WO2021235168A1 - チューブラー型分離膜とそれを含むチューブラー型分離膜モジュール - Google Patents

チューブラー型分離膜とそれを含むチューブラー型分離膜モジュール Download PDF

Info

Publication number
WO2021235168A1
WO2021235168A1 PCT/JP2021/016323 JP2021016323W WO2021235168A1 WO 2021235168 A1 WO2021235168 A1 WO 2021235168A1 JP 2021016323 W JP2021016323 W JP 2021016323W WO 2021235168 A1 WO2021235168 A1 WO 2021235168A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation membrane
tubular
inhibition rate
tubular separation
permeation flux
Prior art date
Application number
PCT/JP2021/016323
Other languages
English (en)
French (fr)
Inventor
敏充 浜田
修志 中塚
昭夫 稲田
Original Assignee
ダイセン・メンブレン・システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセン・メンブレン・システムズ株式会社 filed Critical ダイセン・メンブレン・システムズ株式会社
Priority to JP2021528342A priority Critical patent/JP7021400B1/ja
Priority to CN202180036176.0A priority patent/CN115666769A/zh
Publication of WO2021235168A1 publication Critical patent/WO2021235168A1/ja
Priority to JP2022004952A priority patent/JP7261328B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present disclosure relates to a tubular separation membrane, a tubular separation membrane module including the tubular separation membrane, and a method for manufacturing the tubular separation membrane.
  • Some wastewater discharged from factories in various fields contains mineral oil, miscellaneous oil, wax, surfactants, suspensions, etc.
  • a method for treating such wastewater a method using a tubular separation membrane is known.
  • Japanese Unexamined Patent Publication No. 2016-179420 describes an invention of a membrane separation method for oil-containing water, in which an anionic surfactant is added to the oil-containing water and then the membrane is separated at a membrane surface line speed of 1 m / sec or more.
  • the filtration membrane include a microfiltration (MF) membrane and an ultrafiltration (UF) membrane, and it is described that an internal pressure type tubular membrane and a spiral membrane are suitable.
  • Japanese Patent Application Laid-Open No. 2019-107645 is a wastewater treatment method in which water is recovered in wastewater treatment and only the finally dried solid content is discarded or reused, and is a treatment step using a tubular reverse osmosis (RO) membrane.
  • the invention of the wastewater treatment method having the above is disclosed (claims). It is described that the material of the RO membrane is one or more selected from cellulose acetate, aromatic polyamide, and sulfonated polyether sulfone.
  • Japanese Unexamined Patent Publication No. 2019-107575 discloses an invention of a filtration treatment apparatus including a water tank to be treated, a plurality of reverse osmosis membrane modules, and a filtered water tank (claims).
  • a reverse osmosis membrane module a module in which a plurality of tubular membrane elements 60 of the reverse osmosis membrane are housed in a tubular outer casing 50 is shown (FIGS. 3 and 4).
  • the present disclosure is, in one embodiment, a tubular separation membrane made of cellulose acetate and having a film thickness of 0.05 to 0.4 mm.
  • Equation 2 A constant, B indicates a constant in the range of 100 ⁇ B ⁇ 150.
  • Equation 2: Y CX2 + D (In Equation 2, Y is the permeation flux [L / m 2 ⁇ h], X2 is the inhibition rate [%] of magnesium sulfate [divalent ion], and C is the range of -6.0 ⁇ C ⁇ -4.0.
  • D indicates a constant in the range of 300 ⁇ D ⁇ 800.
  • the present disclosure is a tubular separation membrane made of cellulose acetate and having a film thickness of 0.05 to 0.4 mm.
  • the permeation flux changes within the range of 120 L / m 2 ⁇ h to 15 L / m 2 ⁇ h.
  • a tubular separation membrane is provided in which the inhibition rate [%] of magnesium sulfate [divalent ion] varies from 80% to less than 100%.
  • the present disclosure provides, in another embodiment, a tubular separation membrane module using a tubular separation membrane as described above.
  • the tubular separation membrane module may include a case housing and an aggregate of tubular separation membranes housed in the case housing and in which a plurality of tubular separation membranes are connected.
  • the present disclosure provides, in still another embodiment, a method for producing a tubular separation membrane, which comprises a membrane-forming solution adjusting step, a coating step, a phase separation membrane forming step, and a post-treatment step.
  • a method for producing a tubular separation membrane which comprises a membrane-forming solution adjusting step, a coating step, a phase separation membrane forming step, and a post-treatment step.
  • the heat treatment temperature in the post-treatment step within the range of 30 ° C. to 98 ° C.
  • the inhibition rate of sodium chloride [monovalent ion] [%] and the inhibition rate of magnesium sulfate [divalent ion] and a method for producing a tubular separation membrane, which adjusts the permeation flux [L / m 2 ⁇ h].
  • the tubular separation membrane of the present disclosure and the tubular separation membrane module using the same have a blocking rate [%] of sodium chloride (monovalent ion), a blocking rate [%] of magnesium sulfate [divalent ion], and permeation.
  • the flux (L / m 2 ⁇ h) can be exhibited in a well-balanced manner.
  • tubular separation membrane of the present disclosure and the tubular separation membrane module using the same have a permeation flux (L / m 2 ⁇ h) when the inhibition rate [%] of sodium chloride (monovalent ion) decreases. Although it has the property of increasing, even in that case, the change in the inhibition rate [%] of magnesium sulfate [divalent ion] can be suppressed.
  • FIG. 3 is a perspective view showing a filtration membrane module in which a plurality of tubular separation membranes (filtration membrane elements) shown in FIG. 1 are housed in a tubular case housing. However, it is displayed so that the inside that cannot be actually seen can be seen.
  • the tubular separation membrane 10 of the first embodiment has, for example, as shown in FIG. 1, a porous support tube 11 for supporting the separation membrane of cellulose acetate and a separation membrane (separation) formed inside the tubular support. It has a membrane layer) 12. A large number of holes 13 penetrating in the thickness direction are dispersedly arranged in the porous support tube 11.
