WO2015037069A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2015037069A1
WO2015037069A1 PCT/JP2013/074458 JP2013074458W WO2015037069A1 WO 2015037069 A1 WO2015037069 A1 WO 2015037069A1 JP 2013074458 W JP2013074458 W JP 2013074458W WO 2015037069 A1 WO2015037069 A1 WO 2015037069A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
cooling pipe
stator core
rotating electrical
electrical machine
Prior art date
Application number
PCT/JP2013/074458
Other languages
English (en)
French (fr)
Inventor
啓紀 松本
榎本 裕治
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/074458 priority Critical patent/WO2015037069A1/ja
Publication of WO2015037069A1 publication Critical patent/WO2015037069A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors

Definitions

  • ⁇ Cooling performance can be improved by the refrigerant system for higher output of rotating electrical machines.
  • a water cooling method using water can be realized at a low cost.
  • the motor described in Patent Document 1 is an in-wheel motor 10 that rotationally drives a connected load, includes a magnet 305b, and is positioned near the load in the motor.
  • Patent Document 1 since the cooling mechanism is provided outside the stator coil, the size of the rotating electrical machine may increase due to the addition of the cooling mechanism.
  • An object of this invention is to suppress the physique of the rotary electric machine provided with the cooling mechanism.
  • FIG. 15 is an enlarged perspective view of a part of the stator according to FIG. 14. It is a perspective view of a stator concerning one embodiment of the present invention.
  • FIG. 17 is an enlarged perspective view of a part of the stator according to FIG. 16. It is a perspective view of a stator concerning one embodiment of the present invention. It is a perspective view of the cooling mechanism which concerns on one Embodiment of this invention. It is a perspective view of the rotary electric machine which concerns on one Embodiment of this invention.
  • FIG. 1 is a perspective view of a rotating electrical machine according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the rotating electrical machine according to the embodiment of the present invention.
  • FIG. 3 is a perspective view of the stator and rotor in FIG. 4 is a cross-sectional view taken along a plane passing through the rotation axis of the rotating electrical machine in FIG.
  • FIG. 5 is a perspective view of a main part of the stator in FIG.
  • the dual gap type rotating electrical machine 1000 can increase the output of the rotating electrical machine 1000 easily because the opposed surface area of the stator 100 and the rotor can be increased as compared with the single gap type rotating electrical machine.
  • the rotating electrical machine 1000 includes a stator 100, an inner rotor 200, an outer rotor 300, a rotor case 400, a stator case 150, a shaft 500, and a bearing 600.
  • the inner rotor 200 and the outer rotor 300 may be collectively referred to simply as a rotor.
  • the inner rotor 200 is disposed on the radially inner side of the stator 100
  • the outer rotor 300 is disposed on the radially outer side of the stator 100.
  • the material other than the magnet in the inner rotor 200 and the outer rotor 300 is preferably a material with low loss because the magnetic field generated by the stator 100 also acts on members other than the magnet, and a wound iron core or the like to suppress eddy currents. More preferably, is used.
  • the rotor case 400 is mechanically fixed to the shaft 500.
  • the rotor case 400 is preferably made of a non-magnetic material from the viewpoint of reducing loss, and the loss can be reduced particularly by molding with a resin material or the like.
  • the stator case 150 is for holding and fixing the stator 100. Further, it is possible to couple with other components via the stator case 150, and it is possible to install the rotating electrical machine 1000. Similar to the rotor case 400, non-magnetic ones are preferable from the viewpoint of loss reduction, and the loss can be reduced particularly by molding with a resin material or the like.
  • the stator 100 includes a stator core 110, a cooling pipe 122, and a stator coil 130. Stator 100 generates a force for rotating inner rotor 200 and outer rotor 300.
  • the stator 100 has an annular shape as a whole.
  • the stator core 110 and the cooling pipe 122 are wound by the stator coil 130.
  • the stator core 110 is made of a magnetic material, and by using a magnetic material having high permeability for the stator core 110, when the magnetic field generated by the stator coil 130 links the stator core 130, the leakage magnetic flux is suppressed and the loss is reduced. Suppresses the decline.
  • the stator core 110 is generally composed of a low loss electromagnetic steel plate. In particular, for the purpose of suppressing eddy current loss, loss can be reduced by stacking electromagnetic steel plates and reducing the eddy current loop.
  • the cooling pipe 122 is wound around the stator coil 130 together with the cooling pipe 122.
  • two cooling pipes 122 are formed on the inner rotor 200 side of the stator core 110 and the outer rotor 300 side of the stator core 110, and the stator core 110 includes two cooling pipes. It is sandwiched between tubes 122. In the radial direction of the stator 100, both side surfaces of the stator core 110 may be sandwiched between two cooling pipes 122.
  • one cooling pipe 122 is formed on the side surface of the stator core 110, but a plurality of cooling pipes 122 may be formed.
  • the cooling pipe 122 is fixed to the stator core 110.
  • the method for fixing the cooling pipe 122 to the stator core 110 include adhesive fixing with an adhesive or varnish, mold fixing with the resin including the stator core 110, fixing by winding tension of the stator coil 130, and the like.
  • the cooling pipe 122 is sandwiched between the stator cores 110 from both sides, the cooling pipe 122 is fixed to the stator core 110 with an adhesive, and then the stator core 110-cooling pipe 122-stator core 110 is wound around with Kapton tape, and then the stator coil 130 is wound. After winding, the whole is molded to fix the stator coil 130.
  • the portions where the cooling pipes 122 are not formed on both sides of the stator core 110 are basically spaces, but the spaces may be filled by resin molding. Thereby, cooling performance may be improved. Further, the space can be reduced by winding the stator coil 130 more narrowly.
  • the gap between the opposing gaps of the stator 100 and the rotor is reduced in order to increase the electromagnetic force that interacts between the stator 100 and the rotor. There is a need to.
  • the gap between the stator 100 and the rotor can be reduced by arranging the cooling pipes 122 on the side surface of the stator core 110 and the side surface of the stator core 110 in the axial direction of the stator 100. it can.
  • the cooling mechanism 120 includes a cooling pipe 122 through which the refrigerant passes, a cooling path 125 for discharging or injecting the refrigerant to the outside of the rotating electric machine 1000, a radiator 700 for cooling the refrigerant outside the rotating electric machine 1000, and the refrigerant.
  • the pump 800 is circulated inside the cooling mechanism 120.
