WO2021246216A1 - 回転電機及び回転電機の冷却構造 - Google Patents

回転電機及び回転電機の冷却構造 Download PDF

Info

Publication number
WO2021246216A1
WO2021246216A1 PCT/JP2021/019548 JP2021019548W WO2021246216A1 WO 2021246216 A1 WO2021246216 A1 WO 2021246216A1 JP 2021019548 W JP2021019548 W JP 2021019548W WO 2021246216 A1 WO2021246216 A1 WO 2021246216A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
electric machine
flow path
resin
rotary electric
Prior art date
Application number
PCT/JP2021/019548
Other languages
English (en)
French (fr)
Inventor
稔大 丹野
弥 小坂
晋也 山本
敦准 西川
隆博 原田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021000721A external-priority patent/JP7276358B2/ja
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to EP21818312.7A priority Critical patent/EP4164095A1/en
Priority to US18/007,640 priority patent/US20230231432A1/en
Priority to KR1020237000040A priority patent/KR20230020496A/ko
Priority to CN202180040378.2A priority patent/CN115836465A/zh
Publication of WO2021246216A1 publication Critical patent/WO2021246216A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/225Heat pipes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotary electric machine and a cooling structure of the rotary electric machine.
  • a cooling jacket structure is placed in a cylindrical case arranged on the outer periphery of the stator, and heat is generated from the stator to the case.
  • a structure that allows the air to escape has been conventionally proposed (conventional technology).
  • Patent Document 1 in a rotary electric machine in which a coil centrally wound around the teeth portion of a stator is housed in a slot between the teeth portions, a plurality of pipes extending in the axial direction are arranged in parallel in the internal space of the slot, and these pipes are arranged.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a cooling structure for a rotary electric machine that improves the cooling performance of a stator.
  • One aspect of the present invention is a cooling structure for a rotary electric machine, which has a stator having a plurality of teeth portions, a coil wound around the teeth portions, and a slot formed between the teeth portions.
  • the coil is a cooling structure of a rotary electric machine provided in the slot.
  • a first resin composition that fills the slot and covers the coil. It has a first cooling flow path extending in the direction of the rotation axis, which is provided in a region filled with the first resin composition and in which a cooling agent circulates.
  • Another aspect of the present invention is a rotary electric machine having the above-mentioned cooling structure.
  • FIG. 5 is an enlarged view showing the periphery of the coil 9b in the cross-sectional view of FIG. 4 according to the second embodiment. It is a vertical cross-sectional view in the direction perpendicular to the rotation axis direction of the region provided with the coil end cooling flow path which concerns on 2nd Embodiment.
  • FIG. 1 is a vertical cross-sectional view of the motor 100 in a direction perpendicular to the rotation axis direction.
  • FIG. 2 is a vertical cross-sectional view of the motor 100 in the rotation axis direction.
  • FIG. 3 is an enlarged view of the periphery of the slot of FIG.
  • the outline of this embodiment is as follows.
  • the motor 100 accommodates the coil 9 distributed and wound around the teeth portion 7 of the stator 6 in the slot 8 between the teeth portions 7.
  • Coil inner cooling flow path 10 (first cooling flow path) extending in the axial direction at a position adjacent to the coil 9 on the inner peripheral side of the stator 6 (near the tooth inner peripheral surface 6a) in the internal space of the slot 8.
  • first resin composition a resin material (hereinafter, also referred to as “first resin composition”) is filled in the gaps other than the coil 9 or the coil inner cooling flow path 10 in the internal space of these slots 8, and the coil inner cooling flow path 10 is filled.
  • the stator 6 is cooled by flowing a cooling liquid through the coil.
  • the coil inner cooling flow path 10 can be arranged adjacent to the coil 9 at a position on the inner peripheral side (near the tooth inner peripheral surface 6a) of the coil 9 of the stator 6, and heat is generated.
  • the coil 9 can be efficiently cooled. This will be described in detail below.
  • the motor 100 includes a case 1, a rotor 2 (rotor) and a stator 6 (stator) housed inside the case 1.
  • the case 1 is configured to have a cylindrical portion 1a and side plate portions 1b and 1c that close both ends of the cylindrical portion 1a in the axial direction.
  • a material of Case 1 for example, an aluminum alloy (casting product), a resin material, or a combination thereof can be used.
  • the side plate portions 1b and 1c are provided with an external connection flow path 17 that connects the coil inner cooling flow path 10 and the external cooling flow path.
  • the rotor 2 is housed inside the case 1.
  • a rotating shaft 3 is attached to the center of the rotor 2 as an output shaft.
  • Both ends of the rotating shaft 3 are supported by the side plate portions 1b and 1c via bearings 4, respectively.
  • the rotor 2 is rotatable around the rotation shaft 3.
  • the rotor 2 has a permanent magnet 5 inside. Specifically, as shown in FIG. 1, a plurality of (here, eight) permanent magnets 5 are arranged on the same circumference at equal intervals. At this time, the magnetic poles of the adjacent permanent magnets 5 are installed so as to be different from each other.
  • a cylindrical stator 6 is arranged and fixed on the inner circumference of the cylindrical portion 1a so as to surround the outer circumference of the rotor 2. As shown in FIG. 3, a minute gap (air gap) is provided between the inner peripheral surface 6a of the stator 6 and the outer peripheral surface 2a of the rotor 2.
  • the teeth portion 7 facing the inner peripheral surface 6a is arranged on the stator 6.
  • 24 teeth portions 7 are provided.
  • a slot 8 is provided between the teeth portions 7.
  • the coil 9 is housed in the slot 8 in a distributed winding manner.
  • the teeth portion 7 is provided corresponding to the above-mentioned permanent magnet 5, and by sequentially exciting each coil 9, the rotor 2 rotates due to attraction and repulsion with the corresponding permanent magnet 5.
  • a coil inner cooling flow path 10 extending in the axial direction is provided at a position adjacent to the coil 9 on the inner peripheral 6a side of the stator 6 in the internal space of the slot 8. Cooling liquid, for example, cooling water circulates in the cooling flow path 10 inside the coil.
  • the coil inner cooling flow path 10 can be formed by inserting a tubular component into the slot 8, and can also be obtained by directly molding a resin material (first resin composition) into the stator 6. can.
  • the inner wall 10a of the coil inner cooling flow path 10 is configured as a part of a cured product of the resin material injected into the stator 6 (hereinafter referred to as “first resin cured material”).
  • the coil inner cooling flow path 10 is provided as a tubular component
  • a non-magnetic metal having high thermal conductivity such as aluminum or an aluminum alloy or an inorganic material having high thermal conductivity can be used.
  • a resin tubular component provided separately from the resin material (first resin composition) filled in the slot 8 described above may be used.
  • a method of directly molding a resin material (first resin composition) is applied to the stator 6.
  • the number of the coil inner cooling flow paths 10 arranged in one slot 8 may be one or a plurality, but in a situation where the space width of the slot 8 is narrow, the flow path resistance when the coolant passes through. It is preferable that the number of lines is small so that the cross-sectional area of the flow path is large in consideration of the above.
  • the cross-sectional shape of the coil inner cooling flow path 10 can be matched to the shape of a square or the slot 8 in addition to the circular shape as in the present embodiment.
  • the coil 9 is a distributed winding wound over a plurality of slots 8. Therefore, at least one coil inner cooling flow path 10 may be provided for each set of slots 8 constituting one distributed winding. For example, when a coil 9 is wound across two slots 8, one slot 8 is provided with a coil inner cooling flow path 10, and the other slot 8 is provided with a coil inner cooling flow path 10. Do not provide it. In a set of a plurality of slots 8 constituting one distributed winding, if the coil inner cooling flow path 10 is provided in at least one slot 8, the coil inner cooling flow path 10 is provided via the coil 9. The other slots 8 (that is, the teeth portion 7) that have not been used can also be cooled.
  • an insulating layer 11 is provided between the slot 8 and the coil 9.
  • the insulating layer 11 can be formed of an insulating paper or an insulating resin material, and it is preferable to arrange the insulating layer 11 before inserting the coil 9 into the stator 6. However, it can also be formed by filling a gap other than the coil 9 or the coil inner cooling flow path 10 in the internal space of the slot 8 described later with a resin material (first resin composition).
  • the inner wall 10a of the coil inner cooling flow path 10 is composed of an insulating layer 11 made of a cured product of the first resin composition.
  • the gap between each member is filled with a resin material and fixed.
  • This resin material shall be able to withstand the heat generation of the coil 9.
  • first resin composition a resin material having good thermal conductivity, and one type of resin.
  • a combination of a plurality of types of resins can be used for each member.
  • one or two thermosetting resins selected from the group consisting of epoxy resins and phenolic resins can be used.
  • the thermal conductivity K1 of the first resin cured material which is the cured product of the first resin composition, is 1 to 10 W / m ⁇ K.
  • the lower limit of the thermal conductivity K1 is preferably 2 W / m ⁇ K or more, and more preferably 3 W / m ⁇ K or more.
  • the upper limit of the thermal conductivity K1 is not particularly limited, but is a realistic value of 10 W / m ⁇ K.
