WO2021244022A1 - 柔性 Micro-LED 显示面板及其制作方法 - Google Patents

柔性 Micro-LED 显示面板及其制作方法 Download PDF

Info

Publication number
WO2021244022A1
WO2021244022A1 PCT/CN2020/141376 CN2020141376W WO2021244022A1 WO 2021244022 A1 WO2021244022 A1 WO 2021244022A1 CN 2020141376 W CN2020141376 W CN 2020141376W WO 2021244022 A1 WO2021244022 A1 WO 2021244022A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
micro
base substrate
flexible
display panel
Prior art date
Application number
PCT/CN2020/141376
Other languages
English (en)
French (fr)
Inventor
李柱辉
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US17/417,467 priority Critical patent/US20220336525A1/en
Publication of WO2021244022A1 publication Critical patent/WO2021244022A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • This application relates to the field of display technology, and in particular to a flexible Micro-LED display panel and a manufacturing method thereof.
  • Micro-Light Emitting Diode (Micro-LED) display panel has the advantages of organic light-emitting diode (OLED) display panel (Organic Light-Emitting Diode, OLED), which is light, thin, flexible, anti-drop, foldable, etc., and has a longevity Long, ultra-low power consumption, high response speed, high transparency and other advantages are regarded as the new display technology with the most development potential in the next generation, which is in line with future development trends.
  • OLED Organic Light-Emitting Diode
  • the flexible Micro-LED display panel and the manufacturing method thereof provided in the present application solve the technical problem that the existing Micro-LED display panel is not easy to bend and is prone to wire breakage, resulting in low product yield.
  • This application provides a flexible Micro-LED display panel, including:
  • the array substrate includes a first base substrate and a thin film transistor array layer disposed on the first base substrate;
  • the first connecting electrode layer is arranged on the thin film transistor array layer and is electrically connected to the thin film transistor array layer;
  • the second connecting electrode layer is arranged on the first connecting electrode layer
  • a plurality of Micro-LED chips are arranged on the second connection electrode layer, and the Micro-LED chips are connected to the thin film transistor array layer via the first connection electrode layer and the second connection electrode layer, so
  • the Micro-LED chip is provided with a first pin and a second pin on a side close to the second connecting electrode layer, and the first pin and the second pin are connected to the second connecting electrode layer.
  • the second base substrate is arranged on the flexible packaging layer
  • the first base substrate and the second base substrate are both flexible substrates, and the second base substrate is used to control the neutral layer of the flexible display panel to be located on the thin film transistor array layer.
  • the material used for the first base substrate and the second base substrate is CPI.
  • the array substrate further includes:
  • the barrier layer is arranged on the first base substrate
  • the light-shielding layer is arranged on the barrier layer;
  • the active layer is arranged on the buffer layer, and the light-shielding layer and the active layer are arranged opposite to each other;
  • a gate insulating layer disposed on the active layer
  • the gate layer is arranged on the gate insulating layer
  • An interlayer dielectric layer covering the gate layer, the active layer and the buffer layer;
  • the source electrode and the drain electrode are arranged on the interlayer dielectric layer, and the source electrode and the drain electrode are connected to the active layer;
  • a passivation layer covering the source electrode, the drain electrode and the interlayer dielectric layer, and the first connection electrode is disposed on the passivation layer;
  • the black matrix layer is arranged between two adjacent Micro-LED chips, and the flexible packaging layer covers the Micro-LED chip, the black matrix layer and the second connecting electrode.
  • the light shielding layer, the gate layer, the source electrode and the drain electrode are made of aluminum-neodymium alloy.
  • the material used for the barrier layer and the flexible encapsulation layer is TG-41 polymer.
  • the material used for the active layer is IGZO.
  • the thickness of the second base substrate is 8 um to 12 um.
  • This application provides a flexible Micro-LED display panel, including:
  • the array substrate includes a first base substrate and a thin film transistor array layer disposed on the first base substrate;
  • the first connecting electrode layer is arranged on the thin film transistor array layer and is electrically connected to the thin film transistor array layer;
  • the second connecting electrode layer is arranged on the first connecting electrode layer
  • a plurality of Micro-LED chips are arranged on the second connection electrode layer, and the Micro-LED chips are connected to the thin film transistor array layer via the first connection electrode layer and the second connection electrode layer;
  • the second base substrate is arranged on the flexible packaging layer
  • the first base substrate and the second base substrate are both flexible substrates, and the second base substrate is used to control the neutral layer of the flexible display panel to be located on the thin film transistor array layer.
  • the material used for the first base substrate and the second base substrate is CPI.
  • the array substrate further includes:
  • the barrier layer is arranged on the first base substrate
  • the light-shielding layer is arranged on the barrier layer;
  • the active layer is arranged on the buffer layer, and the light-shielding layer and the active layer are arranged opposite to each other;
  • a gate insulating layer disposed on the active layer
  • the gate layer is arranged on the gate insulating layer
  • An interlayer dielectric layer covering the gate layer, the active layer and the buffer layer;
  • the source electrode and the drain electrode are arranged on the interlayer dielectric layer, and the source electrode and the drain electrode are connected to the active layer;
  • a passivation layer covering the source electrode, the drain electrode and the interlayer dielectric layer, and the first connection electrode is disposed on the passivation layer;
  • the black matrix layer is arranged between two adjacent Micro-LED chips, and the flexible packaging layer covers the Micro-LED chip, the black matrix layer and the second connecting electrode.
  • the light shielding layer, the gate layer, the source electrode and the drain electrode are made of aluminum-neodymium alloy.
  • the material used for the barrier layer and the flexible encapsulation layer is TG-41 polymer.
  • the material used for the active layer is IGZO.
  • the thickness of the second base substrate is 8 um to 12 um.
  • This application provides a method for manufacturing a flexible Micro-LED display panel, which includes the following steps:
  • S10 preparing an array substrate, the array substrate includes a first base substrate, and a thin film transistor array layer is formed on the first base substrate;
  • S20 sequentially forming a first connection electrode layer, a second connection electrode layer, and a black matrix layer on the thin film transistor array layer, and the first connection electrode layer and the second connection electrode layer are electrically connected;