  • the cooling mechanism 120 is a part that cools the rotating electrical machine 1000, and in order to obtain a higher cooling effect, heat can be released to the outside by circulating the circulating refrigerant to the rotating electrical machine 1000. Since the heat generation density increases as the output of the rotating electrical machine 1000 increases, the rotating electrical machine 1000 is cooled by the cooling mechanism 120 using a refrigerant system that can expect a significant cooling effect.
  • the cooling mechanism 120 acts more effectively on a dual-gap rotating electric machine with high output.
  • the cooling pipe 122 is made of a magnetic material having a high magnetic permeability or a non-magnetic material.
  • a portion of the cooling pipe 122 corresponding to the stator core 110 in other words, a part of the cooling pipe 122 formed on the rotor side of the stator core 110 is made of a magnetic material, the magnetic flux generated in the cooling pipe 122 causes the rotor to It can be part of the driving power source.
  • the rotary electric machine 1000 may be increased in size by adding the cooling pipe 122.
  • the cooling pipe 122 is wound around the stator coil 130 together with the stator core 110. .
  • the cooling pipe 122 can be disposed in the vicinity of the stator core 110 and the stator coil 130 that are heating elements, cooling can be performed efficiently.
  • the cooling pipe 122 can be arrange
  • the stator coil 130 winds the stator core 110 and the cooling pipe 122.
  • the stator coil 130 is a part that generates a magnetic field, and a rotating magnetic field is generated by passing a current through the stator coil 130.
  • stator core 110 is divided in the radial direction of the stator 100, and the cooling pipe 122 is sandwiched between the divided stator cores 110.
  • Example 8 and 9 are perspective views of the main part of the stator according to one embodiment of the present invention.
  • the stator core 110 is provided with a stator core hole 115.
  • a cooling pipe 122 is formed through the stator core hole 115, and the cooling pipe 122 formed on the upper and lower surfaces of the stator core 110 via the cooling pipe 122 in the stator core hole 115 in the rotation axis direction of the stator 100. It is connected. 8 and 9, only one stator core hole 115 is provided in the stator core 110, but a plurality of stator core holes 115 may be provided.
  • the cooling pipe 122 increase the contact area with the stator coil 130 and the stator core 110 which are heat generating parts in order to obtain a higher cooling effect. Therefore, by adopting the configuration as in the present embodiment, the contact area between the stator core 110 and the cooling pipe 122 can be increased, and the cooling effect can be enhanced.
  • FIG. 10 is a perspective view of a main part of the stator according to the embodiment of the present invention.
  • 11 is a cross-sectional view taken along a plane passing through the rotation axis of the main part of the stator in FIG.
  • the cooling pipe 122 has a flat shape in a cross section taken along a plane passing through the rotation axis of the rotating electrical machine 1000.
  • the cooling pipe 122 and the stator core 110 have substantially the same inner diameter and outer diameter.
  • the contact area between the cooling pipe 122 and the heat generating components of the stator core 110 and the stator coil 130 can be expanded, and the cooling performance can be improved. Further, in this embodiment, since the stator core 110 is simply sandwiched between the cooling pipes 122 from both sides, the productivity is excellent.
  • FIG. 14 is a perspective view of a stator according to an embodiment of the present invention.
  • FIG. 15 is an enlarged perspective view of a part of the stator according to FIG.
  • FIG. 16 is a perspective view of a stator according to an embodiment of the present invention.
  • FIG. 17 is an enlarged perspective view of a part of the stator according to FIG.
  • the cooling pipe 122 is made of a magnetic material having a high magnetic permeability.
  • the stator core 110 instead of the stator core 110, only the cooling pipe 122 is wound around the stator coil 130.
  • the stator core 110 itself is the cooling pipe 122.
  • the cooling pipe 122 is placed in the space formed by the stator coil 130, but the cooling pipe 122 may be formed in a part of the space formed by the stator coil 130. .
  • the material used for the stator core 110 is generally an electromagnetic steel sheet having a high magnetic permeability. Therefore, by adopting the configuration as in the present embodiment, the cooling pipe 122 is substituted for the stator core 110. As a result, high cooling performance can be obtained without increasing the size of the rotating electrical machine 1000.
  • the cooling pipe 122 is spread in the space formed by the stator coil 130, and the entire stator coil 130 and the cooling pipe 122 are molded (fixed) with the mold resin 900. Since the mold resin 900 having higher thermal conductivity than air occupies the space between the stator coil 130 and the cooling pipe 122, the cooling performance from the stator coil 130 can be improved. In particular, since the mold resin 900 has fluidity before solidification, it can be filled in detail. Moreover, the mold resin 900 can be filled in detail by external pressure such as vacuum casting or pressure casting. As a result, the cooling capacity from the stator coil 130 can be further improved. In addition, the stator coil 130 and the cooling pipe 122 can be fixed at a desired mutual position by the mold resin 900, and in particular, it can be firmly fixed against vibration during driving.
  • FIG. 18 is a perspective view of the stator according to the present embodiment.
  • FIG. 19 is a perspective view of the cooling mechanism according to the present embodiment.
  • a refrigerant path 125 is formed in which the refrigerant is sucked from the outside of the stator 100 into the cooling pipe 122 and the refrigerant is discharged from the cooling pipe 122 to the outside of the stator 100. As shown in FIG. 19, the refrigerant path 125 is connected to the cooling pipe 122.
  • the refrigerant path 125 is formed between the stator coils 130 in the circumferential direction of the stator 100, and extends in the axial direction of the stator 100 from between the stator coils 130 to the outside of the stator 100.
  • a portion corresponding to the stator 100 of the refrigerant path 125 in the circumferential direction of the stator 100, that is, a portion formed between the stator coils 130 is made of a nonmagnetic material.
  • FIG. 19 is a perspective view of a rotating electrical machine according to an embodiment of the present invention.
  • the cooling mechanism 120 wound around the stator coil 130 is a heat pipe 140.
  • the heat pipe 140 includes a heat radiating part 142 and a heat receiving part 144.
  • the heat receiving portions 144 are formed on both side surfaces of the stator core 110 in the rotation axis direction of the rotating electrical machine 1000.
  • the heat radiating part 142 is connected to the heat receiving part 144 and is formed at a position higher than the heat receiving part 144.
  • the heat radiating portion 142 extends in the radial direction of the stator 100.

Abstract

 冷却機構を備えた回転電機の体格を抑制する。ステータと、ステータの径方向内側に配置されたインナーロータまたはステータの径方向外側に配置されたアウターロータと、を有し、ステータは、ステータコアと、ステータを冷却する冷却管と、ステータコアおよび冷却管を巻回するステータコイルと、を有し、ステータの回転軸方向において、ステータコアの側面に冷却管が配置され、冷却管のステータコアに対応する部分が磁性材料で構成される回転電機。

Description

回転電機
 本発明は、回転電機に関する。
 回転電機の高出力化に対して、冷媒方式により冷却性能を向上できる。特に水を用いた水冷方式は低コストに実現できる。例えば、デュアルギャップ構造を採用したモータとして、特許文献1に記載されたモータは、接続された負荷を回転駆動するインホイールモータ10であって、磁石305bを備えかつモータ内で負荷寄りの位置に設けられたアウターロータ302と、磁石305aを備えかつモータ内で負荷から離れた位置に設けられたインナーロータ301と、アウターロータとインナーロータの間に設けられかつステータコイルを備えるステータ200と、アウターロータとインナーロータとステータの各軸部を貫通して設けられる静止系のシャフト状センター部100と、ステータとシャフト状センター部の各々の内部を利用して設けられた冷却機構とを備えて構成される。
特開2007-110786号公報
 特許文献1では、冷却機構がステータコイルの外部に設けられているため、冷却機構の追加によって回転電機の体格が増加する場合がある。本発明は、冷却機構を備えた回転電機の体格を抑制することを目的とする。
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
 ステータと、ステータの径方向内側に配置されたインナーロータまたはステータの径方向外側に配置されたアウターロータと、を有し、ステータは、ステータコアと、ステータを冷却する冷却管と、ステータコアおよび冷却管を巻回するステータコイルと、を有する回転電機。
 本発明により、冷却機構を備えた回転電機の体格を抑制できる。上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る回転電機の斜視図である。 本発明の一実施形態に係る回転電機の分解斜視図である。 図1におけるステータおよびロータの斜視図である。 図1における回転電機の回転軸を通る平面で切った断面図である。 図1におけるステータの要部の斜視図である。 本発明の一実施形態に係るステータの要部の斜視図である。 図6におけるステータの要部の、回転電機の回転軸を通る平面における断面図である。 本発明の一実施形態に係るステータの要部の斜視図である。 本発明の一実施形態に係るステータの要部の斜視図である。 本発明の一実施形態に係るステータの要部の斜視図である。 図10におけるステータの要部の回転軸を通る平面で切った断面図である。 本発明の一実施形態に係るステータの要部の斜視図である。 本発明の一実施形態に係る冷却管とステータコアとの位置関係を示す斜視図である。 本発明の一実施形態に係るステータの斜視図である。 図14に係るステータの一部を拡大した斜視図である。 本発明の一実施形態に係るステータの斜視図である。 図16に係るステータの一部を拡大した斜視図である。 本発明の一実施形態に係るステータの斜視図である。 本発明の一実施形態に係る冷却機構の斜視図である。 本発明の一実施形態に係る回転電機の斜視図である。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 図1は、本発明の一実施形態に係る回転電機の斜視図である。図2は、本発明の一実施形態に係る回転電機の分解斜視図である。図3は、図1におけるステータおよびロータの斜視図である。図4は、図1における回転電機の回転軸を通る平面で切った断面図である。図5は、図1におけるステータの要部の斜視図である。
 図1の回転電機1000は、いわゆるデュアルギャップ型の回転電機である。シングルギャップ型の回転電機にも本発明を適用できる。シングルギャップ型の回転電機とは、一つのステータに対して、そのステータの径方向内側または径方向外側に一つのロータが配置されて構成されるものである。図1の回転電機1000に関連して言えば、ステータ100およびインナーロータ200を有する回転電機、ステータ100およびアウターロータ300を有する回転電機においても、本発明を適用できる。以下では、デュアルギャップ型の回転電機について詳述する。
 デュアルギャップ型の回転電機1000は、シングルギャップ型の回転電機と比較して、ステータ100とロータとの対向面面積を増加させられることから、回転電機1000の出力を容易に増加させることができる。
 図2において、回転電機1000は、ステータ100、インナーロータ200、アウターロータ300、ロータケース400、ステータケース150、シャフト500、ベアリング600を有する。以下では、インナーロータ200およびアウターロータ300を総称して単にロータと記載する場合がある。図3において、ステータ100の径方向内側にインナーロータ200が配置されており、ステータ100の径方向外側にアウターロータ300が配置されている。