  • the glass transition temperature Tg1 of the first cured resin product is 150 ° C. or higher. By setting the glass transition temperature Tg1 in the above range, the heat resistance performance of the motor 100 can be improved and a high output can be realized.
  • a sample obtained by heat-treating the first cured resin product at 175 ° C. for 4 hours was measured at a measurement temperature of ⁇ 50 ° C. to 200 ° C. and a temperature rise rate of 5 ° C./min using a dynamic elastic modulus measuring machine.
  • the storage elastic modulus at 25 ° C. measured under the conditions of load: 800 gf, frequency: 10 Hz, and 3-point bending mode is 20 GPa or more and 70 GPa or less.
  • the lower limit of the storage elastic modulus is preferably 30 GPa or more, more preferably 40 GPa or more.
  • the upper limit of the storage elastic modulus is preferably 60 GPa or less, more preferably 50 GPa or less. Also from this point of view, by setting the storage elastic modulus within the above range, the heat resistance performance of the motor 100 can be improved and a high output can be realized.
  • the resin thickness t1 of the first cured resin product that covers the coil side surface portion 9b of the coil 9 is, for example, 0.3 mm or more and 3.0 mm or less.
  • the lower limit of the resin thickness t1 is preferably 0.5 mm or more, more preferably 0.7 mm or more.
  • the upper limit of the resin thickness t1 is preferably 2.5 mm or less, more preferably 2.0 mm or less.
  • the lower limit of the relational expression P1 is preferably 0.4 ⁇ 10 -4 (m 2 K / W) or more, and more preferably 0.5 ⁇ 10 -4 (m 2 K / W) or more.
  • the upper limit of the relational expression P1 is preferably 2.5 ⁇ 10 -3 (m 2 K / W) or less, and more preferably 2 ⁇ 10 -3 (m 2 K / W) or less.
  • the molding method of the insulating layer 11 is not particularly limited, but insert molding can be used. At this time, a mold structure (nested structure) corresponding to the coil inner cooling flow path 10 is arranged in the slot 8 in which the distributed winding coil 9 is arranged, and insert molding is performed.
  • the coil inner cooling flow path 10 formed in each slot 8 of the stator 6 is connected to the flow path connection component 12 arranged inside the side plate portions 1b and 1c, and further to the side plate portions 1b and 1c.
  • the motor 100 can be cooled by connecting to the coolant inlet / outlet.
  • the flow path connection component 12 may be configured as an independent component and attached to the end of the coil inner cooling flow path 10, or may be integrated with the side plate portions 1b and 1c. It suffices if the coil inner cooling flow path 10 and the external connection flow path 17 can be appropriately communicated with each other.
  • Packing, O-rings, sealing materials, etc. necessary for preventing leakage of the coolant are arranged at each joint of the coil inner cooling flow path 10, the flow path connection component 12, and the side plate portions 1b and 1c.
  • the flow path connection component 12 can control how the cooling water flows to the many coil inner cooling flow paths 10 by adjusting the design of the flow path groove. Similarly, by adjusting the design of the flow path groove of the flow path connection component 12, the inlet / outlet of the cooling water can be centrally arranged in one of the side plate portions 1b and 1c, or the inlet / outlet can be arranged in the cylindrical portion 1a. can.
  • the cooling water is introduced into the motor 100 from the external connection flow path 17 of the side plate portion 1b on the left side of the drawing.
  • the cooling water introduced into the motor 100 circulates in the coil inner cooling flow path 10 via the flow path connecting component 12, passes through the flow path connecting component 12 on the side plate portion 1c side, and passes through the external connecting flow path of the side plate portion 1c. It is discharged to the outside from 17.
  • the heat generated by the coil 9 can be efficiently dissipated to the adjacent coil inner cooling flow path 10, and the space around the coil 9 (that is, the slot 8) is made of a resin material. By replacing it, heat transfer can be further facilitated.
  • the coil 9 and the stator 6 are closely filled with the resin material, and the inner wall 10a of the coil inner cooling flow path 10 is formed of the resin material, heat conduction between them is good. Become.
  • the cooling performance of the stator 6 can be improved, copper loss (loss consumed by the resistance of the winding of the coil 9 itself) can be reduced, the motor output can be improved, and the motor 100 can be downsized.
  • the inner wall 10a of the coil inner cooling flow path 10 may be made of a highly thermally conductive resin curing material.
  • the resin curing material may be a member obtained by curing the first resin composition.
  • the glass transition temperature Tg1 of the first cured resin product may be 150 ° C. or higher.
  • a sample obtained by heat-treating the first cured resin product at 175 ° C. for 4 hours was measured at a measurement temperature of ⁇ 50 ° C. to 200 ° C. and a temperature rise rate of 5 ° C. using a dynamic viscoelasticity measuring machine.
  • the storage elastic modulus at 25 ° C. measured under the conditions of / min, load: 800 gf, frequency: 10 Hz, and 3-point bending mode may be 20 GPa or more and 70 GPa or less.
  • the resin thickness t1 of the first cured resin product covering the coil side surface portion 9b of the coil 9 is 0.3 mm or more and 3.0 mm or less.
  • the lower limit of the resin thickness t1 is preferably 0.5 mm or more, more preferably 0.7 mm or more.
  • the upper limit of the resin thickness t1 is preferably 2.5 mm or less, more preferably 2.0 mm or less.
  • the lower limit of the relational expression P1 is preferably 0.4 ⁇ 10 -4 (m 2 K / W) or more, and more preferably 0.5 ⁇ 10 -4 (m 2 K / W) or more.
  • the upper limit of the relational expression P1 is preferably 2.5 ⁇ 10 -3 (m 2 K / W) or less, and more preferably 2 ⁇ 10 -3 (m 2 K / W) or less.
  • the inner wall 10a of the coil inner cooling flow path 10 may be made of a highly thermally conductive inorganic material.
  • the coil inner cooling flow path 10 may be provided on the rotation axis direction side of the coil 9. By arranging the coil inner cooling flow path 10 in this way, the entire coil 9 can be efficiently cooled.
  • the coil 9 may be configured as a distributed winding wound over a plurality of slots 8. In the case of distributed winding, copper loss tends to increase due to its structure, and effective heat dissipation is required. Therefore, by adopting the cooling structure having the above-mentioned configuration, good cooling performance (heat dissipation performance) can be realized even in a rotary electric machine such as a distributed winding machine.
  • At least one coil inner cooling flow path 10 may be provided for each set of slots 8 constituting one distributed winding. In the case of distributed winding, since it straddles a plurality of slots 8, if there is a coil inner cooling flow path 10 in at least one slot 8, another slot 8 having no coil inner cooling flow path 10 via the coil 9 ( The teeth portion 7) can also be cooled.
  • the first resin composition may consist of one or two thermosetting resins selected from the group consisting of epoxy resins and phenolic resins. By using such a thermosetting resin as the first resin composition, high heat dissipation performance can be realized.
  • a rotary electric machine having the above cooling structure The rotary electric machine is the above-mentioned motor 100 (motor), a generator, or a motor / generator dual-purpose machine.
  • FIG. 4 is a vertical cross-sectional view of the motor 100A in the rotation axis direction.
  • FIG. 5 is an enlarged view of the periphery of the coil end portion 9a of FIG. 4 according to the present embodiment.
  • FIG. 6 is a vertical cross-sectional view of the motor 100A in a direction perpendicular to the rotation axis direction according to the embodiment, and is a cross-sectional view of a region provided with a coil end cooling flow path 14.
  • the motor 100A accommodates the coil 9 distributed and wound around the teeth portion 7 of the stator 6 in the slot 8 between the teeth portions 7.
  • the coil inner cooling flow path 10 extending in the axial direction is arranged at a position adjacent to the coil 9 on the inner peripheral side of the stator 6 (near the tooth inner peripheral surface 6a).
  • a resin material first resin composition is filled in the gaps other than the coil 9 or the coil inner cooling flow path 10.
  • the coil end portion 9a of the coil 9 protruding outward in the rotation axis direction of the stator 6 is covered with an insulating layer 13 which is a cured product of a resin material (second resin composition).
  • a coil end cooling flow path 14 extending in the circumferential direction is formed on the outer side in the rotation axis direction and / or the outer side in the circumferential direction of the coil end portion 9a.
  • the coil inner cooling flow path 10 can be arranged adjacent to the coil 9 at a position on the inner peripheral side (near the tooth inner peripheral surface 6a) of the coil 9 of the stator 6.
  • a coil end cooling flow path 14 can be arranged adjacent to the coil 9 at the position of the coil 9 at the end in the rotation axis direction, so that the heat-generating coil 9 can be efficiently cooled.
  • the coil end cooling flow path 14 will be specifically described.
  • ⁇ Coil end cooling flow path 14> In the space at the end of the coil 9 protruding outward in the rotation axis direction (lateral direction in FIGS. 4 and 5) of the stator 6, in the circumferential direction, outside the rotation axis direction and / or circumferential direction of the coil end portion 9a.
  • a flow path 14 for cooling the end of the coil to be stretched is provided. Cooling liquid, for example, cooling water circulates in the coil end cooling flow path 14.
  • the coil end cooling flow path 14 is provided with an annular internal space, for example, when viewed from the outside in the axial direction (a part of the annular is shown in FIG. 6).
  • a plurality of coil inner cooling flow paths 10 are commonly connected.
