooth portion 23 in a band shape extending in the circumferential direction. Therefore, the deteriorated region 29 is formed in the tooth portion 23 in a band shape extending in the circumferential direction.
  • the magnetic flux B flows in the tooth portion 23 along the radial direction. Therefore, by forming the strip-shaped adhesive region 42 extending in the circumferential direction on the tooth portion 23, the path length of the magnetic flux B passing through the deteriorated region 29 is shortened. As a result, the magnetic resistance to the magnetic flux B in the magnetic circuit is reduced, and the magnetic characteristics of the stator core 21 can be improved as compared with the case where the electromagnetic steel plates are fixed to each other by caulking.
  • the rotor core 31 is a laminated core like the stator core 21. That is, the rotor core 31 includes a plurality of electromagnetic steel plates laminated in the thickness direction.
  • the laminated thickness of the rotor core 31 is equal to that of the stator core 21, and is, for example, 50.0 mm.
  • the outer diameter of the rotor core 31 is, for example, 163.0 mm.
  • the inner diameter of the rotor core 31 is, for example, 30.0 mm.
  • these values are examples, and the laminated thickness, outer diameter, and inner diameter of the rotor core 31 are not limited to these values.
  • the plurality of electromagnetic steel plates forming the rotor core 31 are fixed to each other by caulking C (dowel, see FIG. 1).
  • the plurality of electromagnetic steel plates 40 forming the rotor core 31 may be bonded to each other by a bonding portion.
  • the laminated cores such as the stator core 21 and the rotor core 31 may be formed by so-called rolling.
  • the tooth portion 23 has an adhesive area 142 provided with a belt-shaped adhesive portion 141 extending along the circumferential direction.
  • the adhesive part 141 of the present modification is mainly different from the above-described embodiment in that the adhesive region 142 is arranged in the vicinity of the base end of the tooth part 23.
  • the adhesion region 142 is formed in a strip shape that linearly extends along the circumferential direction.
  • the width dimension of the bonding area 142 is uniform over the entire length of the bonding area 142.
  • a region (deteriorated region 129) in which the iron loss increases due to strain is formed in the electromagnetic steel plate 40 in contact with the adhesion region 142. According to this modification, since the path length of the magnetic flux B passing through the deteriorated region 129 becomes short, the magnetic resistance to the magnetic flux B in the magnetic circuit becomes small, and the magnetic characteristics of the stator core 21 can be improved.
  • the magnetic flux B extends from the tips of the teeth portions 23 so as to diffuse to both sides in the circumferential direction. For this reason, in the vicinity of the tip of the tooth portion 23, the magnetic flux B concentrates at both end portions in the circumferential direction, and the magnetic flux density easily increases. When the deteriorated region is provided in the region where the magnetic flux density is high, the iron loss is likely to increase remarkably. Therefore, when the deteriorated region 129 is provided in the vicinity of the tip of the tooth portion 23, iron loss is likely to increase.
  • the bonding area 142 of this modification is formed near the base end of the tooth portion 23. That is, the adhesion region 142 is formed on the core back portion 22 side from the vicinity of the tip of the tooth portion 23.
  • the deteriorated region 129 can be arranged away from the region having a high magnetic flux density, and the increase in iron loss can be suppressed.
  • the magnetic resistance to the magnetic flux B in the magnetic circuit is reduced, and the magnetic characteristics of the stator core 21 can be improved.
  • the above-described effect can be obtained if the adhesive region 142 is arranged at a position closer to the base end side than 1 ⁇ 2 of the total length of the tooth part 23, and further at the base end side of 1 ⁇ 3 of the total length of the tooth part 23. If arranged, the above-mentioned effects can be more remarkably obtained.
  • the tooth portion 23 has an adhesive region 242 provided with a band-shaped adhesive portion 241 extending in the circumferential direction.
  • the adhesive portion 241 of the present modified example is different from the above-described embodiment mainly in that an adhesive region 242 is formed substantially at the center in the length direction of the tooth portion 23.
  • the adhesion region 242 is formed in a strip shape that linearly extends in the circumferential direction, so that the path length of the magnetic flux B passing through the deterioration region 229 can be shortened. As a result, the magnetic resistance to the magnetic flux B in the magnetic circuit is reduced, and the magnetic characteristics of the stator core 21 can be improved.
  • the bonding area 242 of this modification is uniform over the entire length of the bonding area 242.
  • the adhesive area 242 of the present modification is located closer to the core back portion 22 side than the vicinity of the tip of the tooth portion 23, like the adhesive area 242 of the first modification, it is possible to suppress an increase in iron loss. As a result, the magnetic resistance to the magnetic flux B in the magnetic circuit is reduced, and the magnetic characteristics of the stator core 21 can be improved.
  • Modification 3 Next, the adhesive portion 341 and the adhesive region 342 of Modification 3 that can be adopted in the above-described embodiment will be described based on FIG. 7.
  • the same components as those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the tooth portion 23 has an adhesive area 342 provided with a band-shaped adhesive portion 341 extending along the circumferential direction.
  • the bonding area 342 of this modification has a similar configuration to the bonding area 242 of modification 2. According to the stator core 21 having the adhesive portion 341 of the present modification, the same effect as that of the stator core 21 having the adhesive portion 241 of the modification 2 can be obtained.
  • the adhesive region 342 of the present modified example is different from the adhesive region 242 of the modified example 2 in that the width dimension is not uniform over the entire length of the adhesive region 342.
  • Both ends in the width direction of the adhesion region 342 of this modification have a curved shape. Both ends of the adhesive region 342 in the width direction are separated from each other from the center of the tooth portion 23 in the circumferential direction toward the end of the tooth portion 23 in the circumferential direction. Therefore, the adhesive region 342 has a radial width that increases from the circumferential center of the tooth portion 23 toward the circumferential end of the tooth portion 23. The adhesive region 342 has the smallest width dimension in the circumferential center portion of the tooth portion 23.
  • the magnetic flux B extends from the tips of the teeth portions 23 so as to diffuse to both sides in the circumferential direction.
  • the magnetic flux B tends to flow along the shortest distance. Therefore, the magnetic flux density of the tooth portion 23 tends to increase toward the end portion in the circumferential direction. If the variation in the magnetic flux density of the teeth portion 23 increases in the circumferential direction, the magnetic characteristics of the stator core 21 may deteriorate.
  • the radial width dimension of the adhesive region 342 increases from the center of the tooth portion 23 toward the circumferential end portion side. That is, the radial length of the deteriorated region 391 increases from the central portion of the tooth portion 23 toward the end portion in the width direction. Therefore, the magnetic resistance of the tooth portion 23 increases toward the end portion in the circumferential direction, and the magnetic flux B is less likely to flow on the end portion side in the circumferential direction. As a result, it is possible to suppress the variation in the magnetic flux density in the circumferential direction of the tooth portion 23 and make the magnetic flux density in the tooth portion 23 uniform. As a result, the magnetic characteristics of the laminated core can be improved.
  • the tooth portion 23 is provided with an adhesive area 442 provided with a belt-shaped adhesive portion 441 linearly extending along the circumferential direction.
  • the adhesive portion 441 of the present modification is mainly that a plurality of (three) adhesive regions 442 arranged along the extending direction are formed in the tooth portion 23 as compared with the above-described embodiment. different.
  • the plurality of adhesive regions 442 are arranged side by side from the center of the tooth portion 23 in the length direction to the base end side.
  • a plurality of adhesive regions 441 may be provided for each tooth portion 23. Even in this case, the effects of the embodiment and the modified examples can be obtained, and in addition, the adhesive strength between the electromagnetic steel plates 40 can be increased.
  • the width dimension of the adhesive area 442 is preferably smaller than the space dimension between the adjacent adhesive areas 442. Accordingly, it is possible to suppress the distortion of the electromagnetic steel sheet due to the plurality of bonding regions 442 and suppress the deterioration (increase) of the iron loss of the electromagnetic steel sheet.
  • Modification 5 Next, the adhesive portion 541 and the adhesive area 542 of Modification Example 5 that can be adopted in the above-described embodiment will be described based on FIG. 9.
  • the same components as those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the tooth portion 23 is provided with an adhesive area 542 provided with a band-shaped adhesive portion 541 extending along the circumferential direction.
  • the adhesive portion 541 of the present modification is mainly different from the above-described embodiment in that the adhesive region 542 extends in an arc shape along the circumferential direction. Since the adhesive part 541 of the present modification can apply the adhesive part 541 uniformly along the circumferential direction, the manufacturing process can be simplified.
  • the plurality of magnetic steel sheets are fixed to each other at the adhesive portion provided on the tooth portion.
  • the electromagnetic steel plates may be fixed to each other not only at the teeth but also at the core back part.
  • the core back portion may be provided with caulking, or the core back portion may be separately provided with an adhesive portion.
  • the electromagnetic steel plates may be welded and fixed to each other in addition to the adhesive fixation by the adhesive portion. That is, the effects of this embodiment can be obtained regardless of the method of fixing the core back portion.
  • the shape of the stator core is not limited to the shape shown in the above embodiment. Specifically, the outer and inner diameters of the stator core, the product thickness, the number of slots, the circumferential and radial dimension ratios of the teeth, and the radial dimension ratio of the teeth and core back are desired. It can be arbitrarily designed according to the characteristics of the rotating electric machine.
  • the pair of permanent magnets 32 forms one magnetic pole, but the present invention is not limited to this.
  • one permanent magnet 32 may form one magnetic pole, and three or more permanent magnets 32 may form one magnetic pole.
  • the permanent magnet field type electric motor has been described as an example, but the structure of the rotating electric machine is not limited to this as illustrated below, and further various publicly known examples not illustrated below. The structure of can also be adopted.
  • the permanent magnet field type motor is described as an example of the synchronous motor, but the present invention is not limited to this.
  • the rotating electric machine may be a reluctance type electric motor or an electromagnet field type electric motor (winding field type electric motor).
  • the synchronous motor is described as an example of the AC motor, but the present invention is not limited to this.
  • the rotating electric machine may be an induction motor.
  • the AC motor is described as an example of the electric motor, but the present invention is not limited to this.
  • the rotating electric machine may be a DC electric motor.
  • an electric motor has been described as an example of the rotating electric machine, but the present invention is not limited to this.
  • the rotating electric machine may be a generator.
  • a verification test was conducted to verify the suppression of iron loss deterioration of electrical steel sheets due to the compressive stress in the adhesive joint.
  • the verification test was performed by simulation using software.
  • As the software finite element method electromagnetic field analysis software JMAG manufactured by JSOL Co., Ltd. was used.
  • As a model used for the simulation the model No. described below is used. 1 to model No. 4 stator cores (laminated cores) were assumed.
  • the electromagnetic steel sheet used for each model was prepared by punching a thin plate having a plate thickness of 0.25 mm and a plate thickness of 0.20 mm. The shape of the electromagnetic steel sheet is the same as that shown in FIG.
  • the second bonding area corresponds to the bonding area 142 shown in FIG. Model No.
  • the second bonding area is formed on the plurality of teeth, and each bonding area is formed in a strip shape linearly extending in the circumferential direction near the base end of the teeth.
  • the adhesive area 3 corresponds to the adhesive area 242 shown in FIG. Model No.
  • the adhesive region 3 is formed on a plurality of tooth portions, and each adhesive region is formed in a strip shape extending linearly along the circumferential direction at the center of the tooth portion in the length direction.
  • Model number 4 shows the stator core 1021 of No. 4 in FIG.
  • the stator core 1021 is formed by stacking electromagnetic steel plates 40 having the same shape as the stator core 21 of the above-described embodiment in the thickness direction.
  • the stator core 1021 is different from the stator core 21 of the above-described embodiment in that the electromagnetic steel plates 40 are fixed by caulking. That is, the electromagnetic steel plates 40 of the stator core 1021 are fixed to each other by the caulking 1042 (dowel).
  • the caulking 1042 is located in the tooth portion 23.
  • Fig. 10 shows the calculation results of the iron loss of electromagnetic steel sheets calculated with simulation software for each model. Further, the iron loss (vertical axis) of the calculation result shown in FIG. 4 is 1.0, the iron loss of other models is set to 1.0. It was expressed as a ratio of 4 to iron loss.
  • Model number The stator core of No. 1 is model No. 1. 2 and model no. Iron loss is larger than that of the No. 3 stator core.
  • magnetic characteristics can be improved. Therefore, industrial availability is great.

Abstract

互いに積層された複数の電磁鋼板と、積層方向に隣り合う前記電磁鋼板同士の間に設けられ、前記電磁鋼板同士をそれぞれ接着する接着部と、を備え、前記電磁鋼板は、環状のコアバック部と、前記コアバック部から前記コアバック部の径方向に延びるとともに前記コアバック部の周方向に間隔をあけて配置された複数のティース部と、を有し、前記電磁鋼板の前記ティース部は、周方向に沿って延びる帯形状の接着部が設けられた接着領域を有する、積層コア。

Description

積層コアおよび回転電機
 本発明は、積層コアおよび回転電機に関する。
 本願は、2018年12月17日に、日本に出願された特願2018-235857号に基づき優先権を主張し、その内容をここに援用する。
 従来から、下記特許文献1に記載されているような積層コアが知られている。この積層コアでは、積層方向に隣り合う電磁鋼板が接着されている。
日本国特開2011-023523号公報
 前記従来の積層コアには、磁気特性を向上させることについて改善の余地がある。
 本発明は、前述した事情に鑑みてなされたものであって、積層コアの磁気特性を向上させることを目的とする。
(1)本発明の一態様は、互いに積層された複数の電磁鋼板と、積層方向に隣り合う前記電磁鋼板同士の間に設けられ、前記電磁鋼板同士をそれぞれ接着する接着部と、を備え、前記電磁鋼板は、環状のコアバック部と、前記コアバック部から前記コアバック部の径方向に延びるとともに前記コアバック部の周方向に間隔をあけて配置された複数のティース部と、を有し、前記電磁鋼板の前記ティース部は、周方向に沿って延びる帯形状の接着部が設けられた接着領域を有する積層コアである。
 上述の構成によれば、電磁鋼板のティース部は、帯形状の接着部が設けられた接着領域を有している。帯形状の接着部は、一方向に沿って延びるため、同一範囲に点状の接着部を間欠的に設ける場合と比較して、接着部の接着面積を大きくして接着強度を高めることができる。
 接着部に接触する電磁鋼板の領域には、接着剤の硬化収縮に起因する歪が生じ、当該領域において電磁鋼板の鉄損が上昇する。ここで、接着領域と接触して歪によって鉄損が上昇する電磁鋼板の領域を「劣化領域」と呼ぶ。上述の構成によれば、接着部は周方向に延びる帯形状であって、ティース部に設けられているため、劣化領域が、ティース部において周方向に延びる。ティース部に流れる磁束は、径方向に沿うため、劣化領域が周方向に延びることで、劣化領域を通過する磁束の経路長が短くなる。したがって、磁気回路における各磁束への磁気抵抗が小さくなり、積層コアの磁気特性の劣化を抑制することができる。
(2)前記(1)に係る積層コアでは、前記接着領域は、前記ティース部の先端近傍より前記コアバック部側に形成されている、構成としてもよい。
 磁束は、ティース部の先端から周方向両側に拡散して延びる。このため、ティース部の先端近傍は、周方向両端部において磁束が集中しやすい。磁束が集中した領域に劣化領域が設けられると、鉄損の上昇が顕著となりやすい。このため、劣化領域がティース部の先端近傍に設けられると、鉄損が大きくなりやすい。上述の構成によれば、接着領域がティース部の先端近傍よりコアバック部側に位置するため、劣化領域を磁束密度の高い領域から離して配置することができ、鉄損の上昇を抑制できる。
(3)前記(1)又は前記(2)に係る積層コアでは、前記接着領域は、前記ティース部の周方向中央部から前記ティース部の周方向端部側に向かうに従い径方向の幅寸法が大きくなる、構成としてもよい。
 磁束は、ティース部の先端から周方向両側に拡散して延びる。また、磁束は、最短距離を通るように流れる傾向がある。このため、ティース部の磁束密度は、周方向端部側に向かうに従って高くなる。周方向においてティース部の磁束密度のばらつきが大きくなると積層コアの磁気特性が低下する虞がある。上述の構成によれば、接着領域の径方向の幅寸法が、ティース部の中央部から周方向端部側に向かうに従って大きくなる。すなわち、劣化領域の径方向の長さがティース部の中央部から周方向端部側に向かうに従って長くなる。このため、ティース部は、周方向外側に向かうに従い磁気抵抗が大きくなり、周方向端部側において磁束が流れにくくなる。これにより、ティース部の磁束密度のばらつきを抑制し、ティース部内の磁束密度を一様に近づけることができ、積層コアの磁気特性を向上できる。
(4)前記(1)又は前記(2)に係る積層コアでは、前記接着領域は、周方向に沿って円弧状に延びる、構成としてもよい。
 上述の構成によれば、接着部を周方向に沿って一様に塗布することができるため、製造工程を簡素化できる。
(5)前記(1)~前記(4)に係る積層コアでは、前記接着部は、前記ティース部の全幅に亘って延びる、構成としてもよい。
 上述の構成によれば、接着部がティース部の全幅に亘って延びるため、ティース部同士の接着強度を確保しやすい。
(6)前記(1)~前記(5)の何れか1つに記載の積層コアでは、前記接着部の平均厚みが1.0μm~3.0μmであってもよい。
(7)前記(1)~前記(6)の何れか1つに記載の積層コアでは、前記接着部の平均引張弾性率Eが1500MPa~4500MPaであってもよい。
(8)前記(1)~前記(7)の何れか1つに記載の積層コアでは、前記接着部が、エラストマー含有アクリル系接着剤からなるSGAを含む常温接着タイプのアクリル系接着剤であってもよい。
(9)前記(1)~前記(8)の何れか1つに記載の積層コアでは、前記接着部の融点が180℃以上であってもよい。
(10)本発明の一態様の回転電機は、前記(1)~前記(9)の何れか1つに記載の積層コアを備える、回転電機。
 上述の構成の回転電機によれば、磁気特性に優れた積層コアを有するため、回転電機のエネルギ効率を高めることができる。
 本発明によれば、積層コアの磁気特性を向上させることができる。
本発明の一実施形態に係る回転電機の断面図である。 図1に示す回転電機が備えるステータの平面図である。 図1に示す回転電機が備えるステータの正面図である。 図2および図3に示すステータの電磁鋼板および接着領域の模式図である。 変形例1のステータの接着領域の模式図である。 変形例2のステータの接着領域の模式図である。 変形例3のステータの接着領域の模式図である。 変形例4のステータの接着領域の模式図である。 変形例5のステータの接着領域の模式図である。 モデルNo.1~モデルNo.4の鉄損のシミュレーション結果を示すグラフである。 比較例としてのモデルNo.4のステータコアの模式図である。
 以下、図面を参照し、本発明の一実施形態に係る回転電機を説明する。なお本実施形態では、回転電機として電動機、具体的には交流電動機、より具体的には同期電動機、より一層具体的には永久磁石界磁型電動機を一例に挙げて説明する。この種の電動機は、例えば、電気自動車などに好適に採用される。
 図1および図2に示すように、回転電機10は、ステータ20と、ロータ30と、ケース50と、回転軸60と、を備える。ステータ20およびロータ30は、ケース50に収容される。ステータ20は、ケース50に固定される。
 本実施形態の回転電機10において、例えば、ステータ20の各相には、実効値10A、周波数100Hzの励磁電流を印加され、これに伴い、ロータ30および回転軸60が回転数1000rpmで回転する。
 本実施形態では、回転電機10として、ロータ30がステータ20の内側に位置するインナーロータ型を採用している。しかしながら、回転電機10として、ロータ30がステータ20の外側に位置するアウターロータ型を採用してもよい。また本実施形態では、回転電機10が、12極18スロットの三相交流モータである。しかしながら、例えば極数やスロット数、相数などは適宜変更することができる。
 ステータ20は、ステータコア(積層コア)21と、図示しない巻線と、を備える。
 ステータコア21は、環状のコアバック部22と、複数のティース部23と、を備える。以下では、ステータコア21(コアバック部22)の軸方向(ステータコア21の中心軸線O方向)を軸方向といい、ステータコア21(コアバック部22)の径方向(ステータコア21の中心軸線Oに直交する方向)を径方向といい、ステータコア21(コアバック部22)の周方向(ステータコア21の中心軸線O周りに周回する方向)を周方向という。
 コアバック部22は、ステータ20を軸方向から見た平面視において円環状に形成されている。
 複数のティース部23は、コアバック部22から径方向の内側に(径方向に沿ってコアバック部22の中心軸線Oに向けて)延びる。複数のティース部23は、周方向に同等の間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角20度おきに18個のティース部23が設けられている。複数のティース部23は、互いに同等の形状で、かつ同等の大きさに形成されている。
 前記巻線は、ティース部23に巻き回されている。前記巻線は、集中巻きされていてもよく、分布巻きされていてもよい。
 ロータ30は、ステータ20(ステータコア21)に対して径方向の内側に配置されている。ロータ30は、ロータコア31と、複数の永久磁石32と、を備える。
 ロータコア31は、ステータ20と同軸に配置される環状(円環状)に形成されている。ロータコア31内には、前記回転軸60が配置されている。回転軸60は、ロータコア31に固定されている。
 複数の永久磁石32は、ロータコア31に固定されている。本実施形態では、2つ1組の永久磁石32が1つの磁極を形成している。複数組の永久磁石32は、周方向に同等の間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角30度おきに12組(全体では24個)の永久磁石32が設けられている。
 本実施形態では、永久磁石界磁型電動機として、埋込磁石型モータが採用されている。ロータコア31には、ロータコア31を軸方向に貫通する複数の貫通孔33が形成されている。複数の貫通孔33は、複数の永久磁石32に対応して設けられている。各永久磁石32は、対応する貫通孔33内に配置された状態でロータコア31に固定されている。各永久磁石32のロータコア31への固定は、例えば永久磁石32の外面と貫通孔33の内面とを接着剤により接着すること等により、実現することができる。なお、永久磁石界磁型電動機として、埋込磁石型に代えて表面磁石型モータを採用してもよい。
<積層コア>
 図3に示すように、ステータコア21は、積層コアである。ステータコア21は、複数の電磁鋼板40が積層されることで形成されている。すなわち、ステータコア21は、積層方向に積層された複数の電磁鋼板40を備える。
 なおステータコア21の積厚は、例えば50.0mmとされる。ステータコア21の外径は、例えば250.0mmとされる。ステータコア21の内径は、例えば165.0mmとされる。ただし、これらの値は一例であり、ステータコア21の積厚、外径や内径は、これらの値に限られない。ここで、ステータコア21の内径は、ステータコア21におけるティース部23の先端部を基準としている。ステータコア21の内径は、全てのティース部23の先端部に内接する仮想円の直径である。
 ステータコア21およびロータコア31を形成する各電磁鋼板40は、例えば、母材となる電磁鋼板を打ち抜き加工すること等により形成される。電磁鋼板40としては、公知の電磁鋼板を用いることができる。電磁鋼板40の化学組成は特に限定されない。本実施形態では、電磁鋼板40として、無方向性電磁鋼板を採用している。無方向性電磁鋼板としては、例えば、JIS C 2552:2014の無方向性電鋼帯を採用することができる。
 しかしながら、電磁鋼板40として、無方向性電磁鋼板に代えて方向性電磁鋼板を採用することも可能である。方向性電磁鋼板としては、例えば、JIS C 2553:2012の方向性電鋼帯を採用することができる。
 電磁鋼板の加工性や、積層コアの鉄損を改善するため、電磁鋼板40の両面には、絶縁被膜が設けられている。絶縁被膜を構成する物質としては、例えば、(1)無機化合物、(2)有機樹脂、(3)無機化合物と有機樹脂との混合物、などが適用できる。無機化合物としては、例えば、(1)重クロム酸塩とホウ酸の複合物、(2)リン酸塩とシリカの複合物、などが挙げられる。有機樹脂としては、エポキシ系樹脂、アクリル系樹脂、アクリルスチレン系樹脂、ポリエステル系樹脂、シリコン系樹脂、フッ素系樹脂などが挙げられる。
 互いに積層される電磁鋼板40間での絶縁性能を確保するために、絶縁被膜の厚さ(電磁鋼板40片面あたりの厚さ)は0.1μm以上とすることが好ましい。
 一方で絶縁被膜が厚くなるに連れて絶縁効果が飽和する。また、絶縁被膜が厚くなるに連れてステータコア21における絶縁被膜の占める割合が増加し、ステータコア21の磁気特性が低下する。したがって、絶縁被膜は、絶縁性能が確保できる範囲で薄い方がよい。絶縁被膜の厚さ(電磁鋼板40片面あたりの厚さ)は、好ましくは0.1μm以上5μm以下、さらに好ましくは0.1μm以上2μm以下である。
 電磁鋼板40が薄くなるに連れて次第に鉄損の改善効果が飽和する。また、電磁鋼板40が薄くなるに連れて電磁鋼板40の製造コストは増す。そのため、鉄損の改善効果および製造コストを考慮すると電磁鋼板40の厚さは0.10mm以上とすることが好ましい。
 一方で電磁鋼板40が厚すぎると、電磁鋼板40のプレス打ち抜き作業が困難になる。
そのため、電磁鋼板40のプレス打ち抜き作業を考慮すると電磁鋼板40の厚さは0.65mm以下とすることが好ましい。
 また、電磁鋼板40が厚くなると鉄損が増大する。そのため、電磁鋼板40の鉄損特性を考慮すると、電磁鋼板40の厚さは0.35mm以下とすることが好ましく、より好ましくは、0.20mm又は0.25mmである。
 上記の点を考慮し、各電磁鋼板40の厚さは、例えば、0.10mm以上0.65mm以下、好ましくは、0.10mm以上0.35mm以下、より好ましくは0.20mmや0.25mmである。なお電磁鋼板40の厚さには、絶縁被膜の厚さも含まれる。
 ステータコア21を形成する複数の電磁鋼板40は、接着部41によって接着されている。接着部41は、積層方向に隣り合う電磁鋼板40同士の間に設けられ、分断されることなく硬化した接着剤である。接着剤には、例えば重合結合による熱硬化型の接着剤などが用いられる。接着剤の組成物としては、(1)アクリル系樹脂、(2)エポキシ系樹脂、(3)アクリル系樹脂およびエポキシ系樹脂を含んだ組成物などが適用可能である。このような接着剤としては、熱硬化型の接着剤の他、ラジカル重合型の接着剤なども使用可能であり、生産性の観点からは、常温硬化型の接着剤を使用することが望ましい。常温硬化型の接着剤は、20℃~30℃で硬化する。常温硬化型の接着剤としては、アクリル系接着剤が好ましい。代表的なアクリル系接着剤には、SGA(第二世代アクリル系接着剤。Second Generation Acrylic Adhesive)などがある。本発明の効果を損なわない範囲で、嫌気性接着剤、瞬間接着剤、エラストマー含有アクリル系接着剤がいずれも使用可能である。なお、ここで言う接着剤は硬化前の状態を言い、接着剤が硬化した後は接着部41となる。
 接着部41の常温(20℃~30℃)における平均引張弾性率Eは、1500MPa~4500MPaの範囲内とされる。接着部41の平均引張弾性率Eは、1500MPa未満であると、積層コアの剛性が低下する不具合が生じる。そのため、接着部41の平均引張弾性率Eの下限値は、1500MPa、より好ましくは1800MPaとされる。逆に、接着部41の平均引張弾性率Eが4500MPaを超えると、電磁鋼板40の表面に形成された絶縁被膜が剥がれる不具合が生じる。そのため、接着部41の平均引張弾性率Eの上限値は、4500MPa、より好ましくは3650MPaとされる。
 なお、平均引張弾性率Eは、共振法により測定される。具体的には、JIS R 1602:1995に準拠して引張弾性率を測定する。
 より具体的には、まず、測定用のサンプル(不図示)を製作する。このサンプルは、2枚の電磁鋼板40間を、測定対象の接着剤により接着し、硬化させて接着部41を形成することにより、得られる。この硬化は、接着剤が熱硬化型の場合には、実操業上の加熱加圧条件で加熱加圧することで行う。一方、接着剤が常温硬化型の場合には常温下で加圧することで行う。
 そして、このサンプルについての引張弾性率を、共振法で測定する。共振法による引張弾性率の測定方法は、上述した通り、JIS R 1602:1995に準拠して行う。その後、サンプルの引張弾性率(測定値)から、電磁鋼板40自体の影響分を計算により除くことで、接着部41単体の引張弾性率が求められる。
 このようにしてサンプルから求められた引張弾性率は、積層コア全体としての平均値に等しくなるので、この数値をもって平均引張弾性率Eとみなす。平均引張弾性率Eは、その積層方向に沿った積層位置や積層コアの中心軸線回りの周方向位置で殆ど変わらないよう、組成が設定されている。そのため、平均引張弾性率Eは、積層コアの上端位置にある、硬化後の接着部41を測定した数値をもってその値とすることもできる。
 モータは、駆動時に発熱する。このため、接着部41の融点が低いと、モータの発熱によって接着部41が溶融して接着領域42の形状が変化し所望の効果を得ることができない。一般的に、ステータコア21に巻かれる巻線の表面には、絶縁性の被覆(エナメル)が設けられる。この被覆の耐熱温度は、例えば180℃程度である。このため、一般的なモータは、180℃以下となるように駆動される。すなわち、モータは、180℃程度まで昇温し得る。本実施形態において、接着部41の融点は、180℃以上であることが好ましい。さらに、局所的に高温となる部位があることを加味した安全率を考慮し、接着部41の融点は、200℃以上であることがさらに好ましい。
 接着方法としては、例えば、電磁鋼板40に接着剤を塗布した後、加熱および圧着のいずれかまたは両方により接着する方法が採用できる。なお加熱手段は、例えば高温槽や電気炉内での加熱、または直接通電する方法等、どのような手段でも良い。
 安定して十分な接着強度を得るために、接着部41の厚さは1μm以上とすることが好ましい。
 一方で接着部41の厚さが100μmを超えると接着力が飽和する。また、接着部41が厚くなるに連れて占積率が低下し、積層コアの鉄損などの磁気特性が低下する。したがって、接着部41の厚さは1μm以上100μm以下、さらに好ましくは1μm以上10μm以下とすることが好ましい。
 なお、上記において接着部41の厚さは、接着部41の平均厚みを意味する。
 接着部41の平均厚みは、1.0μm以上3.0μm以下とすることがより好ましい。接着部41の平均厚みが1.0μm未満であると、前述したように十分な接着力を確保できない。そのため、接着部41の平均厚みの下限値は、1.0μm、より好ましくは1.2μmとされる。逆に、接着部41の平均厚みが3.0μmを超えて厚くなると、熱硬化時の収縮による電磁鋼板40の歪み量が大幅に増えるなどの不具合を生じる。そのため、接着部41の平均厚みの上限値は、3.0μm、より好ましくは2.6μmとされる。
 接着部41の平均厚みは、積層コア全体としての平均値である。接着部41の平均厚みはその積層方向に沿った積層位置や積層コアの中心軸線回りの周方向位置で殆ど変わらない。そのため、接着部41の平均厚みは、積層コアの上端位置において、円周方向10箇所以上で測定した数値の平均値をもってその値とすることができる。
 なお、接着部41の平均厚みは、例えば、接着剤の塗布量を変えて調整することができる。また、接着部41の平均引張弾性率Eは、例えば、熱硬化型の接着剤の場合には、接着時に加える加熱加圧条件及び硬化剤種類の一方もしくは両方を変更すること等により調整することができる。
 次に、図4を基に、電磁鋼板40と接着部41および接着領域42との関係について説明する。
 図4に示すように、積層方向に隣り合う電磁鋼板40同士は、互いに全面接着されていない。これらの電磁鋼板40同士は、互いに局所的に接着されている。接着部41は、電磁鋼板の複数のティース部23に設けられている。ティース部23は接着部41によって接着されている。すなわち、複数の電磁鋼板40は、接着部41によって互いに接着されている。
 電磁鋼板40において積層方向を向く面(以下、電磁鋼板40の第1面という)には、接着領域42と、非接着領域(ブランク領域)とが形成されている。接着領域42とは、電磁鋼板40の第1面のうち、接着部41が設けられた領域である。より具体的には、接着領域42とは、電磁鋼板40の第1面のうち、硬化した接着剤が設けられている領域である。非接着領域とは、電磁鋼板の第1面のうち、接着部41が設けられていない領域である。
 接着部41は、1つのティース部23に1つ設けられる。本実施形態によれば、接着部41は、複数のティース部23にそれぞれ設けられる。このため、複数の接着部41は、電磁鋼板40全体として、周方向に沿って離散的に設けられている。これにより、電磁鋼板40同士をバランスよく固定することができる。
 接着部41は、周方向に沿って直線状に延びる帯状に形成されている。したがって、接着領域42も接着部41と同様に、周方向に沿って直線状に延びる帯状に形成されている。すなわち、接着領域42は、ティース部23が延びる方向に対して直交する方向に延びる。接着領域42の幅寸法は、接着領域42の全長に亘って一様である。また、接着領域42は、ティース部23の先端近傍に位置する。ここで、ティース部23の先端近傍とは、ティース部23の先端から、ティース部23の径方向の長さに沿ってティース部23の径方向の長さの1/10に至るまでの範囲を言う。
 なお、本明細書において、ティース部23が延びる方向(すなわち径方向)をティース部23の長さ方向と呼び、長さ方向と直交する方向をティース部23の幅方向と呼ぶ場合がある。
 また、本明細書において、接着部41が延びる形状としての「帯形状」とは、一方向に延びる形状であって、幅がステータコア21の外径の1.5%以上であることを意味する。接着部41の幅がステータコア21の外径の1.5%以上であることで、電磁鋼板40同士の接着強度を十分に確保することができる。
 なお、本実施形態において、接着領域42の幅寸法が接着領域42の全長に亘って一様である場合について説明した。しかしながら、接着領域42の幅寸法は、必ずしも一様でなくてもよい。一例として、接着領域42の幅方向両端部が、長さ方向に沿って曲がりくねって延びていてもよい。
 接着部41は、平面視において径方向と直交する方向を長手方向とする略矩形状である。本実施形態によれば、接着部41を一方向に沿って延びる形状とすることで、同一範囲に点状の接着部41を間欠的に設ける場合と比較して、接着部41の接着面積を大きくして接着強度を高めることができる。
 接着部41の幅寸法d1を大きくすることで、製造工程において接着部41を容易に形成することができる。また、接着部41の幅寸法d1を小さくすることで、接着剤の圧縮応力によって電磁鋼板40に局所的に大きな歪を生じさせることがなく、電磁鋼板40全体としての鉄損の劣化を抑制できる。
 なお、接着部41の幅寸法d1とは、帯状に形成された接着部41の短手方向の寸法であって、本実施形態において、接着部41の径方向における寸法である。本実施形態において、接着領域42とは、電磁鋼板40の第1面において接着部41が設けられた領域であるため、接着領域42の幅寸法と、接着部41の幅寸法は同一である。
 接着部41は、ティース部23の全幅に亘って延びる。本実施形態によれば、接着部41がティース部23の全幅に亘って延びる帯状に形成されているため、ティース部23同士の接着強度を確保しやすい。
 本実施形態において、接着剤は硬化時に収縮する。このため、接着領域42に接触する電磁鋼板40の領域には、接着剤の硬化収縮に起因する歪が生じ、当該領域において電磁鋼板40の鉄損が上昇する。ここで、電磁鋼板40の第1面のうち、接着部41と接触して歪によって鉄損が上昇する領域を劣化領域29と呼ぶ。劣化領域29は、積層方向から見て接着領域42と重なる領域である。劣化領域29は、他の領域(非劣化領域)と比較して磁気抵抗が高い。
 なお、本明細書において、鉄損の値が上昇することを「鉄損の劣化」と呼ぶ場合がある。
 ステータ20の巻線(図示略)に電流が流れることで、電磁鋼板40に磁束Bが形成される。磁束Bは、ティース部23およびコアバック部22を通過する磁気回路を形成する。磁束Bは、ティース部23において径方向に沿って延びる。
 本実施形態によれば、接着領域42は、ティース部23において周方向に延びる帯形状に形成される。したがって、劣化領域29は、ティース部23において周方向に延びる帯状に形成される。上述したように、磁束Bは、ティース部23において径方向に沿って流れる。このため、周方向に延びる帯状の接着領域42をティース部23に形成することで、劣化領域29を通過する磁束Bの経路長が短くなる。結果的に、磁気回路における磁束Bへの磁気抵抗が小さくなり、かしめによって電磁鋼板同士を互いに固定した場合と比較して、ステータコア21の磁気特性を高めることができる。
 本実施形態において、ロータコア31は、ステータコア21と同様に、積層コアである。すなわち、ロータコア31は、厚さ方向に積層された複数の電磁鋼板を備える。本実施形態において、ロータコア31の積厚は、ステータコア21と等しく、例えば50.0mmとされる。ロータコア31の外径は、例えば163.0mmとされる。ロータコア31の内径は、例えば30.0mmとされる。ただし、これらの値は一例であり、ロータコア31の積厚、外径や内径はこれらの値に限られない。
 本実施形態では、ロータコア31を形成する複数の電磁鋼板は、かしめC(ダボ、図1参照)によって互いに固定されている。しかしながら、ロータコア31を形成する複数の電磁鋼板40が、接着部によって互いに接着されていてもよい。
 なお、ステータコア21やロータコア31などの積層コアは、いわゆる回し積みにより形成されていてもよい。
 (変形例1)
 次に、上述の実施形態に採用可能な、変形例1の接着部141および接着領域142について図5を基に説明する。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 上述の実施形態と同様に、ティース部23は、周方向に沿って延びる帯状の接着部141が設けられた接着領域142を有する。本変形例の接着部141は、上述の実施形態と比較して、接着領域142がティース部23の基端近傍に配置される点が主に異なる。
 上述の実施形態と同様に、接着領域142は、周方向に沿って直線状に延びる帯状に形成されている。接着領域142の幅寸法は、接着領域142の全長に亘って一様である。電磁鋼板40には、接着領域142と接触して歪によって鉄損が上昇する領域(劣化領域129)が形成される。本変形例によれば、劣化領域129を通過する磁束Bの経路長が短くなるため、磁気回路における磁束Bへの磁気抵抗が小さくなり、ステータコア21の磁気特性を高めることができる。
 磁束Bは、ティース部23の先端から周方向両側に拡散して延びる。このため、ティース部23の先端近傍は、周方向両端部において磁束Bが集中し磁束密度が高まりやすい。磁束密度が高い領域に劣化領域が設けられると、鉄損の上昇が顕著となりやすい。このため、劣化領域129がティース部23の先端近傍に設けられると、鉄損が大きくなりやすい。本変形例の接着領域142は、ティース部23の基端近傍に形成されている。すなわち、接着領域142は、ティース部23の先端近傍より前記コアバック部22側に形成されている。このため、劣化領域129を磁束密度の高い領域から離して配置することができ、鉄損の上昇を抑制できる。結果的に、磁気回路における磁束Bへの磁気抵抗が小さくなり、ステータコア21の磁気特性を高めることができる。接着領域142は、ティース部23の全長に対し1/2より基端側に配置されていれば上述の効果を得ることができ、さらにティース部23の全長に対し1/3より基端側に配置されていれば、上述の効果をより顕著に得ることができる。
 (変形例2)
 次に、上述の実施形態に採用可能な、変形例2の接着部241および接着領域242について図6を基に説明する。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 上述の実施形態と同様に、ティース部23は、周方向に沿って延びる帯状の接着部241が設けられた接着領域242を有する。本変形例の接着部241は、上述の実施形態と比較して、接着領域242がティース部23の長さ方向略中央に形成されている点が主に異なる。
 上述の実施形態と同様に、接着領域242は、周方向に沿って直線状に延びる帯状に形成されているため、劣化領域229を通過する磁束Bの経路長が短くすることができる。結果的に、磁気回路における磁束Bへの磁気抵抗が小さくなり、ステータコア21の磁気特性を高めることができる。
 なお、本変形例の接着領域242は、接着領域242の全長に亘って一様である。
 また、本変形例の接着領域242は、変形例1の接着領域242と同様に、ティース部23の先端近傍より前記コアバック部22側に位置するため、鉄損の上昇を抑制できる。結果的に、磁気回路における磁束Bへの磁気抵抗が小さくなり、ステータコア21の磁気特性を高めることができる。
 (変形例3)
 次に、上述の実施形態に採用可能な、変形例3の接着部341および接着領域342について、図7を基に説明する。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 上述の実施形態と同様に、ティース部23は、周方向に沿って延びる帯状の接着部341が設けられた接着領域342を有する。本変形例の接着領域342は、変形例2の接着領域242の構成と類似する。本変形例の接着部341を有するステータコア21によれば、変形例2の接着部241を有するステータコア21と同様の効果を得ることができる。本変形例の接着領域342は、接着領域342の全長に亘って幅寸法が一様ではない点において、変形例2の接着領域242と異なる。
 本変形例の接着領域342の幅方向の両端部は、湾曲した形状を有する。接着領域342の幅方向の両端部は、ティース部23の周方向中央部からティース部23の周方向端部側に向かうに従い互いに離間する。このため、接着領域342は、ティース部23の周方向中央部からティース部23の周方向端部側に向かうに従い径方向の幅寸法が大きくなる。接着領域342は、ティース部23の周方向中央部において最も幅寸法が小さい。
 図4に示すように、磁束Bは、ティース部23の先端から周方向両側に拡散して延びる。また、磁束Bは、最短距離を通るように流れる傾向がある。このため、ティース部23の磁束密度は、周方向端部側に向かうに従って高くなりやすい。周方向においてティース部23の磁束密度のばらつきが大きくなるとステータコア21の磁気特性が低下する虞がある。
 本変形例によれば、接着領域342の径方向の幅寸法が、ティース部23の中央部から周方向端部側に向かうに従って大きくなる。すなわち、劣化領域391の径方向の長さがティース部23の中央部から幅方向端部側に向かうに従って大きくなる。このため、ティース部23は、周方向端部側に向かうに従い磁気抵抗が大きくなり、周方向端部側において磁束Bが流れにくくなる。これにより、ティース部23の周方向における磁束密度のばらつきを抑えし、ティース部23内の磁束密度を一様に近づけることができる。結果的に、積層コアの磁気特性を向上できる。
 (変形例4)
 次に、上述の実施形態に採用可能な変形例4の接着部441および接着領域442について、図8を基に説明する。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 上述の実施形態と同様に、ティース部23には、周方向に沿って直線状に延びる帯状の接着部441が設けられた接着領域442が設けられる。また、本変形例の接着部441は、上述の実施形態と比較して、ティース部23に、延在方向に沿って並ぶ複数(3つ)の接着領域442が形成されている点が主に異なる。複数の接着領域442は、ティース部23の長さ方向の中央から基端側に並んで配置される。
 本変形例に示すように、上述の実施形態および各変形例において、接着領域441はティース部23毎に複数設けられていてもよい。この場合であっても、実施形態および変形例による効果を奏することができ、加えて、電磁鋼板40同士の接着強度を高めることができる。
 なお、1つのティース部23に複数の接着領域442が複数設けられる場合において、接着領域442の幅寸法は、隣り合う接着領域442同士の間隔寸法より小さいことが好ましい。これにより、複数の接着領域442に起因する電磁鋼板の歪を抑えて電磁鋼板の鉄損の劣化(上昇)を抑えることができる。
 (変形例5)
 次に、上述の実施形態に採用可能な変形例5の接着部541および接着領域542について、図9を基に説明する。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
 上述の実施形態と同様に、ティース部23には、周方向に沿って延びる帯状の接着部541が設けられた接着領域542が設けられる。本変形例の接着部541は、上述の実施形態と比較して、接着領域542が周方向に沿って円弧状に延びる点が主に異なる。本変形例の接着部541は、接着部541を周方向に沿って一様に塗布することができるため、製造工程を簡素化できる。
 なお、本発明の技術的範囲は前記実施形態およびその変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 上述の実施形態およびその変形例のステータコアにおいて、複数の電磁鋼板は、ティース部に設けられた接着部において互いに固定されている。しかしながら、電磁鋼板同士は、ティース部に加えてコアバック部においても、互いに固定されていてもよい。この場合、コアバック部にかしめが設けられていてもよく、また、コアバック部に別途接着部が設けられていてもよい。さらに、電磁鋼板同士は、接着部による接着固定に加えて、互いに溶接固定されていてもよい。すなわち、本実施形態の効果は、コアバック部の固定方法によらず得ることができる。
 ステータコアの形状は、前記実施形態で示した形態に限定されるものではない。具体的には、ステータコアの外径および内径の寸法、積厚、スロット数、ティース部の周方向と径方向の寸法比率、ティース部とコアバック部との径方向の寸法比率、などは所望の回転電機の特性に応じて任意に設計可能である。
 前記実施形態におけるロータでは、2つ1組の永久磁石32が1つの磁極を形成しているが、本発明はこれに限られない。例えば、1つの永久磁石32が1つの磁極を形成していてもよく、3つ以上の永久磁石32が1つの磁極を形成していてもよい。
 前記実施形態では、回転電機として、永久磁石界磁型電動機を一例に挙げて説明したが、回転電機の構造は、以下に例示するようにこれに限られず、更には以下に例示しない種々の公知の構造も採用可能である。
 前記実施形態では、同期電動機として、永久磁石界磁型電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機がリラクタンス型電動機や電磁石界磁型電動機(巻線界磁型電動機)であってもよい。
 前記実施形態では、交流電動機として、同期電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機が誘導電動機であってもよい。
 前記実施形態では、電動機として、交流電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機が直流電動機であってもよい。
 前記実施形態では、回転電機として、電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機が発電機であってもよい。
 前記実施形態では、本発明に係る積層コアをステータコアに適用した場合を例示したが、ロータコアに適用することも可能である。
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態およびその変形例における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
 接着部の圧縮応力に起因する電磁鋼板の鉄損の劣化の抑制を検証する検証試験を実施した。なお本検証試験は、ソフトウェアを用いたシミュレーションにより実施した。ソフトウェアとしては、JSOL株式会社製の有限要素法電磁場解析ソフトJMAGを利用した。シミュレーションに用いるモデルとして、以下に説明するモデルNo.1~モデルNo.4のステータコア(積層コア)を想定した。各モデルに用いる電磁鋼板は、板厚0.25mmおよび板厚0.20mmの薄板を打ち抜き加工することによって作製したものを用いた。電磁鋼板の形状は、図2に示すものと同形状である。
 モデルNo.1~No.3のステータコアと、モデルNo.4のステータコアとは、電磁鋼板同士の固定の構成が異なる。モデルNo.1~モデルNo.3のステータコアにおいて、電磁鋼板同士の間には接着部が設けられ、電磁鋼板同士が互いに接着固定されている。一方で、モデルNo.4のステータコアは、かしめによって電磁鋼板同士が互いに固定されている。
 モデルNo.1の接着領域は、図4に示す接着領域42に相当する。モデルNo.1の接着領域は、複数のティース部に形成されており、それぞれの接着領域は、ティース部の先端近傍において周方向に沿って直線状に延びる帯状に形成されている。
 モデルNo.2の接着領域は、図5に示す接着領域142に相当する。モデルNo.2の接着領域は、複数のティース部に形成されており、それぞれの接着領域は、ティース部の基端近傍において周方向に沿って直線状に延びる帯状に形成されている。
 モデルNo.3の接着領域は、図6に示す接着領域242に相当する。モデルNo.3の接着領域は、複数のティース部に形成されておりそれぞれの接着領域は、ティース部の長さ方向中央において周方向に沿って直線状に延びる帯状に形成されている。
 モデルNo.4のステータコア1021を図11に示す。ステータコア1021は、上述の実施形態のステータコア21と同形状の電磁鋼板40を厚さ方向に積層して構成される。ステータコア1021は、上述の実施形態のステータコア21と比較して、電磁鋼板40同士がかしめ固定されている点が異なる。すなわち、ステータコア1021の電磁鋼板40は、かしめ1042(ダボ)によって互いに固定されている。かしめ1042は、ティース部23に位置する。
 各モデルについて、電磁鋼板の鉄損をシミュレーションソフトにより計算した計算結果を図10に示す。また、図10に示す計算結果の鉄損(縦軸)は、モデルNo.4の鉄損を1.0として、他のモデルの鉄損を、モデルNo.4の鉄損に対する比率として表した。
 図10に示すように、モデルNo.1~モデルNo.3のステータコアは、モデルNo.4のステータコアと比較して、鉄損の値が小さいことが確認された。
 モデルNo.1のステータコアは、モデルNo.2およびモデルNo.3のステータコアと比較して鉄損が大きい。モデルNo.1のステータコアでは、図4に示すように、接着領域がティース部の先端近傍に配置されるため、磁束密度の高い領域に劣化領域が設けられるため鉄損が上昇したと考えられる。一方で、モデルNo.2およびモデルNo.3のステータコアでは、図5および図6に示すように、劣化領域を磁束密度の高い領域から離して配置することができ、鉄損の上昇を抑制できたと考えられる。
 本発明によれば、磁気特性を向上させることができる。よって、産業上の利用可能性は大である。
10…回転電機、20…ステータ、21…ステータコア(積層コア)、22…コアバック部、23…ティース部、40…電磁鋼板、41,141,241,341…接着部、42,142,242,342…接着領域、d1…幅寸法、B…磁束

Claims (10)

  1.  互いに積層された複数の電磁鋼板と、
     積層方向に隣り合う前記電磁鋼板同士の間に設けられ、前記電磁鋼板同士をそれぞれ接着する接着部と、を備え、
     前記電磁鋼板は、
      環状のコアバック部と、
      前記コアバック部から前記コアバック部の径方向に延びるとともに前記コアバック部の周方向に間隔をあけて配置された複数のティース部と、を有し、
     前記電磁鋼板の前記ティース部は、周方向に沿って延びる帯形状の接着部が設けられた接着領域を有する、
    積層コア。
  2.  前記接着領域は、前記ティース部の先端近傍より前記コアバック部側に形成されている、
    請求項1に記載の積層コア。
  3.  前記接着領域は、前記ティース部の周方向中央部から前記ティース部の周方向端部側に向かうに従い径方向の幅寸法が大きくなる、
    請求項1又は2に記載の積層コア。
  4.  前記接着領域は、周方向に沿って円弧状に延びる、
    請求項1又は2に記載の積層コア。
  5.  前記接着部は、前記ティース部の全幅に亘って延びる、請求項1~4の何れか一項に記載の積層コア。
  6.  前記接着部の平均厚みが1.0μm~3.0μmである、
    請求項1~5の何れか一項に記載の積層コア。
  7.  前記接着部の平均引張弾性率Eが1500MPa~4500MPaである、
    請求項1~6の何れか一項に記載の積層コア。
  8.  前記接着部が、エラストマー含有アクリル系接着剤からなるSGAを含む常温接着タイプのアクリル系接着剤である、
    請求項1~7の何れか一項に記載の積層コア。
  9.  前記接着部の融点が180℃以上である、
    請求項1~8の何れか一項に記載の積層コア。
  10.  請求項1~9の何れか一項に記載の積層コアを備える、回転電機。
PCT/JP2019/049294 2018-12-17 2019-12-17 積層コアおよび回転電機 WO2020129942A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201980081465.5A CN113169640A (zh) 2018-12-17 2019-12-17 层叠芯及旋转电机
JP2020538146A JP6863525B2 (ja) 2018-12-17 2019-12-17 積層コアおよび回転電機
SG11202108887TA SG11202108887TA (en) 2018-12-17 2019-12-17 Laminated core and electric motor
BR112021008960-8A BR112021008960A2 (pt) 2018-12-17 2019-12-17 núcleo empilhado e máquina elétrica giratória
EP19898202.7A EP3902120A4 (en) 2018-12-17 2019-12-17 STACKED CORE AND ROTATING ELECTRIC MACHINE
CA3131500A CA3131500A1 (en) 2018-12-17 2019-12-17 Laminated core and electric motor
KR1020217017199A KR102605370B1 (ko) 2018-12-17 2019-12-17 적층 코어 및 회전 전기 기기
EA202192075A EA202192075A1 (ru) 2018-12-17 2019-12-17 Шихтованный сердечник и электродвигатель
US17/294,202 US20220014051A1 (en) 2018-12-17 2019-12-17 Laminated core and electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018235857 2018-12-17
JP2018-235857 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020129942A1 true WO2020129942A1 (ja) 2020-06-25

Family

ID=71100306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049294 WO2020129942A1 (ja) 2018-12-17 2019-12-17 積層コアおよび回転電機

Country Status (11)

Country Link
US (1) US20220014051A1 (ja)
EP (1) EP3902120A4 (ja)
JP (1) JP6863525B2 (ja)
KR (1) KR102605370B1 (ja)
CN (1) CN113169640A (ja)
BR (1) BR112021008960A2 (ja)
CA (1) CA3131500A1 (ja)
EA (1) EA202192075A1 (ja)
SG (1) SG11202108887TA (ja)
TW (1) TWI734303B (ja)
WO (1) WO2020129942A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710990B2 (en) 2018-12-17 2023-07-25 Nippon Steel Corporation Laminated core with circumferentially spaced adhesion parts on teeth
US11742129B2 (en) 2018-12-17 2023-08-29 Nippon Steel Corporation Adhesively-laminated core, manufacturing method thereof, and electric motor
WO2023190460A1 (ja) * 2022-03-29 2023-10-05 日本製鉄株式会社 ステータコア、ステータの製造方法および回転電機
US11855485B2 (en) 2018-12-17 2023-12-26 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
US11863017B2 (en) 2018-12-17 2024-01-02 Nippon Steel Corporation Laminated core and electric motor
US11915860B2 (en) 2018-12-17 2024-02-27 Nippon Steel Corporation Laminated core and electric motor
US11923130B2 (en) 2018-12-17 2024-03-05 Nippon Steel Corporation Laminated core and electric motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114301194A (zh) * 2021-02-26 2022-04-08 华为数字能源技术有限公司 定子、定子的制作方法、电机和电动汽车

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428743U (ja) * 1990-05-22 1992-03-06
JP2006254530A (ja) * 2005-03-08 2006-09-21 Mitsubishi Electric Corp 電動機
JP2008067459A (ja) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp 積層コアおよびステータ
JP2011023523A (ja) 2009-07-15 2011-02-03 Nippon Steel Corp 良好な熱伝導性を有する電磁鋼板積層コアおよびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125341A (ja) * 2000-10-16 2002-04-26 Denki Kagaku Kogyo Kk ステーター及びそれを用いたモーター
JP2002151335A (ja) * 2000-11-10 2002-05-24 Nippon Steel Corp 鉄損特性の優れた積層鉄芯およびその製造方法
JP4687289B2 (ja) * 2005-07-08 2011-05-25 東洋紡績株式会社 ポリアミド系混合樹脂積層フィルムロール、およびその製造方法
JP5121632B2 (ja) * 2008-08-26 2013-01-16 三菱電機株式会社 回転電機およびその固定子鉄心並びに固定子鉄心の製造方法
CN102132366B (zh) * 2009-01-14 2013-03-06 三菱电机株式会社 层叠铁芯的制造方法及其制造夹具
JP5084770B2 (ja) * 2009-03-13 2012-11-28 三菱電機株式会社 電動機及び圧縮機及び空気調和機
US20170117758A1 (en) * 2014-07-29 2017-04-27 Jfe Steel Corporation Electrical steel sheet for stacking, stacked electrical steel sheet, method of manufacturing stacked electrical steel sheet, and iron core for automotive motor
JP6479392B2 (ja) * 2014-09-30 2019-03-06 株式会社三井ハイテック 積層鉄心及びその製造方法
JP6432397B2 (ja) * 2015-03-12 2018-12-05 アイシン・エィ・ダブリュ株式会社 モータの製造方法およびモータコア
GB2555354B (en) * 2015-08-21 2021-08-11 Mitsubishi Electric Corp Permanent Magnet Embedded Motor, Compressor, and Refrigerating and Air Conditioning Apparatus
JP2018023232A (ja) * 2016-08-04 2018-02-08 三菱電機株式会社 回転電機および回転電機の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428743U (ja) * 1990-05-22 1992-03-06
JP2006254530A (ja) * 2005-03-08 2006-09-21 Mitsubishi Electric Corp 電動機
JP2008067459A (ja) * 2006-09-06 2008-03-21 Mitsubishi Electric Corp 積層コアおよびステータ
JP2011023523A (ja) 2009-07-15 2011-02-03 Nippon Steel Corp 良好な熱伝導性を有する電磁鋼板積層コアおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902120A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11710990B2 (en) 2018-12-17 2023-07-25 Nippon Steel Corporation Laminated core with circumferentially spaced adhesion parts on teeth
US11742129B2 (en) 2018-12-17 2023-08-29 Nippon Steel Corporation Adhesively-laminated core, manufacturing method thereof, and electric motor
US11855485B2 (en) 2018-12-17 2023-12-26 Nippon Steel Corporation Laminated core, method of manufacturing same, and electric motor
US11863017B2 (en) 2018-12-17 2024-01-02 Nippon Steel Corporation Laminated core and electric motor
US11915860B2 (en) 2018-12-17 2024-02-27 Nippon Steel Corporation Laminated core and electric motor
US11923130B2 (en) 2018-12-17 2024-03-05 Nippon Steel Corporation Laminated core and electric motor
WO2023190460A1 (ja) * 2022-03-29 2023-10-05 日本製鉄株式会社 ステータコア、ステータの製造方法および回転電機

Also Published As

Publication number Publication date
US20220014051A1 (en) 2022-01-13
EP3902120A4 (en) 2022-10-05
BR112021008960A2 (pt) 2021-08-03
SG11202108887TA (en) 2021-09-29
EA202192075A1 (ru) 2021-11-23
KR20210088642A (ko) 2021-07-14
CA3131500A1 (en) 2020-06-25
EP3902120A1 (en) 2021-10-27
TWI734303B (zh) 2021-07-21
KR102605370B1 (ko) 2023-11-24
JPWO2020129942A1 (ja) 2021-02-15
CN113169640A (zh) 2021-07-23
JP6863525B2 (ja) 2021-04-21
TW202032894A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2020129942A1 (ja) 積層コアおよび回転電機
WO2020129936A1 (ja) 積層コアおよび回転電機
JP7422679B2 (ja) ステータ用接着積層コアおよび回転電機
KR102643516B1 (ko) 적층 코어 및 회전 전기 기계
TWI724690B (zh) 積層鐵芯及旋轉電機
JP7418350B2 (ja) ステータ用接着積層コアおよび回転電機
WO2020129938A1 (ja) 積層コア、コアブロック、回転電機およびコアブロックの製造方法
JP7111182B2 (ja) 積層コアおよび回転電機
WO2020129925A1 (ja) ステータ用接着積層コアおよび回転電機
WO2020129928A1 (ja) 積層コアおよび回転電機
KR20240052877A (ko) 스테이터용 접착 적층 코어 및 회전 전기 기기
JP2023060136A (ja) 積層コア及び回転電機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020538146

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898202

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021008960

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217017199

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019898202

Country of ref document: EP

Effective date: 20210719

ENP Entry into the national phase

Ref document number: 112021008960

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210507

ENP Entry into the national phase

Ref document number: 3131500

Country of ref document: CA