 インナーロータ200は、ステータ100と対向する面あるいは内部に磁石が埋め込まれ、ロータケース400に機械的に固定される。アウターロータ300も同様に、ステータ100と対向する面あるいは内部に磁石が埋め込まれ、ロータケース400に機械的に固定される。磁石には、ネオジウム系、サマリウム系の焼結磁石やフェライト磁石、ネオジウム系のボンド磁石などを採用することができる。インナーロータ200およびアウターロータ300は、円板環状をなしている。
 ステータコイル130に電流が流れることによって、インナーロータ200、アウターロータ300、およびシャフト500が回転し、電気エネルギーが回転エネルギーに変換される。インナーロータ200およびアウターロータ300における磁石以外の材料は、ステータ100によって発生する磁界が磁石以外の部材にも作用するために、損失が低い材料が好ましく、また渦電流を抑制するために巻鉄心等を用いるとさらに好ましい。
 ロータケース400は、シャフト500に機械的に固定される。ロータケース400は、損失低減の観点から非磁性材のものがよく、特に樹脂材料等で成形することで損失を低減できる。
 ステータケース150は、ステータ100を保持固定するためものである。さらに、ステータケース150を介して他の部品との結合が行え、回転電機1000を設置することも可能である。ロータケース400と同様に、損失低減の観点から非磁性のものがよく、特に樹脂材料等で成形することで損失を低減できる。
 ベアリング600は、回転するインナーロータ200およびアウターロータ300、シャフト500と固定されたステータ100とを機械的に結合するためのものである。ベアリング600としては汎用的なボールベアリング等が適用できるが、軸受電食が問題になる場合は、セラミックベアリング等が適用できる。
 ステータ100は、ステータコア110、冷却管122、ステータコイル130を有する。ステータ100は、インナーロータ200およびアウターロータ300を回転させるための力を発生させる。ステータ100は、全体として円板環状をなしている。
 ステータコア110および冷却管122はステータコイル130によって巻回される。ステータコア110は、磁性体で構成されており、ステータコア110に透磁率の高い磁性材料を用いることにより、ステータコイル130によって発生する磁界がステータコア130を鎖交した際、漏れ磁束を抑制し、損失の低下を抑制する。ステータコア110は、一般に、損失の小さな電磁鋼鈑から構成される。特に、渦電流損失抑制の目的から、電磁鋼鈑を積層し渦電流のループを小さくすることで損失を低減できる。
 冷却管122は、冷却管122とともにステータコイル130に巻回される。図3乃至図5に示されているように、冷却管122は、ステータコア110のインナーロータ200側、及び、ステータコア110のアウターロータ300側に二つ形成されており、ステータコア110は、二つの冷却管122で挟持されている。ステータ100の径方向において、ステータコア110の両側面が二つの冷却管122で挟持されていてもよい。図3乃至図5には、ステータコア110の側面に冷却管122が一つずつ形成されているが、複数個形成されていてもよい。
 冷却管122はステータコア110に固定されている。冷却管122をステータコア110に固定させる方法として、接着材やワニスによる接着固定、樹脂でステータコア110を含めて全体をモールド固定、ステータコイル130の巻テンションにより固定、等が挙げられる。例えば、両側からステータコア110で冷却管122を挟み込む場合、接着剤で冷却管122をステータコア110に固定した後、カプトンテープでステータコア110-冷却管122-ステータコア110をぐるぐる巻きにし、その後ステータコイル130を巻いた後、ステータコイル130を固定するために全体をモールドする。
 図4に示されているように、ステータコア110の両側面で冷却管122が形成されていない部分は基本的には空間となっているが、樹脂モールドして空間を埋めてもよい。これにより、冷却性能が上がる場合がある。また、ステータコイル130をより狭く巻くことで、空間を小さくできる。ステータ100の径方向にステータ100とロータのギャップ面が存在するデュアルギャップ型の回転電機1000は、ステータ100とロータ間で相互作用する電磁気力を高めるためにステータ100とロータの対向ギャップ間を小さくする必要がある。そこで、本実施例のように、ステータ100の回転軸方向において、冷却管122をステータコア110の側面、ステータコア110軸方向の側面に配置することで、ステータ100とロータ間のギャップを小さくすることができる。
 冷却機構120は、冷媒を通す冷却管122、冷媒を回転電機1000外部へ排出、あるいは回転電機1000内部へ注入するための冷却路125、回転電機1000の外部で冷媒を冷却するラジエータ700、冷媒を冷却機構120の内部で循環させるポンプ800からなる。
 冷却機構120は、回転電機1000の冷却をおこなう部分であり、より高い冷却効果を得るために、循環冷媒を回転電機1000に流通することで発熱を外部に放出できる。回転電機1000の高出力化に伴って、発熱密度が増加することから、大幅な冷却効果が期待できる冷媒方式による冷却機構120によって、回転電機1000が冷却される。冷却機構120は、出力が高くなるデュアルギャップ型の回転電機に対して、より有効に作用する。
 冷却管122は、透磁率の高い磁性材料、または、非磁性の材料で構成されている。冷却管122のステータコア110に対応する部分、換言すると、ステータコア110のロータ側に形成された冷却管122の一部、が磁性体で構成されている場合、冷却管122で発生する磁束がロータを駆動する動力源の一部となることができる。
 冷却管122を追加することによって、回転電機1000が大型化することがある。それに対して、本実施例では、ステータコア110にステータコイル130が巻回されてステータ100が構成されるデュアルギャップ型の回転電機1000において、冷却管122がステータコア110とともにステータコイル130に巻回される。その結果、発熱体であるステータコア110およびステータコイル130近傍に冷却管122を配置できることから、冷却が効率的に行える。また、巻回されるステータコイル130の内部に冷却管122を配置できることから、冷却管122の追加による回転電機1000の体格の増加を抑制できる。
 ステータコイル130は、ステータコア110および冷却管122を巻回するものである。ステータコイル130は、磁界を発生させる部位であり、ステータコイル130に電流を流すことで回転磁界が発生する。
 ステータコイル130は、一般に素線として銅やアルミを用い、外表面に絶縁性の被膜が設けられる。その結果、電流通電時も絶縁不良を抑制できる。また、ステータコイル130の形状としては、例えば、ステータコア110を巻回するように成形される。透磁率の高いステータコア110を用いることでより、高い磁束を発生させることができる。
 本実施例は、以下の点を除けば、実施例1と同様である。図6は、本発明の一実施形態に係るステータの要部の斜視図である。図7は、図6におけるステータの要部の、回転電機の回転軸を通る平面における断面図である。
 図6及び図7において、ステータコア110はステータ100の径方向に分割され、分割したステータコア110で冷却管122が挟持されている。
 デュアルギャップ型の回転電機1000の製造性を良くするためには、冷却のための冷却管122も容易に取り付け可能であることが望ましい。そこで、本実施例のように、ステータコア110をステータ100の径方向に分割し、分割したステータコア110で冷却管122を挟むことにより、冷却管122の機械的な固定を容易に得ることができ、その結果、回転電機1000の製造性を向上させることができる。
 本実施例は、以下の点を除けば、実施例1と同様である。図8および図9は、本発明の一実施形態に係るステータの要部の斜視図である。
 図8および図9において、ステータコア110にステータコア孔115が設けられている。ステータコア孔115の中に冷却管122が貫通して形成されており、ステータ100の回転軸方向において、ステータコア110の上下面に形成された冷却管122がステータコア孔115中の冷却管122を介して接続されている。図8および図9では、ステータコア110にステータコア孔115が一つだけ設けられているが、複数設けられていても良い。
 冷却管122は、より高い冷却効果を得るために発熱部であるステータコイル130やステータコア110との接触面積を増加させることが望ましい。そこで、本実施例のような構成を採用することにより、ステータコア110と冷却管122との接所面積を大きくすることができ、冷却効果を高めることができる。
 本実施例は、以下の点を除けば、実施例1と同様である。図10は、本発明の一実施形態に係るステータの要部の斜視図である。図11は、図10におけるステータの要部の回転軸を通る平面で切った断面図である。
 図10において、回転電機1000の回転軸を通る平面で切った断面において、冷却管122が扁平形状となっている。特に、本実施例では、冷却管122とステータコア110とで内径および外径が、略等しくなっている。
 デュアルギャップ型の回転電機1000の冷却性能を高めるためには、冷却管122とステータコア110やステータコイル130の発熱部品との接触面積を高めることが望ましい。そこで、本実施例のような構成を採用することにより、冷却管122とステータコア110との接触面積を拡大することができ、冷却性能を向上させることができる。また、本実施例では、ステータコア110を両側から冷却管122で挟み込むだけなので、製造性に優れる。
 本実施例は、以下の点を除けば、実施例1と同様である。図12は、本発明の一実施形態に係るステータの斜視図である。図13は、本発明の一実施形態に係る冷却管とステータコアとの位置関係を示す斜視図である。
 図13のように、ステータコア110の周方向において、ステータコア110にはステータコア溝117が設けられている。図12のように、ステータコア溝117に冷却管122が埋め込まれている。
 デュアルギャップ型の回転電機1000の冷却性能を高めるためには、冷却管122とステータコア110やステータコイル130等の発熱部品との接触面積を高めることが望ましい。そこで、本実施例のような構成を採用することにより、冷却管122とステータコア110との接触面積を拡大することができ冷却性能を向上させることができる。
 本実施例は、以下の点を除けば、実施例1と同様である。図14は、本発明の一実施形態に係るステータの斜視図である。図15は、図14に係るステータの一部を拡大した斜視図である。図16は、本発明の一実施形態に係るステータの斜視図である。図17は、図16に係るステータの一部を拡大した斜視図である。
 本実施例では、冷却管122、が透磁率の高い磁性材料で構成されている。ステータコア110の代わりに冷却管122のみがステータコイル130で巻回されている。換言すると、ステータコア110自身が冷却管122となっている。図15では、ステータコイル130で形成される空間に冷却管122が敷きつめられている態様になっているが、ステータコイル130で形成される空間の一部に冷却管122が形成されていてもよい。
 ステータコア110に使用される材料は、一般に透磁率の高い電磁鋼板等である。そこで、本実施例のような構成を採用することにより、冷却管122がステータコア110の代替となる。その結果、回転電機1000の体格を増加させることなく、高い冷却性能を得ることができる。
 また、図17では、ステータコイル130で形成される空間に冷却管122が敷き詰められており、ステータコイル130および冷却管122の全体がモールド樹脂900でモールド(固定)されている。空気と比較して熱伝導率の高いモールド樹脂900がステータコイル130と冷却管122の空間を占有するにより、ステータコイル130からの冷却性能を向上させることができる。特に、モールド樹脂900は固形化する前は流動性を有することから細部まで充填可能である。また、真空注型あるいは加圧注型等の外部圧によってモールド樹脂900を細部まで充填することができる。その結果、ステータコイル130からの冷却能力をさらに向上させる事ができる。加えて、モールド樹脂900によってステータコイル130および冷却管122を所望の相互位置に固定することができ、特に、駆動時の振動に対しても強固に固定できる。
 本実施例は、以下の点を除けば、実施例1と同様である。図18は、本実施例に係るステータの斜視図である。図19は、本実施例に係る冷却機構の斜視図である。
 図18では、冷媒をステータ100の外部から冷却管122の中へ吸入し、冷媒を冷却管122の中からステータ100の外部へ排出する冷媒路125が形成されている。図19のように、冷媒路125は冷却管122に接続されている。
 冷媒路125は、ステータ100の周方向において、ステータコイル130の間に形成されており、ステータコイル130の間からステータ100の外部に、ステータ100の軸方向に伸張している。ステータ100の周方向における、冷媒路125のステータ100に対応する部分、つまり、ステータコイル130の間に形成された部分は、非磁性体で構成されている。
 冷却管122がステータコイル130に巻回されている場合、ステータコイル130に電流が通電した際に発生する磁界が冷却管122に鎖交する。その時、冷却管122に冷却媒体を注入するあるいは排出する冷媒路125を通って、ステータ100の外部への漏れ磁束が発生するために、効率の低下が発生する。そこで、本実施例のような構成を採用することにより、磁束の漏れを抑制し、効率の低下を低減することができる。
 本実施例は、以下の点を除けば、実施例1と同様である。図19は、本発明の一実施形態に係る回転電機の斜視図である。
 図20では、ステータコイル130に巻回された冷却機構120がヒートパイプ140である。ヒートパイプ140は、放熱部142および受熱部144で構成されている。回転電機1000の回転軸方向において、受熱部144はステータコア110の両側面に形成されておる。放熱部142は、受熱部144に接続されており、受熱部144よりも高い位置に形成されている。放熱部142は、ステータ100の径方向に伸張している。
 本実施例における冷却機構120に相当するヒートパイプ140は、ヒートパイプ140の一部が受熱および放熱することにより封入された冷媒が液化および気化されることで熱の伝達が行われるが、冷媒の高い潜熱により高い冷却効果を持つ。しかし、放熱が十分にされない場合、気化が行われず、冷却機構120として作用しない場合がある。特に、放熱部を受熱部よりも高い位置に配置しない場合、冷却効果が得にくい。そこで、本実施例のような構成を採用することにより、高い冷却効果を得ることができる。
100 ステータ
110 ステータコア
115 ステータコア孔
117 ステータコア溝
120 冷却機構
122 冷却管
125 冷媒路
130 ステータコイル
140 ヒートパイプ
150 ステータケース
200 インナーロータ
300 アウターロータ
400 ロータケース
500 シャフト
600 ベアリング
700 ラジエータ
800 ポンプ
900 モールド樹脂
1000 回転電機

Claims (12)

  1.  ステータと、
     前記ステータの径方向内側に配置されたインナーロータまたは前記ステータの径方向外側に配置されたアウターロータと、を有し、
     前記ステータは、ステータコアと、前記ステータを冷却する冷却管と、前記ステータコアおよび前記冷却管を巻回するステータコイルと、を有する回転電機。
  2.  請求項1において
     前記ステータの径方向内側に配置されたインナーロータと、
     前記ステータの径方向外側に配置されたアウターロータと、を有する回転電機。
  3.  請求項1乃至2のいずれかにおいて
     前記ステータの回転軸方向において、前記ステータコアの側面に前記冷却管が配置される回転電機。
  4.  請求項1乃至3のいずれかにおいて、
     前記冷却管の前記ステータコアに対応する部分が磁性材料で構成される回転電機。
  5.  請求項1において
     前記ステータの径方向において、前記ステータコアが分割されており、
     前記ステータの径方向において、前記分割されたステータコアの間に前記冷却管が形成される回転電機。
  6.  請求項1において
     前記ステータコアにステータコア孔が形成され、
     前記前記冷却管が前記ステータコア孔を貫通する回転電機。
  7.  請求項1乃至5のいずれかにおいて
     前記回転電機の回転軸を通る平面で切った断面において、前記冷却管が扁平形状である回転電機。
  8.  請求項1において
     前記ステータコアに前記冷却管が埋め込まれている回転電機。
  9.  請求項1乃至8のいずれかにおいて、
     前記ステータコアは前記冷却管である回転電機。
  10.  請求項1乃至7のいずれかにおいて、
     前記冷却管および前記ステータコイルが、モールド樹脂で固定されている回転電機。
  11.  請求項1乃至10のいずれかにおいて、
     冷媒を前記ステータの外部から前記冷却管の中へ吸入し、前記冷媒を前記冷却管の中から前記ステータの外部へ排出する冷媒路を有し、
     前記ステータの周方向における、前記冷媒路の前記ステータに対応する部分は、非磁性体で構成される回転電機。
  12.  請求項1乃至10のいずれかにおいて、
     前記冷却管を含む冷却機構はヒートパイプであり、
     前記ヒートパイプは、放熱部および受熱部で構成され、
     前記放熱部は、前記受熱部よりも高い位置に形成されている回転電機。
PCT/JP2013/074458 2013-09-11 2013-09-11 回転電機 WO2015037069A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074458 WO2015037069A1 (ja) 2013-09-11 2013-09-11 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074458 WO2015037069A1 (ja) 2013-09-11 2013-09-11 回転電機

Publications (1)

Publication Number Publication Date
WO2015037069A1 true WO2015037069A1 (ja) 2015-03-19

Family

ID=52665211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074458 WO2015037069A1 (ja) 2013-09-11 2013-09-11 回転電機

Country Status (1)

Country Link
WO (1) WO2015037069A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144271A (ja) * 2015-01-30 2016-08-08 株式会社クボタ 回転電機の冷却構造
CN109301954A (zh) * 2018-11-21 2019-02-01 湘潭电机股份有限公司 一种永磁电机液体冷却结构及永磁电机
CN116959851A (zh) * 2023-09-20 2023-10-27 广东尚朋电磁科技有限公司 一种宽温高频低损耗软磁铁氧体元件、生产工艺及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336915A (ja) * 2003-05-08 2004-11-25 Nissan Motor Co Ltd 複軸多層モータの磁気回路制御装置
JP2006014564A (ja) * 2004-06-29 2006-01-12 Nissan Motor Co Ltd ディスク型回転電機のステータ冷却構造
JP2011099442A (ja) * 2009-11-06 2011-05-19 Siemens Ag 発電機の冷却のための装置
WO2013105214A1 (ja) * 2012-01-10 2013-07-18 富士機械製造株式会社 リニアモータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336915A (ja) * 2003-05-08 2004-11-25 Nissan Motor Co Ltd 複軸多層モータの磁気回路制御装置
JP2006014564A (ja) * 2004-06-29 2006-01-12 Nissan Motor Co Ltd ディスク型回転電機のステータ冷却構造
JP2011099442A (ja) * 2009-11-06 2011-05-19 Siemens Ag 発電機の冷却のための装置
WO2013105214A1 (ja) * 2012-01-10 2013-07-18 富士機械製造株式会社 リニアモータ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144271A (ja) * 2015-01-30 2016-08-08 株式会社クボタ 回転電機の冷却構造
CN109301954A (zh) * 2018-11-21 2019-02-01 湘潭电机股份有限公司 一种永磁电机液体冷却结构及永磁电机
CN109301954B (zh) * 2018-11-21 2023-10-03 湘潭电机股份有限公司 一种永磁电机液体冷却结构及永磁电机
CN116959851A (zh) * 2023-09-20 2023-10-27 广东尚朋电磁科技有限公司 一种宽温高频低损耗软磁铁氧体元件、生产工艺及设备
CN116959851B (zh) * 2023-09-20 2024-01-16 广东尚朋电磁科技有限公司 一种宽温高频低损耗软磁铁氧体元件、生产工艺及设备

Similar Documents

Publication Publication Date Title
JP6653011B2 (ja) アキシャルギャップ型回転電機
JP5216038B2 (ja) 回転電動機
JP5220765B2 (ja) Afpmコアレス型マルチ発電機及びモーター
EP3379701B1 (en) Motor rotor support frame and motor
KR102117140B1 (ko) 축방향 모터의 폴 슈 냉각 갭
JP5548046B2 (ja) 永久磁石回転電機
JP2016525333A (ja) 電動機用の固定子および回転子
KR20120085721A (ko) 터보 압축기 시스템
JP2012175755A (ja) 永久磁石回転電機
JP2010220402A (ja) 永久磁石形回転電機
JP2014023198A (ja) 電動機
JP2006014564A (ja) ディスク型回転電機のステータ冷却構造
WO2015037069A1 (ja) 回転電機
JP2012161134A (ja) 回転電機
US20230361637A1 (en) Electric machines with enhanced electromagnetic interaction
JP2006033965A (ja) ディスク型回転電機のステータ冷却構造
JP5560773B2 (ja) ステータ
US10476330B2 (en) Interior magnet rotary electric machine
JP2006050752A (ja) ディスク型回転電機のステータ冷却構造
JP2000270502A (ja) 回転電気機械
JP6254926B2 (ja) アキシャルギャップ型ブラシレスモータ
JP2017017787A (ja) モータ
JP2006094664A (ja) アキシャルギャップ型回転電機のステータ構造
WO2018131197A1 (ja) モータ
JP7217205B2 (ja) 外転型表面磁石回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13893279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP