WO2021243827A1 - 环氧树脂、其原料组合物和制备方法 - Google Patents

环氧树脂、其原料组合物和制备方法 Download PDF

Info

Publication number
WO2021243827A1
WO2021243827A1 PCT/CN2020/103715 CN2020103715W WO2021243827A1 WO 2021243827 A1 WO2021243827 A1 WO 2021243827A1 CN 2020103715 W CN2020103715 W CN 2020103715W WO 2021243827 A1 WO2021243827 A1 WO 2021243827A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
diamine
carbons
structural formula
Prior art date
Application number
PCT/CN2020/103715
Other languages
English (en)
French (fr)
Inventor
吴建欣
黄英治
陈冠廷
林佳萱
戴宪弘
郑如忠
Original Assignee
诠达化学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诠达化学股份有限公司 filed Critical 诠达化学股份有限公司
Priority to JP2022559421A priority Critical patent/JP2023519688A/ja
Priority to CN202080097257.7A priority patent/CN115210286B/zh
Priority to CN202310998248.0A priority patent/CN117229477A/zh
Priority to EP20938956.8A priority patent/EP4130086A4/en
Publication of WO2021243827A1 publication Critical patent/WO2021243827A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/066Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with chain extension or advancing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/28Di-epoxy compounds containing acyclic nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/304Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/308Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4057Carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4085Curing agents not provided for by the groups C08G59/42 - C08G59/66 silicon containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • C08G59/623Aminophenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences

Definitions

  • the invention relates to an epoxy resin, its manufacturing composition and a preparation method.
  • the epoxy resin is a glycidyl ether of diphenolic bis-carbamate with a bis-carbamate group.
  • the manufacturing composition is a single-component epoxy resin composition.
  • the above-mentioned epoxy resin is made by hardening the single-component epoxy resin composition.
  • Epoxy resins are widely used in various industrial fields, such as metal coating, electronic components, paint industry and adhesive industry. Generally speaking, the mechanical properties, chemical inertness and thermal resistance of epoxy resins that have not been hardened are not good.
  • the existing hardening reaction of amine hardeners and epoxy resins takes place at room temperature. In order to prevent the epoxy resin and amine hardeners from reacting immediately at room temperature, epoxy resin and amine hardeners must be added separately , Which is the traditional two-component epoxy resin composition. Based on optimizing the processability of epoxy resin composition, avoid complicated packaging and use procedures.
  • the composition of single-component epoxy resin is an area in urgent need of research and development.
  • the first object of the present invention is to provide an epoxy resin having a structure as shown in formula (1).
  • the epoxy resin is a glycidyl ether of diphenolic bis-carbamate with a bis-carbamate group, which has good thermal stability and mechanical properties.
  • the aforementioned epoxy resin has a stretch rate (strain%) exceeding 250%.
  • R is derived from aliphatic diamine, aromatic diamine, siloxane diamine or polyether diamine;
  • Ep has the structure shown in formula (2), and (A) n is selected from the following groups One or a combination: structural formula (3), structural formula (4), structural formula (5), structural formula (6), structural formula (7) and structural formula (8).
  • R1 contains a cyclic hydrocarbon group with 1 to 5 carbons, a polyphenol group with 6 to 10 carbons, a linear hydrocarbon group with 1 to 20 carbons, a halogenated hydrocarbon group with 1 to 20 carbons, an imino group, an amide group, Phosphonate group, phosphine group, silyl group, ether group, thioether group, sulfonyl group, selenoether group, ketone group, aldehyde group, carboxylic acid group or ester group.
  • R2 contains a hydrogen atom, a halogen, an alkyl group, an alkenyl group, an alkynyl group, a hydrocarbyl group, a hydroxyl group, an amino group, a nitro group, or an alkoxy group having 1 to 5 carbon atoms.
  • Z and n are respectively independent integers of 1 to 5; m is an integer of 0 to 5; and X is an integer of 1 to 25.
  • the second object of the present invention is to provide a single-component epoxy resin composition
  • the single-component epoxy resin composition is used to prepare the epoxy resin formulation reaction formula as described in the first object; it contains a structure such as formula (9 ), and epoxy compound; the weight ratio of the hardener to the epoxy compound shown in the formula (9) is 0.5-20; wherein R1 is derived from aliphatic diamine, aromatic Diamine, siloxanyl diamine or polyether diamine; and m is an integer selected from 0-5.
  • the aforementioned single-component epoxy resin composition further includes additives, and the additives include modifiers, accelerators, activators, catalysts, or combinations thereof.
  • the function of the additive is to catalyze the hardening reaction or to make the epoxy resin produced after hardening have a cross-linked network structure.
  • the content of the single-part epoxy resin of the present invention such as hardener and epoxy compound, has good compatibility, so there will be no phase separation or precipitation of the content, so it has excellent storage stability .
  • the third object of the present invention is to provide a method for preparing an epoxy resin having a carbamate group, which comprises the following steps.
  • Step 1 Provide a hardener, the structure of which is shown in formula (9), and an epoxy compound; the weight ratio of the hardener to the epoxy compound is 0.5-20; wherein R1 is derived from aliphatic diamine and aromatic Group diamine, siloxanyl diamine or polyether diamine; and m is an integer selected from 1 to 5.
  • Step 2 Make the hardener and the epoxy compound form an epoxy resin prepolymer in a solvent.
  • Step 3 Carry out a hardening reaction to make the epoxy resin prepolymer form the epoxy resin with urethane group.
  • the hardener in the above-mentioned preparation method of epoxy resin with carbamate group can use waste polymer as raw material, such as waste polycarbonate, so the preparation method of epoxy resin can also handle waste
  • waste polymer such as waste polycarbonate
  • the preparation method of epoxy resin can also handle waste
  • the problem of macromolecule pollution to the environment achieves the purpose of circular economy, and does not release carbon dioxide during the preparation process, effectively prolonging the carbon cycle of carbon dioxide.
  • reaction temperature of the above-mentioned hardening reaction is 150 to 350°C.
  • the technology of the present invention has at least the following technical features and advantages: (1) Provide epoxy resin with good thermal stability and mechanical properties; (2) Provide epoxy resin with good thermal stability and mechanical properties; One-part epoxy resin composition (formulation) with good content compatibility and storage stability; and (3) an environmentally friendly preparation method of epoxy resin with carbamate groups.
  • FIG. 15 A graph of the tensile strength and elongation rate of epoxy resins made of single-component epoxy resins composed of E2S430, E1DP3 and E2DP3, respectively.
  • the first embodiment of the present invention is to provide an epoxy resin having a structure as shown in formula (1).
  • the epoxy resin is a glycidyl ether of diphenolic bis-carbamate with a diurethane group, which has good thermal stability and mechanical properties.
  • R is derived from aliphatic diamines, aromatic diamines, siloxane diamines or polyether diamines; m is an integer of 0-5; and X is an integer of 1-25.
  • Ep has the structure shown in formula (2), and (A) n is selected from one or a combination of the following groups: structural formula (3), structural formula (4), structural formula (5), Structural formula (6), structural formula (7) and structural formula (8)
  • R1 includes a cyclic hydrocarbon group with 1 to 5 carbons, a polyphenol group with 6 to 10 carbons, a linear hydrocarbon group with 1 to 20 carbons, a halogenated hydrocarbon group with 1 to 20 carbons, and a Amine group, amide group, phosphonate group, phosphine group, silyl group, ether group, thioether group, sulfonyl group, selenoether group, ketone group, aldehyde group, carboxylic acid group or ester group.
  • R2 includes a hydrogen atom, halogen, alkyl, alkenyl, alkynyl, hydrocarbyl, hydroxyl, amine, nitro, or alkoxy with 1 to 5 carbon atoms.
  • Z and n are independent integers of 1 to 5; m is an integer of 0 to 5; and X is an integer of 1 to 25.
  • the aliphatic diamine comprises a linear aliphatic diamine with 2-40 carbons or a branched aliphatic diamine with 2-40 carbons.
  • the linear aliphatic diamine with 2-40 carbon atoms is 1,4-butanediamine, 1,5-pentanediamine or 1,6-hexamethylenediamine.
  • the aromatic diamine includes o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenyl ether or a combination thereof.
  • the molecular weight of the siloxane-based diamine is 150-10,000 Da.
  • the structure of the siloxane group possessed by the siloxane diamine is as shown in formula (10).
  • the weight average molecular weight of the polyether diamine is 100 to 5,000 Da.
  • the polyether diamine is JEFFAMINE polyether diamine.
  • the second embodiment of the present invention is to provide a single-component epoxy resin composition, the single-component epoxy resin composition is used to prepare the formulation reaction formula of the epoxy resin as described in the first embodiment; (9) The hardening agent shown in (9), and an epoxy compound; the weight ratio of the hardening agent shown in the formula (9) to the epoxy compound is 0.5-20.
  • R1 is derived from aliphatic diamine, aromatic diamine, siloxane diamine or polyether diamine; m is an integer of 0-5.
  • the above-mentioned single-part epoxy resin composition further includes additives, and the additives include modifiers, accelerators, activators, catalysts, or combinations thereof.
  • the function of the additive is to catalyze the hardening reaction or to make the epoxy resin produced after hardening have a cross-linked network structure.
  • the additive contains a phosphorus-based catalyst or a nitrogen-based catalyst.
  • the phosphorous catalyst includes a quaternary phosphorous halide catalyst (methyl or ethyltriphenylphosphonium iodide or bromide), an organophosphorus catalyst (triphenylphosphine or tributylphosphine), a carboxylic acid quaternary phosphorous acid (ethyltriphenylphosphonium acetate), a phosphate (formylmethylenetriphenylphosphorane) or Quaternary phosphorus halide precursors (formylmethyltriphenylphosphonium chloride).
  • a quaternary phosphorous halide catalyst methyl or ethyltriphenylphosphonium iodide or bromide
  • an organophosphorus catalyst triphenylphosphine or tributylphosphine
  • carboxylic acid quaternary phosphorous acid ethyltriphenylphosphonium acetate
  • a phosphate formylmethylenetri
  • the nitrogen-based catalyst includes a tertiary amine, preferably the tertiary amine is trimethylamine, triethylamine, triethanolamine, triisopropanolamine, benzyldimethylamine, dimethylamine -Methylphenol or its derivatives.
  • the above-mentioned additives include a quaternary phosphorous halide catalyst, an organic phosphorous catalyst, a quaternary phosphorous carboxylate, a phosphoric acid ester, a tertiary amine, a stannic carboxylate, an organic lithium salt, imidazole, or benzimidazole.
  • the aliphatic diamine comprises a linear aliphatic diamine with 2-40 carbons or a branched aliphatic diamine with 2-40 carbons.
  • the linear aliphatic diamine with 2-40 carbon atoms is 1,4-butanediamine, 1,5-pentanediamine or 1,6-hexamethylenediamine.
  • the aromatic diamine includes o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenyl ether or a combination thereof.
  • the molecular weight of the siloxane-based diamine is 150-10,000 Da.
  • the structure of the siloxane group possessed by the siloxane diamine is as shown in formula (10).