  • the coil end cooling flow path 14 arranged at the coil end 9a may be arranged so as to extend in the circumferential direction to the outside in the rotation axis direction or the outside in the circumferential direction, but from the viewpoint of improving the cooling efficiency, the coil 9 may be arranged. In order to increase the area of the waterway surface 14a facing the above, it is preferable to arrange it on both the outer side in the rotation axis direction and the outer side in the circumferential direction.
  • the coil end cooling flow path 14 includes the coil end cooling flow path main body 14c provided in the region outside the rotation axis direction and the end side cooling flow path provided in the circumferential direction outer region. It has a road 14b. More specifically, the end side cooling flow path 14b extends from the coil end cooling flow path main body 14c into the space between the outer peripheral side surface of the coil end portion 9a and the cylindrical portion 1a. It is provided in.
  • the length of the water channel in the circumferential direction may be a state in which one round is continuous, but it may be a structure in which a plurality of channels are divided in the circumferential direction.
  • the capacity (volume) of the coil end cooling flow path 14 is set in consideration of the capacity of the circulating cooling water, the circulation speed, and the like.
  • the coil end cooling flow path 14 (coil end cooling flow path main body 14c, end side cooling flow path 14b) is provided at the rotation axis direction end of the stator 6 and the coil 9 (that is, the coil end 9a). It can be obtained by a method of directly molding a resin material (second resin composition). In this case, the inner wall 14a of the coil end cooling flow path 14 is configured as a part of the cured product injected into the coil end 9a.
  • the gaps between the members are filled with a resin material and fixed.
  • This resin material shall be able to withstand the heat generation of the coil 9.
  • the resin material (first and second resin compositions) filled in the gaps between the coil inner cooling flow path 10, the coil end cooling flow path 14, the coil 9, the stator 6, and each member is thermally conductive. It is desirable that the resin material has a good quality, and one kind of resin or a combination of a plurality of kinds of resins can be used for each member. For example, one or two thermosetting resins selected from the group consisting of epoxy resins and phenolic resins can be used.
  • the coil end cooling flow path 14 is molded by a mold having a water channel shape.
  • Various moldings of the insulating layer 11, the coil inner cooling flow path 10, and the coil end cooling flow path 14 may be performed at the same time, but can also be performed step by step, and the resin material is changed for each molding site. You can also.
  • the first resin composition is used as the resin material
  • the first resin composition is different from the first resin composition.
  • the resin composition of 2 is used as a resin material.
  • the second resin composition is the same as the applicable range of the first resin composition described in the first embodiment, and is obtained by curing the same resin composition or different resin compositions. Specifically, it is as follows.
  • the thermal conductivity K2 of the second resin curing material which is the cured product of the second resin composition, is 1 to 10 W / m ⁇ K.
  • the lower limit of the thermal conductivity K2 is preferably 2 W / m ⁇ K or more, and more preferably 3 W / m ⁇ K or more.
  • the upper limit of the thermal conductivity K2 is not particularly limited, but is a realistic value of 10 W / m ⁇ K.
  • the glass transition temperature Tg2 of the second cured resin product is 150 ° C. or higher. By setting the glass transition temperature Tg2 in the above range, the heat resistance performance of the motor 100A can be improved and a high output can be realized.
  • a sample obtained by heat-treating the second cured resin product at 175 ° C. for 4 hours was measured at a measurement temperature of ⁇ 50 ° C. to 200 ° C. and a temperature rise rate of 5 ° C./min using a dynamic elastic modulus measuring machine.
  • the storage elastic modulus at 25 ° C. measured under the conditions of load: 800 gf, frequency: 10 Hz, and 3-point bending mode is 20 GPa or more and 70 GPa or less.
  • the lower limit of the storage elastic modulus is preferably 30 GPa or more, more preferably 40 GPa or more.
  • the upper limit of the storage elastic modulus is preferably 60 GPa or less, more preferably 50 GPa or less. Also from this point of view, by setting the storage elastic modulus within the above range, the heat resistance performance of the motor 100A can be improved and a high output can be realized.
  • the resin thickness t2 of the second cured resin product that covers the coil side surface portion 9b of the coil 9 is 0.3 mm or more and 3.0 mm or less.
  • the lower limit of the resin thickness t2 is preferably 0.5 mm or more, more preferably 0.7 mm or more.
  • the upper limit of the resin thickness t2 is preferably 2.5 mm or less, more preferably 2.0 mm or less.
  • the lower limit of the relational expression P1 is preferably 0.4 ⁇ 10 -4 (m 2 K / W) or more, and more preferably 0.5 ⁇ 10 -4 (m 2 K / W) or more.
  • the upper limit of the relational expression P1 is preferably 2.5 ⁇ 10 -3 (m 2 K / W) or less, and more preferably 2 ⁇ 10 -3 (m 2 K / W) or less.
  • the flow path connecting component 12 is sandwiched between the inner wall 1d of the side plate portions 1b and 1c, the end portion 10c of the coil inner cooling flow path 10 and the end portion 14d of the coil end cooling flow path 14. It is arranged. Packing, O-rings, sealing materials, etc. necessary for preventing leakage of the coolant are arranged at the joints of the coil inner cooling flow path 10, the flow path connection component 12, and the side plate portions 1b and 1c.
  • the flow path connection component 12 may be configured as an independent component and may be attached to the end of the coil inner cooling flow path 10, or may be integrated with the side plate portions 1b and 1c. It is sufficient that the coil inner cooling flow path 10, the coil end cooling flow path 14, and the external connection flow path 17 can be appropriately communicated with each other.
  • the coil inner cooling flow path 10 formed in each slot 8 of the stator 6 and the coil end cooling flow path 14 formed at the coil end are arranged inside the side plate portions 1b and 1c.
  • the motor 100 can be cooled by connecting to the flow path connecting component 12 and further connecting to the cooling liquid inlet / outlet of the side plate portions 1b and 1c.
  • the flow path connection component 12 is formed by adjusting the design of the flow path groove in combination with the circumferentially divided structure of the coil end cooling flow path 14, so that the cooling water to the coil inner cooling flow path 10 is provided in large numbers. It is possible to control the flow method. Similarly, by adjusting the design of the flow path groove of the flow path connection component 12, the inlet / outlet of the cooling water can be centrally arranged in one of the side plate portions 1b and 1c, or the inlet / outlet can be arranged in the cylindrical portion 1a. can.
  • the heat generated by the coil 9 can be efficiently dissipated to the adjacent coil inner cooling flow path 10 and the coil end cooling flow path 14, and the space around the coil 9 can be efficiently dissipated.
  • the space around the coil 9 can be efficiently dissipated.
  • heat conduction is improved by the contact type heat transfer from the space heat dissipation of the first embodiment to the coil end cooling flow path 14 via the resin material.
  • the cooling performance of the stator 6 can be improved, copper loss (loss consumed by the resistance of the winding of the coil 9 itself) can be reduced, the motor output can be improved, and the motor 100 can be downsized.
  • the motor 100A of the present embodiment has the same features / functions as the features / functions (1) to (15), and the following features / functions (16) to (22). ).
  • a second resin cured product (insulating layer 13) obtained by curing the second resin composition covering the coil end portions 9a protruding from both ends in the axial direction of the stator 6. The coil end is connected to the coil inner cooling flow path (first cooling flow path) and is provided in the region of the second resin cured product (insulating layer 13) that covers the coil end portion 9a.
  • the second resin composition is the same as the applicable range of the first resin composition, and is obtained by curing the same resin composition or different resin compositions.
  • the inner wall of the coil end cooling flow path 14 (second cooling flow path) is provided with a second cured resin product. That is, at least a part of the configuration of the coil end cooling flow path 14 may be made of a second cured resin product.
  • the resin thickness t2 of the second cured resin product (insulating layer 13) that covers the coil end portion 9a may be 0.3 mm or more and 3 mm or less.
  • a housing 1 having a housing cylinder portion 1a provided in a cylindrical shape around the stator 6 and a housing side plate portions 1b and 1c for closing the openings at both ends of the housing cylinder portion 1a. It has a second resin cured product (insulating layer 13) that covers the coil end portion 9a and a connecting portion (flow path connecting component 12) provided between the housing side plate portions 1b and 1c.
  • the coil end cooling flow path 14 includes a second cured resin product (insulating layer 13) and a connecting portion 12. (22)
  • the connecting portion (flow path connecting component 12) is provided so as to integrally project from the housing side plate portions 1b and 1c toward the coil end portion 9a.
  • the winding method of the coil 9 is not limited to the distributed winding, and the same cooling function can be exhibited in the centralized winding and other winding methods.
  • the coil inner cooling flow path 10 is arranged on the rotor outer peripheral surface 2a side from the coil 9 in the slot 8, it may be on the case 1 (cylindrical portion 1a) side, or may be both.

Abstract

モータ(100)は、複数のティース部(7)を有するステータ(6)と、ティース部(7)に巻かれたコイル(9)と、を有し、コイル(9)がティース部(7)の間に形成されたスロッ(ト8)とを有し、コイル(9)がスロット(8)に設けられており、冷却構造として、スロット(8)に充填されコイル(9)を覆う第1の樹脂組成物と、前記第1の樹脂組成物が充填されている領域に設けられ内部を冷却剤が循環する回転軸方向に延出するコイル内側冷却用流路(10)と、を有する。

Description

回転電機及び回転電機の冷却構造
 本発明は、回転電機及び回転電機の冷却構造に関する。
 モータ(発動機)や発電機のような回転電機において、ステータを効率よく冷却するために、ステータの外周に配置される円筒状のケースに冷却用ジャケット構造を配置し、ステータからケースへと熱を逃がす構造が従来から提案されている(従来技術)。
 例えば、特許文献1では、ステータのティース部に集中巻きしたコイルを、ティース部間のスロットに収容した回転電機において、スロットの内部空間に軸方向に延びる複数のパイプを並列配置し、かつこれらパイプの隙間及びパイプと前記コイルとの隙間に樹脂材料を充填して、ステータ内周側に向けて開口するスロットを閉塞する樹脂層を形成し、パイプ内に冷媒を流すようにした技術が開示されている。
特許4496710号公報
 しかし、前述した従来技術では、発熱したコイルからステータコアへ伝熱させ、更にステータコアからケース、ケースから冷却用ジャケットと熱の移動経路が長いため、冷却効率が良くない構造であった。また、コイルとステータコア、ステータコアとケースの間には微小な隙間が存在する場合が多く、これも熱の移動を妨げる要因となっていた。
 特許文献1に開示の技術では、一定の冷却性能の向上は期待できるものの、構造が複雑になってしまい、製品として採用することは限定されてしまうという課題があった。
 本発明はこのような状況に鑑みなされたものであって、ステータの冷却性能を向上させる回転電機の冷却構造を提供することを目的としている。
 本発明のある態様は回転電機の冷却構造であって、複数のティース部を有するステータと、前記ティース部に巻かれたコイルと、前記ティース部の間に形成されたスロットとを有し、前記コイルが前記スロットに設けられた回転電機の冷却構造であって、
 前記スロットに充填され、前記コイルを覆う第1の樹脂組成物と、
 前記第1の樹脂組成物が充填されている領域に設けられ、内部を冷却剤が循環する、回転軸方向に延出する第1の冷却用流路と、を有する。
 本発明の別の態様は、上記の冷却構造を有する回転電機である。
 本発明によれば、ステータの冷却性能を向上させる回転電機の冷却構造を提供することができる。
第1の実施形態に係る、モータの回転軸方向と垂直な方向の縦断面図である。 第1の実施形態に係る、モータの回転軸方向の縦断面図である。 第1の実施形態に係る、スロット周辺を拡大して示した図である。 第2の実施形態に係る、モータの回転軸方向の縦断面図である。 第2の実施形態に係る、図4の断面図のコイル9b周辺を拡大して示した図である。 第2の実施形態に係る、コイル端部冷却用流路が設けられた領域の回転軸方向と垂直な方向の縦断面図である。
<<第1の実施形態>>
<概要>
 本実施形態では、回転電機(電動機又、発電機または電動機/発電機の両用機)として電動機(モータ)に適用した例を説明する。図1はモータ100の回転軸方向と垂直な方向の縦断面図である。図2はモータ100の回転軸方向の縦断面図である。図3は、図1のスロット周辺を拡大して示した図である。
 本実施形態の概要は次の通りである。
 モータ100は、ステータ6のティース部7に分布巻きしたコイル9を、ティース部7間のスロット8に収容する。スロット8の内部空間でステータ6の内周側(ティース内周面6a近傍)で且つコイル9と隣接する位置に、軸方向に延びるコイル内側冷却用流路10(第1の冷却用流路)を配置する。さらに、これらスロット8の内部空間でコイル9またはコイル内側冷却用流路10を除く隙間に樹脂材料(以下「第1の樹脂組成物」ともいう)を充填して、コイル内側冷却用流路10に冷却液を流すことでステータ6を冷却する。モータ100をこの様な構造とすることで、ステータ6のコイル9より内周側(ティース内周面6a近傍)の位置にコイル9に隣接してコイル内側冷却用流路10を配置でき、発熱するコイル9を効率良く冷却することができる。
 以下具体的に説明する。
<モータ100の基本構造>
 モータ100は、ケース1と、ケース1の内部に収容されたロータ2(回転子)及びステータ6(固定子)を備える。
 ケース1は、円筒部1aと、この円筒部1aの軸方向両端を閉塞する側板部1b、1cとを有して構成される。ケース1の材料として、例えば、アルミニウム合金(鋳物鋳造品)や樹脂材料、それらを組み合わせたものを用いることができる。側板部1b、1cには、コイル内側冷却用流路10と外部の冷却流路とを連結する外部接続流路17が設けられている。
 ロータ2は、ケース1の内部に収容されている。ロータ2の中心には出力軸として回転軸3が取り付けられている。
 回転軸3の両端がそれぞれベアリング4を介して側板部1b、1cに支持されている。これによって、ロータ2は回転軸3を中心に回転自在となっている。
 ロータ2には永久磁石5が内装されている。具体的には、図1に示すように、複数(ここでは8個)の永久磁石5が同一円周上に等間隔で配置されている。このとき、隣合う永久磁石5の磁極は互いに異なるように設置されている。
 円筒部1aの内周には円筒型のステータ6が、ロータ2の外周を取り囲むように配置され固定されている。図3に示すように、ステータ6の内周面6aとロータ2の外周面2aとの間には微少な間隙(エアギャップ)が設けられている。
 ステータ6には内周面6aに向いたティース部7が配列されている。ここでは、図1に示すように、24個のティース部7が設けられている。各ティース部7の間にスロット8が設けられている。
 スロット8にはコイル9が分布巻きで収容されている。ティース部7は上述の永久磁石5と対応して設けられ、各コイル9を順次励磁していくことにより、これに対応した永久磁石5との吸引、反発によりロータ2が回転する。
<コイル内側冷却用流路10>
 スロット8の内部空間でステータ6の内周6a側で且つコイル9と隣接する位置に、軸方向に延びるコイル内側冷却用流路10が設けられている。コイル内側冷却用流路10には冷却液、例えば冷却水が循環する。
 このコイル内側冷却用流路10は筒状の部品をスロット8に挿入することで形成可能である他、ステータ6に樹脂材料(第1の樹脂組成物)を直接成形する方法によっても得ることができる。この場合、コイル内側冷却用流路10の内壁10aは、ステータ6に注入された樹脂材料の硬化物(以下「第1の樹脂硬化材」という)の一部として構成される。
 コイル内側冷却用流路10が筒状の部品として設けられる場合、アルミニウムまたはアルミニウム合金のような高熱伝導性の非磁性金属や、高熱伝導性の無機材料を用いることができる。さらに、上述したスロット8に充填される樹脂材料(第1の樹脂組成物)とは別に設けた樹脂製の筒状の部品が用いられてもよい。
 以下では、ステータ6に樹脂材料(第1の樹脂組成物)を直接成形する方法を適用した例として説明する。
 一つのスロット8に配置するコイル内側冷却用流路10の数は1本または複数本のいずれでも良いが、スロット8の空間幅が狭い状況に於いては冷却液が通過する際の流路抵抗を考慮して流路の断面積が大きくなるように本数は少ない方が好ましい。コイル内側冷却用流路10の断面形状は本実施形態の様な円形の他、四角やスロット8の形状に合わせることもできる。
 また、本実施形態では、コイル9は複数のスロット8をまたいで巻装された分布巻きである。そこで、コイル内側冷却用流路10は、一つの分布巻きを構成するスロット8の組毎に少なくとも一つ設けられるようにしてもよい。例えば、あるコイル9が2つのスロット8をまたいで巻装される場合に、一方のスロット8にはコイル内側冷却用流路10を設け、他方のスロット8にはコイル内側冷却用流路10を設けないようにする。一つの分布巻きを構成する複数のスロット8の組において、少なくとも一つのスロット8にコイル内側冷却用流路10が設けられていれば、コイル9を介してコイル内側冷却用流路10が設けられていない他のスロット8(すなわちティース部7)も冷却することができる。
 また、スロット8とコイル9の間には絶縁層11を設ける。絶縁層11は絶縁紙や絶縁性の樹脂材料によって形成することができ、ステータ6にコイル9を挿入する前に配置した方が好ましい。ただし、後述するスロット8の内部空間でコイル9またはコイル内側冷却用流路10を除く隙間に樹脂材料(第1の樹脂組成物)を充填することによっても形成することができる。この場合、コイル内側冷却用流路10の内壁10aは、第1の樹脂組成物の硬化物からなる絶縁層11によって構成される。
 そして、スロット8にコイル内側冷却用流路10、絶縁層11、コイル9を配置した後に各部材間の隙間に樹脂材料を充填し固定する。この樹脂材料はコイル9の発熱に耐えられるものとする。
<第1の樹脂組成物>
 コイル内側冷却用流路10、絶縁層11、および各部材間の隙間に充填する樹脂材料(第1の樹脂組成物)は、熱伝導性の良い樹脂材料であることが望ましく、1種類の樹脂または部材毎に複数種の樹脂の組み合わせとすることができる。例えば、エポキシ樹脂およびフェノール樹脂からなる群より選択される1種または2種の熱硬化性樹脂を用いることができる。
 第1の樹脂組成物の硬化物である第1の樹脂硬化材の熱伝導率K1は1~10W/m・Kである。熱伝導率K1の下限は、好ましくは2W/m・K以上であり、より好ましくは3W/m・K以上である。熱伝導率K1の上限は、特に限定しないが、現実的な値として10W/m・Kである。
 第1の樹脂硬化物のガラス転移温度Tg1が150℃以上である。
 ガラス転移温度Tg1を上記範囲とすることで、モータ100の耐熱性能を向上させ、高い出力を実現できる。
 第1の樹脂硬化物を、175℃で4時間加熱処理したサンプルに対して、動的粘弾性測定機を用いて、測定温度:-50℃~200℃、昇温速度:5℃/分、荷重:800gf、周波数:10Hz、3点曲げモードの条件で測定した、25℃における貯蔵弾性率が、20GPa以上70GPa以下である。
 貯蔵弾性率の下限は、好ましくは30GPa以上、より好ましくは40GPa以上である。
 貯蔵弾性率の上限は、好ましくは60GPa以下、より好ましくは50GPa以下である。
この観点においても、貯蔵弾性率を上記の範囲とすることで、モータ100の耐熱性能を向上させ、高い出力を実現できる。
 コイル9のコイル側面部9bを覆う第1の樹脂硬化物の樹脂厚みt1は、例えば0.3mm以上3.0mm以下である。
 樹脂厚みt1の下限は、好ましくは0.5mm以上、より好ましくは0.7mm以上である。樹脂厚みt1の上限は、好ましくは2.5mm以下、より好ましくは2.0mm以下である。
 樹脂厚みt1を上記の範囲にすることで、絶縁性を適切に維持でき、かつ、コイル9で発生した熱を良好にコイル内側冷却用流路10に伝えることができる。
 樹脂厚みt1と第1の樹脂硬化物の熱伝導率K1の関係式P1=t1/K1は、例えば0.3×10-4(mK/W)以上3×10-3(mK/W)以下である。
 関係式P1の下限は、好ましくは0.4×10-4(mK/W)以上、より好ましくは0.5×10-4(mK/W)以上である。関係式P1の上限は、好ましくは2.5×10-3(mK/W)以下、より好ましくは2×10-3(mK/W)以下である。
 関係式P1の値を上記範囲とすることで、絶縁性を適切に維持でき、かつ、コイル9で発生した熱を良好にコイル内側冷却用流路10に伝えることができる。
 また、絶縁層11の成形方法としては特に限定はしないが、インサート成形を用いることができる。このとき、分布巻きしたコイル9を配置したスロット8に、コイル内側冷却用流路10に対応する金型構造(入れ子構造)を配置してインサート成形する。
 以上のようにして、ステータ6の各スロット8に形成されたコイル内側冷却用流路10を側板部1b、1cの内側に配置する流路接続部品12に接続し、更に側板部1bおよび1cの冷却液出入口に接続することでモータ100を冷却可能とする。流路接続部品12は、図示のように、独立した部品として構成され、コイル内側冷却用流路10の端部に取り付けられる構成でもよいし、側板部1b、1cと一体となった構成でもよく、コイル内側冷却用流路10と外部接続流路17とを適切に連通できればよい。
 コイル内側冷却用流路10、流路接続部品12および側板部1b、1cの各接合部には冷却液の漏れを防止する為に必要なパッキン、Oリング、シール材などを配置する。
 流路接続部品12は、流路溝のデザインを調整することにより多数あるコイル内側冷却用流路10への冷却水の流し方を制御することができる。同様に、流路接続部品12の流路溝のデザインを調整することにより、冷却水の出入口をいずれか一方の側板部1b、1cに集約配置したり、円筒部1aに出入口を配置することができる。
 以上の構成のモータ100では、例えば、冷却水は、図示左側の側板部1bの外部接続流路17からモータ100の内部に導入される。モータ100内部に導入された冷却水は、流路接続部品12を経てコイル内側冷却用流路10を循環し、側板部1c側の流路接続部品12を経て、側板部1cの外部接続流路17から外部に排出される。
<コイル内側冷却用流路10の作用・効果>
 本実施形態により、分布巻きのモータ100において、コイル9による発熱を隣接するコイル内側冷却用流路10へ効率良く放熱することができ、且つコイル9周辺の空間(すなわちスロット8)を樹脂材料に置き換えることで更に熱の移動を容易にすることができる。特に、コイル9とステータ6が樹脂材料で密着充填されるため、さらにコイル内側冷却用流路10の内壁10aがその樹脂材料で形成されていることから、それらの間での熱伝導が良好になる。これにより、ステータ6の冷却性能を向上させることができ、銅損(コイル9の巻き線自体の抵抗により消費される損失)の低減、モータ出力の向上、モータ100の小型化などが実現できる。
<モータ100(回転電機)の特徴・機能のまとめ>
 本実施形態のモータ100の特徴について冷却構造に着目して纏めて説明する。
(1)複数のティース部7を有するステータ6と、前記ティース部7に巻かれたコイル9と、ティース部7の間に形成されたスロット8とを有し、コイル9がスロット8に設けられたモータ100(回転電機の一例)の冷却構造であって、
 スロット8に充填され、コイル9を覆う第1の樹脂組成物と、
 前記第1の樹脂組成物が充填されている領域に設けられ、内部を冷却剤が循環する、回転軸方向に延出するコイル内側冷却用流路10(第1の冷却用流路)と、
 を有する。
 コイル9周辺の空間(すなわちスロット8)を樹脂材料に置き換えることで、コイル9に発生した熱の移動を効率的に行える。
(2)コイル内側冷却用流路10の内壁10aは、高熱伝導性の樹脂硬化材からなってもよい。
(3)前記樹脂硬化材は、前記第1の樹脂組成物が硬化した部材であってもよい。
 コイル内側冷却用流路10の内壁10aを、スロット8に充填された第1の樹脂組成物が硬化した部材とすることで、冷却構造における構成要素の削減、それに伴う冷却性能の向上、製造工程の簡素化を実現できる。
(4)第1の樹脂硬化材の熱伝導率K1が1~10W/m・Kであってもよい。
(5)第1の樹脂硬化物のガラス転移温度Tg1が150℃以上であってもよい。
(6)第1の樹脂硬化物を、175℃で4時間加熱処理したサンプルに対して、動的粘弾性測定機を用いて、測定温度:-50℃~200℃、昇温速度:5℃/分、荷重:800gf、周波数:10Hz、3点曲げモードの条件で測定した、25℃における貯蔵弾性率が、20GPa以上70GPa以下であってもよい。
(7)コイル9のコイル側面部9bを覆う第1の樹脂硬化物の樹脂厚みt1が0.3mm以上3.0mm以下である。
 樹脂厚みt1の下限は、好ましくは0.5mm以上、より好ましくは0.7mm以上である。樹脂厚みt1の上限は、好ましくは2.5mm以下、より好ましくは2.0mm以下である。樹脂厚みt1を上記の範囲にすることで、絶縁性を適切に維持でき、かつ、コイル9で発生した熱を良好にコイル内側冷却用流路10に伝えることができる。
(8)樹脂厚みt1と第1の樹脂硬化物の熱伝導率K1の関係式P1=t1/K1が0.3×10-4(mK/W)以上3×10-3(mK/W)以下である。
 関係式P1の下限は、好ましくは0.4×10-4(mK/W)以上、より好ましくは0.5×10-4(mK/W)以上である。
 関係式P1の上限は、好ましくは2.5×10-3(mK/W)以下、より好ましくは2×10-3(mK/W)以下である。
 関係式P1の値を上記範囲とすることで、絶縁性を適切に維持でき、かつ、コイル9で発生した熱を良好にコイル内側冷却用流路10に伝えることができる。
(9)コイル内側冷却用流路10の内壁10aは、高熱伝導性の金属からなってもよい。
(10)コイル内側冷却用流路10の内壁10aは、高熱伝導性の無機材料からなってもよい。
(11)コイル内側冷却用流路10は、コイル9より前記回転軸方向側に設けられてもよい。
 コイル内側冷却用流路10をこのような配置とすることで、コイル9全体を効率的に冷却できる。
(12)コイル9は複数のスロット8をまたいで巻装された分布巻きとして構成されてもよい。
 分布巻きの場合、その構造上、銅損が増加してしまう傾向にあり、放熱を効果的に行うことが要請されている。そこで、上述のような構成の冷却構造を採用することで、分布巻きのような回転電機においても良好な冷却性能(放熱性能)を実現できる。
(13)コイル内側冷却用流路10は、一つの分布巻きを構成するスロット8の組毎に少なくとも一つ設けられてもよい。
 分布巻きの場合、複数のスロット8を跨ぐことから、少なくとも一つのスロット8にコイル内側冷却用流路10があれば、コイル9を介してコイル内側冷却用流路10のない他のスロット8(ティース部7)も冷却できる。
(14)第1の樹脂組成物は、エポキシ樹脂およびフェノール樹脂からなる群より選択される1種または2種の熱硬化性樹脂からなってもよい。
 第1の樹脂組成物としてこのような熱硬化性樹脂を用いることで、高い放熱性能を実現できる。
(15)上記の冷却構造を有する回転電機である。回転電機は、上述したモータ100(電動機)や発電機または電動機/発電機の両用機などである。
<<第2の実施形態>>
 本実施形態のモータ100Aは、第1の実施形態のモータ100のコイル端部周辺の構造において異なっており、以下では主に異なる部分に着目して説明する。図4はモータ100Aの回転軸方向の縦断面図である。図5は本実施形態に係る、図4のコイル端部9a周辺を拡大して示した図である。図6は実施形態に係る、モータ100Aの回転軸方向と垂直な方向の縦断面図であって、特にコイル端部冷却用流路14が設けられた領域の断面図である。
 本実施形態の概要は次の通りである。
 モータ100Aは、第1の実施形態と同様に、ステータ6のティース部7に分布巻きしたコイル9を、ティース部7間のスロット8に収容する。スロット8の内部空間でステータ6の内周側(ティース内周面6a近傍)で且つコイル9と隣接する位置に、軸方向に延びるコイル内側冷却用流路10を配置する。これらスロット8の内部空間でコイル9またはコイル内側冷却用流路10を除く隙間に樹脂材料(第1の樹脂組成物)を充填する。
 また、本実施形態の大きな特徴のひとつとして、ステータ6の回転軸方向外側に突き出したコイル9のコイル端部9aを樹脂材料(第2の樹脂組成物)の硬化物である絶縁層13で覆い、コイル端部9aの回転軸方向外側および/または円周方向外側に、円周方向に延伸するコイル端部冷却用流路14を形成する
 モータ100Aをこの様な構造とすることで、ステータ6のコイル9より内周側(ティース内周面6a近傍)の位置にコイル9に隣接してコイル内側冷却用流路10を配置でき、更にコイル9の回転軸方向端部の位置にもコイル9に隣接してコイル端部冷却用流路14を配置でき、発熱するコイル9を効率良く冷却することができる。
 以下、コイル端部冷却用流路14に着目して具体的に説明する。
<コイル端部冷却用流路14>
 ステータ6の回転軸方向外側(図4や図5では横方向)に突き出したコイル9の端部の空間で、コイル端部9aの回転軸方向外側およびまたは円周方向外側に、円周方向に延伸するコイル端部冷却用流路14が設けられている。コイル端部冷却用流路14には冷却液、例えば冷却水が循環する。図6に示すように、コイル端部冷却用流路14は、例えば軸方向外側から見たときに、内部空間が環状に設けられており(図6では環状の一部を示している)、複数のコイル内側冷却用流路10が共通に接続される構成となっている。
