WO2021244060A1 - 一种厚膜电阻浆料 - Google Patents

一种厚膜电阻浆料 Download PDF

Info

Publication number
WO2021244060A1
WO2021244060A1 PCT/CN2021/075363 CN2021075363W WO2021244060A1 WO 2021244060 A1 WO2021244060 A1 WO 2021244060A1 CN 2021075363 W CN2021075363 W CN 2021075363W WO 2021244060 A1 WO2021244060 A1 WO 2021244060A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
weight
thick film
film resistor
resistor paste
Prior art date
Application number
PCT/CN2021/075363
Other languages
English (en)
French (fr)
Inventor
邱基华
Original Assignee
潮州三环(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010571482.1A external-priority patent/CN111739675B/zh
Application filed by 潮州三环(集团)股份有限公司 filed Critical 潮州三环(集团)股份有限公司
Priority to JP2021566312A priority Critical patent/JP7295973B2/ja
Priority to KR1020227025627A priority patent/KR20220114083A/ko
Publication of WO2021244060A1 publication Critical patent/WO2021244060A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors

Definitions

  • the invention relates to a conductive paste, in particular to a thick film resistor paste.
  • Thick film chip resistors are widely used in thick film resistor electronic components, thick film hybrid circuits, etc. Chip thick film resistors are mainly used to print the composition on the conductor pattern or electrode formed on the surface of the insulating substrate Then, the printed matter is calcined at a temperature of 850°C ⁇ 20°C to obtain a thick film resistor.
  • Thick film resistor paste is prepared by dispersing conductive components and inorganic binder in an organic medium (carrier). And by the method of screen printing, the thick film resistor paste is deposited on the insulating substrate.
  • the electrical properties of thick film resistors are mainly determined by the properties of the inorganic binder and conductive components in the deposited layer.
  • the main component of the inorganic adhesive is glass, which is mainly used to bond the conductive components together to form a conductive path, maintain the integrity of the thick film resistor, and play an important role in bonding with the substrate.
  • the organic medium is a dispersion medium, which mainly affects the application characteristics of the slurry, especially the rheological characteristics.
  • inorganic binders used in traditional low-resistance section formulations are lead-containing lead silicate glass, and the conductive components are Ag, Pd, and RuO 2 three conductive phases. Ag and Pd are commonly used to control the resistance and TCR. The higher the Pd content, the lower the TCR can be obtained, but the resistance is more difficult to reduce; in recent years, the requirements for low-resistance thick film resistors have become higher and higher, and low-cost and high-performance resistor pastes are needed.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a thick film resistor paste with lower resistance and better TCR performance.
  • the TCR of the low resistance section is mainly related to the content of the precious metal Pd. Due to the above-mentioned defects of Pd, the present invention uses Pt instead of Pd. Since Pt and Pd are in the same main group in the periodic table, the physical and chemical properties of the two are extremely similar in purity, rarity, and durability. Instead of each other, pure Pt has good high temperature oxidation resistance and chemical stability. At room temperature, Pt can exist stably in thick film resistor paste, and after sintering at 850°C, it can form Ag-Pt binary alloy with Ag in the paste, and finally use Ag-Pt binary alloy in thick film resistor.
  • Pd has an oxidative decomposition process at room temperature to 850°C. It begins to oxidize to form PdO at a temperature range of 300 to 400°C, and decompose to form Pd at about 800°C, but PdO is completely decomposed at a temperature Above 850°C, after sintering at 850°C, some undecomposed PdO may remain.
  • the presence of PdO has a greater influence on the resistance and TCR. The more undecomposed PdO content, the higher the resistance, and the Pd content Relatively lower, the TCR value will increase; while Pt powder does not have a process of oxidative decomposition. When sintered to a certain temperature, it can directly form an Ag-Pt binary alloy with Ag, so lower resistance and TCR performance can be obtained. Excellent thick film resistor paste.
  • the inventor found that after replacing Pd powder with Pt powder, the TCR of a resistor with a square resistance of less than 100 ⁇ / ⁇ is reduced, indicating that the use of Pt powder can improve TCR performance, thereby achieving the purpose of reducing costs and improving TCR performance;
  • the shape of Pt powder or Ag-Pt alloy powder the temperature sensitivity of TCR (TCR is affected by sintering temperature) and TCR size effect (affected by size) are improved.
  • the short-term overload performance of the thick film resistor is guaranteed to remain unchanged or better.
  • the morphology of Pt powder or Ag-Pt alloy powder has a greater impact on the electrical properties of thick film resistors.
  • the use of honeycomb spherical, flocculent, spherical and quasi-spherical Pt powder or Ag-Pt alloy powder can be combined with other components.
  • the organic carrier is uniformly mixed together, showing good rheological properties.
  • the Pt powder with the above morphology can have better contact with the glass phase and Ag particles.
  • the glass has a better wetting process relative to it; similarly, the above morphology
  • the Ag-Pt alloy powder also has better contact with the glass phase, so that the glass has a better wetting process relative to it.
  • the flake powder is used, the Pt powder/Ag-Pt alloy powder is not easy to disperse in other components, which may cause uneven dispersion, block the network during the screen printing process, and after sintering, it may be due to heat
  • the stress produces defects such as cracks and holes on the surface of the thick film resistor.
  • the ratio a/b of the length of the long axis (a) and the short axis (b) of Pt powder or Ag-Pt powder is greater than 3, the morphology of the powder is close to needle-like morphology, which is used in the production process It is not easy to disperse in the process, and it is easy to cause uneven dispersion with other conductive phases and glass phases in the organic carrier, which affects the electrical and other properties of thick film resistors; a/b is 1 ⁇ 3, Pt powder or Ag-Pt The powder can be uniformly mixed with other components in the organic carrier, showing good rheological properties, and obtaining thick film resistors with excellent performance.
  • the crystallite diameter of the (111) crystal plane of Pt measured by X-ray diffraction method is 7-50 nm.
  • the particle size of the Pt powder is 10 nm to 1 ⁇ m
  • the specific surface area of the Pt powder is 0.3 m 2 /g to 25 m 2 /g
  • the particle size of the Ag-Pt alloy powder is 200 nm to 1 ⁇ m, so The specific surface area of the Ag-Pt alloy powder is 0.3 m 2 /g to 15 m 2 /g.
  • the crystallite diameter is too high, the larger the particle size, the smaller the specific surface area, the smaller the volume of the Pt powder or Ag-Pt alloy powder of the same mass is added, and the volume of the conductive phase directly affects the electrical performance of the thick film resistor;
  • the crystallite diameter is too low, the smaller the particle size, the larger the specific surface area, and it is easy to produce agglomeration during the process.
  • the glass phase cannot wet the powder inside the agglomeration. It can produce cracks or holes on the surface of the thick film resistor. This defect directly affects the electrical performance of the thick film resistor; therefore, when the crystallite diameter of the (111) crystal plane of Pt is 7-50nm, excellent performance can be obtained without cracks or surface cracks. Thick film resistors with defects such as holes.
  • the thick film resistor paste contains 30-80wt% solid phase component and 20-70wt% organic component; based on 100wt% solid phase component, said solid phase component contains Ag 10-70wt% %, Pt 0.1 ⁇ 60wt%, RuO 2 0 ⁇ 50wt%, the glass component and 5 ⁇ 60wt% inorganic filler 0 ⁇ 5wt%.
  • the solid phase component contains Ag 30-70% by weight, Pt 5-60% by weight, RuO 2 0-20% by weight, glass component 5-35% by weight, and inorganic filler 0- 5wt%.
  • the solid phase component is particularly suitable for preparing thick film resistor pastes with a resistance section of 0.1 ⁇ / ⁇ (in this application, the resistance section of 0.1 ⁇ / ⁇ actually means a resistance section in the range of 0.08-0.8 ⁇ / ⁇ ).
  • the solid phase component contains Ag 20-60% by weight, Pt 5-50% by weight, RuO 2 0-20% by weight, glass component 10-40% by weight, and inorganic filler 0- 5wt%.
  • the solid phase component is particularly suitable for preparing thick film resistor pastes with a resistance section of 1 ⁇ / ⁇ (in this application, the resistance section of 1 ⁇ / ⁇ actually means a resistance section in the range of 0.8-10 ⁇ / ⁇ ).
  • the solid phase component contains Ag 10-40% by weight, Pt 0.1-20% by weight, RuO 2 20-50% by weight, glass component 20-60% by weight, and inorganic filler 0- 5wt%.
  • the solid phase component is especially suitable for preparing thick film resistor paste with a resistance section of 10 ⁇ / ⁇ (in this application, the resistance section of 10 ⁇ / ⁇ actually means a resistance section in the range of 10-30 ⁇ / ⁇ ).
  • the glass component is at least one of glass composition 1, glass composition 2, glass composition 3, and glass composition 4;
  • the glass composition 1 contains the following components by weight percentage: PbO 10-50%, SiO 2 35-55%, CaO 5-30%, Al 2 O 3 1-20%, B 2 O 3 1 ⁇ 10% and ZnO 0-10%, the sum of the weight percentages of the PbO, SiO 2 , CaO, Al 2 O 3 , B 2 O 3 and ZnO in the glass composition 1 is at least 95%;
  • the glass composition 2 contains the following components by weight percentage: SiO 2 40-75%, BaO 0-15%, SrO 0-20%, Na 2 O 0-10%, K 2 O 0-10% , Al 2 O 3 1-15%, B 2 O 3 1-25% and ZnO 0-10%, the SiO 2 , BaO, SrO, Na 2 O, K 2 O, Al 2 O 3 , B 2 O
  • the sum of the weight percentages of 3 and ZnO in the glass composition 2 is at least 95%;
  • the glass composition 3 includes the following components by weight percentage: PbO 50 ⁇ 88%, SiO 2 10 ⁇ 30%, Al 2 O 3 1 ⁇ 10%, B 2 O 3 1 ⁇ 10% and ZnO 0 ⁇ 10%, the sum of the weight percentages of the PbO, SiO 2 , Al 2 O 3 , B 2 O 3 and ZnO in the glass composition 3 is at least 95%;
  • the glass composition 4 contains the following components by weight percentage: PbO 60 ⁇ 88%, SiO 2 10 ⁇ 35%, Al 2 O 3 1 ⁇ 10%, B 2 O 3 1 ⁇ 10% and transition metal oxide 0-20%, the transition metal oxide contains at least one of CuO, MnO 2 , Nb 2 O 5 , Ta 2 O 5 , TiO 2 and ZrO 2;
  • the inorganic filler is at least one of Nb 2 O 5 , MnO 2 , CuO, TiO 2 and Ta 2 O 5.
  • the organic component comprises an organic vehicle and an organic solvent
  • the organic vehicle is at least one of ethyl cellulose, methyl cellulose, ethyl cellulose, acrylic resin and epoxy resin
  • the solvent is at least one of terpineol, butyl carbitol, butyl carbitol acetate, diethylene glycol dibutyl ether, and alcohol esters.
  • the object of the present invention is also to provide a resistor prepared from the thick film resistor paste.
  • the present invention provides a thick film resistor paste.
  • the conductive phase component in the thick film resistor paste of the present invention is replaced by Pd with Pt, and Pt powder or Ag-Pt alloy with specific morphology is used.
  • the TCR of resistors with square resistance less than 100 ⁇ / ⁇ is reduced, and the temperature sensitivity of TCR (TCR is affected by sintering temperature) and TCR size effect (affected by size) are improved, indicating the use of Pt with a specific morphology Powder can improve TCR performance, so as to achieve the purpose of reducing costs and improving TCR performance.
  • the short-term overload performance of the thick film resistor is guaranteed to remain unchanged or better.
  • the particle size of the Pt(111) plane and the ratio of the long axis to the short axis of the particle in the table are expressed as the particle size and the particle size of the Pt(111) plane above 80% of the particle size in the test picture by scanning electron microscope
  • the ratio of the major axis to the minor axis is within the range.
  • the primary particle size of the platinum powder used in the resistance paste can be basically equivalent to the crystallite diameter measured by X-ray diffraction.
  • the crystallite diameter of the Pt powder involved in the examples is calculated based on the peak value of the highest relative intensity measured by the X-ray diffraction method.
  • the transition metal oxide is a mixture of CuO, MnO 2 , Nb 2 O 5 , Ta 2 O 5 , TiO 2 and ZrO 2 , the CuO, MnO 2 , Nb 2 O 5 , Ta 2 O 5 , TiO 2 and The weight ratio of ZrO 2 is 1:1:1:1:1:1.
  • Short-time overload (STOL) performance load 2.5 times the rated current (10 ⁇ / ⁇ ) or 2.5 times the rated voltage (10 ⁇ / ⁇ ) to the 0.8*0.8 size thick film resistor for 5s, and leave it for 30 minutes. Confirm the change of the resistance value before and after it, (Among them, R 0 and R 1 are the resistance values before and after loading, respectively). If the absolute value of ⁇ R change is less than 1%, it is qualified, and vice versa.
  • the rated voltage is The rated current is (R is the resistance value of the corresponding chip resistor).
  • Example 5 replaces the Pt of Example 5 with Pd, and the morphology and particle size range of the Pd powder are the same as those of the Pt powder of Example 5.
  • Example 14 replaces the Pt of Example 14 with Pd, and the morphology and particle size range of the Pd powder are the same as those of the Pt powder of Example 14.
  • Example 21 replaces the Pt of Example 21 with Pd, and the morphology and particle size range of the Pd powder are the same as those of the Pt powder of Example 21.
  • Embodiment 7 replaces Pt in Embodiment 7 with f-type Pt.
  • Embodiment 15 replaces the Pt of Embodiment 15 with g-type Pt.
  • Embodiment 17 replaces Pt in Embodiment 17 with i-type Pt.
  • Example 5 The only difference from Example 5 is that the Pt of Example 5 is replaced with j-type Pt in this comparative example.
  • Embodiment 14 The only difference from Embodiment 14 is that the Pt of Embodiment 14 is replaced with j-type Pt in this comparative example.
  • Example 21 The only difference from Example 21 is that the Pt of Example 21 is replaced with j-type Pt in this comparative example.
  • the resistors prepared by using Pt powder resistor paste have better TCR temperature sensitivity than using Pd powder; in the resistor paste, the crystallite diameter of the (111) crystal plane of Pt In the range of 7-50nm, the ratio of the length of the long axis and the short axis of the Pt powder or Ag-Pt alloy powder is within the range of 3.
  • the resistor prepared by using the above-mentioned resistor paste has better TCR temperature sensitivity.
  • the resistors prepared by using Pt powder resistor paste have better TCR size effect than using Pd powder; in the resistor paste, the crystallite diameter of the (111) crystal plane of Pt is In the range of 7-50nm, the ratio of the length of the long axis and the short axis of the Pt powder or Ag-Pt alloy powder is within the range of 3.
  • the resistor prepared by the above-mentioned resistor paste has a better TCR size effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Abstract

本发明公开了一种厚膜电阻浆料,包含Ag粉末、Pt粉末和Ag-Pt合金粉末中的至少两种;所述Pt粉末或Ag-Pt合金粉末为蜂窝球状、絮状、球状和类球形中的至少一种;所述Pt粉末或Ag-Pt合金粉末中,至少有90wt%的Pt粉末或Ag-Pt合金粉末的长轴和短轴的长度之比为:长轴:短轴=1~3。本发明所述厚膜电阻浆料中的导电相成分采用Pt替换Pd,将Pt粉替换Pd粉后,100Ω/□以下方阻电阻器的TCR降低,可以达到降低成本且提高TCR性能的目的,并且将Pt替换Pd粉后,保证厚膜电阻的短时过载性能保持不变或者更优异。

Description

一种厚膜电阻浆料 技术领域
本发明涉及一种导电浆料,具体涉及一种厚膜电阻浆料。
背景技术
厚膜片式电阻广泛用于厚膜电阻器电子部件、厚膜混合式电路等,片式厚膜电阻主要是用过将组合物印刷到在绝缘基板的表面上形成的导线分布图或电极上,随后在850℃±20℃的温度下对印刷物进行煅烧,得到厚膜电阻。
厚膜电阻浆料通过将导电组分和无机粘合剂分散在有机介质(载体)中来制备厚膜电阻浆料。并通过丝网印刷的方法将厚膜电阻浆料沉积在绝缘的基板上。厚膜电阻的电性能主要由沉积层中的无机粘结剂和导电组分性质确定。无机粘合剂主要成分是玻璃,作用主要是将导电组分粘结在一起形成导电通路,并保持厚膜电阻的完整性,且与基板粘合方面起着重要作用。有机介质为分散介质,主要影响浆料的应用特性,尤其是流变学特性。
传统的厚膜电阻在方阻小于100Ω/□的低阻段中(例如,10Ω/□、1Ω/□、0.1Ω/□阻段,或者更低阻段0.01Ω/□),采用的导电相为Ag、Pd、RuO 2,其问题在于提高电阻温度系数(temperature coefficient of resistance,简称TCR)性能,需要增加贵金属的Pd的含量,这样大大提高了成本。
传统低阻段配方大多数采用的无机粘结剂主要是含铅的铅硅酸盐玻璃,导电组分为Ag、Pd、RuO 2三种导电相,常用Ag、Pd来控制阻值和TCR,Pd含量越高可以得到更低的TCR,但阻值较难降低;由于近年来对低阻段厚膜电阻器的要求越来越高,需要低成本高性能的电阻浆料。
现有的低阻段厚膜电阻采用提高贵金属Pd粉的含量来降低TCR,提高Pd粉的含量,一般阻值就会增大,就需要增大Ag的含量,但是TCR就会升高,因此再提高Pd粉的含量,以此类推,达到所需要的阻值及TCR性能即可,但 是,这种方法存在较大的问题就是很难通过这种繁琐的方法达到所满足的阻值和TCR性能。
发明内容
本发明的目的在于克服现有技术存在的不足之处而提供一种阻值较低,TCR性能更加优异的厚膜电阻浆料。
为实现上述目的,本发明采取的技术方案为:一种厚膜电阻浆料,包含Ag粉末、Pt粉末和Ag-Pt合金粉末中的至少两种;所述Pt粉末或Ag-Pt合金粉末为蜂窝球状、絮状、球状和类球形中的至少一种;所述Pt粉末或Ag-Pt合金粉末中,至少有90wt%的Pt粉末或Ag-Pt合金粉末的长轴和短轴的长度之比为:长轴:短轴=1~3。
在传统配方中低阻段特别是方阻小于100Ω/□的电阻器的TCR主要与贵金属Pd的含量有关。由于Pd存在上述缺陷,本发明采用Pt替代Pd,由于在元素周期表中,Pt与Pd在同一主族,两者的物理及化学性能极其相似在纯度、稀有度及耐久度上,两者可互相替代,纯Pt具有良好的高温抗氧化性和化学稳定性。常温下,Pt在厚膜电阻浆料中能够稳定的存在,且经过850℃烧结后,能够与浆料中的Ag形成Ag-Pt二元合金,最终在厚膜电阻中以Ag-Pt二元合金的晶相存在。此外,Pt与Pd粉最大的区别在于,Pd在室温~850℃存在一个氧化分解的过程,在300~400℃温度范围开始氧化形成PdO,在800℃左右开始分解形成Pd,但是PdO完全分解温度高于850℃,在850℃烧结后,还可能残存部分未分解的PdO,PdO的存在对阻值和TCR有较大影响,未分解的PdO含量越多,阻值就会升高,Pd含量相对的降低,TCR值就会升高;而Pt粉不存在氧化分解的过程,在烧结到一定温度时,可与Ag直接形成Ag-Pt二元合金,所以可以获得阻值较低,TCR性能优异的厚膜电阻浆料。
因此,发明人发现,将Pt粉替换Pd粉后,方阻小于100Ω/□的电阻器的TCR降低,说明采用Pt粉可以提高TCR性能,从而达到降低成本且提高TCR性能的目的;而采用特定形状的Pt粉或Ag-Pt合金粉末后,TCR的温敏性(TCR受烧结温度的影响)和TCR尺寸效应(受尺寸大小影响)得到改善。并且将Pt 替换Pd粉后,保证厚膜电阻的短时过载性能保持不变或者更优异。
Pt粉末或Ag-Pt合金粉末的形貌对厚膜电阻的电性能有较大的影响,采用蜂窝球状、絮状、球状以及类球形的Pt粉末或Ag-Pt合金粉末可以与其他组分在有机载体中均匀的混合在一起,呈现较好的流变学性能。同时,上述形貌的Pt粉能够与玻璃相及Ag颗粒有较好的接触,在烧结过程,有利于形成Ag-Pt合金且玻璃相对其有一个较好的润湿过程;同样,上述形貌的Ag-Pt合金粉末与玻璃相也有较好的接触,使得玻璃相对其有较好的润湿过程。若采用片状粉体,Pt粉/Ag-Pt合金粉在其它组分中不易分散,可能会导致分散不均匀,在丝网印刷过程中出现堵网的现象,而且烧结后,可能会由于热应力在厚膜电阻表面产生裂纹和孔洞等缺陷。
当Pt粉或者Ag-Pt粉的长轴(a)和短轴(b)的长度之比a/b大于3时,其粉体的形貌接近针状形貌,这种形貌在生产工艺过程中不易分散,与其他导电相、玻璃相在有机载体中易产生分散不均的现象,从而影响厚膜电阻的电性能及其他性能;a/b为1~3,Pt粉或者Ag-Pt粉,能够与其他组分在有机载体中均匀的混合在一起,呈现较好的流变学性能,得到性能优异的厚膜电阻。
优选地,所述Pt粉末和Ag-Pt合金粉末中,X射线衍射法测定Pt的(111)晶面的微晶直径为7~50nm。
优选地,所述Pt粉末的粒径为10nm~1μm,所述Pt粉末的比表面积为0.3m 2/g~25m 2/g;所述Ag-Pt合金粉末的粒径为200nm~1μm,所述Ag-Pt合金粉末的比表面积为0.3m 2/g~15m 2/g。微晶直径过高,粒径越大,比表面积越小,其加入等质量的Pt粉末或Ag-Pt合金粉末体积占比越小,导电相的体积占比直接影响厚膜电阻的电性能;同样,微晶直径过低,粒径越小,比表面积越大,易在工艺生产中产生团聚,在烧结过程中玻璃相不能够润湿团聚内部的粉体,导致烧结过程中,由于热应力作用,在厚膜电阻表面产生裂纹或者孔洞,这种缺陷直接影响厚膜电阻的电性能;因此Pt的(111)晶面的微晶直径为7~50nm时能够获得性能优异且表面无裂纹或者孔洞等缺陷的厚膜电阻。
优选地,所述厚膜电阻浆料包含30~80wt%的固相组分和20~70wt%的有机 组分;按固相组分100wt%计,所述固相组分包含Ag 10~70wt%、Pt 0.1~60wt%、RuO 2 0~50wt%、玻璃组分5~60wt%和无机填料0~5wt%。
优选地,按固相组分100wt%计,所述固相组分包含Ag 30~70wt%、Pt 5~60wt%、RuO 2 0~20wt%、玻璃组分5~35wt%和无机填料0~5wt%。该固相组分尤其适用于制备0.1Ω/□阻段(本申请中,0.1Ω/□阻段实际上表示的是0.08~0.8Ω/□范围的阻段)的厚膜电阻浆料。
优选地,按固相组分100wt%计,所述固相组分包含Ag 20~60wt%、Pt 5~50wt%、RuO 2 0~20wt%、玻璃组分10~40wt%和无机填料0~5wt%。该固相组分尤其适用于制备1Ω/□阻段(本申请中,1Ω/□阻段实际上表示的是0.8~10Ω/□范围的阻段)的厚膜电阻浆料。
优选地,按固相组分100wt%计,所述固相组分包含Ag 10~40wt%、Pt 0.1~20wt%、RuO 2 20~50wt%、玻璃组分20~60wt%和无机填料0~5wt%。该固相组分尤其适用于制备10Ω/□阻段(本申请中,10Ω/□阻段实际上表示的是10~30Ω/□范围的阻段)的厚膜电阻浆料。
在方阻小于100Ω/□的电阻器中,如果电阻浆料中Pt的含量大于规定上限时,首先电阻率低的Ag粉相对含量降低,其方阻就很难都达到预定要求,其次,玻璃相的相对含量降低,玻璃相太少不足以润湿较多的导电相,厚膜电阻表面就会出现裂纹或者孔洞,进而恶化其电性能;Pt的含量小于规定下限时,TCR性能、STOL性能及其他电性能难以达到要求,因此,要满足所有性能达到要求,需要取合适的添加范围。
优选地,所述玻璃组分为玻璃组合物1、玻璃组合物2、玻璃组合物3和玻璃组合物4中的至少一种;
所述玻璃组合物1包含以下重量百分含量的组分:PbO 10~50%、SiO 235~55%、CaO 5~30%、Al 2O 3 1~20%、B 2O 3 1~10%和ZnO 0~10%,所述PbO、SiO 2、CaO、Al 2O 3、B 2O 3和ZnO在玻璃组合物1中的重量百分含量之和至少为95%;
所述玻璃组合物2包含以下重量百分含量的组分:SiO 2 40~75%、BaO 0~15%、SrO 0~20%、Na 2O 0~10%、K 2O 0~10%、Al 2O 3 1~15%、B 2O 3 1~25%和ZnO 0~10%,所述SiO 2、BaO、SrO、Na 2O、K 2O、Al 2O 3、B 2O 3和ZnO在玻璃组合物2中的重量百分含量之和至少为95%;
所述玻璃组合物3包含以下重量百分含量的组分:PbO 50~88%、SiO 210~30%、Al 2O 31~10%、B 2O 3 1~10%和ZnO 0~10%,所述PbO、SiO 2、Al 2O 3、B 2O 3和ZnO在玻璃组合物3中的重量百分含量之和至少为95%;
所述玻璃组合物4包含以下重量百分含量的组分:PbO 60~88%、SiO 2 10~35%、Al 2O 3 1~10%、B 2O 3 1~10%和过渡金属氧化物0~20%,所述过渡金属氧化物包含CuO、MnO 2、Nb 2O 5、Ta 2O 5、TiO 2和ZrO 2中的至少一种;
所述无机填料为Nb 2O 5、MnO 2、CuO、TiO 2和Ta 2O 5中的至少一种。
优选地,所述有机组分包含有机载体和有机溶剂,所述有机载体为乙基纤维素、甲基纤维素、乙基纤维素、丙烯酸树脂和环氧树脂中的至少一种;所述有机溶剂为松油醇、丁基卡必醇、丁基卡必醇醋酸酯、二乙二醇二丁醚和醇酯类中的至少一种。
本发明的目的还在于提供所述厚膜电阻浆料制备而成的电阻器。
本发明的有益效果在于:本发明提供了一种厚膜电阻浆料,本发明所述厚膜电阻浆料中的导电相成分采用Pt替换Pd,采用特定形貌的Pt粉或Ag-Pt合金粉末后,方阻小于100Ω/□的电阻器的TCR降低,且TCR的温敏性(TCR受烧结温度的影响)和TCR尺寸效应(受尺寸大小影响)得到改善,说明采用特定形貌的Pt粉可以提高TCR性能,从而达到降低成本且提高TCR性能的目的。并且将Pt替换Pd粉后,保证厚膜电阻的短时过载性能保持不变或者更优异。
具体实施方式
为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例和对比例中涉及的Pt粉末的类型见表1。
表1
Figure PCTCN2021075363-appb-000001
注:表中Pt(111)面的粒径和粒子的长轴与短轴之比表示为通过扫描电子显微镜测试图片中80%以上的颗粒粒径在该Pt(111)面的粒径和粒子的长轴与短轴之比范围内。通常,在电阻浆中使用的铂粉的一次粒径基本上可以等同于通过X射线衍射法测得的微晶直径,微晶直径D(nm)可以根据Scherrer公式计算得到:D(nm)=(K·γ)/(B·cosθ),其中K为Scherrer常数,采用0.89;γ(nm)为X射线的波长,B为(111)面的衍射峰半高宽度,θ为衍射角。实施例中涉及的Pt粉的微晶直径是根据X射线衍射法测定相对强度最高的峰值计算得出。
实施例和对比例中涉及玻璃组分见表2:单位wt%。
表2
Figure PCTCN2021075363-appb-000002
Figure PCTCN2021075363-appb-000003
其中,过渡金属氧化物为CuO、MnO 2、Nb 2O 5、Ta 2O 5、TiO 2和ZrO 2的混合物,所述CuO、MnO 2、Nb 2O 5、Ta 2O 5、TiO 2和ZrO 2的重量之比为:1:1:1:1:1:1。
实施例和对比例中,有机组分包含以下重量百分含量的组分:乙基纤维素和松油醇,乙基纤维素和松油醇的重量之比为=1:4。
阻段为0.1Ω/□的厚膜电阻浆料配方见表3。
表3
Figure PCTCN2021075363-appb-000004
Figure PCTCN2021075363-appb-000005
阻段为1Ω/□的厚膜电阻浆料配方见表4。
表4
Figure PCTCN2021075363-appb-000006
阻段为10Ω/□的厚膜电阻浆料配方见表5。
表5
Figure PCTCN2021075363-appb-000007
Figure PCTCN2021075363-appb-000008
将厚膜电阻浆料在850℃烧结制备成片式电阻后,测试其性能:
a、印刷0603规格,测试整版上所有片式电阻阻值的标准差:SD<4%;
b、测试0.8*0.8规格的片式电阻的TCR性能:一般以25℃为基准,125℃条件下保温10min测试阻值为R 125,在-55℃条件下保温10min测试阻值为R -55
Figure PCTCN2021075363-appb-000009
测得的H(C)TCR性能如下:0.1Ω/□<800ppm;1Ω/□<500ppm;10Ω/□在±100ppm范围内;
c、短时过载特(STOL)性能:通过对0.8*0.8尺寸的厚膜电阻加载5s的2.5倍额定电流(10Ω/□以下)或者2.5倍的额定电压(10Ω/□),放置30分钟,确认其前后的电阻值的变化,
Figure PCTCN2021075363-appb-000010
(其中,R 0、R 1分别是加载前后的电阻值),ΔR变化绝对值小于1%即为合格,反之即为不合格。额定电压为
Figure PCTCN2021075363-appb-000011
额定电流为
Figure PCTCN2021075363-appb-000012
(R是对应片式电阻的阻值)。
阻段为0.1Ω/□的厚膜电阻浆料性能测试结果见表6。
表6
Figure PCTCN2021075363-appb-000013
Figure PCTCN2021075363-appb-000014
阻段为1Ω/□的厚膜电阻浆料性能测试结果见表7。
表7
Figure PCTCN2021075363-appb-000015
阻段为10Ω/□的厚膜电阻浆料性能测试结果见表8。
表8
Figure PCTCN2021075363-appb-000016
对比例5
本对比例和实施例5的区别仅在于,本对比例用Pd替换实施例5的Pt,Pd粉的形貌和粒径范围与实施例5的Pt粉相同。
对比例6
本对比例和实施例14的区别仅在于,本对比例用Pd替换实施例14的Pt,Pd粉的形貌和粒径范围与实施例14的Pt粉相同。
对比例7
本对比例和实施例21的区别仅在于,本对比例用Pd替换实施例21的Pt,Pd粉的形貌和粒径范围与实施例21的Pt粉相同。
对比例5~7的测试结果见表9。
表9
Figure PCTCN2021075363-appb-000017
从表6~9中可以看出,在厚膜电阻低阻段1Ω/□、0.1Ω/□,或者更低阻段例如0.01Ω/□,通过控制Pt粉或Ag-Pt合金的形貌、比表面积和粒径,采用同等质量百分比的Pt粉更换Pd粉,具有更优异的TCR性能;10Ω/□采用同等质量百分比的Pt粉更换Pd粉,具有更优异的TCR温敏特性和较小的TCR尺寸效应。
实施例25
与实施例7区别仅在于,本实施例用f型Pt替换实施例7的Pt。
实施例26
与实施例15区别仅在于,本实施例用g型Pt替换实施例15的Pt。
实施例27
与实施例10区别仅在于,本实施例用h型Pt替换实施例10的Pt。
实施例28
与实施例17区别仅在于,本实施例用i型Pt替换实施例17的Pt。
对比例8
与实施例5区别仅在于,本对比例用j型Pt替换实施例5的Pt。
对比例9
与实施例14区别仅在于,本对比例用j型Pt替换实施例14的Pt。
对比例10
与实施例21区别仅在于,本对比例用j型Pt替换实施例21的Pt。
实施例25~28和对比例8~10的测试结果见表10。
表10
Figure PCTCN2021075363-appb-000018
从表10可以看出,当Pt的(111)晶面的微晶直径不在7~50nm范围内时,STOL和阻值集中性难以满足要求,当Pt粉末或Ag-Pt合金粉末的长轴和短轴的长度之比超过3(对比例10)时,CTCR和SD难以满足要求。
将厚膜电阻浆料通过不同的烧结温度,制备成片式电阻后,按照上述方法测试0.8*0.8规格的片式电阻的TCR性能,测试结果见表11~15。
表11
Figure PCTCN2021075363-appb-000019
表12
Figure PCTCN2021075363-appb-000020
表13
Figure PCTCN2021075363-appb-000021
Figure PCTCN2021075363-appb-000022
表14
Figure PCTCN2021075363-appb-000023
表15
Figure PCTCN2021075363-appb-000024
从表11~15可以看出,采用Pt粉的电阻浆料制备的电阻器比采用Pd粉的情 况具有优异的TCR温敏性;电阻浆料中,Pt的(111)晶面的微晶直径在7~50nm范围内,Pt粉末或Ag-Pt合金粉末的长轴和短轴的长度之比在3范围内,采用上述电阻浆料制备的电阻器具有更好的TCR温敏性。
将厚膜电阻浆料在850℃烧结制备成片式电阻后,按照上述方法测试不同规格的片式电阻的TCR性能,测试结果见表16~20。
表16
Figure PCTCN2021075363-appb-000025
表17
Figure PCTCN2021075363-appb-000026
表18
Figure PCTCN2021075363-appb-000027
表19
Figure PCTCN2021075363-appb-000028
表20
Figure PCTCN2021075363-appb-000029
从表16~20可以看出,采用Pt粉的电阻浆料制备的电阻器比采用Pd粉的情况具有优异的TCR尺寸效应;电阻浆料中,Pt的(111)晶面的微晶直径在7~50nm范围内,Pt粉末或Ag-Pt合金粉末的长轴和短轴的长度之比在3范围内,采用上述电阻浆料制备的电阻器具有更好的TCR尺寸效应。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种厚膜电阻浆料,其特征在于,包含Ag粉末、Pt粉末和Ag-Pt合金粉末中的至少两种;所述Pt粉末或Ag-Pt合金粉末为蜂窝球状、絮状、球状和类球形中的至少一种;所述Pt粉末或Ag-Pt合金粉末中,至少有90wt%的Pt粉末或Ag-Pt合金粉末的长轴和短轴的长度之比为:长轴:短轴=1~3。
  2. 如权利要求1所述厚膜电阻浆料,其特征在于,所述Pt粉末和Ag-Pt合金粉末中,X射线衍射法测定Pt的(111)晶面的微晶直径为7~50nm。
  3. 如权利要求1所述厚膜电阻浆料,其特征在于,所述Pt粉末的粒径为10nm~1μm,所述Pt粉末的比表面积为0.3m 2/g~25m 2/g;所述Ag-Pt合金粉末的粒径为200nm~1μm,所述Ag-Pt合金粉末的比表面积为0.3m 2/g~15m 2/g。
  4. 如权利要求1~3中任一项所述厚膜电阻浆料,其特征在于,所述厚膜电阻浆料包含30~80wt%的固相组分和20~70wt%的有机组分;按固相组分100wt%计,所述固相组分包含Ag 10~70wt%、Pt 0.1~60wt%、RuO 2 0~50wt%、玻璃组分5~60wt%和无机填料0~5wt%。
  5. 如权利要求4所述厚膜电阻浆料,其特征在于,按固相组分100 wt%计,所述固相组分包含Ag 30~70wt%、Pt 5~60wt%、RuO 2 0~20wt%、玻璃组分5~35wt%和无机填料0~5wt%。
  6. 如权利要求4所述厚膜电阻浆料,其特征在于,按固相组分100wt%计,所述固相组分包含Ag 20~60wt%、Pt 5~50wt%、RuO 2 0~20wt%、玻璃组分10~40wt%和无机填料0~5wt%。
  7. 如权利要求4所述厚膜电阻浆料,其特征在于,按固相组分100wt%计,所述固相组分包含Ag 10~40wt%、Pt 0.1~20wt%、RuO 2 20~50wt%、玻璃组分20~60wt%和无机填料0~5wt%。
  8. 如权利要求4~7中任一项所述厚膜电阻浆料,其特征在于,所述玻璃组分为玻璃组合物1、玻璃组合物2、玻璃组合物3和玻璃组合物4中的至少一种;
    所述玻璃组合物1包含以下重量百分含量的组分:PbO 10~50%、SiO 235~55%、CaO 5~30%、Al 2O 3 1~20%、B 2O 3 1~10%和ZnO 0~10%,所述PbO、SiO 2、CaO、Al 2O 3、B 2O 3和ZnO在玻璃组合物1中的重量百分含量之和至少为95%;
    所述玻璃组合物2包含以下重量百分含量的组分:SiO 2 40~75%、BaO 0~15%、SrO 0~20%、Na 2O 0~10%、K 2O 0~10%、Al 2O 3 1~15%、B 2O 3 1~25%和ZnO 0~10%,所述SiO 2、BaO、SrO、Na 2O、K 2O、Al 2O 3、B 2O 3和ZnO在玻璃组合物2中的重量百分含量之和至少为95%;
    所述玻璃组合物3包含以下重量百分含量的组分:PbO 50~88%、SiO 210~30%、Al 2O 31~10%、B 2O 3 1~10%和ZnO 0~10%,所述PbO、SiO 2、Al 2O 3、B 2O 3和ZnO在玻璃组合物3中的重量百分含量之和至少为95%;
    所述玻璃组合物4包含以下重量百分含量的组分:PbO 60~88%、SiO 210~35%、Al 2O 3 1~10%、B 2O 3 1~10%和过渡金属氧化物0~20%,所述过渡金属氧化物包含CuO、MnO 2、Nb 2O 5、Ta 2O 5、TiO 2和ZrO 2中的至少一种。
  9. 如权利要求4所述厚膜电阻浆料,其特征在于,所述有机组分包含有机载体和有机溶剂,所述有机载体为乙基纤维素、甲基纤维素、乙基纤维素、丙烯酸树脂和环氧树脂中的至少一种;所述有机溶剂为松油醇、丁基卡必醇、丁基卡必醇醋酸酯、二乙二醇二丁醚和醇酯类中的至少一种。
  10. 如权利要求1~9中任一项所述厚膜电阻浆料制备而成的电阻器。
PCT/CN2021/075363 2020-06-01 2021-02-05 一种厚膜电阻浆料 WO2021244060A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021566312A JP7295973B2 (ja) 2020-06-01 2021-02-05 厚膜抵抗ペースト
KR1020227025627A KR20220114083A (ko) 2020-06-01 2021-02-05 후막 저항 페이스트

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010487423.6 2020-06-01
CN202010487423 2020-06-01
CN202010571482.1A CN111739675B (zh) 2020-06-19 2020-06-19 一种厚膜电阻浆料
CN202010571482.1 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021244060A1 true WO2021244060A1 (zh) 2021-12-09

Family

ID=78831671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075363 WO2021244060A1 (zh) 2020-06-01 2021-02-05 一种厚膜电阻浆料

Country Status (4)

Country Link
JP (1) JP7295973B2 (zh)
KR (1) KR20220114083A (zh)
TW (1) TWI756053B (zh)
WO (1) WO2021244060A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634334A (en) * 1968-10-18 1972-01-11 Gulf & Western Ind Prod Co Electrical resistance material and method of making the same
JPH0228913A (ja) * 1988-07-19 1990-01-31 Mitsubishi Mining & Cement Co Ltd セラミック電子部品用導電性組成物
JPH06223615A (ja) * 1992-12-02 1994-08-12 Mitsubishi Materials Corp 鱗片状Ag−Pt合金導電性フィラーとその用途
CN101341557A (zh) * 2005-12-22 2009-01-07 纳美仕有限公司 热固性导电糊以及具有使用其形成的外部电极的层叠陶瓷部件
CN107871542A (zh) * 2016-09-27 2018-04-03 株式会社则武 银糊和电子元件
CN108053960A (zh) * 2017-10-23 2018-05-18 潮州三环(集团)股份有限公司 一种厚膜电阻浆料
CN110931145A (zh) * 2019-12-18 2020-03-27 广东顺德弘暻电子有限公司 一种基于不锈钢基材的厚膜银铂电阻浆料及其制备方法
CN111739675A (zh) * 2020-06-19 2020-10-02 潮州三环(集团)股份有限公司 一种厚膜电阻浆料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249332A (ja) 1999-05-07 2003-09-05 Ibiden Co Ltd ホットプレート及び導体ペースト
JP2003132735A (ja) 2001-10-29 2003-05-09 Sumitomo Metal Mining Co Ltd 厚膜導体ペースト及びそれを用いてなる電子部品
JP2006299385A (ja) 2005-04-25 2006-11-02 Noritake Co Ltd 白金粉末、その製造方法、および圧電セラミック材用白金ペースト
US20130061918A1 (en) 2011-03-03 2013-03-14 E. I. Dupont De Nemours And Company Process for the formation of a silver back electrode of a passivated emitter and rear contact silicon solar cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3634334A (en) * 1968-10-18 1972-01-11 Gulf & Western Ind Prod Co Electrical resistance material and method of making the same
JPH0228913A (ja) * 1988-07-19 1990-01-31 Mitsubishi Mining & Cement Co Ltd セラミック電子部品用導電性組成物
JPH06223615A (ja) * 1992-12-02 1994-08-12 Mitsubishi Materials Corp 鱗片状Ag−Pt合金導電性フィラーとその用途
CN101341557A (zh) * 2005-12-22 2009-01-07 纳美仕有限公司 热固性导电糊以及具有使用其形成的外部电极的层叠陶瓷部件
CN107871542A (zh) * 2016-09-27 2018-04-03 株式会社则武 银糊和电子元件
CN108053960A (zh) * 2017-10-23 2018-05-18 潮州三环(集团)股份有限公司 一种厚膜电阻浆料
CN110931145A (zh) * 2019-12-18 2020-03-27 广东顺德弘暻电子有限公司 一种基于不锈钢基材的厚膜银铂电阻浆料及其制备方法
CN111739675A (zh) * 2020-06-19 2020-10-02 潮州三环(集团)股份有限公司 一种厚膜电阻浆料

Also Published As

Publication number Publication date
KR20220114083A (ko) 2022-08-17
JP7295973B2 (ja) 2023-06-21
JP2022547367A (ja) 2022-11-14
TW202146346A (zh) 2021-12-16
TWI756053B (zh) 2022-02-21

Similar Documents

Publication Publication Date Title
CN111739675B (zh) 一种厚膜电阻浆料
KR920004210B1 (ko) 유전성 조성물
JPS6035405A (ja) 銅伝導体組成物
TWI590417B (zh) 厚膜電阻體及其製造方法
EP3496112B1 (en) Conductive paste
TW201004890A (en) Resistor compositions using a Cu-containing glass frit
CN114334216A (zh) 一种厚膜导体浆料
JP2018067478A (ja) 抵抗ペースト及びその焼成により作製される抵抗体
JP6931455B2 (ja) 抵抗体用組成物及びこれを含んだ抵抗体ペーストとそれを用いた厚膜抵抗体
CN115461825A (zh) 厚膜电阻糊、厚膜电阻体和电子部件
JP4423832B2 (ja) ガラス組成物およびこれを用いた厚膜ペースト
TWI756053B (zh) 一種厚膜電阻漿料及電阻器
US20040245508A1 (en) Thick film conductor compositions for use on aluminum nitride substrates
CN112700905B (zh) 一种多元导电相复合物、厚膜电路电阻浆料及其应用
TWI798061B (zh) 無鉛厚膜電阻組成物及無鉛厚膜電阻
CN113470865B (zh) 一种氮化铝用环保型银导体浆料
WO2021221175A1 (ja) 厚膜抵抗ペースト、厚膜抵抗体、及び電子部品
JP7027719B2 (ja) ガラス組成物およびガラス粉末
CN115516578A (zh) 厚膜电阻糊、厚膜电阻体和电子部件
CN115443513A (zh) 厚膜电阻糊、厚膜电阻体和电子部件
CN113782251A (zh) 一种电极膏体和电极厚膜及其制备方法
JPS63174203A (ja) 導電性ペ−スト
JPH03183640A (ja) 抵抗体ペースト及びセラミックス基板
CN116994844A (zh) 无铅厚膜电阻组成物及无铅厚膜电阻
CN114373567A (zh) 一种厚膜电阻浆料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021566312

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227025627

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818321

Country of ref document: EP

Kind code of ref document: A1