  • the weight average molecular weight of the polyether diamine is 100 to 5,000 Da.
  • the polyether diamine is JEFFAMINE polyether diamine.
  • the epoxy compound has a structure as shown in formula (2), and (A) n is selected from one or a combination of the following groups: structural formula (3), structural formula (4), structural formula ( 5) Structural formula (6), structural formula (7) and structural formula (8).
  • R1 includes a cyclic hydrocarbon group with 1 to 5 carbons, a polyphenol group with 6 to 10 carbons, a linear hydrocarbon group with 1 to 20 carbons, a halogenated hydrocarbon group with 1 to 20 carbons, and a Amine group, amide group, phosphonate group, phosphine group, silyl group, ether group, thioether group, sulfonyl group, selenoether group, ketone group, aldehyde group, carboxylic acid group or ester group.
  • R2 includes a hydrogen atom, halogen, alkyl, alkenyl, alkynyl, hydrocarbyl, hydroxyl, amine, nitro or alkoxy with 1 to 5 carbon atoms.
  • Z and n are independent integers of 1 to 5, respectively.
  • the aforementioned epoxy compound includes a polyglycidyl ether derivative of bisphenol A, a polyglycidyl ether derivative of polyether, or a polyglycidyl ether derivative of phenolic resin.
  • the polyglycidyl ether derivative of bisphenol A is bisphenol A diglycidyl ether (Trade name DER332); the polyglycidyl ether derivative of the polyether is polypropylene glycol diglycidyl ether Ether (diglycidyl ether of poly (propylene glycol) (Trade name DER736)).
  • the curing reaction temperature of the single-component epoxy resin composition is higher than 150°C, 160°C, 170°C, 180°C, 190°C or 200°C.
  • the third embodiment of the present invention is to provide a method for preparing an epoxy resin having a carbamate group, which includes the following steps.
  • Step 1 Provide a hardener, the structure of which is shown in formula (9), and an epoxy compound; the weight ratio of the hardener to the epoxy compound is 0.5-20; wherein R1 is derived from aliphatic diamine and aromatic Group diamine, siloxanyl diamine or polyether diamine; and m is an integer selected from 1 to 5.
  • Step 2 Make the hardener and the epoxy compound form an epoxy resin prepolymer in a solvent.
  • Step 3 Carry out a hardening reaction to make the epoxy resin prepolymer form the epoxy resin with urethane group.
  • the hardener in the above-mentioned preparation method of epoxy resin with carbamate group can use waste polymer as raw material, such as waste polycarbonate, so the preparation method of epoxy resin can also solve waste The problem of macromolecule pollution to the environment, achieves the effect of circular economy, and does not release carbon dioxide during the preparation process, effectively prolonging the carbon cycle of carbon dioxide.
  • the aforementioned preparation method also uses modifiers, activators, catalysts or combinations thereof as additives.
  • the function of the additive is to catalyze the hardening reaction or to make the epoxy resin produced after hardening have a cross-linked network structure.
  • the aliphatic diamine comprises a linear aliphatic diamine with 2-40 carbons or a branched aliphatic diamine with 2-40 carbons.
  • the linear aliphatic diamine with 2-40 carbon atoms is 1,4-butanediamine, 1,5-pentanediamine or 1,6-hexamethylenediamine.
  • the aromatic diamine includes o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenyl ether or a combination thereof.
  • the molecular weight of the siloxane-based diamine is 150-10,000 Da.
  • the structure of the siloxane group possessed by the siloxane diamine is as shown in formula (10).
  • the weight average molecular weight of the polyether diamine is 100 to 5,000 Da.
  • the polyether diamine is JEFFAMINE polyether diamine.
  • the epoxy compound has a structure as shown in formula (2), and (A) n is selected from one or a combination of the following groups: structural formula (3), structural formula (4), structural formula ( 5) Structural formula (6), structural formula (7) and structural formula (8).
  • R1 includes a cyclic hydrocarbon group with 1 to 5 carbons, a polyphenol group with 6 to 10 carbons, a linear hydrocarbon group with 1 to 20 carbons, a halogenated hydrocarbon group with 1 to 20 carbons, and a Amine group, amide group, phosphonate group, phosphine group, silyl group, ether group, thioether group, sulfonyl group, selenoether group, ketone group, aldehyde group, carboxylic acid group or ester group.
  • R2 includes a hydrogen atom, halogen, alkyl, alkenyl, alkynyl, hydrocarbyl, hydroxyl, amine, nitro, or alkoxy with 1 to 5 carbon atoms.
  • Z and n are independent integers of 1 to 5, respectively.
  • the aforementioned epoxy compound includes a polyglycidyl ether derivative of bisphenol A, a polyglycidyl ether derivative of polyether, or a polyglycidyl ether derivative of phenolic resin.
  • the polyglycidyl ether derivative of bisphenol A is bisphenol A diglycidyl ether (Trade name DER332); the polyglycidyl ether derivative of the polyether is polypropylene glycol diglycidyl ether Ether (diglycidyl ether of poly (propylene glycol) (Trade name DER736)).
  • reaction temperature of the above-mentioned hardening reaction is 150 to 350°C.
  • Example 1 The general preparation method of the hardener of the present invention
  • a mixture containing a solvent, a polycarbonate and a diamine compound is provided;
  • the diamine compound may be a diamine compound having a siloxane group or a polysiloxane group, and the mixture may further include diphenyl carbonate.
  • the above-mentioned solvents include isopropyl ether, anisole, phenethyl ether, phenylpropyl ether, phenbutyl ether, o-methyl anisole, m-methyl anisole, p-methyl anisole, benzyl ethyl ether, Diphenyl ether, dibenzyl ether, tetrahydrofuran, dihydropyran, tetrahydropyran, 2-methyltetrahydropyran, benzene, toluene, xylene, ethylbenzene, diethylbenzene, or cyclohexylbenzene.
  • the hardener is obtained.
  • the weight yield of the preparation method is greater than 95%, that is to say, after 1 gram of polycarbonate and 1 gram of diamine compound are reacted, 1.9 to 2 grams of hardener can be obtained.
  • the specific hardener reaction composition is shown in Table 1.
  • the structures of the hardeners DP1, DP2, and DP3 listed in Table 1 were analyzed by hydrogen nuclear magnetic resonance spectroscopy, and they all had a characteristic peak at a chemical shift of about 7.61 ppm, indicating that their structure had a urethane group.
  • the hardener is added to the epoxy compound or epoxy resin, the catalyst and the solvent to form a mixture, and the mixture is heated to 50-80° C. to form an epoxy resin prepolymer.
  • the epoxy resin prepolymer is put into an oven for curing reaction, and the epoxy resin is obtained after the curing reaction is completed.
  • the above-mentioned hardening reaction includes at least a four-stage heating step. The first stage is maintained at 60°C for 3 hours; the second stage is maintained at 80°C for 3 hours; the third stage is maintained at 150°C for 3 hours; the fourth stage is maintained at 180°C for 3 hours.
  • the hardener used in the second example is prepared in the first example, and the composition of the representative example is shown in Table 2.
  • DER332 is bisphenol A diglycidyl ether
  • DER736 is diglycidyl ether of poly(propylene glycol).
  • the epoxy resin of the present invention uses hydrogen nuclear magnetic resonance spectroscopy and Fourier infrared spectroscopy for structural analysis.
  • the Fourier infrared spectra of the epoxy resins made from the single-part epoxy resins E1DP1, E1DP2, and E1DP3 in Table 2 are shown in Figure 2, Figure 3, and Figure 4, respectively.
  • the characteristic peak positions and functional groups are shown in Table 3.
  • the thermal differential scanning curves of single-component epoxy resin composition E1BPA, E1DP1, E1DP2, E1DP3, E2DP1, E2DP2 and E2DP3 are shown in Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11, respectively.
  • the reaction temperature of the representative one-part epoxy resin composition is shown in Table 4. According to the results of thermal differential analysis, the reaction temperature of E1DP1 and E2DP1 is 160 ⁇ 280°C; E1DP2, E2DP2 and E2DP3 are 170 ⁇ 290°C; and E1DP3 is 240 ⁇ 310°C. Accordingly, the reaction temperature of the one-part epoxy resin composition of the present invention is higher than 150°C, 160°C, 170°C, 180°C, 190°C, or 200°C.
  • the property analysis of the epoxy resin made from the single-component epoxy resin composition of the present invention is shown in Table 5.
  • the glass transition temperature (Tg) is measured by DSC analysis.
  • the Tg of the prepared epoxy resin is between -10 and 120°C.
  • the epoxy resin made by E2DP3 is a low glass transition temperature type epoxy resin; as shown in Figure 13, the epoxy resin made by E1DP2 is a low glass transition temperature type epoxy resin; As shown in Figure 14, the epoxy resin made by E2DP2 is a high glass transition temperature type epoxy resin.
  • the single-component epoxy resin composition of the present invention can be used in different industrial fields to produce various glass transition temperature epoxy resins at different reaction temperatures through the design of the composition.
  • Epoxy resin code Single-component epoxy resin composition Film forming transparency Tg(°C) 1 E1BPA Brittle good 80.4 2 E2BPA Brittle good 16.1 3 E1DP1 Brittle good 102.8 4 E2DP1 Brittle good 45.1 5 E1DP2 Brittle good 88.4 6 E2DP2 Brittle good 39.6 7 E1DP3 Resilient good 39.1 8 E2DP3 Resilient good -8.8
  • the epoxy resin made of E1DP3, E2DP3 and E2S430 uses a universal tensile machine (brand and model: MTS Landmark 370.02 Test System) to test the tensile strength and elongation rate.
  • the test condition is to prepare the sample size according to ASTM D638 standard, and the tensile speed used for the test sample is 100mm/min. The result is shown in FIG. 15.
  • the epoxy resin made of the single-part epoxy resin composition E1DP3 and E2DP3 of the present invention has an elongation rate of more than 150% and exhibits good toughness.
  • the epoxy resin made of the epoxy resin composition E2S430 without using the hardener of the present invention broke during the tensile test. Accordingly, the hardener with silane groups of the present invention can be made into an epoxy resin with toughness, high elongation and high tensile strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

提供一种环氧树脂、其原料组合物和制备方法。该环氧树脂是具有双胺基甲酸酯基团的双酚基缩水甘油醚,由硬化单剂型环氧树脂原料组合物制得。

Description

[根据细则37.2由ISA制定的发明名称] 环氧树脂、其原料组合物和制备方法 技术领域
本发明是关于一种环氧树脂、其制造组成和制备方法。特别地,该环氧树脂是双胺基甲酸酯基团的双酚基缩水甘油醚(glycidyl ether of diphenolic bis-carbamate)。该制造组成是单剂型环氧树脂组成。上述的环氧树脂是借由硬化该单剂型环氧树脂组成所制成。
背景技术
环氧树脂广泛应用在各种产业领域,如金属涂布、电子元件、油漆工业和接着工业。一般而言,没有经过硬化的环氧树脂的机械性质、化学惰性和热抵抗性都不佳。现有习知的胺类硬化剂和环氧树脂的硬化反应都是在常温就发生,为了避免环氧树脂和胺类硬化剂在常温就立即反应,环氧树脂和胺类硬化剂必须分开加入,也就是传统的二液型环氧树脂组成。基于优化环氧树脂组成的加工性,避免复杂的包装和使用程序。单剂型环氧树脂组成是亟需研究开发的领域。
综上所述,在现今环氧树脂相关产业,对于开发能提升机械性质的环氧树脂和和热稳定性佳的单剂型环氧树脂组成及其应用实为亟待解决和研发的重要课题。
发明内容
根据以上的发明背景,为了符合产业的需求,本发明的第一目的在于提供一种具有如式(1)所示结构的环氧树脂。具体地,该环氧树脂是具有双胺基甲酸酯基团的双酚基缩水甘油醚(glycidyl ether of diphenolic bis-carbamate),其具有良好的热稳定性和机械性质。优选地,上述的环氧树脂具有超过250%的拉伸率(strain%)。
式(1)
Figure PCTCN2020103715-appb-000001
R是源自于脂肪族二胺、芳香族二胺、硅氧烷基二胺或聚醚二胺;Ep具有如式(2)所示的结构,和(A) n是选自下列群组之一或其组合:结构式(3)、结构式(4)、结构式(5)、结构式(6)、结构式(7)和结构式(8)。
Figure PCTCN2020103715-appb-000002
Figure PCTCN2020103715-appb-000003
其中R1包含碳数1~5的环状烃基、碳数6~10的多酚基、碳数1~20的直链烃基、碳数1~20的卤代烃基、亚胺基、酰胺基、膦酸酯基、膦基、硅烷基、醚基、硫醚基、磺酰基、硒醚基、酮基、醛基、羧酸基或酯基。
R2包含氢原子、卤素、烷基、烯基、炔基、烃基、氢氧基、胺基、硝基或碳数1~5的烷氧基。
Z和n是分别独立的1~5的整数;m是0~5的整数;和X是1~25的整数。
本发明的第二目的在于提供一种单剂型环氧树脂组成,该单剂型环氧树脂组成是用于制备如第一目的所述的环氧树脂的剂型反应配方;其包含结构如式(9)所示的硬化剂,和环氧化合物;该结构如式(9)所示的硬化剂对该环氧化合物的重量比例是0.5~20;其中R1是源自于脂肪族二胺、芳香族二胺、硅氧烷基二胺或聚醚二胺;和m是选自0~5的整数。
Figure PCTCN2020103715-appb-000004
具体地,上述的单剂型环氧树脂组成还包含添加剂,该添加剂包括改质剂、加速剂、 活化剂、触媒或其组合。该添加剂功能是催化硬化反应或使硬化后生成的环氧树脂具有交联网状结构。
本发明的单剂型环氧树脂组成的内容物,如硬化剂和环氧化合物,其具有良好的相容性,因此不会有相分离或内容物沉淀的现象发生,所以具有优异的储存安定性。
本发明的第三目的在于提供一种具有胺基甲酸酯(carbamate)基团的环氧树脂的制备方法,其包含如下步骤。
步骤一:提供硬化剂,其结构如式(9)所示,和环氧化合物;该硬化剂对该环氧化合物的重量比例是0.5~20;其中R1是源自于脂肪族二胺、芳香族二胺、硅氧烷基二胺或聚醚二胺;和m是选自1~5的整数。
Figure PCTCN2020103715-appb-000005
步骤二:使该硬化剂和该环氧化合物在溶媒中形成环氧树脂预聚物。
步骤三:进行硬化反应,使该环氧树脂预聚物形成所述的具有胺基甲酸酯基团的环氧树脂。
上述的具有胺基甲酸酯(carbamate)基团的环氧树脂的制备方法中的硬化剂可以使用废弃高分子做原料,如废聚碳酸酯,所以该环氧树脂的制备方法还能处理废弃高分子污染环境的问题,达到循环经济的目的,且在制备过程中不会释放二氧化碳,有效的延长的二氧化碳的碳循环。
具体的,上述的硬化反应的反应温度是150~350℃。
综上所述,本发明的技术相较于现有习知技术至少具有如下所述的技术特征和优点:(1)提供具有良好热稳定性和机械性质的环氧树脂;(2)提供具有良好内容物相容性和储存安定性的单剂型环氧树脂组成(配方);和(3)提供环境友善的具有胺基甲酸酯(carbamate)基团的环氧树脂的制备方法。
附图说明
[图1]单剂型环氧树脂组成E1DP1制成的环氧树脂的氢核磁共振光谱图。
[图2]单剂型环氧树脂组成E1DP1制成的环氧树脂的傅立叶红外光谱图。
[图3]单剂型环氧树脂组成E1DP2制成的环氧树脂的傅立叶红外光谱图。
[图4]单剂型环氧树脂组成E1DP3制成的环氧树脂的傅立叶红外光谱图。
[图5]单剂型环氧树脂组成E1BPA的热示差扫描曲线图。
[图6]单剂型环氧树脂组成E1DP1的热示差扫描曲线图。
[图7]单剂型环氧树脂组成E1DP2的热示差扫描曲线图。
[图8]单剂型环氧树脂组成E1DP3的热示差扫描曲线图。
[图9]单剂型环氧树脂组成E2DP1的热示差扫描曲线图。
[图10]单剂型环氧树脂组成E2DP2的热示差扫描曲线图。
[图11]单剂型环氧树脂组成E2DP3的热示差扫描曲线图。
[图12]单剂型环氧树脂组成E2DP3制成的环氧树脂的热示差扫描曲线图。
[图13]单剂型环氧树脂组成E1DP2制成的环氧树脂的热示差扫描曲线图。
[图14]单剂型环氧树脂组成E2DP2制成的环氧树脂的热示差扫描曲线图。
[图15]单剂型环氧树脂组成E2S430、E1DP3和E2DP3分别制成的环氧树脂的拉伸强度和拉伸率的曲线图。
具体实施方式
本发明的第一实施例在于提供一种具有如式(1)所示结构的环氧树脂。具体地,该环氧树脂是具有双胺基甲酸酯基团的双酚基缩水甘油醚(glycidyl ether of diphenolicbis-carbamate),其具有良好的热稳定性和机械性质。
式(1)
Figure PCTCN2020103715-appb-000006
在一具体实施例,R是源自于脂肪族二胺、芳香族二胺、硅氧烷基二胺或聚醚二胺;m是0~5的整数;和X是1~25的整数。
在一具体实施例,Ep具有如式(2)所示的结构,和(A) n是选自下列群组之一或其组合:结构式(3)、结构式(4)、结构式(5)、结构式(6)、结构式(7)和结构式(8)
Figure PCTCN2020103715-appb-000007
Figure PCTCN2020103715-appb-000008
在一具体实施例,其中R1包含碳数1~5的环状烃基、碳数6~10的多酚基、碳数1~20的直链烃基、碳数1~20的卤代烃基、亚胺基、酰胺基、膦酸酯基、膦基、硅烷基、醚基、硫醚基、磺酰基、硒醚基、酮基、醛基、羧酸基或酯基。
在一具体实施例,R2包含氢原子、卤素、烷基、烯基、炔基、烃基、氢氧基、胺基、硝基或碳数1~5的烷氧基。
在一具体实施例,Z和n是分别独立的1~5的整数;m是0~5的整数;和X是1~25的整数。
在一具体实施例,该脂肪族二胺包含碳数2~40的直链脂肪族二胺或碳数2~40的支链脂肪族二胺。较佳地,该碳数2~40的直链脂肪族二胺是1,4-丁二胺、1,5-戊二胺或1,6-己二胺。
在一具体实施例,该芳香族二胺包含邻苯二胺、间苯二胺、对苯二胺、4,4'–二氨基二苯醚或其组合。
在一具体实施例,该硅氧烷基二胺的分子量是150~10,000Da。
该硅氧烷基二胺具有的硅氧烷基团的结构如式(10)所式。
Figure PCTCN2020103715-appb-000009
在一具体实施例,该聚醚二胺的重量平均分子量是100~5,000Da。较佳的,该聚醚二胺是JEFFAMINE聚醚二胺。
本发明的第二实施例在于提供一种单剂型环氧树脂组成,该单剂型环氧树脂组成是用于制备如第一实施例所述的环氧树脂的剂型反应配方;其包含结构如式(9)所示的硬化剂,和环氧化合物;该结构如式(9)所示的硬化剂对该环氧化合物的重量比例是0.5~20。
Figure PCTCN2020103715-appb-000010
在一具体实施例,R1是源自于脂肪族二胺、芳香族二胺、硅氧烷基二胺或聚醚二胺;m是0~5的整数。
上述的单剂型环氧树脂组成还包含添加剂,该添加剂包括改质剂、加速剂、活化剂、触媒或其组合。该添加剂功能是催化硬化反应或使硬化后生成的环氧树脂具有交联网状结构。
该添加剂包含磷系触媒或氮系触媒。
在一具体实施例,该磷系触媒包括季磷卤化物触媒(methyl或ethyltriphenylphosphonium iodide或bromide)、有机磷触媒(triphenylphosphine或tributylphosphine)、羧酸季磷塩(ethyltriphenylphosphonium acetate)、磷酸酯(formylmethylenetriphenylphosphorane)或季磷卤化塩前驱物(formylmethyltriphenylphosphonium chloride)。
在一具体实施例,该氮系触媒包括三级胺,较佳地该三级胺是三甲胺、三乙胺、三乙醇胺、三异丙醇胺、苯甲基二甲胺、二甲基胺基-甲基酚或其衍生物。
在一具体实施例,上述的添加剂包含季磷卤化物触媒、有机磷触媒、羧酸季磷塩、磷酸酯、三级胺、羧酸锡化物、有机锂盐、咪唑或苯咪唑。
在一具体实施例,该脂肪族二胺包含碳数2~40的直链脂肪族二胺或碳数2~40的支链脂肪族二胺。较佳地,该碳数2~40的直链脂肪族二胺是1,4-丁二胺、1,5-戊二胺或1,6-己二胺。
在一具体实施例,该芳香族二胺包含邻苯二胺、间苯二胺、对苯二胺、4,4'–二氨基二苯醚或其组合。
在一具体实施例,该硅氧烷基二胺的分子量是150~10,000Da。
该硅氧烷基二胺具有的硅氧烷基团的结构如式(10)所式。
Figure PCTCN2020103715-appb-000011
在一具体实施例,该聚醚二胺的重量平均分子量是100~5,000Da。较佳的,该聚醚二胺是JEFFAMINE聚醚二胺。
在一具体实施例,该环氧化合物具有如式(2)所示的结构,和(A) n是选自下列群组之一或其组合:结构式(3)、结构式(4)、结构式(5)、结构式(6)、结构式(7)和结构式(8)。
Figure PCTCN2020103715-appb-000012
Figure PCTCN2020103715-appb-000013
在一具体实施例,其中R1包含碳数1~5的环状烃基、碳数6~10的多酚基、碳数1~20的直链烃基、碳数1~20的卤代烃基、亚胺基、酰胺基、膦酸酯基、膦基、硅烷基、醚基、硫醚基、磺酰基、硒醚基、酮基、醛基、羧酸基或酯基。
在一具体实施例,R2包含氢原子、卤素、烷基、烯基、炔基、烃基、氢氧基、胺基、硝基或碳数1~5的烷氧基。
在一具体实施例,Z和n是分别独立的1~5的整数。
较佳的,上述的环氧化合物包含双酚A的聚缩水甘油醚衍生物、聚醚的聚缩水甘油醚衍生物或酚醛树脂的聚缩水甘油醚衍生物。具体的,该双酚A的聚缩水甘油醚衍生物是双酚A二缩水甘油醚(bisphenol A diglycidyl ether(Trade name DER332));该聚醚的聚缩水甘油醚衍生物是聚丙二醇二缩水甘油醚(diglycidyl ether of poly(propylene glycol)(Trade name DER736))。
在一具体实施例,该单剂型环氧树脂组成的硬化反应温度是高于150℃,160℃,170℃,180℃,190℃或200℃。
本发明的第三实施例在于提供一种具有胺基甲酸酯(carbamate)基团的环氧树脂的制备方法,其包含如下步骤。
步骤一:提供硬化剂,其结构如式(9)所示,和环氧化合物;该硬化剂对该环氧化合物的重量比例是0.5~20;其中R1是源自于脂肪族二胺、芳香族二胺、硅氧烷基二胺或聚醚二胺;和m是选自1~5的整数。
Figure PCTCN2020103715-appb-000014
步骤二:使该硬化剂和该环氧化合物在溶媒中形成环氧树脂预聚物。
步骤三:进行硬化反应,使该环氧树脂预聚物形成所述的具有胺基甲酸酯基团的环氧树脂。
上述的具有胺基甲酸酯(carbamate)基团的环氧树脂的制备方法中的硬化剂可以使用废弃高分子做原料,如废聚碳酸酯,所以该环氧树脂的制备方法还能解决废弃高分子污染环境的问题,达到循环经济的效果,且在制备过程中不会释放二氧化碳,有效的延长的二氧化碳的碳循环。
较佳地,上述的制备方法还会使用改质剂、活化剂、触媒或其组合作为添加剂。该 添加剂的功能是催化硬化反应或使硬化后生成的环氧树脂具有交联网状结构。
在一具体实施例,该脂肪族二胺包含碳数2~40的直链脂肪族二胺或碳数2~40的支链脂肪族二胺。较佳地,该碳数2~40的直链脂肪族二胺是1,4-丁二胺、1,5-戊二胺或1,6-己二胺。
在一具体实施例,该芳香族二胺包含邻苯二胺、间苯二胺、对苯二胺、4,4'–二氨基二苯醚或其组合。
在一具体实施例,该硅氧烷基二胺的分子量是150~10,000Da。
该硅氧烷基二胺具有的硅氧烷基团的结构如式(10)所式。
Figure PCTCN2020103715-appb-000015
在一具体实施例,该聚醚二胺的重量平均分子量是100~5,000Da。较佳的,该聚醚二胺是JEFFAMINE聚醚二胺。
在一具体实施例,该环氧化合物具有如式(2)所示的结构,和(A) n是选自下列群组之一或其组合:结构式(3)、结构式(4)、结构式(5)、结构式(6)、结构式(7)和结构式(8)。
Figure PCTCN2020103715-appb-000016
在一具体实施例,其中R1包含碳数1~5的环状烃基、碳数6~10的多酚基、碳数1~20的直链烃基、碳数1~20的卤代烃基、亚胺基、酰胺基、膦酸酯基、膦基、硅烷基、醚基、硫醚基、磺酰基、硒醚基、酮基、醛基、羧酸基或酯基。
在一具体实施例,R2包含氢原子、卤素、烷基、烯基、炔基、烃基、氢氧基、胺基、硝基或碳数1~5的烷氧基。
在一具体实施例,Z和n是分别独立的1~5的整数。
较佳的,上述的环氧化合物包含双酚A的聚缩水甘油醚衍生物、聚醚的聚缩水甘油醚衍生物或酚醛树脂的聚缩水甘油醚衍生物。具体的,该双酚A的聚缩水甘油醚衍生物是双酚A二缩水甘油醚(bisphenol A diglycidyl ether(Trade name DER332));该聚醚的聚缩水甘油醚衍生物是聚丙二醇二缩水甘油醚(diglycidyl ether of poly(propylene glycol)(Trade name DER736))。
具体的,上述的硬化反应的反应温度是150~350℃。
以下是本发明的实验范例。
范例一:本发明硬化剂的通用制备方法
提供一包含溶剂、聚碳酸酯和二胺化合物的混合物;该二胺化合物可以是具有硅氧烷基或聚硅氧烷基的二胺化合物,该混合物还可包含碳酸二苯酯。上述的溶剂包括异丙醚、苯甲醚、苯乙醚、苯丙醚、苯丁醚、邻甲基苯甲醚、间甲基苯甲醚、对甲基苯甲醚、苄基乙基醚、二苯醚、二苄醚、四氢呋喃、二氢吡喃、四氢吡喃、2-甲基四氢吡喃、苯、甲苯、二甲苯、乙苯、二乙苯或环己苯。然后在50~200℃混和反应得到粗产物,经过真空蒸馏移除溶剂后,得到所述的硬化剂。通常本制备方法的重量收率大于95%,也就是说1克的聚碳酸酯和1克的二胺化合物反应后可得到1.9~2克的硬化剂。具体的硬化剂反应组成如表一所示。
表一
范例 聚碳酸酯/克 二胺化合物/克 硬化剂代号
1-1 3.73 1,6-己二胺/0.87 DP1
1-2 5.16 1,6-己二胺/1.20 DP1
1-3 3.73 三乙二醇二胺/1.10 DP2
1-4 5.16 三乙二醇二胺/1.53 DP2
1-5 3.73 含硅氧烷基二胺(Ew=430)/6.44 DP3
1-6 5.16 含硅氧烷基二胺(Ew=430)/8.91 DP3
1-7 3.73 含硅氧烷基二胺(Ew=800)/11.97 DP4
1-8 5.16 含硅氧烷基二胺(Ew=800)/16.56 DP4
1-9 3.73 含硅氧烷基二胺(Ew=2000)/32.94 DP5
1-10 5.16 含硅氧烷基二胺(Ew=2000)/45.56 DP5
上述表一所列的硬化剂DP1、DP2和DP3的结构以氢核磁共振光谱分析,其都在化学位移约7.61ppm具有特征峰,显示其结构具有氨酯(urethane)的基团。
范例二:本发明环氧树脂的通用制备方法
首先将硬化剂加入环氧化合物或环氧树脂、触媒和溶剂中形成混合物,该混合物加热到50~80℃借此形成环氧树脂预聚物。放置隔夜后,将该环氧树脂预聚物放入烘箱进 行硬化反应,待硬化反应完成后,得到所述的环氧树脂。具体的,上述硬化反应至少包含四阶段的加热步骤。第一阶段是在60℃维持3小时;第二阶段是在80℃维持3小时;第三阶段是在150℃维持3小时;第四阶段是在180℃维持3小时。
本范例二所使用的硬化剂是范例一所制备的,代表范例的组成如表二所示。其中DER332是双酚A二缩水甘油醚(bisphenol A diglycidyl ether);DER736是聚丙二醇二缩水甘油醚(diglycidyl ether of poly(propylene glycol))。
表二
Figure PCTCN2020103715-appb-000017
本发明的环氧树脂使用氢核磁共振光谱和傅立叶红外光谱进行结构分析。在一代表例,由表二的单剂型环氧树脂组成E1DP1、E1DP2和E1DP3所分别制成的环氧树脂其傅立叶红外光谱分别如图2、图3和图4所示。其特征峰位置和官能基团如表三所示。
表三
官能基 特征峰位置(cm -1)
Oxirane ring 913
-C=O(urethane) 1715
-C=O(carbonate) 1775
OH ~3300
本发明的单剂型环氧树脂组成的热示差分析(DSC)
单剂型环氧树脂组成E1BPA、E1DP1、E1DP2、E1DP3、E2DP1、E2DP2和E2DP3的热示差扫描曲线图分别如图5、图6、图7、图8、图9、图10和图11所示。代表的单剂型环氧树脂组成的反应温度如表4所示。根据热示差分析的结果,E1DP1和E2DP1的反应温度是160~280℃;E1DP2、E2DP2和E2DP3是170~290℃;和E1DP3是240~310℃。 据此,本发明的单剂型环氧树脂组成的反应温度高于150℃、160℃、170℃、180℃、190℃或200℃。
表四
单剂型环氧树脂组成 反应温度(℃)
E1BPA 178.2
E2BPA x
E1DP1 213.2
E2DP1 204.0
E1DP2 227.1
E2DP2 217.0
E1DP3 249.2
E2DP3 209.7
本发明的环氧树脂的性质分析
本发明的单剂型环氧树脂组成所制成的环氧树脂的性质分析如表五所示。玻璃转移温度(Tg)是由DSC分析测得。所制成的环氧树脂的Tg是在-10~120℃之间。如图12所示由E2DP3所制成的环氧树脂为低玻璃转移温度型的环氧树脂;如图13所示由E1DP2所制成的环氧树脂为低玻璃转移温度型的环氧树脂;如图14所示由E2DP2所制成的环氧树脂为高玻璃转移温度型的环氧树脂。据此,本发明的单剂型环氧树脂组成能够借由组成成份的设计,并在不同的反应温度制造各种玻璃转移温度型的环氧树脂,以应用在不同的产业领域。
表五
环氧树脂代号 单剂型环氧树脂组成 成膜性 透明度 Tg(℃)
1 E1BPA 易脆 良好 80.4
2 E2BPA 易脆 良好 16.1
3 E1DP1 易脆 良好 102.8
4 E2DP1 易脆 良好 45.1
5 E1DP2 易脆 良好 88.4
6 E2DP2 易脆 良好 39.6
7 E1DP3 具韧性 良好 39.1
8 E2DP3 具韧性 良好 -8.8
本发明的环氧树脂的拉伸测试
E1DP3、E2DP3和E2S430所制成的环氧树脂使用万能拉力机(厂牌及型号:MTS Landmark 370.02 Test System)进行拉伸强度和拉伸率的测试。测试条件是依据ASTM D638标准制备样品大小,测试样品使用的拉伸速度是100mm/min。其结果图15所示,明显地,本发明的单剂型环氧树脂组成E1DP3和E2DP3所制成的环氧树脂具有超过150%的拉伸率,且展现出良好的韧性。但是未使用本发明的硬化剂的环氧树脂组成E2S430所制成的环氧树脂在拉伸测试过程中就断裂。据此,本发明的具有硅烷基团的硬化剂能够制成具有韧性、高拉伸率和高拉伸强度的环氧树脂。
以上虽以特定实验例说明本发明,但并不因此限定本发明的范围,只要不脱离本发明的要旨,熟悉本技艺者了解在不脱离本发明的意图及范围下可进行各种变形或变更。此外,摘要部分和标题仅是用来辅助专利文件搜寻之用,并非用来限制本发明的权利范围。

Claims (19)

  1. 一种环氧树脂,其特征在于,其具有如式(1)所示的结构;
    Figure PCTCN2020103715-appb-100001
    其中R是源自于脂肪族二胺、芳香族二胺、硅氧烷基二胺或聚醚二胺;Ep具有如式(2)所示的结构;和(A) n是选自下列群组之一或其组合:结构式(3)、结构式(4)、结构式(5)、结构式(6)、结构式(7)和结构式(8);
    Figure PCTCN2020103715-appb-100002
    其中R1包含碳数1~5的环状烃基、碳数6~10的多酚基、碳数1~20的直链烃基、 碳数1~20的卤代烃基、亚胺基、酰胺基、膦酸酯基、膦基、硅烷基、醚基、硫醚基、磺酰基、硒醚基、酮基、醛基、羧酸基或酯基;R2包含氢原子、卤素、烷基、烯基、炔基、烃基、氢氧基、胺基、硝基或碳数1~5的烷氧基;和Z和n是分别独立的1~5的整数;m是0~5的整数;和X是1~25的整数。
  2. 根据权利要求1所述的环氧树脂,其特征在于,该脂肪族二胺包含碳数2~40的直链脂肪族二胺或碳数2~40的支链脂肪族二胺。
  3. 根据权利要求1所述的环氧树脂,其特征在于,该芳香族二胺包含邻苯二胺、间苯二胺、对苯二胺、4,4'–二氨基二苯醚或其组合。
  4. 根据权利要求1所述的环氧树脂,其特征在于,该硅氧烷基二胺的分子量是150~10,000Da。
  5. 根据权利要求1所述的环氧树脂,其特征在于,该聚醚二胺的重量平均分子量是100~5,000Da。
  6. 一种制造如权利要求1所述的环氧树脂的单剂型环氧树脂组成,其特征在于,其包含结构如式(9)所示的硬化剂,和环氧化合物;该结构如式(9)所示的硬化剂对该环氧化合物的重量比例是0.5~20;其中R1是源自于脂肪族二胺、芳香族二胺、硅氧烷基二胺或聚醚二胺;和m是选自0~5的整数。
    Figure PCTCN2020103715-appb-100003
  7. 根据权利要求6所述的单剂型环氧树脂组成,其特征在于,还包含添加剂,该添加剂包含季磷卤化物触媒、有机磷触媒、羧酸季磷塩、磷酸酯、三级胺、羧酸锡化物、有机锂盐、咪唑或苯咪唑。
  8. 根据权利要求6所述的单剂型环氧树脂组成,其特征在于,该脂肪族二胺包含碳数2~40的直链脂肪族二胺或碳数2~40的支链脂肪族二胺。
  9. 根据权利要求6所述的单剂型环氧树脂组成,其特征在于,该芳香族二胺包含邻苯二胺、间苯二胺、对苯二胺、4,4'–二氨基二苯醚或其组合。
  10. 根据权利要求6所述的单剂型环氧树脂组成,其特征在于,该硅氧烷基二胺的分子量是150~10,000Da。
  11. 根据权利要求6所述的单剂型环氧树脂组成,其特征在于,该聚醚二胺的重量平均分子量是100~5,000Da。
  12. 根据权利要求6所述的单剂型环氧树脂组成,其特征在于,该环氧化合物具有如式(2)所示的结构;和(A) n是选自下列群组之一或其组合:结构式(3)、结构式(4)、结构式(5)、结构式(6)、结构式(7)和结构式(8);
    Figure PCTCN2020103715-appb-100004
    其中R1包含碳数1~5的环状烃基、碳数6~10的多酚基、碳数1~20的直链烃基、碳数1~20的卤代烃基、亚胺基、酰胺基、膦酸酯基、膦基、硅烷基、醚基、硫醚基、磺酰基、硒醚基、酮基、醛基、羧酸基或酯基;R2包含氢原子、卤素、烷基、烯基、炔基、烃基、氢氧基、胺基、硝基或碳数1~5的烷氧基;和Z和n是分别独立的1~5的整数;m是0~5的整数;和X是1~25的整数。
  13. 一种具有胺基甲酸酯基团的环氧树脂的制备方法,其特征在于,其包含如下步骤:
    (1)提供硬化剂,其结构如式(9)所示,和环氧化合物;该硬化剂对该环氧化合物的重量比例是0.5~20;其中R1是源自于脂肪族二胺、芳香族二胺、硅氧烷基二胺或聚醚二胺;和m是选自1~5的整数;
    Figure PCTCN2020103715-appb-100005
    (2)使该硬化剂和该环氧化合物在溶媒中形成环氧树脂预聚物;和
    (3)进行硬化反应,使该环氧树脂预聚物形成所述的具有胺基甲酸酯基团的环氧树脂。
  14. 根据权利要求13所述的具有胺基甲酸酯基团的环氧树脂的制备方法,其特征在于,该脂肪族二胺包含碳数2~40的直链脂肪族二胺或碳数2~40的支链脂肪族二胺。
  15. 根据权利要求13所述的具有胺基甲酸酯基团的环氧树脂的制备方法,其特征在于,该芳香族二胺包含邻苯二胺、间苯二胺、对苯二胺、4,4'–二氨基二苯醚或其组合。
  16. 根据权利要求13所述的具有胺基甲酸酯基团的环氧树脂的制备方法,其特征在于,该硅氧烷基二胺的分子量是150~10,000Da。
  17. 根据权利要求13所述的具有胺基甲酸酯基团的环氧树脂的制备方法,其特征在于,该聚醚二胺的重量平均分子量是100~5,000Da。
  18. 根据权利要求13所述的具有胺基甲酸酯基团的环氧树脂的制备方法,其特征在于,该环氧化合物具有如式(2)所示的结构;和(A) n是选自下列群组之一或其组合:结构式(3)、结构式(4)、结构式(5)、结构式(6)、结构式(7)和结构式(8);
    Figure PCTCN2020103715-appb-100006
    Figure PCTCN2020103715-appb-100007
    其中R1包含碳数1~5的环状烃基、碳数6~10的多酚基、碳数1~20的直链烃基、碳数1~20的卤代烃基、亚胺基、酰胺基、膦酸酯基、膦基、硅烷基、醚基、硫醚基、磺酰基、硒醚基、酮基、醛基、羧酸基或酯基;R2包含氢原子、卤素、烷基、烯基、炔基、烃基、氢氧基、胺基、硝基或碳数1~5的烷氧基;和Z和n是分别独立的1~5的整数;m是0~5的整数;和X是1~25的整数。
  19. 根据权利要求13所述的具有胺基甲酸酯基团的环氧树脂的制备方法,其特征在于,该硬化反应的反应温度是在150~350℃。
PCT/CN2020/103715 2020-06-05 2020-07-23 环氧树脂、其原料组合物和制备方法 WO2021243827A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022559421A JP2023519688A (ja) 2020-06-05 2020-07-23 エポキシ樹脂、その原料組成物及び製造方法
CN202080097257.7A CN115210286B (zh) 2020-06-05 2020-07-23 环氧树脂、其原料组合物和制备方法
CN202310998248.0A CN117229477A (zh) 2020-06-05 2020-07-23 一种环氧树脂、其组成物和制备方法
EP20938956.8A EP4130086A4 (en) 2020-06-05 2020-07-23 EPOXY RESIN AND RAW MATERIAL COMPOSITION THEREOF AND PREPARATION METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/893,614 2020-06-05
US16/893,614 US11453743B2 (en) 2020-06-05 2020-06-05 Thermoset epoxy resin, its preparing composition and making process thereof

Publications (1)

Publication Number Publication Date
WO2021243827A1 true WO2021243827A1 (zh) 2021-12-09

Family

ID=78817079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103715 WO2021243827A1 (zh) 2020-06-05 2020-07-23 环氧树脂、其原料组合物和制备方法

Country Status (6)

Country Link
US (1) US11453743B2 (zh)
EP (1) EP4130086A4 (zh)
JP (1) JP2023519688A (zh)
CN (2) CN117229477A (zh)
TW (1) TWI798569B (zh)
WO (1) WO2021243827A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110049429A1 (en) * 2007-12-12 2011-03-03 Ndsu Research Foundation Glycidyl carbamate coatings having improved corrosion resistance
CN102317341A (zh) * 2009-03-31 2012-01-11 新日铁化学株式会社 环氧树脂、环氧树脂组合物及固化物
CN105246991A (zh) * 2013-03-15 2016-01-13 湖区制造公司,商用名湖区医药 氧杂环丙烷(环氧乙烷)聚氨基甲酸酯涂料
CN107353407A (zh) * 2016-05-09 2017-11-17 长春人造树脂厂股份有限公司 具环氧羟基氨基甲酸酯的聚醚化合物及水性环氧树脂组成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2043645A1 (de) * 1970-09-03 1972-03-16 Koelbel H Selbsthaltende Epoxidharze
AU3296071A (en) * 1970-09-03 1973-03-08 Kolbel H Self-curing epoxy resins
US4105634A (en) * 1976-08-11 1978-08-08 Celanese Corporation Production of thermosetting resinous polyepoxides
US4767832A (en) * 1987-05-29 1988-08-30 Shell Oil Company Phenolic curing agents for epoxy resins
JPH08301967A (ja) * 1995-04-28 1996-11-19 Nippon Steel Chem Co Ltd 新規重合物及びその製造方法並びにエポキシ樹脂組成物
JP6983380B2 (ja) * 2018-01-18 2021-12-17 味の素株式会社 一液型樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110049429A1 (en) * 2007-12-12 2011-03-03 Ndsu Research Foundation Glycidyl carbamate coatings having improved corrosion resistance
CN102317341A (zh) * 2009-03-31 2012-01-11 新日铁化学株式会社 环氧树脂、环氧树脂组合物及固化物
CN105246991A (zh) * 2013-03-15 2016-01-13 湖区制造公司,商用名湖区医药 氧杂环丙烷(环氧乙烷)聚氨基甲酸酯涂料
CN107353407A (zh) * 2016-05-09 2017-11-17 长春人造树脂厂股份有限公司 具环氧羟基氨基甲酸酯的聚醚化合物及水性环氧树脂组成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130086A4 *

Also Published As

Publication number Publication date
TWI798569B (zh) 2023-04-11
EP4130086A4 (en) 2024-04-24
CN115210286B (zh) 2023-08-29
CN117229477A (zh) 2023-12-15
US20210380756A1 (en) 2021-12-09
EP4130086A1 (en) 2023-02-08
US11453743B2 (en) 2022-09-27
CN115210286A (zh) 2022-10-18
TW202146509A (zh) 2021-12-16
JP2023519688A (ja) 2023-05-12

Similar Documents

Publication Publication Date Title
JP5754731B2 (ja) エポキシ樹脂、エポキシ樹脂の製造方法、及びその使用
US9505875B2 (en) Accelerators for polymerization of epoxy resins
JP3201730B2 (ja) アミンで硬化されたエポキシ樹脂のための反応性の促進剤
KR20160061323A (ko) 경화성 에폭시 수지 조성물
WO2021243827A1 (zh) 环氧树脂、其原料组合物和制备方法
JP2010095727A (ja) 硬化性エポキシ樹脂組成物および硬化体
KR102237976B1 (ko) 인계 폴리올 개질된 난연에폭시를 포함하는 수송기계용 에폭시 접착제 조성물
KR102256250B1 (ko) 난연 폴리올을 포함하는 에폭시 수지 및 이를 포함하는 조성물
JP6166568B2 (ja) エポキシ樹脂組成物、その製造方法、及びエポキシ樹脂硬化物
JP6620981B2 (ja) 熱硬化性成形材料、その製造方法および半導体封止材
EP3049256A1 (en) A self-healing epoxy resin composition
CN113646354A (zh) 固化性组合物及其固化物
JP2012525486A (ja) 熱硬化性樹脂組成物
JP2006022146A (ja) 硬化性樹脂組成物
JPH10503796A (ja) エポキシ樹脂用硬化剤
JP3526946B2 (ja) エポキシ樹脂用硬化剤
TWI775579B (zh) 可固化組成物及包含其之電子裝置
KR102328930B1 (ko) 신규 에폭시 수지 및 이를 포함하는 조성물
CN114874417B (zh) 一种环氧树脂稀释剂及其制备方法与应用
JP2024033232A (ja) 変性グリシジルアミン型エポキシ樹脂、その製造方法、硬化性樹脂組成物及び硬化物
JP2006022153A (ja) 硬化性樹脂組成物
JP2024506888A (ja) フェナルカミンを含有する組成物およびその製造方法
KR20220108258A (ko) 알콕시실릴기를 갖는 에폭시 화합물, 이의 제조방법, 조성물 및 용도
KR20220072479A (ko) 알콕시실릴기를 갖는 다관능성 에폭시 화합물과 이의 제조방법, 조성물 및 용도
JP2023141768A (ja) エポキシ樹脂、硬化性樹脂組成物、硬化物及び電気・電子材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559421

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020938956

Country of ref document: EP

Effective date: 20221103

NENP Non-entry into the national phase

Ref country code: DE