  • S30 Transfer a plurality of Micro-LED chips to the second connection electrode layer, and perform a die bonding process so that the Micro-LED chips pass through the first connection electrode layer and the second connection electrode Layer connected to the thin film transistor array layer;
  • the step S10 includes the following steps:
  • S101 Provide the first base substrate, and sequentially form a barrier layer, a light shielding layer, and a buffer layer on the first base substrate;
  • S102 Form the thin film transistor array layer on the buffer layer, the thin film transistor array layer including an active layer, a gate insulating layer, a gate layer, an interlayer dielectric layer, and an active layer sequentially formed on the buffer layer. Source, drain and passivation layer.
  • the material used for the first base substrate and the second base substrate is CPI.
  • the light shielding layer, the gate layer, the source electrode and the drain electrode are made of aluminum-neodymium alloy.
  • the material used for the barrier layer and the flexible packaging layer is TG-41 polymer.
  • the thickness of the second base substrate is 8 um to 12 um.
  • the beneficial effects of the present application are: the flexible Micro-LED display panel and the manufacturing method thereof provided in the present application, by providing a second substrate on the flexible packaging layer covering the Micro-LED chip, so that the flexible Micro-LED display panel is centered
  • the sex layer is located at the thin film transistor array layer, reducing the risk of disconnection.
  • Both the first base substrate and the second base substrate are made of CPI transparent flexible materials.
  • the Micro-LED display panel provided by this application has the advantages of high transparency, high response speed, high color gamut, long life, low power consumption, light and thin, and drop resistance. It can be made into a small curvature and can even achieve dynamic bending, which is greatly expanded The scope of application displayed.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a flexible Micro-LED display panel provided by an embodiment of the application;
  • FIG. 2 is a flowchart of a manufacturing method of a flexible Micro-LED display panel provided by an embodiment of the application;
  • 3A to 3F are schematic diagrams of the process structure of a manufacturing method of a flexible Micro-LED display panel improved by an embodiment of the application.
  • the present application addresses the technical problem that the existing flexible Micro-LED display panel is not easy to bend and is prone to wire breakage, resulting in low product yield. This embodiment can solve this defect.
  • the flexible Micro-LED display panel provided by the embodiment of the present application includes an array substrate, a first connection electrode layer 112, a second connection electrode layer 113, a plurality of Micro-LED chips 115, a flexible packaging layer 116, and The second base substrate 117.
  • the array substrate includes a first base substrate 101 and a thin film transistor array layer disposed on the first base substrate 101.
  • the array substrate further includes a barrier layer 102, a light shielding layer 103, a buffer layer 104, an interlayer dielectric layer 108, a passivation layer 111 and a black matrix layer 114, wherein the thin film transistor array layer includes an active layer 105, The gate insulating layer 106, the gate layer 107, the source electrode 109 and the drain electrode 110.
  • the first base substrate 101 is a flexible substrate, and the material used for the first base substrate 101 may be transparent polyimide (Colorless Polyimide, CPI). Because CPI material has the excellent performance of traditional polyimide, it has the characteristics of high heat resistance, high reliability, flex resistance, low density, low dielectric constant, easy to realize the processing of micro-pattern circuits, etc., and can be applied to the flexible display of the folding screen Technology.
  • the barrier layer 102 is disposed on the first base substrate 101 to prevent external moisture or oxygen from corroding the thin film transistor array layer.
  • the material used for the barrier layer 102 may be a composite material such as TG-41 polymer, which has good water and oxygen barrier properties.
  • the light-shielding layer 103 is disposed on the barrier layer 102, and the light-shielding layer 103 is disposed opposite to the active layer 105, which can effectively block ambient light to protect the active layer 105 from light.
  • the buffer layer 104 covers the light shielding layer 103 and the barrier layer 102, and the buffer layer 104 may be made of silicon nitride or silicon oxide material to play a role of buffering and protection.
  • the active layer 105 is disposed on the buffer layer 104, and the active layer 105 may be indium gallium zinc oxide (indium gallium zinc oxide).
  • Zinc oxide (IGZO) material can make the prepared thin film transistor array layer present transparent and flexible.
  • the gate insulating layer 106 is disposed on the active layer 105.
  • the gate layer 107 is disposed on the gate insulating layer 106.
  • the interlayer dielectric layer 108 covers the gate layer 107, the active layer 105, and the buffer layer 104, and the material of the interlayer dielectric layer 108 may be silicon oxide, silicon nitride, or silicon oxynitride
  • the interlayer dielectric layer 108 may be a single-layer structure, such as a single-layer silicon nitride layer, a single-layer silicon oxide layer, etc.; the interlayer dielectric layer 108 may also be a multi-layered structure, such as Silicon nitride/silicon oxide stack.
  • the source electrode 109 and the drain electrode 110 are disposed on the interlayer dielectric layer 108, and the source electrode 109 and the drain electrode 110 are connected to the active layer 105 through via holes.
  • the passivation layer 111 covers the source electrode 109, the drain electrode 110 and the interlayer dielectric layer 108, and the material of the passivation layer 111 may be silicon nitride or silicon oxide.
  • the light shielding layer 103, the gate layer 107, the source electrode 109 and the drain electrode 110 are made of aluminum-neodymium alloy. Since the aluminum-neodymium alloy is very suitable for flexible bending, the folding performance of the flexible Micro-LED display panel can be improved.
  • the first connection electrode layer 112 is disposed on the thin film transistor array layer, and is electrically connected to the thin film transistor through via holes.
  • the material of the first connection electrode layer 112 may be indium tin oxide (Indium Tin Oxide). tin oxide, ITO).
  • the second connection electrode layer 113 is disposed on the first connection electrode layer 112, and the material of the second connection electrode layer 113 may be a metal material, such as copper.
  • a plurality of Micro-LED chips 115 are disposed on the second connection electrode layer 113, and the Micro-LED chips 115 are connected to the thin film transistor via the first connection electrode layer 112 and the second connection electrode layer 113 On the drain electrode 110 of the array layer to transmit electrical signals from the thin film transistor to the Micro-LED chip 115.
  • the side of the Micro-LED chip 115 close to the second connecting electrode layer 113 is provided with a first pin 1151 and a second pin 1152, the first pin 1151 and the second pin 1152 1152 and the second connecting electrode layer 113 realize die bond bonding.
  • the black matrix layer 114 is arranged between the two adjacent Micro-LED chips 115 to prevent crosstalk from the light emitted by the two adjacent Micro-LED chips 115.
  • the flexible packaging layer 116 covers the Micro-LED chip 115 for packaging the Micro-LED chip 115.
  • the flexible packaging layer 116 covers the Micro-LED chip 115, the black matrix layer 114, and the second connection electrode layer 113.
  • the material of the flexible encapsulation layer 116 can be a composite material such as TG-41 polymer, which not only has good water and oxygen barrier performance, but also improves the folding performance of the flexible Micro-LED display panel.
  • the second base substrate 117 is disposed on the flexible packaging layer 116.
  • the material of the second base substrate 117 may be the same as the material of the first base substrate 101, and CPI material is also used .
  • the neutral layer A is in the flexible Micro-LED
  • the thickness of the second base substrate 117 is 8 um to 12 um.
  • an embodiment of the present application also provides a manufacturing method of a flexible Micro-LED display panel, which includes the following steps:
  • S10 Prepare an array substrate, the array substrate includes a first base substrate 101, and a thin film transistor array layer is formed on the first base substrate 101.
  • step S10 includes the following steps:
  • the first base substrate 101 is provided, and a barrier layer 102, a light shielding layer 103, and a buffer layer 104 are sequentially formed on the first base substrate 101.
  • the barrier layer 102, the light-shielding layer 103 having a preset pattern, and the buffer layer covering the light-shielding layer 103 and part of the barrier layer 102 may be formed by using a chemical vapor deposition method or a sputtering process.
  • the process of patterning the light shielding layer 103 may be wet or dry etching, and the material of the light shielding layer 103 may be an aluminum-neodymium alloy.
  • S102 forming the thin film transistor array layer on the buffer layer 104, the thin film transistor array layer including an active layer 105, a gate insulating layer 106, a gate layer 107, Interlayer dielectric layer 108, source electrode 109, drain electrode 110 and passivation layer 111.
  • the active layer 105 and the gate insulating layer may be sequentially formed on the side of the buffer layer 104 away from the first base substrate 101 by chemical vapor deposition or other processes. 106.
  • the gate layer 107, the interlayer dielectric layer 108, the source electrode 109 and the drain electrode 110 having a preset pattern.
  • the orthographic projection of the active layer 105 on the first base substrate 101 is within the orthographic projection of the light shielding layer 103 on the first base substrate 101, and the material of the active layer 105 Can be IGZO.
  • the material of the gate insulating layer 106 may be an insulating material such as silicon oxide and silicon nitride.
  • the gate layer 107, the source electrode 109 and the drain electrode 110 may be made of aluminum-neodymium alloy.
  • the material of the interlayer dielectric layer 108 includes at least one of silicon oxide, silicon nitride, and silicon oxynitride.
  • a passivation layer may be formed on the source electrode 109, the drain electrode 110, and the interlayer dielectric layer 108 sequentially by chemical vapor deposition or other processes, and a via hole penetrating the passivation layer 111 may be formed.
  • the material passing through the passivation layer 111 may be an insulating material such as silicon oxide, silicon nitride, or silicon oxynitride.
  • a first connection electrode layer 112, a second connection electrode layer 113, and a black matrix layer 114 are sequentially formed on the thin film transistor array layer, and the first connection electrode layer 112 and the second connection electrode layer 113 are electrically connected .
  • the first connection electrode layer 112, the second connection electrode layer 113, and the black matrix layer 114 are sequentially formed on the passivation layer 111.
  • the first connection electrode layer 112 and the second connection electrode layer 113 are arranged in different layers.
  • the black matrix layer 114 covers a part of the passivation layer 111 and a part of the second connection electrode layer 113.
  • the first connection electrode layer 112 is electrically connected to the drain 110 through a via hole penetrating the passivation layer 111, the material of the first connection electrode layer 112 may be ITO, and the second connection electrode layer
  • the material of 113 may be a metal material, such as copper.
  • S30 Transfer a plurality of Micro-LED chips 115 to the second connection electrode layer 113, and perform a die bonding process so that the Micro-LED chips 115 pass through the first connection electrode layer 112 and the The second connection electrode layer 113 is connected to the thin film transistor array layer.
  • the Micro-LED chip 115 includes a first pin 1151 and a second pin 1152.
  • the first pin 1151 and the second pin 1152 are connected to the second connecting electrode layer.
  • 113 is electrically connected, and the black matrix layer 114 is located between two adjacent Micro-LED chips 115.
  • the flexible packaging layer 116 is used to encapsulate the Micro-LED chip 115 to prevent the Micro-LED chip 115 from being corroded by external water and oxygen.
  • the material used for the flexible packaging layer 116 is TG- 41 Composite materials such as polymers.
  • the material of the second base substrate 117 may be CPI, and the thickness of the second base substrate 117 is 8um ⁇ 12um.
  • the thickness of the second base substrate 117 can be adjusted to make The middle layer of the flexible Micro-LED display panel is located on the thin film transistor array layer to reduce the risk of metal wiring disconnection.
  • the beneficial effects are: the flexible Micro-LED display panel and the manufacturing method thereof provided by the embodiments of the present application, the neutrality of the flexible Micro-LED display panel is made by arranging a second base substrate on the flexible packaging layer covering the Micro-LED chip The layer is located at the thin film transistor array layer, which reduces the risk of disconnection. Both the first base substrate and the second base substrate are made of CPI transparent flexible materials.
  • the IGZO process, the AL-Nd process, and setting the barrier layer and the encapsulation layer for water and oxygen barrier it is beneficial to realize the flexibility of the Micro-LED display panel show.
  • the Micro-LED display panel provided by this application has the advantages of high transparency, high response speed, high color gamut, long life, low power consumption, light and thin, and drop resistance. It can be made into a small curvature and can even achieve dynamic bending, which is greatly expanded The scope of application displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供一种柔性Micro-LED显示面板及其制作方法,柔性Micro-LED显示面板包括第一衬底基板、薄膜晶体管阵列层、第一连接电极层、第二连接电极层、多个Micro-LED芯片、柔性封装层和第二衬底基板,第一衬底基板和第二衬底基板为柔性基板,通过在覆盖Micro-LED芯片的柔性封装层上设置第二衬底基板以使面板的中性层位于薄膜晶体管阵列层,降低了断线风险。

Description

柔性Micro-LED显示面板及其制作方法
本申请要求于2020年06月05日提交中国国家知识产权局、申请号为202010507058.0、申请名称为“柔性Micro-LED显示面板及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种柔性Micro-LED显示面板及其制作方法。
背景技术
微发光二极管(Micro-Light Emitting Diode,Micro-LED)显示面板因兼具有机发光二极管显示面板(Organic Light-Emitting Diode,OLED)轻薄、可柔、抗摔、可折叠等优点,同时还具有寿命长、超低功耗、高响应速度、高透明度等优势,被视为下一代最具发展潜力的新型显示技术,非常符合未来的发展趋势。
目前已有多家厂商研发的刚性Micro-LED显示面板展出,然而柔性Micro-LED显示面板却因技术上存在很多缺陷,离量产还有一段距离。柔性Micro-LED显示面板的主要难点体现在低良率上,主要表现在Micro-LED芯片巨量转移及容易发生断线等方面,从而导致成产成本较高。
综上所述,需要提供一种新的柔性Micro-LED显示面板及其制作方法,来解决上述技术问题。
技术问题
本申请提供的柔性Micro-LED显示面板及其制作方法,解决了现有的Micro-LED显示面板不易弯折且容易发生断线,导致产品良率低的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种柔性Micro-LED显示面板,包括:
阵列基板,包括第一衬底基板以及设置于所述第一衬底基板上的薄膜晶体管阵列层;
第一连接电极层,设置于所述薄膜晶体管阵列层上,并与所述薄膜晶体管阵列层电连接;
第二连接电极层,设置于所述第一连接电极层上;
多个Micro-LED芯片,设置于所述第二连接电极层上,所述Micro-LED芯片经由所述第一连接电极层和所述第二连接电极层连接至所述薄膜晶体管阵列层,所述Micro-LED芯片靠近所述第二连接电极层的一侧设置有第一引脚和第二引脚,所述第一引脚和所述第二引脚与所述第二连接电极层实现固晶键合;
柔性封装层,覆盖所述Micro-LED芯片;以及
第二衬底基板,设置于所述柔性封装层上;
其中,所述第一衬底基板和所述第二衬底基板均为柔性基板,所述第二衬底基板用于控制所述柔性显示面板的中性层位于所述薄膜晶体管阵列层。
根据本申请提供的柔性Micro-LED显示面板,所述第一衬底基板和所述第二衬底基板所采用的材料为CPI。
根据本申请提供的柔性Micro-LED显示面板,所述阵列基板还包括:
阻隔层,设置于所述第一衬底基板上;
遮光层,设置于所述阻隔层上;
缓冲层,覆盖所述遮光层和所述阻隔层;
有源层,设置于所述缓冲层上,所述遮光层和所述有源层相对设置;
栅极绝缘层,设置于所述有源层上;
栅极层,设置于所述栅极绝缘层上;
层间介质层,覆盖所述栅极层、所述有源层及所述缓冲层上;
源极和漏极,设置于所述层间介质层上,所述源极和所述漏极连接至所述有源层;
钝化层,覆盖所述源极、所述漏极和所述层间介质层,所述第一连接电极设置于所述钝化层上;以及
黑矩阵层,设置于相邻两个所述Micro-LED芯片之间,所述柔性封装层覆盖所述Micro-LED芯片、所述黑矩阵层以及所述第二连接电极。
根据本申请提供的柔性Micro-LED显示面板,所述遮光层、所述栅极层、所述源极和所述漏极所采用的材料为铝-钕合金。
根据本申请提供的柔性Micro-LED显示面板,所述阻隔层和所述柔性封装层所采用的材料为TG-41聚合物。
根据本申请提供的柔性Micro-LED显示面板,所述有源层所采用的材料为IGZO。
根据本申请提供的柔性Micro-LED显示面板,所述第二衬底基板的厚度为8um~12um。
本申请提供一种柔性Micro-LED显示面板,包括:
阵列基板,包括第一衬底基板以及设置于所述第一衬底基板上的薄膜晶体管阵列层;
第一连接电极层,设置于所述薄膜晶体管阵列层上,并与所述薄膜晶体管阵列层电连接;
第二连接电极层,设置于所述第一连接电极层上;
多个Micro-LED芯片,设置于所述第二连接电极层上,所述Micro-LED芯片经由所述第一连接电极层和所述第二连接电极层连接至所述薄膜晶体管阵列层;
柔性封装层,覆盖所述Micro-LED芯片;以及
第二衬底基板,设置于所述柔性封装层上;
其中,所述第一衬底基板和所述第二衬底基板均为柔性基板,所述第二衬底基板用于控制所述柔性显示面板的中性层位于所述薄膜晶体管阵列层。
根据本申请提供的柔性Micro-LED显示面板,所述第一衬底基板和所述第二衬底基板所采用的材料为CPI。
根据本申请提供的柔性Micro-LED显示面板,所述阵列基板还包括:
阻隔层,设置于所述第一衬底基板上;
遮光层,设置于所述阻隔层上;
缓冲层,覆盖所述遮光层和所述阻隔层;
有源层,设置于所述缓冲层上,所述遮光层和所述有源层相对设置;
栅极绝缘层,设置于所述有源层上;
栅极层,设置于所述栅极绝缘层上;
层间介质层,覆盖所述栅极层、所述有源层及所述缓冲层上;
源极和漏极,设置于所述层间介质层上,所述源极和所述漏极连接至所述有源层;
钝化层,覆盖所述源极、所述漏极和所述层间介质层,所述第一连接电极设置于所述钝化层上;以及
黑矩阵层,设置于相邻两个所述Micro-LED芯片之间,所述柔性封装层覆盖所述Micro-LED芯片、所述黑矩阵层和所述第二连接电极。
根据本申请提供的柔性Micro-LED显示面板,所述遮光层、所述栅极层、所述源极和所述漏极所采用的材料为铝-钕合金。
根据本申请提供的柔性Micro-LED显示面板,所述阻隔层和所述柔性封装层所采用的材料为TG-41聚合物。
根据本申请提供的柔性Micro-LED显示面板,所述有源层所采用的材料为IGZO。
根据本申请提供的柔性Micro-LED显示面板,所述第二衬底基板的厚度为8um~12um。
本申请提供一种柔性Micro-LED显示面板的制作方法,包括以下步骤:
S10:制备阵列基板,所述阵列基板包括第一衬底基板,在所述第一衬底基板上形成薄膜晶体管阵列层;
S20:在所述薄膜晶体管阵列层上依次形成第一连接电极层、第二连接电极层和黑矩阵层,所述第一连接电极层和所述第二连接电极层电连接;
S30:将多个Micro-LED芯片转移至所述第二连接电极层上,进行固晶键合处理,以使所述Micro-LED芯片经由所述第一连接电极层和所述第二连接电极层连接至所述薄膜晶体管阵列层;
S40:在所述Micro-LED芯片上形成柔性封装层;以及
S50:在所述柔性封装层上形成第二衬底基板,使得所述柔性显示面板的中性层位于所述薄膜晶体管阵列层。
根据本申请提供的柔性Micro-LED显示面板的制作方法,所述步骤S10包括以下步骤:
S101:提供所述第一衬底基板,在所述第一衬底基板上依次形成阻隔层、遮光层和缓冲层;以及
S102:在所述缓冲层上形成所述薄膜晶体管阵列层,所述薄膜晶体管阵列层包括依次形成于所述缓冲层上的有源层、栅极绝缘层、栅极层、层间介质层、源极、漏极和钝化层。
根据本申请提供的柔性Micro-LED显示面板的制作方法,所述第一衬底基板和所述第二衬底基板所采用的材料为CPI。
根据本申请提供的柔性Micro-LED显示面板的制作方法,所述遮光层、所述栅极层、所述源极和所述漏极所采用的材料为铝-钕合金。
根据本申请提供的柔性Micro-LED显示面板的制作方法,所述阻隔层和所述柔性封装层所采用的材料为TG-41聚合物。
根据本申请提供的柔性Micro-LED显示面板的制作方法,所述第二衬底基板的厚度为8um~12um。
有益效果
本申请的有益效果为:本申请提供的柔性Micro-LED显示面板及其制作方法,通过在覆盖Micro-LED芯片的柔性封装层上设置第二衬底基板以使柔性Micro-LED显示面板的中性层位于薄膜晶体管阵列层,降低了断线风险。第一衬底基板和第二衬底基板均采用CPI透明柔性材料,通过采用IGZO工艺和AL-Nd制程,并设置阻隔层和封装层用于水氧阻隔,有利于实现Micro-LED显示面板柔性显示。本申请提供的Micro-LED显示面板具有高透明度、高响应速度、高色域、长寿命、低功耗、轻薄、耐摔等优点,可以做成小曲率甚至可以实现动态弯折,大大拓宽了显示的应用范畴。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种柔性Micro-LED显示面板的截面结构示意图;
图2为本申请实施例提供的一种柔性Micro-LED显示面板的制作方法的流程图;
图3A~图3F为本申请实施例提高的一种柔性Micro-LED显示面板的制作方法的流程结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请针对现有的柔性Micro-LED显示面板存在不易弯折且容易发生断线,导致产品良率低的技术问题,本实施例能够解决该缺陷。
如图1所示,本申请实施例提供的柔性Micro-LED显示面板,包括阵列基板、第一连接电极层112、第二连接电极层113、多个Micro-LED芯片115、柔性封装层116和第二衬底基板117。
所述阵列基板包括第一衬底基板101以及设置于所述第一衬底基板101上的薄膜晶体管阵列层。具体地,所述阵列基板还包括阻隔层102、遮光层103、缓冲层104、层间介质层108、钝化层111和黑矩阵层114,其中所述薄膜晶体管阵列层包括有源层105、栅极绝缘层106、栅极层107、源极109和漏极110。
所述第一衬底基板101为柔性基板,所述第一衬底基板101所采用的材料可以为透明聚酰亚胺(Colorless Polyimide,CPI)。由于CPI材料具有传统聚酰亚胺的优异性能,具有高耐热、高可靠、耐挠曲、低密度、低介电常数、易于实现微细图形电路加工等特性,可应用于折叠屏的柔性显示技术。所述阻隔层102设置于所述第一衬底基板101上,用于防止外部水分或氧气侵蚀所述薄膜晶体管阵列层。可选地,所述阻隔层102所采用的材料可以为TG-41聚合物等复合类材料,具有良好的水氧阻隔性能。所述遮光层103设置于所述阻隔层102上,所述遮光层103与所述有源层105相对设置,可有效阻挡环境光,以对所述有源层105进行遮光保护。所述缓冲层104覆盖所述遮光层103和所述阻隔层102,所述缓冲层104可以采用氮化硅或氧化硅材料制成,以起到缓冲和保护的作用。
所述有源层105设置于所述缓冲层104上,所述有源层105可以采用铟镓锌氧化物(indium gallium zinc oxide,IGZO)材料,能够使得制备的所述薄膜晶体管阵列层呈现透明柔性。所述栅极绝缘层106设置于所述有源层105上。所述栅极层107设置于所述栅极绝缘层106上。所述层间介质层108覆盖所述栅极层107、所述有源层105及所述缓冲层104上,所述层间介质层108的材料可以为氧化硅或氮化硅或氮氧化硅等绝缘材料,所述层间介质层108可以是单层结构,如单层的氮化硅层、单层的氧化硅层等;所述层间介质层108也可以是多层叠层结构,如氮化硅/氧化硅叠层。所述源极109和所述漏极110设置于所述层间介质层108上,所述源极109和所述漏极110通过过孔连接至所述有源层105。所述钝化层111覆盖所述源极109、所述漏极110和所述层间介质层108,所述钝化层111的材料可以为氮化硅或氧化硅。
可选地,所述遮光层103、所述栅极层107、所述源极109和所述漏极110所采用的材料为铝-钕合金。由于铝-钕合金很适合柔性弯折,能够提高所述柔性Micro-LED显示面板的折叠性能。
所述第一连接电极层112设置于所述薄膜晶体管阵列层上,并与所述薄膜晶体管之间通过过孔实现电连接,所述第一连接电极层112的材料可以为氧化铟锡(Indium tin oxide,ITO)。所述第二连接电极层113设置于所述第一连接电极层112上,所述第二连接电极层113的材料可以为金属材料,例如铜。
多个Micro-LED芯片115设置于所述第二连接电极层113上,所述Micro-LED芯片115经由所述第一连接电极层112和所述第二连接电极层113连接至所述薄膜晶体管阵列层的所述漏极110上,以将电信号从薄膜晶体管传递给所述Micro-LED芯片115。具体地,所述Micro-LED芯片115靠近所述第二连接电极层113的一侧设置有第一引脚1151和第二引脚1152,所述第一引脚1151和所述第二引脚1152与所述第二连接电极层113实现固晶键合。
所述黑矩阵层114设置于相邻两个所述Micro-LED芯片115之间,防止相邻两个所述Micro-LED芯片115发出的光线出现串扰。
所述柔性封装层116覆盖所述Micro-LED芯片115,用以封装所述Micro-LED芯片115。在本申请实施例中,所述柔性封装层116覆盖所述Micro-LED芯片115、所述黑矩阵层114和所述第二连接电极层113。可选地,所述柔性封装层116的材料可以为TG-41聚合物等复合类材料,不仅具有良好的水氧阻隔性能,还能提高所述柔性Micro-LED显示面板的折叠性能。
所述第二衬底基板117设置于所述柔性封装层116上,可选地,所述第二衬底基板117的材料可以与所述第一衬底基板101的材料相同,同样采用CPI材料。由于所述柔性Micro-LED显示面板在进行折叠时,所述薄膜晶体管阵列层中的金属走线容易发生断线,故需要说明的是,所述中性层A为在所述柔性Micro-LED显示面板折叠弯曲过程中受到的应力为零的所有位置形成的面(膜层),此处金属走线不易发生断线,故本申请实施例中,可通过调整所述第二衬底基板117的厚度来控制所述柔性Micro-LED显示面板的所述中性层A位于所述薄膜晶体管阵列层,从而降低所述柔性Micro-LED显示面板折叠时金属走线发生断线的风险。
具体地,所述第二衬底基板117的厚度为8um~12um。
如图2所示,本申请实施例还提供一种柔性Micro-LED显示面板的制作方法,包括以下步骤:
S10:制备阵列基板,所述阵列基板包括第一衬底基板101,在所述第一衬底基板101上形成薄膜晶体管阵列层。
具体地,步骤S10包括以下步骤:
S101:提供所述第一衬底基板101,在所述第一衬底基板101上依次形成阻隔层102、遮光层103和缓冲层104。
如图3A所示,可以采用化学气相沉积法或溅射工艺形成所述阻隔层102、具有预设图案的所述遮光层103以及覆盖所述遮光层103和部分所述阻隔层102的缓冲层104。其中,对所述遮光层103进行图案化处理的工艺可以为湿法或干法刻蚀,所述遮光层103的材料可以为铝-钕合金。
S102:在所述缓冲层104上形成所述薄膜晶体管阵列层,所述薄膜晶体管阵列层包括依次形成于所述缓冲层104上的有源层105、栅极绝缘层106、栅极层107、层间介质层108、源极109、漏极110和钝化层111。
如图3B所示,首先,可通过化学气相沉积或其它工艺依次在所述缓冲层104远离所述第一衬底基板101的一侧上形成所述有源层105、所述栅极绝缘层106、具有预设图案的的所述栅极层107、所述层间介质层108、源极109和漏极110。其中,所述有源层105在所述第一衬底基板101上的正投影位于所述遮光层103在所述第一衬底基板101上的正投影内,所述有源层105的材料可为IGZO。所述栅极绝缘层106的材料可为为氧化硅、氮化硅等绝缘材料。所述栅极层107、所述源极109和所述漏极110的材料可以为铝-钕合金。所述层间介质层108的材料包括氧化硅、氮化硅、氮氧化硅中的至少一种。之后,可通过化学气相沉积或其它工艺依次在在所述源极109、所述漏极110和所述层间介质层108上形成钝化层,并形成贯穿所述钝化层111的过孔,通过所述钝化层111的材料可以为氧化硅或氮化硅或氮氧化硅等绝缘材料。
S20:在所述薄膜晶体管阵列层上依次形成第一连接电极层112、第二连接电极层113和黑矩阵层114,所述第一连接电极层112和所述第二连接电极层113电连接。
如图3C所示,在所述钝化层111上依次形成所述第一连接电极层112、所述第二连接电极层113和所述黑矩阵层114。所述第一连接电极层112和所述第二连接电极层113异层设置。所述黑矩阵层114覆盖部分所述钝化层111和部分所述第二连接电极层113。所述第一连接电极层112通过贯穿所述钝化层111的过孔与所述漏极110连接电连接,所述第一连接电极层112的材料可以为ITO,所述第二连接电极层113的材料可以为金属材料,例如铜。
S30:将多个Micro-LED芯片115转移至所述第二连接电极层113上,进行固晶键合处理,以使所述Micro-LED芯片115经由所述第一连接电极层112和所述第二连接电极层113连接至所述薄膜晶体管阵列层。
如图3D所示,所述Micro-LED芯片115包括第一引脚1151和第二引脚1152,将所述第一引脚1151和所述第二引脚1152与所述第二连接电极层113电连接,所述黑矩阵层114位于相邻两个所述Micro-LED芯片115之间。
S40:在所述Micro-LED芯片115上形成柔性封装层116。
如图3E所示,所述柔性封装层116用于封装所述Micro-LED芯片115,防止所述Micro-LED芯片115受到外界水氧侵蚀,所述柔性封装层116所采用的材料为TG-41聚合物等复合类材料。
S50:在所述柔性封装层116上形成第二衬底基板117,使得所述柔性Micro-LED显示面板的中性层位于所述薄膜晶体管阵列层。
如图3F所示,所述第二衬底基板117的材料可以为CPI,所述第二衬底基板117的厚度为8um~12um,可通过调整所述第二衬底基板117的厚度以使所述柔性Micro-LED显示面板的中形层位于所述薄膜晶体管阵列层,以降低金属走线断线风险。
有益效果为:本申请实施例提供的柔性Micro-LED显示面板及其制作方法,通过在覆盖Micro-LED芯片的柔性封装层上设置第二衬底基板以使柔性Micro-LED显示面板的中性层位于薄膜晶体管阵列层,降低了断线风险。第一衬底基板和第二衬底基板均采用CPI透明柔性材料,通过采用IGZO工艺、AL-Nd制程,并设置阻隔层和封装层用于水氧阻隔,有利于实现Micro-LED显示面板柔性显示。本申请提供的Micro-LED显示面板具有高透明度、高响应速度、高色域、长寿命、低功耗、轻薄、耐摔等优点,可以做成小曲率甚至可以实现动态弯折,大大拓宽了显示的应用范畴。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围。

Claims (20)

  1. 一种柔性Micro-LED显示面板,包括:
    阵列基板,包括第一衬底基板以及设置于所述第一衬底基板上的薄膜晶体管阵列层;
    第一连接电极层,设置于所述薄膜晶体管阵列层上,并与所述薄膜晶体管阵列层电连接;
    第二连接电极层,设置于所述第一连接电极层上;
    多个Micro-LED芯片,设置于所述第二连接电极层上,所述Micro-LED芯片经由所述第一连接电极层和所述第二连接电极层连接至所述薄膜晶体管阵列层,所述Micro-LED芯片靠近所述第二连接电极层的一侧设置有第一引脚和第二引脚,所述第一引脚和所述第二引脚与所述第二连接电极层实现固晶键合;
    柔性封装层,覆盖所述Micro-LED芯片;以及
    第二衬底基板,设置于所述柔性封装层上;
    其中,所述第一衬底基板和所述第二衬底基板均为柔性基板,所述第二衬底基板用于控制所述柔性显示面板的中性层位于所述薄膜晶体管阵列层。
  2. 根据权利要求1所述的柔性Micro-LED显示面板,其中所述第一衬底基板和所述第二衬底基板所采用的材料为CPI。
  3. 根据权利要求1所述的柔性Micro-LED显示面板,其中所述阵列基板还包括:
    阻隔层,设置于所述第一衬底基板上;
    遮光层,设置于所述阻隔层上;
    缓冲层,覆盖所述遮光层和所述阻隔层;
    有源层,设置于所述缓冲层上,所述遮光层和所述有源层相对设置;
    栅极绝缘层,设置于所述有源层上;
    栅极层,设置于所述栅极绝缘层上;
    层间介质层,覆盖所述栅极层、所述有源层及所述缓冲层上;
    源极和漏极,设置于所述层间介质层上,所述源极和所述漏极连接至所述有源层;
    钝化层,覆盖所述源极、所述漏极和所述层间介质层,所述第一连接电极设置于所述钝化层上;以及
    黑矩阵层,设置于相邻两个所述Micro-LED芯片之间,所述柔性封装层覆盖所述Micro-LED芯片、所述黑矩阵层以及所述第二连接电极。
  4. 根据权利要求3所述的柔性Micro-LED显示面板,其中所述遮光层、所述栅极层、所述源极和所述漏极所采用的材料为铝-钕合金。
  5. 根据权利要求3所述的柔性Micro-LED显示面板,其中所述阻隔层和所述柔性封装层所采用的材料为TG-41聚合物。
  6. 根据权利要求3所述的柔性Micro-LED显示面板,其中所述有源层所采用的材料为IGZO。
  7. 根据权利要求1所述的柔性Micro-LED显示面板,其中所述第二衬底基板的厚度为8um~12um。
  8. 一种柔性Micro-LED显示面板,包括:阵列基板,包括第一衬底基板以及设置于所述第一衬底基板上的薄膜晶体管阵列层;
    第一连接电极层,设置于所述薄膜晶体管阵列层上,并与所述薄膜晶体管阵列层电连接;
    第二连接电极层,设置于所述第一连接电极层上;
    多个Micro-LED芯片,设置于所述第二连接电极层上,所述Micro-LED芯片经由所述第一连接电极层和所述第二连接电极层连接至所述薄膜晶体管阵列层;
    柔性封装层,覆盖所述Micro-LED芯片;以及
    第二衬底基板,设置于所述柔性封装层上;
    其中,所述第一衬底基板和所述第二衬底基板均为柔性基板,所述第二衬底基板用于控制所述柔性显示面板的中性层位于所述薄膜晶体管阵列层。
  9. 根据权利要求8所述的柔性Micro-LED显示面板,其中所述第一衬底基板和所述第二衬底基板所采用的材料为CPI。
  10. 根据权利要求8所述的柔性Micro-LED显示面板,其中所述阵列基板还包括:
    阻隔层,设置于所述第一衬底基板上;
    遮光层,设置于所述阻隔层上;
    缓冲层,覆盖所述遮光层和所述阻隔层;
    有源层,设置于所述缓冲层上,所述遮光层和所述有源层相对设置;
    栅极绝缘层,设置于所述有源层上;
    栅极层,设置于所述栅极绝缘层上;
    层间介质层,覆盖所述栅极层、所述有源层及所述缓冲层上;
    源极和漏极,设置于所述层间介质层上,所述源极和所述漏极连接至所述有源层;
    钝化层,覆盖所述源极、所述漏极和所述层间介质层,所述第一连接电极设置于所述钝化层上;以及
    黑矩阵层,设置于相邻两个所述Micro-LED芯片之间,所述柔性封装层覆盖所述Micro-LED芯片、所述黑矩阵层和所述第二连接电极。
  11. 根据权利要求10所述的柔性Micro-LED显示面板,其中所述遮光层、所述栅极层、所述源极和所述漏极所采用的材料为铝-钕合金。
  12. 根据权利要求10所述的柔性Micro-LED显示面板,其中所述阻隔层和所述柔性封装层所采用的材料为TG-41聚合物。
  13. 根据权利要求10所述的柔性Micro-LED显示面板,其中所述有源层所采用的材料为IGZO。
  14. 根据权利要求8所述的柔性Micro-LED显示面板,其中所述第二衬底基板的厚度为8um~12um。
  15. 一种柔性Micro-LED显示面板的制作方法,包括以下步骤:
    S10:制备阵列基板,所述阵列基板包括第一衬底基板,在所述第一衬底基板上形成薄膜晶体管阵列层;
    S20:在所述薄膜晶体管阵列层上依次形成第一连接电极层、第二连接电极层和黑矩阵层,所述第一连接电极层和所述第二连接电极层电连接;
    S30:将多个Micro-LED芯片转移至所述第二连接电极层上,进行固晶键合处理,以使所述Micro-LED芯片经由所述第一连接电极层和所述第二连接电极层连接至所述薄膜晶体管阵列层;
    S40:在所述Micro-LED芯片上形成柔性封装层;以及
    S50:在所述柔性封装层上形成第二衬底基板,使得所述柔性显示面板的中性层位于所述薄膜晶体管阵列层。
  16. 根据权利要求15所述的柔性Micro-LED显示面板的制作方法,其中所述步骤S10包括以下步骤:
    S101:提供所述第一衬底基板,在所述第一衬底基板上依次形成阻隔
    层、遮光层和缓冲层;以及
    S102:在所述缓冲层上形成所述薄膜晶体管阵列层,所述薄膜晶体管阵列层包括依次形成于所述缓冲层上的有源层、栅极绝缘层、栅极层、层间介质层、源极、漏极和钝化层。
  17. 根据权利要求15所述的柔性Micro-LED显示面板的制作方法,其中所述第一衬底基板和所述第二衬底基板所采用的材料为CPI。
  18. 根据权利要求15所述的柔性Micro-LED显示面板的制作方法,其中所述遮光层、所述栅极层、所述源极和所述漏极所采用的材料为铝-钕合金。
  19. 根据权利要求15所述的柔性Micro-LED显示面板,其中所述阻隔层和所述柔性封装层所采用的材料为TG-41聚合物。
  20. 根据权利要求15所述的柔性Micro-LED显示面板,其中所述第二衬底基板的厚度为8um~12um。
PCT/CN2020/141376 2020-06-05 2020-12-30 柔性 Micro-LED 显示面板及其制作方法 WO2021244022A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/417,467 US20220336525A1 (en) 2020-06-05 2020-12-30 Flexible micro-led display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010507058.0 2020-06-05
CN202010507058.0A CN111710691B (zh) 2020-06-05 2020-06-05 柔性Micro-LED显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2021244022A1 true WO2021244022A1 (zh) 2021-12-09

Family

ID=72539586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141376 WO2021244022A1 (zh) 2020-06-05 2020-12-30 柔性 Micro-LED 显示面板及其制作方法

Country Status (3)

Country Link
US (1) US20220336525A1 (zh)
CN (1) CN111710691B (zh)
WO (1) WO2021244022A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710691B (zh) * 2020-06-05 2023-01-24 深圳市华星光电半导体显示技术有限公司 柔性Micro-LED显示面板及其制作方法
CN112349214A (zh) * 2020-10-27 2021-02-09 合肥鑫晟光电科技有限公司 一种微led面板、其制作方法及显示装置
CN112331677A (zh) * 2020-11-03 2021-02-05 京东方科技集团股份有限公司 显示基板及显示装置
CN112768590A (zh) * 2020-12-30 2021-05-07 深圳市华星光电半导体显示技术有限公司 一种显示面板的制备方法及显示面板
CN112968114B (zh) 2021-02-01 2022-07-12 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN112928192A (zh) * 2021-02-09 2021-06-08 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113764546A (zh) * 2021-08-30 2021-12-07 东莞市中麒光电技术有限公司 一种Mini-LED器件、LED显示模块及其制作方法
CN114203750A (zh) * 2021-12-07 2022-03-18 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150200238A1 (en) * 2014-01-13 2015-07-16 Samsung Display Co., Ltd. Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
CN105789252A (zh) * 2015-01-09 2016-07-20 苹果公司 具有弯曲基板的有机发光二极管显示器
CN106876410A (zh) * 2017-02-24 2017-06-20 武汉华星光电技术有限公司 一种柔性显示面板及其制造方法
CN107731863A (zh) * 2017-11-06 2018-02-23 友达光电股份有限公司 发光二极管显示器
CN111710691A (zh) * 2020-06-05 2020-09-25 深圳市华星光电半导体显示技术有限公司 柔性Micro-LED显示面板及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140306250A1 (en) * 2011-12-01 2014-10-16 Quarkstar Llc Solid-state lighting device and method of manufacturing same
US8933433B2 (en) * 2012-07-30 2015-01-13 LuxVue Technology Corporation Method and structure for receiving a micro device
CN108470853A (zh) * 2018-04-12 2018-08-31 京东方科技集团股份有限公司 一种柔性显示面板及其制备方法和显示装置
CN109192739B (zh) * 2018-09-17 2020-12-18 合肥鑫晟光电科技有限公司 一种薄膜晶体管及其制备方法、阵列基板和显示装置
US20220045039A1 (en) * 2018-09-28 2022-02-10 Semiconductor Energy Laboratory Co., Ltd. Method for Manufacturing Display Device and Display Device Manufacturing Apparatus
CN110867477A (zh) * 2019-11-28 2020-03-06 武汉天马微电子有限公司 显示面板和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150200238A1 (en) * 2014-01-13 2015-07-16 Samsung Display Co., Ltd. Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
CN105789252A (zh) * 2015-01-09 2016-07-20 苹果公司 具有弯曲基板的有机发光二极管显示器
CN106876410A (zh) * 2017-02-24 2017-06-20 武汉华星光电技术有限公司 一种柔性显示面板及其制造方法
CN107731863A (zh) * 2017-11-06 2018-02-23 友达光电股份有限公司 发光二极管显示器
CN111710691A (zh) * 2020-06-05 2020-09-25 深圳市华星光电半导体显示技术有限公司 柔性Micro-LED显示面板及其制作方法

Also Published As

Publication number Publication date
US20220336525A1 (en) 2022-10-20
CN111710691A (zh) 2020-09-25
CN111710691B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2021244022A1 (zh) 柔性 Micro-LED 显示面板及其制作方法
US20230292577A1 (en) Display substrate and preparation method therefor, and display panel
US11329104B2 (en) Display panel and display device
CN106653797B (zh) 有机发光显示装置
WO2021012400A1 (zh) 一种显示面板和显示装置
WO2020206810A1 (zh) 双面显示面板及其制备方法
TW200932034A (en) Organic light emitting diode (OLED) display devices, modules, and electronic devices
WO2020211206A1 (zh) 显示面板和电子设备
WO2020191888A1 (zh) 显示面板、显示模组及制作方法
WO2020124823A1 (zh) 显示面板及显示模组
WO2020252899A1 (zh) Oled 显示面板及制备方法
WO2022213582A1 (zh) 显示面板和显示装置
WO2021213046A1 (zh) 显示面板及其制备方法、显示装置
WO2021217840A1 (zh) 显示面板及显示面板的制作方法
WO2021003871A1 (zh) 柔性阵列基板及柔性显示面板
WO2024027047A1 (zh) 显示面板及其制备方法
WO2021196372A1 (zh) 一种显示面板及其制备方法
WO2021155627A1 (zh) Oled 显示装置
WO2021147039A1 (zh) 驱动背板及其制备方法、显示面板、显示装置
WO2019242083A1 (zh) 显示面板及显示装置
WO2020006810A1 (zh) 一种oled显示面板及其封装方法
WO2021114416A1 (zh) 一种显示面板及显示装置
WO2021077605A1 (zh) Tft阵列基板及oled面板
WO2021051509A1 (zh) 一种显示面板及其制备方法
WO2021003880A1 (zh) 一种柔性显示面板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939252

Country of ref document: EP

Kind code of ref document: A1