 コイル端部9aに配置するコイル端部冷却用流路14は、回転軸方向外側または円周方向外側に円周方向に延伸するよう配置してもよいが、冷却効率を上げる観点から、コイル9に対向する水路面14aの面積を大きくするために回転軸方向外側および円周方向外側の両方に配置するのが好ましい。
 すなわち、コイル端部冷却用流路14は、回転軸方向外側の領域に設けられたコイル端部冷却用流路本体14cと、円周方向外側の領域に設けられた端部側方冷却用流路14bとを有する。端部側方冷却用流路14bは、より具体的には、コイル端部9aの外周側側面と円筒部1aとの間の空間に、コイル端部冷却用流路本体14cから延出するように設けられている。円周方向の水路長さは1周分が連続した状態でも良いが、円周方向に複数分割する構造としても良い。コイル端部冷却用流路14の容量(体積)は、循環する冷却水の容量、循環速度等を考慮して、設定される。
 コイル端部冷却用流路14(コイル端部冷却用流路本体14c、端部側方冷却用流路14b)は、ステータ6およびコイル9の回転軸方向端部(すなわちコイル端部9a)に樹脂材料(第2の樹脂組成物)を直接成形する方法によって得ることができる。この場合、コイル端部冷却用流路14の内壁14aは、コイル端部9aに注入された硬化物の一部として構成される。
 以下では、ステータ6およびコイル9の回転軸方向端部(すなわちコイル端部9a)に樹脂材料を直接成形する方法を適用した例として説明する。
 ステータ6にコイル内側冷却用流路10、絶縁層11、コイル9、コイル端部冷却用流路14を配置した後に各部材間の隙間に樹脂材料を充填し固定する。この樹脂材料はコイル9の発熱に耐えられるものとする。
<第2の樹脂組成物>
 コイル内側冷却用流路10、コイル端部冷却用流路14、コイル9、ステータ6、および各部材間の隙間に充填する樹脂材料(第1及び第2の樹脂組成物)は、熱伝導性の良い樹脂材料であることが望ましく、1種類の樹脂または部材毎に複数種の樹脂の組み合わせとすることができる。例えば、エポキシ樹脂およびフェノール樹脂からなる群より選択される1種または2種の熱硬化性樹脂を用いることができる。
 コイル端部冷却用流路14については水路形状を構成した金型により成形する。絶縁層11、コイル内側冷却用流路10、コイル端部冷却用流路14の各種成形は同時に実施しても良いが段階的に実施することもでき、成形部位毎に樹脂材料を変更することもできる。例えば、コイル内側冷却用流路10を成形するときは第1の樹脂組成物を樹脂材料として使用し、コイル端部冷却用流路14を成形するときは第1の樹脂組成物とは異なる第2の樹脂組成物を樹脂材料として使用する。
 第2の樹脂組成物は、第1の実施形態で説明した第1の樹脂組成物の適用範囲と同等とし、同一の樹脂組成物または異なる樹脂組成物を硬化して得られる。具体的には次の通りである。
 第2の樹脂組成物の硬化物である第2の樹脂硬化材の熱伝導率K2は1~10W/m・Kである。熱伝導率K2の下限は、好ましくは2W/m・K以上であり、より好ましくは3W/m・K以上である。熱伝導率K2の上限は、特に限定しないが、現実的な値として10W/m・Kである。
 第2の樹脂硬化物のガラス転移温度Tg2が150℃以上である。
 ガラス転移温度Tg2を上記範囲とすることで、モータ100Aの耐熱性能を向上させ、高い出力を実現できる。
 第2の樹脂硬化物を、175℃で4時間加熱処理したサンプルに対して、動的粘弾性測定機を用いて、測定温度:-50℃~200℃、昇温速度:5℃/分、荷重:800gf、周波数:10Hz、3点曲げモードの条件で測定した、25℃における貯蔵弾性率が、20GPa以上70GPa以下である。
 貯蔵弾性率の下限は、好ましくは30GPa以上、より好ましくは40GPa以上である。
 貯蔵弾性率の上限は、好ましくは60GPa以下、より好ましくは50GPa以下である。
この観点においても、貯蔵弾性率を上記の範囲とすることで、モータ100Aの耐熱性能を向上させ、高い出力を実現できる。
 コイル9のコイル側面部9bを覆う第2の樹脂硬化物の樹脂厚みt2が0.3mm以上3.0mm以下である。
 樹脂厚みt2の下限は、好ましくは0.5mm以上、より好ましくは0.7mm以上である。樹脂厚みt2の上限は、好ましくは2.5mm以下、より好ましくは2.0mm以下である。
 樹脂厚みt2を上記の範囲にすることで、絶縁性を適切に維持でき、かつ、コイル9で発生した熱を良好にコイル端部冷却用流路14に伝えることができる。
 樹脂厚みt2と第2の樹脂硬化物の熱伝導率K2の関係式P2=t2/K2が0.3×10-4(mK/W)以上3×10-3(mK/W)以下である。
 関係式P1の下限は、好ましくは0.4×10-4(mK/W)以上、より好ましくは0.5×10-4(mK/W)以上である。関係式P1の上限は、好ましくは2.5×10-3(mK/W)以下、より好ましくは2×10-3(mK/W)以下である。
 関係式P2の値を上記範囲とすることで、絶縁性を適切に維持でき、かつ、コイル9で発生した熱を、コイル端部9aから良好にコイル内側冷却用流路14に伝えることができる。
<流路接続部品12>
 本実施形態では、流路接続部品12は、側板部1b、1cの内部壁1dと、コイル内側冷却用流路10の端部10c及びコイル端部冷却用流路14の端部14dとによって挟まれて配置されている。コイル内側冷却用流路10、流路接続部品12および側板部1b、1cの各接合部には冷却液の漏れを防止する為に必要なパッキン、Oリング、シール材などを配置する。なお、流路接続部品12は、第1の実施形態と同様に、独立した部品として構成され、コイル内側冷却用流路10の端部に取り付けられる構成でもよいし、側板部1b、1cと一体となった構成でもよく、コイル内側冷却用流路10、コイル端部冷却用流路14及び外部接続流路17とを適切に連通できればよい。
 以上のようにして、ステータ6の各スロット8に形成されたコイル内側冷却用流路10およびコイル端部に形成されたコイル端部冷却用流路14を側板部1b、1cの内側に配置する流路接続部品12に接続し、更に側板部1bおよび1cの冷却液出入口に接続することでモータ100を冷却可能とする。
 流路接続部品12は、コイル端部冷却用流路14の円周方向の分割構造と合わせて、流路溝のデザインを調整することにより多数あるコイル内側冷却用流路10への冷却水の流し方を制御することができる。同様に、流路接続部品12の流路溝のデザインを調整することにより、冷却水の出入口をいずれか一方の側板部1b、1cに集約配置したり、円筒部1aに出入口を配置することができる。
<コイル内側冷却用流路10、コイル端部冷却用流路14の作用・効果>
 本実施形態により、分布巻きのモータ100Aにおいて、コイル9による発熱を隣接するコイル内側冷却用流路10およびコイル端部冷却用流路14へ効率良く放熱することができ、且つコイル9周辺の空間(すなわちスロット8およびコイルの軸方向端部空間)を樹脂材料に置き換えることで更に熱の移動を容易にすることができる。
 コイル端部9aにおいても、第1の実施形態の空間放熱から、樹脂材料を介してコイル端部冷却用流路14までの接触式伝熱となることで熱伝導が良好になる。これにより、ステータ6の冷却性能を向上させることができ、銅損(コイル9の巻き線自体の抵抗により消費される損失)の低減、モータ出力の向上、モータ100の小型化などが実現できる。
<モータ100A(回転電機)の特徴・機能のまとめ>
 本実施形態のモータ100Aの特徴について冷却構造に着目して纏めて説明する。
 本実施形態のモータ100Aによれば、第1の実施形態のモータ100の特徴・機能(1)~(15)と同様の特徴・機能を有するとともに、次の特徴・機能(16)~(22)を有する。
(16)ステータ6の軸方向両端に突き出したコイル端部9aを覆う第2の樹脂組成物を硬化した第2の樹脂硬化物(絶縁層13)と、
 前記コイル内側冷却用流路(第1の冷却用流路)と接続しており、前記コイル端部9aを覆う前記第2の樹脂硬化物(絶縁層13)の領域に設けられ、前記コイル端部9aの回転軸方向外側を冷却剤が循環する、円周方向に延伸するコイル端部冷却用流路14(第2の冷却用流路)と、を有してもよい。
(17)第2の樹脂組成物は第1の樹脂組成物の適用範囲と同等とし、同一の樹脂組成物または異なる樹脂組成物を硬化して得られる。
(18)コイル端部冷却用流路14(第2の冷却用流路)の内壁は、第2の樹脂硬化物を備えてなる。すなわち、コイル端部冷却用流路14の構成の少なくとも一部が第2の樹脂硬化物からなってもよい。
(19)コイル端部9aを覆う第2の樹脂硬化物(絶縁層13)の樹脂厚みt2が0.3mm以上3mm以下であってもよい。
(20)樹脂厚みt2と第2の樹脂硬化物(絶縁層13)の熱伝導率K2の関係式P2=t2/K2が0.3×10-4(mK/W)以上3×10-3(mK/W)以下であってもよい。
(21)ステータ6の周囲に筒状に設けられた筐体筒部1aと筐体筒部1aの両端の開口を閉塞する筐体側板部1b、1cと有する筐体1と、
 コイル端部9aを覆う第2の樹脂硬化物(絶縁層13)と筐体側板部1b、1cとの間に設けられた連結部(流路接続部品12)と、を有し、
 コイル端部冷却用流路14は、第2の樹脂硬化物(絶縁層13)と、連結部12と備える。
(22)連結部(流路接続部品12)は、筐体側板部1b、1cからコイル端部9aに向かって一体に突出して設けられている。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。例えば、コイル9の巻き方は分布巻きに限定されず、集中巻きやその他の巻き方においても、同じような冷却機能を発揮させることができる。また、コイル内側冷却用流路10の配置を、スロット8のコイル9よりロータ外周面2a側としたが、ケース1(円筒部1a)側でもよく、さらには両方であってもよい。
 この出願は、2020年6月5日に出願された日本出願特願2020-098293号および2021年1月6日に出願された日本出願特願2021-000721を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 ケース
1a 円筒部1a
1b、1c 側板部
2 ロータ
2a ロータ外周面
3 回転軸
4 ベアリング
5 永久磁石
6 ステータ
7 ティース部
8 スロット
9 コイル
9a コイル端部
9b コイル側面部
10 コイル内側冷却用流路
10a 内壁
11、13 絶縁層
14 コイル端部冷却用流路
14a 内壁
14b 端部側方冷却用流路
14c コイル端部冷却用流路本体
100、100A モータ

Claims (23)

  1.  複数のティース部を有するステータと、前記ティース部に巻かれたコイルと、を有し、前記コイルが前記ティース部の間に形成されたスロットとを有し、前記コイルが前記スロットに設けられた回転電機の冷却構造であって、
     前記スロットに充填され、前記コイルを覆う第1の樹脂組成物と、
     前記第1の樹脂組成物が充填されている領域に設けられ、内部を冷却剤が循環する、回転軸方向に延出する第1の冷却用流路と、
     を有する回転電機の冷却構造。
  2.  前記第1の冷却用流路の内壁は、高熱伝導性の第1の樹脂硬化材からなる、請求項1に記載の回転電機の冷却構造。
  3.  前記第1の樹脂硬化材は、前記第1の樹脂組成物が硬化した部材である、請求項2に記載の回転電機の冷却構造。
  4.  前記第1の樹脂硬化材の熱伝導率K1が1~10W/m・Kである、請求項3に記載の回転電機の冷却構造。
  5.  前記第1の樹脂硬化材のガラス転移温度Tg1が150℃以上である、請求項3または4に記載の回転電機の冷却構造。
  6.  前記第1の樹脂硬化材を、175℃で4時間加熱処理したサンプルに対して、動的粘弾性測定機を用いて、測定温度:-50℃~200℃、昇温速度:5℃/分、荷重:800gf、周波数:10Hz、3点曲げモードの条件で測定した、25℃における貯蔵弾性率が、20GPa以上70GPa以下である、請求項3から5までのいずれか1項に記載の回転電機の冷却構造。
  7.  前記コイルの側面部を覆う前記第1の樹脂組成物の樹脂厚みt1が0.3mm以上3.0mm以下である、請求項1から6までのいずれか1項に記載の回転電機の冷却構造。
  8.  前記樹脂厚みt1と前記第1の樹脂組成物の熱伝導率K1の関係式P1=t1/K1が0.3×10-4(mK/W)以上3×10-3(mK/W)以下である、請求項7に記載の回転電機の冷却構造。
  9.  前記第1の冷却用流路の内壁は、高熱伝導性の金属からなる、請求項1に記載の回転電機の冷却構造。
  10.  前記第1の冷却用流路の内壁は、高熱伝導性の無機材料からなる、請求項1に記載の回転電機の冷却構造。
  11.  前記第1の冷却用流路は、前記コイルより前記回転軸方向側に設けられている、請求項1から10までのいずれか1項に記載の回転電機の冷却構造。
  12.  前記コイルは複数のスロットをまたいで巻装された分布巻きとして構成されている、請求項1から11までのいずれか1項に記載の回転電機の冷却構造。
  13.  前記第1の冷却用流路は、一つの分布巻きを構成するスロットの組毎に少なくとも一つ設けられている、請求項12に記載の回転電機の冷却構造。
  14.  前記第1の樹脂組成物は、エポキシ樹脂およびフェノール樹脂からなる群より選択される1種または2種の熱硬化性樹脂からなる、請求項1から13までのいずれか1項に記載の回転電機の冷却構造。
  15.  前記ステータの軸方向両端に突き出したコイル端部を覆う第2の樹脂組成物を硬化した第2の樹脂硬化物と、
     前記第1の冷却用流路と接続しており、前記コイル端部を覆う前記第2の樹脂硬化物の領域に設けられ、前記コイル端部の回転軸方向外側を冷却剤が循環する、円周方向に延伸する第2の冷却用流路と、
     を有する請求項1から14までのいずれか1項に記載の回転電機の冷却構造。
  16.  前記第2の樹脂組成物は第1の樹脂組成物の適用範囲と同等とし、同一の樹脂組成物または異なる樹脂組成物を硬化して得られる、請求項15に記載の回転電機の冷却構造。
  17.  前記第2の冷却用流路の内壁は、前記第2の樹脂硬化物を備えてなる、請求項15または16に記載の回転電機の冷却構造。
  18.  前記コイル端部を覆う前記第2の樹脂硬化物の樹脂厚みt2が0.3mm以上3mm以下である、請求項15から17までのいずれか1項に記載の回転電機の冷却構造。
  19.  前記樹脂厚みt2と前記第2の樹脂硬化物の熱伝導率K2の関係式P2=t2/K2が0.3×10-4(mK/W)以上3×10-3(mK/W)以下である、請求項18に記載の回転電機の冷却構造。
  20.  前記ステータの周囲に筒状に設けられた筐体筒部と前記筐体筒部の両端の開口を閉塞する筐体側板部と有する筐体と、
     前記コイル端部を覆う前記第2の樹脂硬化物と前記筐体側板部との間に設けられた連結部と、を有し、
     前記第2の冷却用流路は、前記第2の樹脂硬化物と、前記連結部と備える、請求項15から19までのいずれか1項に記載の回転電機の冷却構造。
  21.  前記連結部は、前記筐体側板部から前記コイル端部に向かって一体に突出して設けられている、請求項20に記載の回転電機の冷却構造。
  22.  前記連結部は、前記筐体側板部と別体として設けられている、請求項20に記載の回転電機の冷却構造。
  23.  請求項1から22までのいずれか1項に記載の冷却構造を有する回転電機。
PCT/JP2021/019548 2020-06-05 2021-05-24 回転電機及び回転電機の冷却構造 WO2021246216A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21818312.7A EP4164095A1 (en) 2020-06-05 2021-05-24 Dynamo-electric machine and cooling structure for dynamo-electric machine
US18/007,640 US20230231432A1 (en) 2020-06-05 2021-05-24 Dynamo-electric machine and cooling structure for dynamo-electric machine
KR1020237000040A KR20230020496A (ko) 2020-06-05 2021-05-24 회전 전기 및 회전 전기의 냉각 구조
CN202180040378.2A CN115836465A (zh) 2020-06-05 2021-05-24 旋转电机和旋转电机的冷却结构

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020098293 2020-06-05
JP2020-098293 2020-06-05
JP2021000721A JP7276358B2 (ja) 2020-06-05 2021-01-06 回転電機及び回転電機の冷却構造
JP2021-000721 2021-01-06

Publications (1)

Publication Number Publication Date
WO2021246216A1 true WO2021246216A1 (ja) 2021-12-09

Family

ID=78830971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019548 WO2021246216A1 (ja) 2020-06-05 2021-05-24 回転電機及び回転電機の冷却構造

Country Status (6)

Country Link
US (1) US20230231432A1 (ja)
EP (1) EP4164095A1 (ja)
JP (1) JP2023086910A (ja)
KR (1) KR20230020496A (ja)
CN (1) CN115836465A (ja)
WO (1) WO2021246216A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048342A1 (ja) * 2022-09-01 2024-03-07 株式会社デンソー 駆動装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3724210Y1 (ja) * 1961-07-11 1962-09-14
JPH07322566A (ja) * 1994-05-24 1995-12-08 Yaskawa Electric Corp 冷却装置の製造方法
JPH10327558A (ja) * 1997-03-28 1998-12-08 Aisin Seiki Co Ltd 電気モータの冷却装置
JP2003250239A (ja) * 2002-02-22 2003-09-05 Nissan Motor Co Ltd 回転電機のステータ構造
JP2004023805A (ja) * 2002-06-12 2004-01-22 Nissan Motor Co Ltd モータ冷却構造
JP2004248429A (ja) * 2003-02-14 2004-09-02 Toyota Motor Corp ステータコイルモジュールおよびその製造方法ならびに回転電機
JP2004297924A (ja) * 2003-03-27 2004-10-21 Nissan Motor Co Ltd 回転電機の冷却構造
JP2020098293A (ja) 2018-12-19 2020-06-25 京セラドキュメントソリューションズ株式会社 画像形成装置
JP2021000721A (ja) 2012-10-31 2021-01-07 スリーエム イノベイティブ プロパティズ カンパニー 成形研磨材粒子、その製造方法、及びそれを含む研磨材物品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3724210Y1 (ja) * 1961-07-11 1962-09-14
JPH07322566A (ja) * 1994-05-24 1995-12-08 Yaskawa Electric Corp 冷却装置の製造方法
JPH10327558A (ja) * 1997-03-28 1998-12-08 Aisin Seiki Co Ltd 電気モータの冷却装置
JP2003250239A (ja) * 2002-02-22 2003-09-05 Nissan Motor Co Ltd 回転電機のステータ構造
JP2004023805A (ja) * 2002-06-12 2004-01-22 Nissan Motor Co Ltd モータ冷却構造
JP2004248429A (ja) * 2003-02-14 2004-09-02 Toyota Motor Corp ステータコイルモジュールおよびその製造方法ならびに回転電機
JP2004297924A (ja) * 2003-03-27 2004-10-21 Nissan Motor Co Ltd 回転電機の冷却構造
JP4496710B2 (ja) 2003-03-27 2010-07-07 日産自動車株式会社 回転電機の冷却構造
JP2021000721A (ja) 2012-10-31 2021-01-07 スリーエム イノベイティブ プロパティズ カンパニー 成形研磨材粒子、その製造方法、及びそれを含む研磨材物品
JP2020098293A (ja) 2018-12-19 2020-06-25 京セラドキュメントソリューションズ株式会社 画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048342A1 (ja) * 2022-09-01 2024-03-07 株式会社デンソー 駆動装置

Also Published As

Publication number Publication date
CN115836465A (zh) 2023-03-21
KR20230020496A (ko) 2023-02-10
EP4164095A1 (en) 2023-04-12
JP2023086910A (ja) 2023-06-22
US20230231432A1 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
US7459817B2 (en) Semi-enclosed AC motor
JP5772832B2 (ja) 回転機
KR100870738B1 (ko) 에이에프피엠 코어리스형 멀티 발전기 및 모터
CN105026000B (zh) 具有冷却装置的电机及其制造方法
US8922072B2 (en) Electrical machine with a cooling channel and method for manufacturing the same
CN105103409B (zh) 用于轴向电机的极靴冷却间隙
US11190064B2 (en) Electrical machine, in particular for a vehicle
JP2007236045A (ja) 外被冷却型回転電機およびその製造方法
JP7276358B2 (ja) 回転電機及び回転電機の冷却構造
JP2008167609A (ja) 電動機
JP2006014564A (ja) ディスク型回転電機のステータ冷却構造
JP2005261083A (ja) 回転電機の冷却構造
WO2021246216A1 (ja) 回転電機及び回転電機の冷却構造
JP2011055654A (ja) 電動機の冷却構造
JP2018082517A (ja) 電動機
JP3594007B2 (ja) 回転電機
JP2016144270A (ja) 回転電機の冷却構造
WO2015037069A1 (ja) 回転電機
EP1020009A1 (en) Device for a rotating electric machine
JP2005143269A (ja) 回転電機
JP2006174550A (ja) ディスク型回転電機のステータ構造
WO2022259635A1 (ja) 回転電機
JP5363221B2 (ja) ステータ
WO2023106338A1 (ja) モータ
JP7470507B2 (ja) 特に車両用の電気機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237000040

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021818312

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021818312

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE