WO2021253862A1 - 电磁加热装置 - Google Patents

电磁加热装置 Download PDF

Info

Publication number
WO2021253862A1
WO2021253862A1 PCT/CN2021/077716 CN2021077716W WO2021253862A1 WO 2021253862 A1 WO2021253862 A1 WO 2021253862A1 CN 2021077716 W CN2021077716 W CN 2021077716W WO 2021253862 A1 WO2021253862 A1 WO 2021253862A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
light
infrared detector
transmitting panel
wavelength range
Prior art date
Application number
PCT/CN2021/077716
Other languages
English (en)
French (fr)
Inventor
黄新建
熊贵林
侯俊峰
刘传兰
伍叔云
申晓雷
Original Assignee
广东美的白色家电技术创新中心有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的白色家电技术创新中心有限公司, 美的集团股份有限公司 filed Critical 广东美的白色家电技术创新中心有限公司
Publication of WO2021253862A1 publication Critical patent/WO2021253862A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves

Definitions

  • This application relates to the field of household appliances, in particular to an electromagnetic heating device.
  • the electromagnetic heating device uses a heating coil to generate an alternating electromagnetic field, so that the appliance to be heated in the alternating electromagnetic field actively generates heat due to the eddy current generated in the electromagnetic induction.
  • the existing heating coil and the appliance to be heated are usually physically separated by a panel.
  • a panel On the premise of not destroying the panel structure, due to the poor thermal conductivity of the panel, the uneven temperature distribution of the panel during the heating process, and the panel's own radiation, it cannot be heated.
  • the temperature of the appliance can be accurately measured.
  • an electromagnetic heating device which includes: a light-transmitting panel for carrying a device to be heated, and the light-transmitting panel can be penetrated by infrared rays in the second wavelength range and the third wavelength range;
  • the coil is arranged under the light-transmitting panel and is used to generate an electromagnetic field to heat the appliance to be heated;
  • the temperature detection component includes a second infrared detector arranged under the light-transmitting panel, and the second infrared detector
  • the response wavelength range of is the second wavelength range, and is used to receive the second infrared rays in the second wavelength range emitted by the light-transmitting panel and the device to be heated;
  • the emission detection component includes the light-transmitting panel
  • the infrared emitting element and a third infrared detector the infrared emitting element is used to emit the third infrared ray in the third wavelength range to the to-be-heated appliance, and the third infrared detector is used to receive the
  • the light-transmitting panel cannot be penetrated by infrared rays in the first wavelength range;
  • the temperature detection component further includes: a first infrared detector disposed under the light-transmitting panel, the first The response wavelength range of the infrared detector is the first wavelength range, and is used to receive the first infrared rays in the first wavelength range emitted by the light-transmitting panel.
  • the electromagnetic heating device further includes: a controller, which is connected to the temperature detection component and the emission detection component, and is used to obtain the information detected by the first infrared detector received by the first infrared detector.
  • the first infrared signal, the second infrared detector receives the second infrared signal measured by the second infrared, the third infrared signal of the third infrared, the third infrared detector receives the third reflection Line measured third reflection signal; calculate the reflectance of the appliance to be heated according to the third infrared signal and the third reflection signal, and calculate the reflectance of the appliance to be heated according to the reflectance, the first infrared signal and the The second infrared signal calculates the temperature of the appliance to be heated.
  • the first detection area on the light-transmitting panel corresponding to the first infrared detector and the second detection area on the light-transmitting panel corresponding to the second infrared detector at least partially overlap.
  • the first infrared detector, the second infrared detector, the infrared emitting element, and the third infrared detector are all arranged toward the light-transmitting panel, and viewed from a direction perpendicular to the light-transmitting panel ,
  • the first infrared detector, the second infrared detector, the infrared emitting element and the third infrared detector are arranged in an array.
  • the first wavelength range is greater than 4 ⁇ m
  • the second wavelength range is greater than 2.5 ⁇ m and less than 4.5 ⁇ m
  • the first infrared detector and the second infrared detector are both pyroelectric Pile of infrared detectors.
  • the first wavelength range is greater than 4 ⁇ m
  • the second wavelength range is less than 3 ⁇ m
  • the first infrared detector is a thermopile infrared detector
  • the second infrared detector is an infrared Photodetector.
  • the temperature detection area on the light-transmitting panel corresponding to the temperature detection component and the emission detection area on the light-transmitting panel corresponding to the emission detection component at least partially overlap.
  • the third wavelength range is less than 1 ⁇ m.
  • the temperature detection component further includes: a thermal sensor attached to the lower surface of the light-transmitting panel for detecting the temperature of the light-transmitting panel;
  • the second infrared detector has a second detection area, and the thermal sensor is located in the second detection area.
  • the present application detects the infrared reflectivity of the surface of the heating device in real time through the arrangement of the second infrared detector and the emission detection component, and then considers the influence of the surface infrared reflectivity of the heating device when measuring the temperature of the heating device, so that the present embodiment
  • the electromagnetic heating device is suitable for a variety of different heating appliances, and for heating appliances of different materials, the difference in detection accuracy will not be too great.
  • Fig. 1 is a schematic structural diagram of a first embodiment of an electromagnetic heating device according to the present application
  • FIG. 2 is a schematic structural diagram of a second embodiment of an electromagnetic heating device according to this application.
  • Fig. 3 is a schematic structural diagram of a third embodiment of an electromagnetic heating device according to the present application.
  • FIG. 4 is a schematic structural diagram of a fourth embodiment of an electromagnetic heating device according to this application.
  • 5a is a schematic structural diagram of an implementation of a fifth embodiment of an electromagnetic heating device according to this application.
  • 5b is a schematic structural diagram of another implementation of the fifth embodiment of the electromagnetic heating device according to the present application.
  • FIG. 6 is a schematic structural diagram of a sixth embodiment of an electromagnetic heating device according to this application.
  • Fig. 7 is a schematic structural diagram of a seventh embodiment of an electromagnetic heating device according to the present application.
  • FIG. 8 is a schematic cross-sectional view of the control circuit board and the heat-conducting component in FIG. 7 of the electromagnetic heating device of this application;
  • Fig. 9 is a top view of Fig. 8 of the electromagnetic heating device of the present application.
  • FIG. 10 is a schematic top view of the eighth embodiment of an electromagnetic heating device according to the present application.
  • 100-Electromagnetic heating device 1-transparent panel; 2-to be heated; 3-heating coil; 4-first infrared detector; 41-first detection end; 5-second infrared detector; 51-second Detecting end; 6-first infrared; 7-second infrared; 8-light guide structure; 81-first light guide section; 82-second light guide section; 83-light splitter; 84-third light guide section; 85-The fourth light guide section; 9-Thermal temperature sensor; 10-Infrared emitter; 11-The third infrared detector; 12-The third infrared; 13-The third reflection line; 14-Thermal component; 15-Control Circuit board; 151-metal shield.
  • system and "network” in this article are often used interchangeably in this article.
  • the term “and/or” in this text is only an association relationship that describes associated objects, which means that there can be three relationships.
  • a and/or B can mean: A alone exists, A and B exist at the same time, and exist alone B these three situations.
  • the character “/” in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • "many” in this document means two or more than two.
  • the present application provides an electromagnetic heating device 100, including a light-transmitting panel 1 for carrying a device 2 to be heated, which is arranged under the light-transmitting panel 1 and used to generate an electromagnetic field to heat the device to be heated 2 heating coil 3 and temperature detection components.
  • the light-transmitting panel 1 cannot be penetrated by infrared rays in the first wavelength range, and can be penetrated by the infrared rays in the second wavelength range;
  • the infrared detector 5, the response wavelength range of the first infrared detector 4 is the first wavelength range, and is used to receive the first infrared rays 6 of the first wavelength range emitted by the light-transmitting panel 1, and the corresponding wavelength range of the second infrared detector 5
  • the second wavelength range is used to receive the second infrared rays 7 in the second wavelength range emitted by the light-transmitting panel 1 and the heating appliance 2.
  • the first infrared detector 4 only detects the first infrared rays 6 emitted by the light-transmitting panel 1 .
  • the second infrared detector 5 detects the second infrared rays 7 emitted by the transparent panel 1 and the heating appliance 2. Therefore, the present application considers the radiation contribution of the first infrared rays 6 of the light-transmitting panel 1 itself on the basis of the light-transmitting panel 1 and the second infrared rays 7 of the appliance 2 to be heated, so as to obtain the infrared rays radiated by the appliance 2 to be heated.
  • the temperature of the appliance 2 to be heated can be accurately calculated.
  • the above method not only guarantees the integrity of the light-transmitting panel 1 and avoids problems such as strength reduction and water seepage after the integrity of the light-transmitting panel 1 is damaged, but also avoids the transparency of the light-transmitting panel 1, the temperature of the heating appliance 2, and the like.
  • the thermal conductivity of the heating device 2 As well as the influence of the thermal conductivity of the heating device 2 on the accuracy of the measurement temperature, a more accurate temperature measurement of the heating device 2 is realized, and the temperature measurement is real-time.
  • the temperature measurement deviation of the electromagnetic heating device 100 of the present application is less than 5° C., and the temperature measurement response time is less than 1 second.
  • the electromagnetic heating device 100 of the present application further includes a controller connected to a temperature detection component for acquiring the first infrared signal detected by the first infrared detector 4 received by the first infrared 6, and The second infrared detector 5 receives the second infrared signal measured by the second infrared 7 to calculate the temperature of the appliance 2 to be heated according to the first infrared signal and the second infrared signal.
  • the controller obtains the first infrared signal corresponding to the first wavelength range emitted by the light-transmitting panel 1, it can calculate the corresponding infrared signal corresponding to the second wavelength range of the light-transmitting panel 1 according to the first infrared signal.
  • the radiation contribution of the corresponding infrared signal corresponding to the second wavelength range of the transparent panel 1 in the previous step is subtracted to obtain the infrared radiation radiated by the heating device 2 itself.
  • the accurate temperature of the appliance 2 to be heated can be further obtained.
  • the controller may also be a cloud server, which can also achieve the purpose of the present application, and all are within the scope of protection of the present application.
  • the light-transmitting panel 1 corresponds to the first infrared detector 4
  • the first detection area at least partially overlaps with the second detection area corresponding to the second infrared detector 5 on the transparent panel 1.
  • the first detection area is the projection area corresponding to the first infrared detector 4 radiating to the light-transmitting panel 1 at a certain angle from the first detection end 41
  • the second detection area is the second infrared detector 5 with the second
  • the detection end 52 is a starting point and radiates a corresponding projection area range to the light-transmitting panel 1 at a certain angle.
  • the light-transmitting panel 1 is a glass panel, and the first wavelength range is greater than 4 ⁇ m. In this wavelength range, infrared rays cannot penetrate the light-transmitting panel 1.
  • the first infrared rays 6 of an infrared detector 4 are all infrared rays of the light-transmitting panel 1; the second wavelength range is greater than 2.5 ⁇ m and less than 4.5 ⁇ m.
  • the infrared rays in this wavelength range can partially penetrate the light-transmitting panel 1, so the first Part of the second infrared rays 7 of the two infrared detectors 5 is the infrared rays of the appliance 2 to be heated, and part of the second infrared rays 7 is the infrared rays of the light-transmitting panel 1 itself.
  • the first infrared detector 4 and the second infrared detector 5 are both thermopile infrared detectors.
  • the first wavelength range is greater than 4 ⁇ m, and the second wavelength range is less than 3 ⁇ m.
  • the first infrared detector 4 is a thermopile infrared detector
  • the second infrared detector 5 is an infrared photodetector.
  • the first infrared detector 4 and the second infrared detector 5 can also be selected from other types of infrared detectors, as long as the effect of detecting the first infrared rays 6 and the second infrared rays 7 is achieved, that is, Can achieve the purpose of this application.
  • the first detection end 41 of the first infrared detector 4 and the second detection end 51 of the second infrared detector 5 are arranged in the same direction.
  • the distance between the central axis of the first detection end 41 and the central axis of the second detection end 51 is less than or equal to 20 mm.
  • the distance between the central axis of the first detection end 41 and the central axis of the second detection end 51 may be 15 mm, or 10 mm, or 5 mm, or 2 mm.
  • the smaller the distance between the central axis of the first detection end 41 and the central axis of the second detection end 51 the better the temperature measurement effect.
  • the distance range between the central axis of the first detection end 41 and the central axis of the second detection end 51 can also be adjusted according to the actual situation, as long as the purpose of improving the temperature measurement accuracy is achieved. To achieve the purpose of this application.
  • the first detecting end 41 of the first infrared detector 4 and the second detecting end 51 of the second infrared detector 5 are both directly facing the light-transmitting panel 1, and the first detecting end 41 and the second detecting end 41 are opposite to the transparent panel 1.
  • the distance between the two detecting ends 51 and the transparent panel 1 is equal, that is, the first infrared rays 6 and the second infrared rays 7 are projected to the first detecting ends 41 and the second along the direction perpendicular to the transparent panel 1 as shown in FIG. Detecting terminal 51.
  • the first detection end 41 of the first infrared detector 4 and the second detection end 51 of the second infrared detector 5 face the same direction, and they are not directly opposite to each other.
  • the electromagnetic heating device 100 further includes a guide arranged between the light-transmitting panel 1 and the temperature detection component.
  • the light structure 8 is used for guiding the first infrared rays 6 in the first wavelength range to the first infrared detector 4 and guiding the second infrared rays 7 in the second wavelength range to the second infrared detector 5.
  • the light guide structure 8 includes a first light guide section 81 perpendicular to the light transmission panel 1, and an end connected to the first light guide section 81 away from the light transmission panel 1 and parallel to the light transmission panel. 1 ⁇ second light guide section 82.
  • a first infrared detector 4 and a second infrared detector 5 are provided at one end of the second light guide section 82 away from the first light guide section 81, and the first detection end 41 and the second detection end 51 are both facing the second light guide
  • the segment 82 is away from one end of the first light guide segment 81.
  • the first infrared rays 6 and the second infrared rays 7 are first projected along the first light guide section 81, and then bend by 90 degrees to the second light guide section 82 and continue to be projected until reaching the first detection end 41 and the second detection end. 51.
  • the light guide structure 8 in this embodiment can be arranged in a variety of ways. As long as the function of guiding the infrared projection route is achieved, the purpose of the application can be achieved, and it is not limited here.
  • the light guide structure 8 may be configured as a right-angled plastic tube.
  • first detection end 41 and the second detection end 51 may also be arranged in other positions than those shown in FIG. 2, and the light guide structure 8 may also be arranged in other shapes and structures, such as circular The arc shape, etc., can achieve the purpose of this application, and is not limited here.
  • the difference from the first embodiment is: the first detection end 41 of the first infrared detector 4 and the second detection end of the second infrared detector 5 51 has different directions; a light splitter 83 is provided in the light guide structure 8.
  • the first infrared rays 6 in the first wavelength range and the second infrared rays 7 in the second wavelength range are guided to different directions by the beam splitter 83, so that the first infrared rays 6 in the first wavelength range are transmitted to the first detection end 41, and the second wavelength The second infrared rays 7 in the range are transmitted to the second detection end 51.
  • the first detection end 41 of the first infrared detector 4 is not facing the light-transmitting panel 1, and the second detection end 51 of the second infrared detector 5 is facing the light-transmitting panel 1.
  • An infrared detector 4 is located at the upper right of the second infrared detector 5.
  • the light guide structure 8 includes a third light guide section 84 extending to the second infrared detector 5 in a direction perpendicular to the light-transmitting panel 1, and a third light guide section 84 connected to the third light guide section 84 and along and light-transmitting
  • the panel 1 extends in a parallel direction to the fourth light guide section 85 of the first infrared detector 4, that is, the third light guide section 84 and the fourth light guide section 85 have a T-shaped structure.
  • the above-mentioned light splitting member 83 is arranged in the third light guide section 84 and extends obliquely downward in the direction from the third light guide section 84 to the fourth light guide section 85.
  • the first infrared rays 6 are reflected to the first detection end 41 of the first infrared detector 4 via the beam splitter 83, and the second infrared rays 7 are transmitted to the second detection end 51 of the second infrared detector 5 via the beam splitter 83.
  • the positions of the first infrared detector 4 and the second infrared detector 5 may also be located at other positions than those shown in FIG. 3, correspondingly the light guide structure 8 and the light splitting member 83
  • the setting method of is also specifically adjusted and set according to the positions of the first infrared detector 4 and the second infrared detector 5, which are all within the protection scope of the present application, and will not be repeated here.
  • the difference from the first embodiment is that a thermal temperature sensor 9 is provided instead of the first infrared detector 4, and the thermal temperature sensor 9 is installed in the second infrared detector. In the detection area. The temperature of the light-transmitting panel 1 is detected by the setting of the thermal temperature sensor 9, and then the temperature of the light-transmitting panel 1 can be subtracted when calculating the temperature of the appliance 2 to be heated. It should be noted that in this embodiment, the above-mentioned method needs to be implemented on the premise of changing the light transmittance of the light-transmitting panel 1 as little as possible.
  • the emissivity of the surface of the heating appliance 2 has a great influence on the temperature measurement accuracy, for example, the temperature measurement deviation between the stainless steel heating appliance 2 and the black iron heating appliance 2 can exceed 30 degrees, and in the actual heating process, the heating The emissivity of the surface of the heating device 2 is uncertain.
  • the difference from the first embodiment is: this embodiment
  • the electromagnetic heating device 100 is not provided with a first infrared detector 4, but only a second infrared detector 5, and an infrared emitting element 10 is added to emit a third infrared ray 12 in a third wavelength range to the appliance 2 to be heated, And the third infrared detector 11 is used to receive the third reflection line 13 of the third infrared ray 12 reflected by the heating appliance 2.
  • the infrared reflectivity of the surface of the heating appliance 2 is detected in real time, and then the surface of the heating appliance 2 is considered when measuring the temperature.
  • the influence of the infrared reflectivity makes the electromagnetic heating device 100 in this embodiment suitable for various heating appliances, and the detection accuracy of heating appliances 2 of different materials will not differ too much.
  • the difference from the first embodiment is that: on the basis of the first embodiment, the electromagnetic heating device 100 is additionally provided with an emission detection component That is, in this embodiment, a first infrared detector 4, a second infrared detector 5, an infrared emitting element 10, and a third infrared detector 11 are provided.
  • the emission detection assembly includes an infrared emission member 10 and a third infrared detector 11 arranged under the light-transmitting panel 1.
  • the infrared emission member 10 is used to emit a third infrared ray 12 in a third wavelength range to the appliance 2 to be heated, and the third infrared detector
  • the device 11 is used for receiving the third reflection line 13 reflected by the third infrared rays 12 by the heating appliance 2.
  • the infrared reflectance of the surface of the appliance to be heated 2 is detected in real time, and then the infrared emissivity of the surface of the appliance to be heated 2 is calculated based on the infrared reflectivity, so that in the first embodiment, according to the first infrared detection Based on the detection results calculated by the second infrared detector 5 and the heating device 2, the final measurement temperature of the heating device 2 is compensated to avoid the influence of the emissivity of the surface of the heating device 2 on the final temperature measurement accuracy.
  • the electromagnetic heating device 100 is suitable for a variety of different appliances 2 to be heated.
  • the controller is also used to obtain the third infrared signal of the third infrared ray 12, and the third infrared detector 11 receives the third reflection line. 13 The third reflected signal measured.
  • the reflectivity of the appliance 2 to be heated is calculated based on the third infrared signal and the third reflection signal
  • the temperature of the appliance 2 to be heated is calculated based on the reflectivity, the first infrared signal and the second infrared signal.
  • the principle of estimating the infrared emissivity on the surface of the heating device 2 based on the above-mentioned reflectivity of the heating device 2 is: According to optical principles, for the heating device 2 made of metal, its infrared emissivity is equal to the infrared absorptivity. The addition of the infrared absorptivity and the infrared reflectivity is equal to 1. Therefore, the infrared absorptivity can be calculated by measuring the reflectivity of the heating appliance 2 and finally the infrared emissivity can be calculated.
  • the infrared emitting element 10 and the third infrared detector 11 are the same as the first infrared detector 4 and the second infrared detector 5. Viewed from the direction of 1, the first infrared detector 4, the second infrared detector 5, the infrared emitting element 10 and the third infrared detector 11 are arranged in an array. Specifically, as in the first embodiment, the separation distances between the first infrared detector 4, the second infrared detector 5, the infrared emitting element 10, and the third infrared detector 11 and the light-transmitting panel 1 are all equal.
  • the first infrared detector 4 and the second infrared detector 5 may be arranged at other positions that are not directly opposite to the transparent panel, and may also be spaced apart from the transparent panel 1. The distances are not equal. Accordingly, only the addition of the light guide structure 8 and the light splitting member 83 to guide the first infrared rays 6 and the second infrared rays 7 can achieve the purpose of the present application.
  • the temperature detection area of the temperature detection component corresponding to the light-transmitting panel 1 of this embodiment is the same as the emission detection area of the light-transmitting panel 1 corresponding to the emission detection component. At least partially overlap to further improve the accuracy of temperature measurement.
  • the range of the third waveband is less than 1 ⁇ m.
  • the infrared emitting element 10 and the third infrared detector 11 are infrared photoelectric tubes working in the range of 800 nm-1 ⁇ m.
  • the first infrared detector 4 in this embodiment is replaced with a thermal temperature sensor 9.
  • the heat-sensitive temperature sensor 9 is attached to the lower surface of the light-transmitting panel 1 for detecting the temperature of the light-transmitting panel 1, and the second infrared detector 5 has a second detection area on the light-transmitting panel 1 corresponding to the heat sensor Located in the second detection area.
  • the difference from the fifth embodiment is that: in order to facilitate the setting of the temperature detection component and the emission detection component, the temperature detection of the corresponding temperature detection component on the transparent panel 1
  • the area does not overlap with the emission detection area of the corresponding emission detection component on the light-transmitting panel 1, that is, the temperature detection area is different from the emission detection area, and the purpose of the present application can also be achieved.
  • the difference from the first embodiment is that the temperature detection component further includes a heat conduction component 14, a first infrared detector 4 and a second infrared detector 5. Both are embedded in the heat-conducting component 14, and the first detection end 41 of the first infrared detector 4 and the second detection end 51 of the second infrared detector 5 are exposed on the heat-conducting component 14.
  • the heat capacity of the entire temperature detection component is increased, so that the first infrared detector 4 and the second infrared detector 5 can be guaranteed not to have temperature mutations due to electromagnetic heating, cooling fans, etc. , So that the temperature of each part of the entire temperature detection assembly is the same, so as to keep the temperature of the first infrared detector 4 and the second infrared detector 5 constant.
  • the temperature detection component further includes a temperature sensor, which is disposed in the heat conducting component 14, the first infrared detector 4 or the second infrared detector 5, so that the controller can further obtain the temperature of the temperature detection component. , And further perform temperature compensation for the temperature of the heating device 2 according to the temperature of the temperature detection component. Therefore, the temperature influence of the temperature detection component itself is eliminated, so as to further improve the temperature accuracy of the final heating appliance 2.
  • the above-mentioned controller includes a control circuit board 15 on which there are an analog signal measurement circuit and a signal acquisition and processing controller to obtain the temperature of the object to be heated through measurement and calculation.
  • the above-mentioned temperature sensor is an NTC temperature sensitive resistor.
  • the temperature sensor can also be set to other types, and other settings can also be used, such as different from the above-mentioned built-in temperature sensor, and a separate temperature sensor is provided, as long as the control is achieved
  • the purpose of the present application can be achieved by obtaining the effect of the temperature detection component temperature by the temperature detector.
  • the heat-conducting component 14 in this embodiment is made of metal, and the control circuit board 15 is provided with a metal shield 151; the heat-conducting component 14 and the metal shield 151 is connected and grounded.
  • the metal shield 151 and the heat-conducting component 14 are in contact with each other and are grounded to form a metal shield to shield the strong electromagnetic interference generated by the heating coil 3.
  • both the upper end surface and the lower end surface of the control circuit board 15 are welded with a metal shield 151.
  • the metal shield 151 is made of nickel silver to avoid electromagnetic heating.
  • the metal shield 151 may not be provided, and the heat-conducting component 14 is directly grounded through the control circuit board 15, which can also achieve the purpose of the present application.
  • the thermally conductive component 14 includes a thermally conductive block, and the first infrared detector 4 and the second infrared detector 5 are both embedded in the thermally conductive block.
  • the heat-conducting component 14 includes two heat-conducting blocks, the first infrared detector 4 is embedded in one of the heat-conducting blocks, and the second infrared detector 5 is embedded in the other heat-conducting block.
  • the thermal conductive component 14 may be a copper thermal conductive component, or an aluminum oxide thermal conductive component, or a zirconia thermal conductive component, so as to ensure that the thermal conductive component 14 has good thermal conductivity and can be induction heated to a minimum.
  • the difference from one implementation b of the fifth embodiment is that the temperature detection component further includes a heat conduction component 14, a first infrared detector 4,
  • the second infrared detectors 5 are all embedded in the heat-conducting component 14, and the first detection end 41 of the first infrared detector 4 and the second detection end 51 of the second infrared detector 5 are exposed on the heat-conducting component 14, and the infrared emission
  • the component 10 and the third infrared detector 11 do not need to be embedded in the thermally conductive component 14.
  • a heat-conducting component 14 can also be added based on another implementation a of the fifth embodiment, so that the second infrared detector 5 is embedded in the heat-conducting component 14, and The second detection end 51 of the second infrared detector 5 is exposed on the heat-conducting component 14, and the infrared emitter 10 and the third infrared detector 11 do not need to be embedded in the heat-conducting component 14.
  • This embodiment can also achieve the purpose of the present invention.
  • the heat capacity of the entire temperature detection component is increased, so it can be ensured that the first infrared detector 4 and the second infrared detector 5 are not heated by electromagnetic heating, cooling fans, etc.
  • a sudden change in temperature is caused by a factor, which in turn makes the temperature of each part of the entire temperature detection assembly the same, so as to keep the temperature of the first infrared detector 4 and the second infrared detector 5 constant.
  • the temperature detection component further includes a temperature sensor, which is disposed in the heat conduction component 14, the first infrared detector 4, or the second infrared detector 5, so that the controller can further obtain the temperature detection component
  • the temperature of the heating device 2 is further compensated for the temperature of the heating device 2 according to the temperature of the temperature detection component. Therefore, the temperature influence of the temperature detection component itself is eliminated, so as to further improve the temperature accuracy of the final heating appliance 2.
  • the above-mentioned controller includes a control circuit board 15 on which there are an analog signal measurement circuit and a signal acquisition and processing controller to obtain the temperature of the object to be heated through measurement and calculation.
  • the above-mentioned temperature sensor is an NTC temperature sensitive resistor.
  • the heat-conducting component 14 in this embodiment is made of metal, and the control circuit board 15 is provided with a metal shield 151; the heat-conducting component 14 and The metal shield 151 is connected and grounded. As a result, the metal shield 151 and the heat-conducting component 14 are in contact with each other and grounded to form a metal shield to shield the strong electromagnetic interference generated by the heating coil 3.
  • the present application sets the first infrared detector 4 responding to the first wavelength range and the second infrared detector 5 responding to the second wavelength range so that the first infrared detector 4 only detects the first infrared detector emitted by the light-transmitting panel 1.
  • the second infrared detector 5 detects the second infrared rays 7 emitted by the light-transmitting panel 1 and the heating appliance 2.
  • the radiation contribution of the first infrared 6 of the light-transmitting panel 1 itself is deducted, and then the infrared rays radiated by the appliance 2 to be heated are obtained. , So that the temperature of the appliance 2 to be heated can be accurately calculated.
  • the above method not only guarantees the integrity of the light-transmitting panel 1 and avoids problems such as strength reduction and water seepage after the integrity of the light-transmitting panel 1 is damaged, but also avoids the transparency of the light-transmitting panel 1, the temperature of the heating appliance 2, and the like.
  • the temperature measurement deviation of the electromagnetic heating device 100 of the present application is less than 5°C, and the temperature measurement response time is less than 1s; in addition, the infrared reflectivity of the surface of the heating device 2 is detected in real time through the setting of the emission detection component, and then according to The infrared reflectivity is calculated by calculating the infrared emissivity on the surface of the heating device 2 to compensate for the final measurement temperature of the heating device 2 to avoid the influence of the emissivity of the surface of the heating device 2 on the final temperature measurement accuracy.
  • the electromagnetic heating device 100 is suitable for a variety of different heating appliances 2; and, through the thermal conductivity of the heat-conducting component 14, the heat capacity of the entire temperature detection component is increased, so that the first infrared detector 4 and the second infrared detector can be guaranteed
  • the detector 5 does not cause sudden temperature changes due to factors such as electromagnetic heating, cooling fans, etc., so that the temperature of each part of the entire temperature detection assembly is the same, so as to keep the temperature of the first infrared detector 4 and the second infrared detector 5 constant;
  • the setting of the temperature sensor in 14 enables the controller to further obtain the temperature of the temperature detection component, and then perform temperature compensation for the temperature of the heating device 2 according to the temperature of the temperature detection component. Therefore, the temperature influence of the temperature detection component itself is eliminated to further improve the temperature accuracy of the final heating appliance 2; the grounding arrangement of the heat conducting component 14 shields the strong electromagnetic interference generated by the heating coil 3 and improves the signal-to-noise ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Radiation Pyrometers (AREA)

Abstract

提供一种电磁加热装置(100),包括用于承载待加热器具(2)的透光面板(1)、设于透光面板(1)下方且用于产生电磁场以加热待加热器具(2)的加热线圈(3)、温度检测组件及发射检测组件。其中,温度检测组件包括设于透光面板(1)下方的第二红外探测器(5),用于接收透光面板(1)和待加热器具(2)发出的第二红外线(7)。发射检测组件包括设于透光面板(1)下方的红外发射件(10)和第三红外探测器(11),红外发射件(10)用于向待加热器具(2)发射第三波长范围的第三红外线(12),第三红外探测器(11)用于接收第三红外线(12)经所述待加热器具(2)反射的第三反射线(13)。通过发射检测组件的设置,实时检测待加热器具(2)表面的红外反射率,进而在对待加热器具(2)进行温度测量时考虑其表面红外反射率的影响。

Description

电磁加热装置
本申请要求于2020年06月19日提交的申请号为2020105654500,发明名称为“电磁加热装置”的中国专利申请的优先权,其通过引用方式全部并入本申请。
【技术领域】
本申请涉及家用电器领域,特别是涉及一种电磁加热装置。
【背景技术】
电磁加热装置是利用加热线圈产生交变电磁场,使得处于该交变电磁场中的待加热器具因电磁感应内部产生涡流而主动发热。
现有的加热线圈与待加热器具之间通常用面板进行物理阻隔,在不破坏面板结构的前提,由于面板的导热性差、加热过程中面板温度分布不均匀、面板自身辐射等原因,无法对待加热器具的温度实现精准测量。
因此,为解决上述问题,必须提供一种新的电磁加热装置。
【发明内容】
为实现上述目的,本申请提供了一种电磁加热装置,包括:透光面板,用于承载待加热器具,所述透光面板能被第二波长范围及第三波长范围的红外线穿透;加热线圈,设于所述透光面板下方,用于产生电磁场以加热所述待加热器具;温度检测组件,包括设于所述透光面板下方的第二红外探测器,所述第二红外探测器的响应波长范围为第二波长范围,用于接收所述透光面板和所述待加热器具发出的所述第二波长范围的第二红外线;发射检测组件,包括设于所述透光面板下方的红外发射件和第三红外探测器,所述红外发射件用于向所述待加热器具发射所述第三波长范围的第三红外线,所述第三红外探测器用于接收所述第三红外线经所述待加热器具反射的第三反射线。
作为本申请的进一步改进,所述透光面板不能被第一波长范围的红外线穿透;所述温度检测组件还包括:设置于所述透光面板下方的第一红外探测器,所述第一红外探测器的响应波长范围为所述第一波长范围,用于接收所述透光面板发出的所述第一波长范围的第一红外线。
作为本申请的进一步改进,所述电磁加热装置还包括:控制器,连接所述温度检测组件和所述发射检测组件,用于获取所述第一红外探测器接收所述第一红外线测出的第一红外信号,所述第二红外探测器接收所述第二红外线测出的第二红外信号,所述第三红外线的第三红外信号,所述第三红外探测器接收所述第三反射线测出的第三反射信号;以根据所述第三红外信号和所述第三反射信号计算所述待加热器具的反射率,并根据所述反射率、所述第一红外信号和所述第二红外信号计算所述待加热器具的温度。
作为本申请的进一步改进,所述透光面板上对应所述第一红外探测器的第一探测区域与所述透光面板上对应所述第二红外探测器的第二探测区域至少部分重叠。
作为本申请的进一步改进,所述第一红外探测器、第二红外探测器、红外发射件及第三红外探测器均朝向所述透光面板设置,由垂直于所述透光面板的方向观察,所述第一红外探测器、第二红外探测器、红外发射件及所述第三红外探测器阵列排布。
作为本申请的进一步改进,所述第一波长范围为大于4μm,所述第二波长范围为大于2.5μm且小于4.5μm;所述第一红外探测器与所述第二红外探测器均为热电堆红外探测器。
作为本申请的进一步改进,所述第一波长范围为大于4μm,所述第二波长范围为小于3μm;所述第一红外探测器为热电堆红外探测器,所述第二红外探测器为红外光电探测器。
作为本申请的进一步改进,所述透光面板上对应所述温度检测组件的温度探测区域与所述透光面板上对应所述发射检测组件的发射探测区域至少部分重合。
作为本申请的进一步改进,所述第三波长范围为小于1μm。
作为本申请的进一步改进,所述温度检测组件还包括:贴附于所述透光面板下表面的热敏传感器,用于检测所述透光面板的温度;在所述透光面板上对应所述第二红外探测器具有第二探测区域,所述热敏传感器位于所述第二探测区域。
与现有技术相比,本申请的有益效果在于:
本申请通过第二红外探测器与发射检测组件的设置,实时检测待加热器具表面的红外反射率,进而在对待加热器具进行温度测量时考虑其表面红外反射率 的影响,以使本实施例中的电磁加热装置适用于各种不同的待加热器具,且对不同材质的待加热器具,检测精度的差异不会太大。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1为本申请电磁加热装置第一实施例的结构示意图;
图2为本申请电磁加热装置第二实施例的结构示意图;
图3为本申请电磁加热装置第三实施例的结构示意图;
图4为本申请电磁加热装置第四实施例的结构示意图;
图5a为本申请电磁加热装置第五实施例一实施方式的结构示意图;
图5b为本申请电磁加热装置第五实施例另一实施方式的结构示意图;
图6为本申请电磁加热装置第六实施例的结构示意图;
图7为本申请电磁加热装置第七实施例的结构示意图;
图8为本申请电磁加热装置图7中控制电路板与导热组件的剖面示意图;
图9为本申请电磁加热装置图8的俯视图;
图10为本申请电磁加热装置第八实施例的俯视结构示意图;
100-电磁加热装置;1-透光面板;2-待加热器具;3-加热线圈;4-第一红外探测器;41-第一探测端;5-第二红外探测器;51-第二探测端;6-第一红外线;7-第二红外线;8-导光结构;81-第一导光段;82-第二导光段;83-分光件;84-第三导光段;85-第四导光段;9-热敏温度传感器;10-红外发射件;11-第三红外探测器;12-第三红外线;13-第三反射线;14-导热组件;15-控制电路板;151-金属屏蔽罩。
【具体实施方式】
下面结合说明书附图,对本申请实施例的方案进行详细说明。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”, 仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。此外,本文中的“多”表示两个或者多于两个。
请参阅图1-图10,本申请提供了一种电磁加热装置100,包括用于承载待加热器具2的透光面板1、设于透光面板1下方且用于产生电磁场以加热待加热器具2的加热线圈3及温度检测组件。
其中,透光面板1不能被第一波长范围的红外线穿透,且能被第二波长范围的红外线穿透;温度检测组件包括设于透光面板1下方的第一红外探测器4及第二红外探测器5,第一红外探测器4的响应波长范围为第一波长范围,用于接收透光面板1发出的第一波长范围的第一红外线6,第二红外探测器5的相应波长范围为第二波长范围,用于接收透光面板1和待加热器具2发出的第二波长范围的第二红外线7。
由此,通过设置响应第一波长范围的第一红外探测器4及响应第二波长范围的第二红外探测器5,使得第一红外探测器4仅探测透光面板1发出的第一红外线6,第二红外探测器5探测透光面板1和待加热器具2发出的第二红外线7。因而,本申请在透光面板1和待加热器具2的第二红外线7的基础上,考虑透光面板1本身的第一红外线6的辐射贡献,进而可获得待加热器具2本身所辐射的红外线,从而能够精准推算出待加热器具2的温度。上述方式不仅保证了透光面板1的完整性,避免由于透光面板1完整性破坏后强度降低及渗水等问题,而且该方式避免了透光面板1的透明度、待加热器具2的温度高低、以及待加热器具2的导热性对测量温度精度的影响,实现了待加热器具2更精准的温度测量,且测温实时性好。较现有技术,本申请的电磁加热装置100的测温偏差小于5℃,测温响应时间小于1s。
为了计算获得待加热器具2的温度,本申请的电磁加热装置100还包括连接温度检测组件的控制器,用于获取第一红外探测器4接收第一红外线6测出的第一红外信号,以及第二红外探测器5接收第二红外线7测出的第二红外信号;以根据第一红外信号和第二红外信号计算待加热器具2的温度。具体地,当控制器获取透光面板1发出的对应第一波长范围的第一红外信号后,可根据第一红外信号推算出透光面板1对应第二波长范围的对应红外信号。接着,在第二红外信号的基础上,扣除上一步中透光面板1对应第二波长范围的对应红 外信号的辐射贡献,即可获得待加热器具2本身所辐射的红外线。最后,根据待加热器具2本身所辐射的红外线,可进一步获取待加热器具2的准确温度。
当然,在本申请的其他实施例中,区别于控制器设于电磁加热装置100内的方式,控制器还可以是云端服务器,同样可以实现本申请的目的,且均在本申请的保护范围之内。
在本申请进一步的实施方式中,为了达到更精准的测温效果,避免由于透光面板1各部分的温度分布不均匀导致的测温偏差,透光面板1上对应第一红外探测器4的第一探测区域与透光面板1上对应第二红外探测器5的第二探测区域至少部分重合。通过上述方式,保证了第一红外探测器4的第一探测区域及第二红外探测器5的第二探测区域尽量为透光面板1的同一区域范围,进而减少由于透光面板1各部分的温度分布不均匀导致测温偏差过大的影响。
其中,第一探测区域为第一红外探测器4以第一探测端41为起点呈一定角度向透光面板1辐射对应的投影区域范围,第二探测区域为第二红外探测器5以第二探测端52为起点呈一定角度向透光面板1辐射对应的投影区域范围。需要说明的是,第一探测区域与第二探测区域的重叠面积越大,透光面板1各部分温度分布不均匀导致测温偏差的影响越小;相反地,第一探测区域与第二探测区域的重叠面积越小,透光面板1各部分温度分布不均匀导致测温偏差的影响越大。因此,理想情况下,当第一探测区域与第二探测区域完全重合时,测温偏差最小,测温效果最好。
另外,根据透光面板1的光谱特性,在一实施方式中,透光面板1为玻璃面板,且第一波长范围为大于4μm,在此波长范围的红外线无法穿透透光面板1,所以第一红外探测器4的第一红外线6均为透光面板1本身的红外线;第二波长范围为大于2.5μm且小于4.5μm,在此波长范围的红外线可以部分穿透透光面板1,所以第二红外探测器5的第二红外线7一部分为待加热器具2的红外线,一部分为透光面板1本身的红外线。基于成本考虑,在本实施方式中,第一红外探测器4与第二红外探测器5均为热电堆红外探测器。
在另一实施方式中,第一波长范围为大于4μm,第二波长范围为小于3μm。在本实施方式中,第一红外探测器4为热电堆红外探测器,第二红外探测器5为红外光电探测器。
当然,在本申请的其他实施例中,第一红外探测器4、第二红外探测器5也可选用其他类型的红外探测器,只要达到探测第一红外线6、第二红外线7的效 果,即可实现本申请的目的。
以下结合各具体实施例对本申请的上述内容进行进一步阐述:
实施例1
如图1所示,在本申请的第一实施例中,第一红外探测器4的第一探测端41与第二红外探测器5的第二探测端51设置为朝向相同。为了尽量减小透光面板1各部分温度分布不均匀造成的测温偏差影响,在本实施例中,第一探测端41的中心轴和第二探测端51的中心轴的间距小于等于20mm,例如第一探测端41的中心轴和第二探测端51的中心轴的间距可以为15mm、或10mm、或5mm、或2mm等。理论上,第一探测端41的中心轴与第二探测端51的中心轴的间距越小,测温效果越好。
当然,在本申请的其他实施例中,上述第一探测端41的中心轴和第二探测端51的中心轴的间距范围也可根据实际情况调整,只要达到提高测温精度的目的,即可实现本申请的目的。
具体地,在本实施例中,第一红外探测器4的第一探测端41与第二红外探测器5的第二探测端51均正对透光面板1,且第一探测端41与第二探测端51与透光面板1的间隔距离相等,即第一红外线6与第二红外线7均沿图1所示的垂直于透光面板1的方向分别投射至第一探测端41及第二探测端51。
实施例2
如图2所示,在本申请的第二实施例中,由于第一红外探测器4的第一探测端41与第二红外探测器5的第二探测端51朝向相同,且均非正对透光面板1,即第一红外线6与第二红外线7均无法直接沿垂直于透光面板1的方向投射至第一红外探测器4及第二红外探测器5。
因此,为了导引第一红外线6与第二红外线7,相较于第一实施例,本实施例的区别在于:电磁加热装置100还包括设置于透光面板1和温度检测组件之间的导光结构8,用于将第一波长范围的第一红外线6导引至第一红外探测器4,将第二波长范围的第二红外线7导引至第二红外探测器5。
具体地,在本实施例中,导光结构8包括垂直于透光面板1的第一导光段81、以及连接于第一导光段81远离透光面板1的一端且平行于透光面板1的第二导光段82。在第二导光段82远离第一导光段81的一端设置有第一红外探测器4及第二红外探测器5,且第一探测端41与第二探测端51均朝向第二导光段82远离第一导光段81的一端。由此,第一红外线6与第二红外线7均先沿第一 导光段81投射,而后90度弯折至第二导光段82继续投射,直至达到第一探测端41及第二探测端51。
本实施例中的导光结构8可以采用多种设置方式,只要达到了导引红外线投射路线的作用,即可实现本申请的目的,在此不作限制。例如在一可选实施例中,导光结构8可以设置为直角状塑料筒。
当然,在本申请的其他实施例中,第一探测端41与第二探测端51也可设置在除图2中所示的其他位置,导光结构8也可以设置为其他形状结构,例如圆弧状等,均能实现本申请的目的,在此不作限制。
实施例3
如图3所示,在本申请的第三实施例中,其与第一实施例的区别在于:第一红外探测器4的第一探测端41与第二红外探测器5的第二探测端51朝向不同;导光结构8中设置有分光件83。通过分光件83将第一波长范围的第一红外线6和第二波长范围的第二红外线7引导至不同方向,使第一波长范围的第一红外线6透射至第一探测端41,第二波长范围的第二红外线7透射至第二探测端51。
具体地,在本实施例中,第一红外探测器4的第一探测端41非正对透光面板1,第二红外探测器5的第二探测端51正对透光面板1,且第一红外探测器4位于第二红外探测器5的右上方。因此,本实施例中导光结构8包括沿垂直于透光面板1的方向延伸至第二红外探测器5的第三导光段84,以及连接于第三导光段84并沿与透光面板1平行的方向延伸至第一红外探测器4的第四导光段85,即第三导光段84与第四导光段85呈T形结构。
上述分光件83设置于第三导光段84中,且在第三导光段84至第四导光段85的方向上,倾斜向下延伸设置。由此,第一红外线6经分光件83反射至第一红外探测器4的第一探测端41,第二红外线7经分光件83透射至第二红外探测器5的第二探测端51。
当然,在本申请的其他可选实施例中,第一红外探测器4与第二红外探测器5的位置也可位于除图3所示的其他位置,对应地导光结构8与分光件83的设置方式也根据第一红外探测器4和第二红外探测器5的位置具体调整设置,均在本申请的保护范围之内,在此不再赘述。
实施例4
如图4所示,在本申请的第四实施例中,其与第一实施例的区别在于:设 置热敏温度传感器9代替第一红外探测器4,且热敏温度传感器9安装于第二探测区域中。通过热敏温度传感器9的设置,检测透光面板1的温度,继而在计算待加热器具2的温度时,扣除透光面板1的温度即可。需要说明的是,在本实施例中,上述方式需要基于尽量小改变透光面板1的透光性的前提下实施。
实施例5
由于待加热器具2表面的发射率对测温精度影响较大,例如不锈钢材质的待加热器具2与黑色铁材质的待加热器具2的测温偏差可超过30度,且实际加热过程中,待加热器具2表面的发射率是不确定的。
如图5a所示,在本申请的第五实施例的一实施方式a中,为了减少不同材质的待加热器具2自身表面的发射率影响,其与第一实施例的区别在于:本实施例的电磁加热装置100未设有第一红外探测器4,而仅设有第二红外探测器5,并增加红外发射件10用于向待加热器具2发射第三波长范围的第三红外线12,以及第三红外探测器11用于接收第三红外线12经待加热器具2反射的第三反射线13。
由此,通过第二红外探测器5、红外发射件10及第三红外探测器11的配合设置,实时检测待加热器具2表面的红外反射率,进而对待加热器具2进行温度测量时考虑其表面红外反射率的影响,以使本实施例中的电磁加热装置100适用于各种不同的待加热器具,且对不同材质的待加热器具2,检测精度的差异不会太大。
如图5b所示,在本申请第五实施例的另一实施方式b中,其与第一实施例的区别在于:在第一实施例的基础上,电磁加热装置100还增设了发射检测组件,即本实施方式中设有第一红外探测器4、第二红外探测器5、红外发射件10、第三红外探测器11。发射检测组件包括设于透光面板1下方的红外发射件10和第三红外探测器11,红外发射件10用于向待加热器具2发射第三波长范围的第三红外线12,第三红外探测器11用于接收第三红外线12经待加热器具2反射的第三反射线13。
由此,通过发射检测组件的设置,实时检测待加热器具2表面的红外反射率,进而根据红外反射率推算待加热器具2表面的红外发射率,以在第一实施例中根据第一红外探测器4、第二红外探测器5计算的探测结果上,对待加热器具2的最终测量温度进行补偿,避免了待加热器具2表面的发射率对最终测温精度的影响,以使本实施例中的电磁加热装置100适用于各种不同的待加热器 具2。
具体地,在本实施例中,控制器除第一实施例中提及的作用之外,还用于获取第三红外线12的第三红外信号,以及第三红外探测器11接收第三反射线13测出的第三反射信号。从而,根据第三红外信号和第三反射信号计算待加热器具2的反射率,并根据反射率、第一红外信号和第二红外信号计算待加热器具2的温度。
需要说明的是,根据待加热器具2的上述反射率推算待加热器具2表面的红外发射率的原理为:根据光学原理,对于金属材质的待加热器具2,其红外发射率等于红外吸收率,而红外吸收率与红外反射率相加等于1,因此可以通过测量待加热器具2的反射率,继而计算出红外吸收率,最终计算出红外发射率。
另外,在本实施例中,红外发射件10及第三红外探测器11与第一红外探测器4、第二红外探测器5一样,均朝向透光面板1设置,且由垂直于透光面板1的方向观察,第一红外探测器4、第二红外探测器5、红外发射件10及第三红外探测器11阵列排布。具体地,与第一实施例相同,第一红外探测器4、第二红外探测器5、红外发射件10及第三红外探测器11与透光面板1的间隔距离均相等。
需要说明的是,在本申请的其他实施方式中,第一红外探测器4与第二红外探测器5的可以设置于非正对透明面板的其他位置,且也可与透光面板1的间隔距离不相等,相应地,只需增加导光结构8、分光件83导引第一红外线6及第二红外线7,即可实现本申请的目的。
并且,为了避免透光面板1各部分温度分布不均匀造成的测温偏差影响,本实施例的透光面板1对应温度检测组件的温度探测区域与透光面板1对应发射检测组件的发射探测区域至少部分重合,以进一步提高测温精度。
在一实施方式中,第三波段的范围为小于1μm。具体的,红外发射件10与第三红外探测器11为工作在800nm-1μm范围内的红外光电对管。
当然,为了获得透光面板1的温度,也可采用其他方式,例如将本实施例中的第一红外探测器4替换为热敏温度传感器9。该热敏温度传感器9贴附于透光面板1下表面,以用于检测透光面板1的温度,且在透光面板1上对应第二红外探测器5具有第二探测区域,热敏传感器位于该第二探测区域。
实施例6
如图6所示,在本申请的第六实施例中,其与第五实施例的区别在于:为 了方便温度检测组件及发射检测组件的设置,透光面板1上对应温度检测组件的温度探测区域与透光面板1上对应发射检测组件的发射探测区域部不重合,即温度探测区域与发射探测区域不同,同样也可实现本申请的目的。
实施例7
如图7-9所示,在本申请的第七实施例中,其与第一实施例的区别在于:温度检测组件还包括导热组件14,第一红外探测器4及第二红外探测器5均嵌设于导热组件14内,且第一红外探测器4的第一探测端41及第二红外探测器5的第二探测端51显露于导热组件14。
因此,由于导热组件14的导热性,增大了整个温度检测组件的热容,故可保证第一红外探测器4及第二红外探测器5不因电磁加热、散热风扇等因素而产生温度突变,进而使得整个温度检测组件各部分的温度相同,以恒定第一红外探测器4与第二红外探测器5的温度。
进一步地,在本实施例中,温度检测组件还包括温度传感器,其设置于导热组件14、第一红外探测器4或第二红外探测器5中,以使控制器进一步获取温度检测组件的温度,进而根据温度检测组件的温度对待加热器具2的温度进行温度补偿。因而,消除温度检测组件自身的温度影响,以进一步提高最终的待加热器具2的温度精度。具体地,上述控制器包括控制电路板15,控制电路板15上有模拟信号测量电路以及信号采集处理控制器,以通过测量和运算得到待加热件的温度。并且,上述温度传感器为NTC温度敏感电阻。
当然,在本申请的其他实施例中,温度传感器也可设置为其他类型,且其也可采用其他设置方式,例如区别于上述内置温度传感器的方式,另外单独设置一个温度传感器,只要达到使控制器获取温度检测组件温度的效果,即可实现本申请的目的。
另外,为了屏蔽加热线圈3产生的强电磁干扰,提高信号信噪比,本实施例中的导热组件14为金属材质,控制电路板15上设置有金属屏蔽罩151;导热组件14与金属屏蔽罩151连接并接地。由此,金属屏蔽罩151与导热组件14相互接触并接地形成金属屏蔽体,以屏蔽加热线圈3产生的强电磁干扰。
具体地,在本实施例中,控制电路板15的上端面和下端面均焊接有金属屏蔽罩151。并且,该金属屏蔽罩151为洋白铜,进而避免被电磁加热。当然,在本申请的其他实施例中,也可不设置金属屏蔽罩151,导热组件14直接通过控制电路板15接地,同样可以实现本申请的目的。
此外,在一可选实施方式中,导热组件14包括一个导热块,且第一红外探测器4及第二红外探测器5均嵌设于一个导热块内。或者,在另一可选实施方式中,导热组件14包括两个导热块,第一红外探测器4嵌设于其中一个导热块内,第二红外探测器5嵌设于另一个导热块内。
本实施例中导热组件14可以为铜制导热组件、或氧化铝导热组件、或氧化锆导热组件,以保证导热组件14具有良好导热性的同时可最小程度被感应加热。
实施例8
如图10所示,在本申请的第八实施例一实施方式中,其与第五实施例其一实施方式b的区别在于:温度检测组件还包括导热组件14,第一红外探测器4、第二红外探测器5均嵌设于导热组件14内,且第一红外探测器4的第一探测端41及第二红外探测器5的第二探测端51显露于导热组件14,而红外发射件10及第三红外探测器11可不必嵌入导热组件14内。
当然,在本实施例的另一实施方式中,也可基于第五实施例另一实施方式a的基础上,增加导热组件14,从而第二红外探测器5嵌设于导热组件14内,且第二红外探测器5的第二探测端51显露于导热组件14,而红外发射件10及第三红外探测器11可不必嵌入导热组件14内,此实施方式同样可以实现本发明的目的。
与第七实施例相似,由于导热组件14的导热性,增大了整个温度检测组件的热容,故可保证第一红外探测器4及第二红外探测器5不因电磁加热、散热风扇等因素而产生温度突变,进而使得整个温度检测组件各部分的温度相同,以恒定第一红外探测器4与第二红外探测器5的温度。
并且,类似地,在本实施例中,温度检测组件还包括温度传感器,其设置于导热组件14、第一红外探测器4或第二红外探测器5中,以使控制器进一步获取温度检测组件的温度,进而根据温度检测组件的温度对待加热器具2的温度进行温度补偿。因而,消除温度检测组件自身的温度影响,以进一步提高最终的待加热器具2的温度精度。具体地,上述控制器包括控制电路板15,控制电路板15上有模拟信号测量电路以及信号采集处理控制器,以通过测量和运算得到待加热件的温度。并且,上述温度传感器为NTC温度敏感电阻。
另外,类似地,为了屏蔽加热线圈3产生的强电磁干扰,提高信号信噪比,本实施例中的导热组件14为金属材质,控制电路板15上设置有金属屏蔽罩151;导热组件14与金属屏蔽罩151连接并接地。由此,金属屏蔽罩151与导热组件 14相互接触并接地形成金属屏蔽体,以屏蔽加热线圈3产生的强电磁干扰。
综上,本申请通过设置响应第一波长范围的第一红外探测器4及响应第二波长范围的第二红外探测器5,使得第一红外探测器4仅探测透光面板1发出的第一红外线6,第二红外探测器5探测透光面板1和待加热器具2发出的第二红外线7。因而,本申请在透光面板1和待加热器具2的第二红外线7的基础上,扣除透光面板1本身的第一红外线6的辐射贡献,进而获得了待加热器具2本身所辐射的红外线,从而能够精准推算出待加热器具2的温度。上述方式不仅保证了透光面板1的完整性,避免由于透光面板1完整性破坏后强度降低及渗水等问题,而且该方式避免了透光面板1的透明度、待加热器具2的温度高低、以及待加热器具2的导热性对测量温度精度的影响,实现了待加热器具2更精准的温度测量,且测温实时性好。较现有技术,本申请的电磁加热装置100的测温偏差小于5℃,测温响应时间小于1s;另外,通过发射检测组件的设置,实时检测待加热器具2表面的红外反射率,进而根据红外反射率推算待加热器具2表面的红外发射率,以对待加热器具2的最终测量温度进行补偿,避免了待加热器具2表面的发射率对最终测温精度的影响,以使本实施例中的电磁加热装置100适用于各种不同的待加热器具2;并且,通过导热组件14的导热性,增大了整个温度检测组件的热容,故可保证第一红外探测器4及第二红外探测器5不因电磁加热、散热风扇等因素而产生温度突变,进而使得整个温度检测组件各部分的温度相同,以恒定第一红外探测器4与第二红外探测器5的温度;通过导热组件14内温度传感器的设置,以使控制器进一步获取温度检测组件的温度,进而根据温度检测组件的温度对待加热器具2的温度进行温度补偿。因而,消除温度检测组件自身的温度影响,以进一步提高最终的待加热器具2的温度精度;通过导热组件14的接地设置,屏蔽了加热线圈3产生的强电磁干扰,提高信号信噪比。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种电磁加热装置,其特征在于,包括:
    透光面板,用于承载待加热器具,所述透光面板能被第二波长范围及第三波长范围的红外线穿透;
    加热线圈,设于所述透光面板下方,用于产生电磁场以加热所述待加热器具;
    温度检测组件,包括设于所述透光面板下方的第二红外探测器,所述第二红外探测器的响应波长范围为第二波长范围,用于接收所述透光面板和所述待加热器具发出的所述第二波长范围的第二红外线;
    发射检测组件,包括设于所述透光面板下方的红外发射件和第三红外探测器,所述红外发射件用于向所述待加热器具发射所述第三波长范围的第三红外线,所述第三红外探测器用于接收所述第三红外线经所述待加热器具反射的第三反射线。
  2. 根据权利要求1所述的电磁加热装置,其特征在于,所述透光面板不能被第一波长范围的红外线穿透;所述温度检测组件还包括:设置于所述透光面板下方的第一红外探测器,所述第一红外探测器的响应波长范围为所述第一波长范围,用于接收所述透光面板1发出的所述第一波长范围的第一红外线。
  3. 根据权利要求2所述的电磁加热装置,其特征在于,所述电磁加热装置还包括:
    控制器,连接所述温度检测组件和所述发射检测组件,用于获取所述第一红外探测器接收所述第一红外线测出的第一红外信号,所述第二红外探测器接收所述第二红外线测出的第二红外信号,所述第三红外线的第三红外信号,所述第三红外探测器接收所述第三反射线测出的第三反射信号;以根据所述第三红外信号和所述第三反射信号计算所述待加热器具的反射率,并根据所述反射率、所述第一红外信号和所述第二红外信号计算所述待加热器具的温度。
  4. 根据权利要求2所述的电磁加热装置,其特征在于,所述透光面板上对应所述第一红外探测器的第一探测区域与所述透光面板上对应所述第二红外探测器的第二探测区域至少部分重叠。
  5. 根据权利要求4所述的电磁加热装置,其特征在于,所述第一红外探测器、第二红外探测器、红外发射件及第三红外探测器均朝向所述透光面板设置,由垂直于所述透光面板的方向观察,所述第一红外探测器、第二红外探测器、 红外发射件及所述第三红外探测器阵列排布。
  6. 根据权利要求2所述的电磁加热装置,其特征在于,所述第一波长范围为大于4μm,所述第二波长范围为大于2.5μm且小于4.5μm;
    所述第一红外探测器与所述第二红外探测器均为热电堆红外探测器。
  7. 根据权利要求2所述的电磁加热装置,其特征在于,所述第一波长范围为大于4μm,所述第二波长范围为小于3μm;
    所述第一红外探测器为热电堆红外探测器,所述第二红外探测器为红外光电探测器。
  8. 根据权利要求1所述的电磁加热装置,其特征在于,所述透光面板上对应所述温度检测组件的温度探测区域与所述透光面板上对应所述发射检测组件的发射探测区域至少部分重合。
  9. 根据权利要求1所述的电磁加热装置,其特征在于,所述第三波长范围为小于1μm。
  10. 根据权利要求1所述的电磁加热装置,其特征在于,所述温度检测组件还包括:贴附于所述透光面板下表面的热敏传感器,用于检测所述透光面板的温度;在所述透光面板上对应所述第二红外探测器具有第二探测区域,所述热敏传感器位于所述第二探测区域。
PCT/CN2021/077716 2020-06-19 2021-02-24 电磁加热装置 WO2021253862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010565450.0A CN113825266A (zh) 2020-06-19 2020-06-19 电磁加热装置
CN202010565450.0 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021253862A1 true WO2021253862A1 (zh) 2021-12-23

Family

ID=78924313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077716 WO2021253862A1 (zh) 2020-06-19 2021-02-24 电磁加热装置

Country Status (2)

Country Link
CN (1) CN113825266A (zh)
WO (1) WO2021253862A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114831345A (zh) * 2022-06-01 2022-08-02 深圳市赛尔美电子科技有限公司 雾化器温度测试系统及测试方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293990A (ja) * 2008-07-31 2008-12-04 Panasonic Corp 誘導加熱調理器
JP2009176751A (ja) * 2009-04-28 2009-08-06 Panasonic Corp 誘導加熱調理器
JP2009211984A (ja) * 2008-03-05 2009-09-17 Panasonic Corp 誘導加熱装置
JP2011138734A (ja) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp 誘導加熱調理器
JP2011138733A (ja) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp 誘導加熱調理器
CN105987408A (zh) * 2015-02-06 2016-10-05 佛山市顺德区美的电热电器制造有限公司 电磁炉
CN207610243U (zh) * 2017-10-30 2018-07-13 美的集团股份有限公司 微波炉
CN110996422A (zh) * 2019-12-30 2020-04-10 广东美的厨房电器制造有限公司 微波加热组件、微波加热设备和控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075624A (ja) * 2000-08-31 2002-03-15 Matsushita Electric Ind Co Ltd 誘導加熱調理器
JP2011100572A (ja) * 2009-11-04 2011-05-19 Mitsubishi Electric Corp 誘導加熱調理器および誘導加熱調理方法
JP5459080B2 (ja) * 2010-06-03 2014-04-02 三菱電機株式会社 誘導加熱調理器
JP5247914B1 (ja) * 2012-05-31 2013-07-24 三菱電機株式会社 加熱調理器
JP5891151B2 (ja) * 2012-09-10 2016-03-22 日立アプライアンス株式会社 誘導加熱調理器
CN105555148B (zh) * 2013-08-06 2017-08-08 皇家飞利浦有限公司 烹饪过的诸如肉类的食物的再加热
CN208029106U (zh) * 2018-04-18 2018-10-30 佛山市顺德区美的电热电器制造有限公司 加热组件及加热器具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211984A (ja) * 2008-03-05 2009-09-17 Panasonic Corp 誘導加熱装置
JP2008293990A (ja) * 2008-07-31 2008-12-04 Panasonic Corp 誘導加熱調理器
JP2009176751A (ja) * 2009-04-28 2009-08-06 Panasonic Corp 誘導加熱調理器
JP2011138734A (ja) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp 誘導加熱調理器
JP2011138733A (ja) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp 誘導加熱調理器
CN105987408A (zh) * 2015-02-06 2016-10-05 佛山市顺德区美的电热电器制造有限公司 电磁炉
CN207610243U (zh) * 2017-10-30 2018-07-13 美的集团股份有限公司 微波炉
CN110996422A (zh) * 2019-12-30 2020-04-10 广东美的厨房电器制造有限公司 微波加热组件、微波加热设备和控制方法

Also Published As

Publication number Publication date
CN113825266A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
JP2002075624A (ja) 誘導加熱調理器
WO2021253862A1 (zh) 电磁加热装置
JP2006318925A (ja) 加熱調理器
JP3975865B2 (ja) 誘導加熱調理器
JP4077285B2 (ja) 加熱調理器
WO2021253863A1 (zh) 电磁加热装置
KR900007887B1 (ko) 가열시스템내의 온도측정장치
JP5469822B2 (ja) 誘導加熱調理器
JP5537505B2 (ja) 誘導加熱調理器
JP2004095316A (ja) 誘導加熱調理器
JP4023293B2 (ja) 誘導加熱調理器
CN213403563U (zh) 电磁加热装置及温度检测组件
JP5372839B2 (ja) 誘導加熱調理器
JP2009170433A (ja) 誘導加熱調理器
JP2009176751A (ja) 誘導加熱調理器
CN214745948U (zh) 烹饪装置
JP2013205215A (ja) 赤外線温度計測装置
JP5868483B2 (ja) 誘導加熱調理器
JP6506568B2 (ja) 誘導加熱調理器
JP6831350B2 (ja) 誘導加熱調理器
JP2017216191A (ja) 誘導加熱調理器
JP5677263B2 (ja) 誘導加熱調理器
JP2009259835A (ja) 誘導加熱調理器
JP2017084685A (ja) 誘導加熱調理器
JP6523866B2 (ja) 誘導加熱調理器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21826911

Country of ref document: EP

Kind code of ref document: A1