  • the separation membrane (separation membrane layer) 12 is a separation membrane layer formed by, for example, laminating a material on the inner surface of a tubular support.
  • the separation membrane (separation membrane layer) 12 may be arranged inside the porous support tube 11, thereby protecting the separation membrane (separation membrane layer) 12 from excessive expansion due to the pressure at the time of liquid feeding.
  • the tubular separation membrane of the first embodiment is an aggregate 20 of tubular separation membranes in which a plurality of tubular separation membranes 10 are connected via a connecting tube (U-shaped tube) 21.
  • a connecting tube U-shaped tube 21.
  • porous support tube 11 a metal such as stainless steel or a resin such as a fiber reinforced resin can be preferably used.
  • the material of the tubular support that supports the separation membrane layer is not particularly limited, but is a tubular non-woven fabric made of synthetic polymer such as polyester, PVDF (polyvinylidene difloride), and PES (polyether sulfone). , Paper, etc. can be used because it allows water to permeate well, has high adhesion to the cellulose acetate membrane, and maintains the rigidity of the tubular membrane.
  • the thickness of the tubular support may be as long as it can support the separation membrane 12, and may be, for example, 0.1 to 0.5 mm.
  • the separation membrane 12 is made of cellulose acetate and may be used, for example, as a reverse osmosis membrane or a nanofiltration membrane.
  • Cellulose acetate can be produced with various properties such as the degree of acetyl group substitution, the degree of polymerization of the glucose skeleton, and the purity of the glucose skeleton, depending on the type of cellulose material used as a raw material and the production conditions selected. Cellulose can change filtration performance (permeation flux, salt inhibition rate, etc.).
  • cellulose acetate preferably has a degree of substitution in the range of 1.0 to 3.0, more preferably a degree of substitution in the range of 1.3 to 2.7. good.
  • cellulose acetate has a low affinity with the oil in the wastewater.
  • cellulose acetate it becomes possible to improve the filtration performance (permeation flux, salt inhibition rate, etc.).
  • the film thickness of the separation membrane 12 (excluding the thickness of the tubular support) may be 0.05 to 0.4 mm, preferably 0.1 to 0.3 mm, and more preferably 0.15. It may be up to 0.25 mm. When the film thickness of the separation membrane 12 is smaller than, for example, 0.05 mm, it may be difficult to stabilize the value of the salt blocking rate. Further, in the form of the aggregate 20 of the tubular separation membranes 20 in which a plurality of tubular separation membranes 10 are connected via a connecting tube (U-shaped tube) 21 as shown in FIG. 2, it serves as a liquid feed inlet portion. There is a problem that the first tubular separation membrane 10 may be particularly susceptible to damage to the membrane. If the film thickness of the separation membrane 12 is, for example, more than 0.4 mm, the performance of the permeation flux may be significantly deteriorated.
  • Equation 2 A constant in, B indicates a constant in the range of 100 ⁇ B ⁇ 150.
  • Equation 2: Y CX2 + D (In Equation 2, Y is the permeation flux [L / m 2 ⁇ h], X2 is the inhibition rate [%] of magnesium sulfate [divalent ion], and C is the range of -6.0 ⁇ C ⁇ -4.0.
  • a constant in, D indicates a constant in the range of 300 ⁇ D ⁇ 800.)
  • the tubular separation membrane of the first embodiment has a blocking rate [%] of sodium chloride [monovalent ion] by satisfying the relationship between the salt blocking rate and the permeation flux represented by the formulas 1 and 2.
  • the permeation flux [L / m 2 ⁇ h] decreases, or when the inhibition rate [%] of sodium chloride [monovalent ion] decreases, the permeation flux [L / m 2 ⁇ h] becomes high. Even at this time, the change in the inhibition rate [%] of magnesium sulfate [divalent ion] can be suppressed.
  • the change in the inhibition rate [%] of magnesium sulfate [divalent ion] can be suppressed within the range of 5% to 15%.
  • the change in the inhibition rate [%] of magnesium sulfate [divalent ion] can be suppressed within the range of 8% to 12% in the same case.
  • the tubular separation membrane of the second embodiment is the same as the tubular support for supporting the separation membrane similar to the tubular separation membrane 12 of the first embodiment, and the tubular separation membrane of the first embodiment. It has a separation membrane (separation membrane layer) formed inside a tubular support, and is, for example, as shown in FIG. 1 or FIG. 2 in combination with a support tube similar to the porous support tube 11. Can be in the form.
  • the increase / decrease level of the numerical value of h] may be related to each other.
  • the inhibition rate [%] of sodium chloride [monovalent ion] changes within the range of 15% to less than 100%
  • the permeation flux is 120 L / m 2.
  • -It may change within the range of h to 15 L / m 2 ⁇ h
  • the inhibition rate [%] of magnesium sulfate [divalent ion] may change within the range of less than 100% to 80%.
  • the inhibition rate [%] of sodium chloride [monovalent ion] and the permeation flux change within a wide range, but magnesium sulfate [divalent ion].
  • the change in blocking rate [%] is small and suppressed.
  • tubular type separation membrane of the second embodiment for example, a separation membrane having different filtration performance selected from the following forms can be used.
  • the second form has a sodium chloride (monovalent ion) inhibition rate of more than 80%, a magnesium sulfate (divalent ion) inhibition rate of more than 93%, and a lower limit of the pure water permeation flux of 33 L / m 2 ⁇ h. Tubular separation membrane.
  • the third form has a sodium chloride (monovalent ion) inhibition rate of more than 70%, a magnesium sulfate (divalent ion) inhibition rate of more than 92%, and a lower limit of the pure water permeation flux of 43 L / m 2 ⁇ h. Tubular separation membrane.
  • the fourth form has a sodium chloride (monovalent ion) inhibition rate of more than 50%, a magnesium sulfate (divalent ion) inhibition rate of more than 90%, and a lower limit of the pure water permeation flux of 55 L / m 2 ⁇ h. Tubular separation membrane.
  • the tubular separation membrane module may be configured by accommodating the tubular separation membrane of the first embodiment or the tubular separation membrane of the second embodiment described above in a case housing.
  • a tubular separation membrane module may include a case housing and one or more tubular separation membranes housed therein.
  • a plurality of tubular separation membranes 20 connected via a connecting tube (U-shaped tube) 21 are housed in a case housing which is a tubular casing 31, and as a whole.
  • a tubular RO membrane module 30 that is tubular can be used.
  • the tubular RO membrane module 30 is housed in a cylindrical shape in which the aggregate 20 is caught in a tubular casing 31 in which both end faces (first end face 35 and second end face 36) are closed. There is.
  • the raw water inlet 33 and the concentrated water outlet 34 of the aggregate 20 are projected from the first end surface 35 of the tubular casing 31.
  • the filtered water outlet 38 may protrude from the side surface 37 of the tubular casing 31, and a ventilation hole (not shown) may be formed.
  • the method for producing the tubular separation membrane of the present disclosure comprises a membrane-forming solution adjusting step, a coating step, a phase separation membrane forming step and a post-treatment step. May include.
  • a predetermined amount of cellulose acetate is dissolved (dispersed) in a predetermined amount of solvent by optionally adding a predetermined amount of additives and / or nanomaterials, and insoluble matter is dissolved as necessary. Filter off.
  • cellulose acetate is dissolved in a solvent, it can be carried out at a temperature of 20 ° C. to 90 ° C. depending on the type of solvent.
  • the film-forming solution adjusting step can be carried out in consideration of the degree of substitution of the acetyl group.
  • the solvent that can be used in the film-forming solution preparation step is one that can dissolve the cellulose acetate used and is dissolved in the solvent that is used as the coagulating liquid in the subsequent phase separation film formation step. It is a substance and generally dissolves in water. Examples of such solvents include acetone, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), N-methylpyrrolidone (NMP) and the like.
  • the solvent may be a solvent having a mixed composition for the purpose of adjusting the performance of the separation membrane to be produced.
  • a solvent having a mixed composition a solvent that cannot dissolve cellulose acetate but can dissolve cellulose acetate by mixing with other solvents may be used.
  • the solvent that can be used as the mixed solvent include water, alcohol, dioxane and the like.
  • the additive that can be used in the film-forming solution preparation step is a substance that dissolves in the solvent used as the coagulant in the subsequent phase separation membrane formation step, and is generally soluble in water. It is a substance that does.
  • additives include lithium chloride, lithium bromide, lactic acid, formamide, polyethylene glycol (polyethylene oxide) and the like.
  • the additive can be localized at the interface with the coagulant inside the structural membrane of cellulose acetate in the process of membrane formation in the subsequent phase separation membrane formation step. As a result, it is considered that the structure of the cellulose acetate membrane becomes coarser on the surface side and more dense on the inner side of the membrane, so that the filtration performance (permeation flux, salt inhibition rate, etc.) can be adjusted. From this point of view, the additive can be used in an appropriate amount depending on the filtration performance.
  • nanomaterials examples include CNF (carbon nanofiber), CNT (carbon nanotube), CNF (cellulose nanofiber), titanium oxide, silica and the like.
  • the nanomaterial can be used in an appropriate amount for the purpose of improving the permeation flux and the membrane strength of the tubular separation membrane.
  • the coating process is a process of applying the film-forming solution prepared in the film-forming solution adjusting step to the inside of the tubular support.
  • a jig for charging the film-forming solution prepared in the film-forming solution adjusting step is installed at one end of the tubular support, and a bob for coating is set.
  • the coating bob may have a spherical surface with a pointed tip and a cylindrical stainless steel structure on the back side.
  • the film-forming solution charged into the tip side of the coating bob can be applied to the inside of the tubular support with a uniform thickness.
  • the bottom of the coating bob is pushed out with compressed air, the thread attached to the tip of the coating bob is wound up at a constant speed, and the coating bob is fixed. With, you can select a method of moving the tubular support at a constant speed.
  • the coating speed may be appropriately adjusted depending on the properties such as the structural viscosity of the film-forming solution to be used, the type of the tubular support, and the like, but in one example, it may be adjusted within the range of 0.5 to 5 m / min. .. If the coating speed is too fast, the coating resistance of the film-forming solution increases, excessive penetration into the tubular support occurs, and an outer diameter defect called strike-through may occur. In addition, if the coating speed is too slow, the productivity of the tubular membrane may decrease.
  • the phase-separated membrane-forming step may be a membrane-forming step by a dry-wet phase conversion method, and the tubular support coated with the film-forming solution may be put into a coagulation tank charged with a coagulation liquid.
  • the solvent and additives in the film-forming solution are dissolved in the coagulating solution, and a cellulose acetate film is formed inside the tubular support.
  • the coagulation liquid is a solvent that does not dissolve cellulose acetate but dissolves a solvent and additives, and may generally be water.
  • the filtration performance of the separation membrane may change depending on the composition of the coagulant, the temperature of the coagulant, and the temperature and humidity of the room at the time of charging the coagulant.
  • the post-treatment step is a step for fixing the tubular membrane performance by applying a predetermined heat or pressure to the cellulose acetate membrane by a predetermined method for a predetermined time.
  • Predetermined heat and pressure can be applied via a fluid such as water or compressed air.
  • the fluid may be stagnant inside the tubular separation membrane, or may be circulated and flowed inside the tubular separation membrane. Further, after assembling the aggregate as shown in FIG. 2, a predetermined heat or pressure may be applied using a fluid.
  • the inhibition rate [%] of sodium chloride [monovalent ion], the inhibition rate of magnesium sulfate (divalent ion) and the permeation flux (L). / M 2 ⁇ h) can be adjusted.
  • the heat treatment temperature in the post-treatment step is changed in the range of 30 ° C. to 98 ° C. to block sodium chloride [monovalent ion] [%], magnesium sulfate (divalent ion) blocking rate and permeation flux (L). / M 2 ⁇ h) can be adjusted.
  • the heat treatment time in the post-treatment step can be 10 minutes or more and less than 120 minutes.
  • the tubular separation membrane obtained by the production method of the present disclosure has a sodium chloride [monovalent ion] inhibition rate [%] in the range of 15% to less than 100%.
  • the permeation flux changes in the range from 120 L / m 2 ⁇ h to 15 L / m 2 ⁇ h
  • the inhibition rate [%] of magnesium sulfate [divalent ion] is from less than 100% to 80. It is adjusted to change within the range of%.
  • the inhibition rate [%] of sodium chloride [monovalent ion] and the permeation flux change within a wide range, but magnesium sulfate [2]. The change in the inhibition rate [%] of the valent ion] is reduced and suppressed.
  • the tubular separation membrane of the present disclosure is used for reducing the volume of oil-containing wastewater generated in water-soluble cutting oil processing companies, aluminum die casting companies, petroleum refining companies, and the like. be able to.
  • the permeation flux with high concentration efficiency is 30 L / m 2 ⁇ Hr.
  • the tubular separation membrane of the present disclosure can be preferably used for reducing the volume of wastewater containing nano-sized impurities that cannot be completely blocked by an ultrafiltration membrane even in oil-free wastewater, and Japanese Patent Application Laid-Open No. 2019-107645 It can also be used as a tubular RO membrane in the publication.
  • a tubular separation membrane having a structure as shown in FIG. 1 as described below.
  • a 2500 mm long tubular membrane element TR-70C3-P18A manufactured by Daisen Membrane Systems
  • TR-70C3-P18A manufactured by Daisen Membrane Systems
  • a 0.2 mm thick cellulose acetate reverse osmosis membrane is laminated on the inner surface of a tubular support of a polyester non-woven fabric having an inner diameter of 11.5 mm.
  • the porous support tube 11 is made of fiber-reinforced resin) and 18 pieces connected in series (see FIG. 2) were used.
  • Example 1 (Film-forming solution adjustment process) 3.6 kg of cellulose acetate (acetyl substitution degree 2.5) manufactured by Daicel Corporation and 6.4 kg of lactic acid as an additive were dissolved in 10 kg of acetone as a solvent at room temperature and used as a film-forming solution.
  • a jig for charging the film-forming solution was installed at one end of a polyester non-woven fabric tubular support having a length of 2700 mm and an inner diameter of 11.5 mm, and about 70 g of the film-forming solution was charged into the jig. Then, using a stainless steel coating bob having an inner diameter of 11.0 mm, the thread attached to the tip of the coating bob was immediately wound up at 2 m / min, and the film-forming solution was applied to the inside of the tubular support. ..
  • Phase separation membrane formation step Immediately after coating, a belt conveyor was used to put it into a coagulation tank charged with cold water at 1 to 3 ° C., soaked for 1 hour, and then washed with water. Both ends were cut so that the length of the tubular membrane was 2500 mm, and the length of the tubular membrane was adjusted.
  • the film thickness of the manufactured tubular separation membrane was 0.2 mm, and the membrane area was 1.6 m 2 .
  • Multiple identical tubular membranes were manufactured by the same manufacturing method, and using a tubular membrane element (see FIG. 2) in which 18 of these membranes were connected in series, the permeation flux of the tubular membrane element and sodium chloride were used as described above. And the salt inhibition rate of magnesium sulfate was measured. The measurement results are shown in Table 1.
  • Examples 2-5 A tubular separation membrane was manufactured in the same manner as in Example 1. However, the heat treatment temperature and the hot water flow time in the post-treatment step were changed as shown in Table 1. The same measurement as in Example 1 was carried out. The measurement results are shown in Table 1.
  • the tubular separation membrane of the present disclosure can be used for reducing the volume of oil-containing wastewater generated by water-soluble cutting oil processing companies, aluminum die-casting companies, petroleum refining companies, and the like.
  • Tubular separation membrane (filtration membrane element) 11 Porous support tube 12 Separation membrane 20 Tubular type separation membrane aggregate 30 Tubular type separation membrane module

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

油含有廃水の処理に適したチューブラー型分離膜の提供。 酢酸セルロースからなり膜厚が0.05~0.4mmであるチューブラー型分離膜であって、下記式1および式2で示される塩阻止率と透過流束の関係を満たしている、チューブラー型分離膜。 式1:Y=AX1+B(式1中、Yは透過流束〔L/m・h〕、X1は塩化ナトリウム〔1価イオン〕の阻止率〔%〕、Aは-1.4<A<-1.0の範囲内の定数、Bは100<B<150の範囲内の定数を示す。) 式2:Y=CX2+D(式1中、Yは透過流束〔L/m・h〕、X2は硫酸マグネシウム〔2価イオン〕の阻止率〔%〕、Cは-6.0<C<-4.0の範囲内の定数、Dは300<D<800の範囲内の定数を示す。)

Description

チューブラー型分離膜とそれを含むチューブラー型分離膜モジュール
 本開示は、チューブラー型分離膜とそれを含むチューブラー型分離膜モジュール、チューブラー型分離膜の製造方法に関する。
背景技術
 各種分野の工場などから排出される廃水には、鉱物油、雑油、ワックス、界面活性剤、懸濁物などが含まれているものがある。このような廃水を処理する方法として、チューブラー型分離膜を使用する方法が知られている。
 特開2016-179420号公報には、油含有水にアニオン界面活性剤を添加した後、膜面線速度1m/sec以上で膜分離する油含有水の膜分離方法の発明が記載されている。ろ過膜としては、精密濾過(MF)膜、限外濾過(UF)膜が例示され、内圧式チューブラー膜、スパイラル膜が好適であることが記載されている。
 特開2019-107645号公報には、排水処理において水分を回収し、最終的に乾燥された固形分のみを廃棄又は再利用する排水処理方法であって、管状逆浸透(RO)膜による処理工程を有している排水処理方法の発明が開示されている(特許請求の範囲)。RO膜の材質としては、セルロースアセテート、芳香族ポリアミド、及びスルホン化ポリエーテルスルホンから選ばれる1種以上であることが記載されている。
 特開2019-107575号公報には、被処理水タンク、複数の逆浸透膜モジュール、ろ過水タンクを備えるろ過処理装置の発明が開示されている(特許請求の範囲)。逆浸透膜モジュールとしては、筒状の外部ケーシング50内に逆浸透膜の管状膜エレメント60が複数収容されているものが示されている(図3、図4)。
発明の概要
 本開示は、油含有廃水の処理に適したチューブラー型分離膜、それを使用したチューブラー型分離膜モジュール、およびチューブラー型分離膜の製造方法を提供することを課題とする。
 本開示は、その1つの実施形態において、酢酸セルロースからなり膜厚が0.05~0.4mmであるチューブラー型分離膜であって、
 下記式1および式2で示される塩阻止率と透過流束の関係を満たしている、チューブラー型分離膜を提供する。
   式1:Y=AX1+B
(式1中、Yは透過流束〔L/m・h〕、X1は塩化ナトリウム〔1価イオン〕の阻止率〔%〕、Aは-1.4<A<-1.0の範囲の定数、Bは100<B<150の範囲の定数を示す。)
   式2:Y=CX2+D
(式2中、Yは透過流束〔L/m・h〕、X2は硫酸マグネシウム〔2価イオン〕の阻止率〔%〕、Cは-6.0<C<-4.0の範囲の定数、Dは300<D<800の範囲の定数を示す。)
 また本開示は、酢酸セルロースからなり膜厚が0.05~0.4mmであるチューブラー型分離膜であって、
 塩化ナトリウム〔1価イオン〕の阻止率〔%〕が15%から100%未満の範囲内で変化するとき、
 透過流束が120L/m・hから15L/m・hの範囲内で変化し、
 さらにかつ硫酸マグネシウム〔2価イオン〕の阻止率〔%〕が80%から100%未満の範囲内で変化する、チューブラー型分離膜を提供する。
 本開示は別の実施形態において、上記のようなチューブラー型分離膜を使用したチューブラー型分離膜モジュールを提供する。1つの例において、チューブラー型分離膜モジュールは、ケースハウジングと、ケースハウジング内に収容され、チューブラー型分離膜が複数本連結されてなるチューブラー型分離膜の集合体を含んでいてよい。
 本開示はさらに別の実施形態において、造膜溶液調整工程、塗工工程、相分離膜化工程および後処理工程を含むチューブラー型分離膜の製造方法を提供する。1つの例では、後処理工程における熱処理温度を30℃~98℃の範囲内で変化させることで、塩化ナトリウム〔1価イオン〕の阻止率〔%〕、硫酸マグネシウム〔2価イオン〕の阻止率および透過流束〔L/m・h〕を調整する、チューブラー型分離膜の製造方法を提供する。
 本開示のチューブラー型分離膜およびそれを使用したチューブラー型分離膜モジュールは、塩化ナトリウム(1価イオン)の阻止率〔%〕、硫酸マグネシウム〔2価イオン〕の阻止率〔%〕および透過流束(L/m・h)をバランスよく発揮することができる。
 さらに本開示のチューブラー型分離膜およびそれを使用したチューブラー型分離膜モジュールは、塩化ナトリウム(1価イオン)の阻止率〔%〕が低下すると透過流束(L/m・h)が高くなるという性質を有しているが、その場合であっても硫酸マグネシウム〔2価イオン〕の阻止率〔%〕の変化を抑制できる。
チューブラー型分離膜の一実施形態を示す斜視図である。 図1に示すチューブラー型分離膜(濾過膜エレメント)を複数組み合わせた集合体を示す平面図である。 図1に示すチューブラー型分離膜(濾過膜エレメント)の複数本が筒状ケースハウジングに入れられた濾過膜モジュールを示す斜視図である。但し、実際には見えない内部が見えるように表示している。
(第1実施形態のチューブラー型分離膜)
 第1実施形態のチューブラー型分離膜10は、例えば図1に示すように、酢酸セルロースの分離膜を支持するための多孔支持管11と、管状支持体の内側に形成された分離膜(分離膜層)12とを有している。多孔支持管11には、厚さ方向に貫通された多数の孔13が分散配置されている。
 分離膜(分離膜層)12は、例えば管状支持体の内側面に材料を積層する等により分離膜層が形成されたものである。分離膜(分離膜層)12は多孔支持管11の内部に配置されてよく、それによって送液時の圧力により分離膜(分離膜層)12が過度に膨張したりしないよう保護されている。
 第1実施形態のチューブラー型分離膜は、図2に示すとおり、チューブラー型分離膜10が連結管(U字管)21を介して複数本連結されたチューブラー型分離膜の集合体20の形態にすることができる。
 多孔支持管11としては、ステンレスなどの金属、繊維強化樹脂などの樹脂からなるものを好ましく使用できる。
 分離膜層を支持する管状支持体の材質は特に制限されるものではないが、例えばポリエステル、PVDF(ポリビニリデンジフロライド)、PES(ポリエーテルサルフォン)などの合成高分子製の管状の不織布、紙などが、水を良く透過させ、酢酸セルロース膜との密着性が高く、管状膜の剛性を保つことから使用することができる。管状支持体の厚みは分離膜12を支持できる厚みであればよく、例えば0.1~0.5mmにすることができる。
 分離膜12は、酢酸セルロースからなり、例えば逆浸透膜またはナノろ過膜として使用されてよい。酢酸セルロースは、原料とするセルロース素材の種類や選択する製造条件によって、アセチル基置換度、グルコース骨格の重合度分布、およびグルコース骨格純度などにおいて種々異なる性質のものが製造可能であり、選択する酢酸セルロースによってろ過性能(透過流束、塩阻止率など)が変化しうる。
 1つの実施形態では、酢酸セルロースは、好ましくは1.0~3.0の範囲内の置換度を有し、より好ましくは1.3~2.7の範囲内の置換度を有していてよい。
 被処理液(原液)が水溶性切削油加工企業、アルミダイカスト加工企業、石油精製企業などで発生する油を含有する廃水であるとき、酢酸セルロースは廃水中の油との親和性が低いため、酢酸セルロースを使用することで、ろ過性能(透過流束、塩阻止率など)を高めることができるようになる。
 分離膜12の膜厚(管状支持体の厚みは含まない)は、0.05~0.4mmであってよく、好ましくは0.1~0.3mmであってよく、より好ましくは0.15~0.25mmであってよい。分離膜12の膜厚が例えば0.05mmより小さい場合は、塩阻止率の値を安定化し難くなる場合がある。また、図2に示す、チューブラー型分離膜10が連結管(U字管)21を介して複数本連結されたチューブラー型分離膜の集合体20の形態においては、送液入口部となる最初のチューブラー型分離膜10で膜の損傷を特に受けやすくなる場合があるなどの支障がある。分離膜12の膜厚が例えば0.4mmより大きすぎると、透過流束の性能低下が著しくなる場合がある。
 第1実施形態のチューブラー型分離膜は、下記式1および式2で示される塩阻止率と透過流束の関係を満たしていてよい。
   式1:Y=AX1+B
(式1中、Yは透過流束〔L/m・h〕、X1は塩化ナトリウム〔1価イオン〕の阻止率〔%〕、Aは-1.4<A<-1.0の範囲内の定数、Bは100<B<150の範囲内の定数を示す。)
   式2:Y=CX2+D
(式2中、Yは透過流束〔L/m・h〕、X2は硫酸マグネシウム〔2価イオン〕の阻止率〔%〕、Cは-6.0<C<-4.0の範囲内の定数、Dは300<D<800の範囲内の定数を示す。)
 第1実施形態のチューブラー型分離膜は、式1および式2で示される塩阻止率と透過流束の関係を満たしていることによって、塩化ナトリウム〔1価イオン〕の阻止率〔%〕が高くなり透過流束〔L/m・h〕が低下したとき、または塩化ナトリウム〔1価イオン〕の阻止率〔%〕が低下して透過流束〔L/m・h〕が高くなったときでも、硫酸マグネシウム〔2価イオン〕の阻止率〔%〕の変化を抑制できる。
 例えば塩化ナトリウム〔1価イオン〕の阻止率〔%〕が20%~95%までの範囲内で変化し、透過流束〔L/m・h〕がこれに応じて変化したときでも、本開示の好ましい一態様では硫酸マグネシウム〔2価イオン〕の阻止率〔%〕の変化を5%~15%の範囲内に抑制することができる。本開示の別の好ましい一態様では、同様の場合に硫酸マグネシウム〔2価イオン〕の阻止率〔%〕の変化を8%~12%の範囲内に抑制することができる。
(第2実施形態のチューブラー型分離膜)
 第2実施形態のチューブラー型分離膜は、第1実施形態のチューブラー型分離膜12と同様な分離膜を支持するための管状支持体、および第1実施形態のチューブラー型分離膜と同様な管状支持体の内側に形成された分離膜(分離膜層)を有しているものであり、例えば、さらに多孔支持管11と同様な支持管と組み合わせた図1または図2に示すような形態にすることができる。
 第2実施形態のチューブラー型分離膜においては、塩化ナトリウム[1価イオン]の阻止率〔%〕、硫酸マグネシウム[2価イオン]の阻止率[%]および透過流束[L/m・h]の数値の増減レベルが互いに関係していてよい。
 第2実施形態のチューブラー型分離膜においては、塩化ナトリウム〔1価イオン〕の阻止率〔%〕が15%から100%未満までの範囲内で変化するとき、透過流束が120L/m・hから15L/m・hまでの範囲内で変化し、かつ硫酸マグネシウム〔2価イオン〕の阻止率〔%〕が100%未満から80%までの範囲内で変化してよい。このように第2実施形態のチューブラー型分離膜では、塩化ナトリウム〔1価イオン〕の阻止率〔%〕と透過流束は互いに広い範囲内で変化するが、硫酸マグネシウム〔2価イオン〕の阻止率〔%〕の変化は小さく、抑制されている。
 第2実施形態のチューブラー型分離膜としては、例えば次の各形態から選択されるろ過性能の異なる分離膜を使用することができる。
 塩化ナトリウム(1価イオン)阻止率が90%超、硫酸マグネシウム(2価イオン)阻止率が95%超で、純水透過流束の下限値が18L/m・hである第1形態のチューブラー型分離膜。
 塩化ナトリウム(1価イオン)阻止率が80%超、硫酸マグネシウム(2価イオン)阻止率が93%超で、純水透過流束の下限値が33L/m・hである第2形態のチューブラー型分離膜。
 塩化ナトリウム(1価イオン)阻止率が70%超、硫酸マグネシウム(2価イオン)阻止率が92%超で、純水透過流束の下限値が43L/m・hである第3形態のチューブラー型分離膜。
 塩化ナトリウム(1価イオン)阻止率が50%超、硫酸マグネシウム(2価イオン)阻止率が90%超で、純水透過流束の下限値が55L/m・hである第4形態のチューブラー型分離膜。
 塩化ナトリウム(1価イオン)阻止率が20~40%、硫酸マグネシウム(2価イオン)阻止率が85%超で、純水透過流束が75~120L/m・hである第5形態のチューブラー型分離膜。
(チューブラー型分離膜モジュール)
 チューブラー型分離膜モジュールは、上記した第1実施形態のチューブラー型分離膜または第2実施形態のチューブラー型分離膜をケースハウジング内に収容して構成されてよい。したがってチューブラー型分離膜モジュールは、ケースハウジングと、その内部に収容された1つまたはより多くのチューブラー型分離膜を含んでいてよい。
 例えば、図3に示すとおり、筒状のケーシング31であるケースハウジング内に連結管(U字管)21を介して複数本連結されたチューブラー型分離膜の集合体20が収容され、全体として1本の管状になっているチューブラー型RO膜モジュール30を使用することができる。チューブラー型RO膜モジュール30は、両端面(第1端面35と第2端面36)が閉塞された筒状のケーシング31内に集合体20が巻き込まれて円柱状になった形態で収容されている。
 筒状のケーシング31の第1端面35からは、集合体20の原水入り口33と濃縮水出口34が突き出されている。筒状のケーシング31の側面37からは、ろ過水出口38が突き出されており、さらに図示していない通気孔が形成されていてよい。
(チューブラー型分離膜の製造方法)
 本開示のチューブラー型分離膜、例えば第1実施形態および第2実施形態のチューブラー型分離膜の製造方法は、造膜溶液調整工程、塗工工程、相分離膜化工程および後処理工程を含んでいてよい。
 造膜溶液調整工程は、所定量の酢酸セルロースを所定量の溶媒に、任意選択的に所定量の添加剤および/またはナノ材料を加えて溶解(分散)させ、必要に応じて不溶解物をろ過除去する。酢酸セルロースを溶媒に溶解するときは、溶媒の種類に応じて20℃~90℃の温度で実施することができる。
 なお、酢酸セルロースは、アセチル基の置換度によって溶媒に対する溶解性が変化するため、造膜溶液調整工程はアセチル基の置換度も考慮して実施することができる。
 幾つかの実施形態によれば、造膜溶液調整工程に使用可能な溶媒は、使用する酢酸セルロースを溶解できるものであり、かつ後の相分離膜化工程で凝固液として用いられる溶媒に溶解するものであり、一般的には水に溶解するものである。こうした溶媒の例としては、アセトン、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)などを挙げることができる。
 溶媒は、製造する分離膜の性能を調整する目的で、混合組成の溶媒にしてもよい。混合組成の溶媒には、酢酸セルロースは溶解できないが、他の溶媒と混合することで酢酸セルロースを溶解可能な溶媒を使用してよい。混合溶媒に使用できる溶媒としては、水、アルコール、ジオキサンなどを挙げることができる。
 幾つかの実施形態によれば、造膜溶液調整工程に使用可能な添加剤は、後の相分離膜化工程で凝固液として用いられる溶媒に溶解する物質であり、一般的には水に溶解する物質である。こうした添加剤としては、塩化リチウム、臭化リチウム、乳酸、ホルムアミド、ポリエチレングリコール(ポリエチレンオキシド)などを挙げることができる。
 添加剤は、後の相分離膜化工程で膜化する過程において酢酸セルロースの構造膜内部で凝固液との界面に局在化しうる。これにより、酢酸セルロース膜の構造が表面側でより粗く、膜内部側でより緻密になることで、そのろ過性能(透過流束、塩阻止率など)の調整ができると考えられる。添加剤はこの見地から、ろ過性能に応じて適宜量用いることができる。
 ナノ材料としては、CNF(カーボンナノファイバー)、CNT(カーボンナノチューブ)、CNF(セルロースナノファイバー)、酸化チタン、シリカなどを挙げることができる。ナノ材料は、チューブラー型分離膜の透過流束や膜強度を向上させる目的で適宜量用いることができる。
 塗工工程は、管状支持体の内側に造膜溶液調整工程で調整した造膜溶液を塗工する工程である。幾つかの実施形態によれば、管状支持体の一方の端へ、造膜溶液調整工程で調整した造膜溶液を投入するための治具を設置し、塗工用ボブをセットする。塗工用ボブは、先端が尖った球状面で、後ろ側が円柱状のステンレス製の構造であってよい。
 塗工用ボブが管状支持体の内部を移動することにより、塗工用ボブの先端側に投入された造膜溶液を、管状支持体の内部に均一な厚みで塗工することができる。塗工用ボブを移動させるために、塗工用ボブの底部を圧縮空気で押し出す方法、塗工用ボブの先端に取り付けた糸を一定速度で巻き取る方法、および塗工用ボブを固定した状態で、管状支持体を一定速度で移動させる方法などを選択できる。
 塗工速度は、使用する造膜溶液の構造粘性などの性質や管状支持体の種類等によって適宜調整されてよいが、1つの例では0.5~5m/分の範囲内で調整されてよい。塗工速度が速すぎると、造膜溶液の塗工抵抗が大きくなり管状支持体への過剰な浸み込みが発生し、裏抜けと呼ばれる外径不良が生じる場合がある。また、塗工速度が遅すぎると管状膜の生産性が低下する場合がある。
 相分離膜化工程は、乾湿式相転換法による膜化工程であってよく、造膜溶液が塗工された管状支持体は、凝固液が仕込まれた凝固槽へ投入されてよい。これによって、造膜溶液中の溶剤および添加剤は凝固液に溶解し、管状支持体の内側へ酢酸セルロース膜が形成される。
 凝固液は、酢酸セルロースは溶解させず、溶剤および添加剤を溶解させる溶剤であり、一般的には水であってよい。凝固液組成や凝固液の温度、凝固液投入時の部屋の温湿度によって、分離膜のろ過性能(透過流束、塩阻止率など)は変化しうる。
 後処理工程は、酢酸セルロース膜へ所定の熱や圧力を、所定の方法で、所定の時間加えることにより、その管状膜性能を固定するための工程である。所定の熱や圧力は、水や圧縮空気などの流体を介して加えることができる。流体は、チューブラー型分離膜内部で停滞させた状態でもよいし、チューブラー型分離膜内部で循環流動させてもよい。さらに、図2に示すような集合体を組立てた後で、流体を用いて所定の熱や圧力を加えてもよい。
 後処理工程における熱処理温度は30℃~98℃の範囲内で増減させることで、塩化ナトリウム〔1価イオン〕の阻止率〔%〕、硫酸マグネシウム(2価イオン)阻止率および透過流束(L/m・h)を調整することができる。
 後処理工程における熱処理温度は、30℃~98℃の範囲内で変化させることで塩化ナトリウム〔1価イオン〕の阻止率〔%〕、硫酸マグネシウム(2価イオン)阻止率および透過流束(L/m・h)を調整することができる。後処理工程における熱処理時間は、10分以上120分未満とすることができる。
 幾つかの実施形態によれば、本開示の製造方法により得られたチューブラー型分離膜は、塩化ナトリウム〔1価イオン〕の阻止率〔%〕が15%から100%未満までの範囲内で変化するとき、透過流束が120L/m・hから15L/m・hまでの範囲内で変化し、さらにかつ硫酸マグネシウム〔2価イオン〕の阻止率〔%〕が100%未満から80%までの範囲内で変化するように調整されている。このように本開示の製造方法により得られたチューブラー型分離膜は、塩化ナトリウム〔1価イオン〕の阻止率〔%〕と透過流束は互いに広い範囲内で変化するが、硫酸マグネシウム〔2価イオン〕の阻止率〔%〕の変化が小さくされ、抑制されている。
 幾つかの実施形態によれば、本開示のチューブラー型分離膜は、水溶性切削油加工企業、アルミダイカスト加工企業、石油精製企業などで発生する油を含有した廃水の減容化に使用することができる。油を含有した廃水の減容化に使用する場合は、濃縮効率が高い透過流束が30L/m・Hr.以上で、硫酸マグネシウム程度の大きさの塩の塩阻止率が90%付近である性能の管状膜が求められている。
 本開示のチューブラー型分離膜は、油を含有しない廃水においても、特に限外濾過膜では完全阻止できないナノサイズの不純物を含んだ廃水の減容化に好ましく使用でき、特開2019-107645号公報における管状RO膜としても使用することができる。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。各実施形態における各構成およびそれらの組み合わせなどは一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換およびその他の変更が可能である。本開示は、実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
実施例
(1)塩化ナトリウム〔1価イオン〕、硫酸マグネシウム〔2価イオン〕の阻止率〔%〕の測定方法
 図1に示すような構成のチューブラー型分離膜であって、以下に述べるようにして内径11.5mmのポリエステル不織布の管状支持体の管内表面に厚さ0.2mmの酢酸セルロース逆浸透膜を積層させた長さ2500mmの管状膜エレメント(ダイセン・メンブレン・システムズ製TR-70C3-P18A)(多孔支持管11は、繊維強化樹脂製)を18本直列接続したもの(図2参照)を使用した。
 平均圧力2.5MPa、循環流量10L/分、膜面線速1.5m/秒の運転条件で、液温25℃、各2000mg/Lの塩化ナトリウムと硫酸マグネシウムの混合水溶液の循環濾過運転を15分間実施し、管状膜エレメントの塩化ナトリウムおよび硫酸マグネシウムの塩阻止率を測定した。測定結果を表1に示す。
(2)透過流束〔L/m・h〕の測定方法
 図1に示すような構成のチューブラー型分離膜であって、内径11.5mmのポリエステル不織布の管状支持体の管内表面に厚さ0.2mmの酢酸セルロース逆浸透膜を積層させた長さ2500mmの管状膜エレメント(ダイセン・メンブレン・システムズ製TR-70C3-P18A)(多孔支持管11は、繊維強化樹脂製)を18本直列接続したもの(図2参照)を使用した。
 平均圧力2.5MPa、循環流量10L/分、膜面線速1.5m/秒の運転条件で、液温25℃、純水の循環濾過運転を15分間実施し、管状膜エレメントの透過流束を測定した。測定結果を表1に示す。
実施例1
(造膜溶液調整工程)
 株式会社ダイセル製の酢酸セルロース(アセチル置換度2.5)の3.6kgと、添加剤として乳酸6.4kgを、溶媒であるアセトン10kgに室温で溶解したものを造膜溶液として使用した。
(塗工工程)
 長さ2700mmで、内径11.5mmのポリエステル不織布製管状支持体の一方の端へ、造膜溶液を投入するための治具を設置し、約70gの造膜溶液を治具へ投入した。その後、速やかに内径11.0mmのステンレス製塗工用ボブを用い、塗工用ボブの先端に取り付けた糸を2m/分で巻き取り、前記管状支持体の内側に造膜溶液を塗工した。
(相分離膜化工程)
 塗工後、速やかにベルトコンベアーを使い、1~3℃の冷水が仕込まれた凝固槽へ投入し、1時間浸漬した後、水洗を実施した。管状膜の長さが2500mmになるように両端を切断し、管状膜の長さを調整した。
(後処理工程)
 チューブラー型分離膜内部で水を循環流動できる状態で、87℃の温水を35分間継続して僅かに水が流れる程度の圧力下で流して熱処理を行った後、管状膜の温度が室温に近い温度になるように冷却し、その後は、速やかにチューブラー型分離膜内部の圧力が2.5MPaとなるように加圧処理を30分間継続して実施した。
 製造されたチューブラー型分離膜の膜厚は0.2mmで、膜面積は1.6mであった。同じ製造方法で複数の同じ管状膜を製造し、これらの膜を18本直列に接続した管状膜エレメント(図2参照)を用いて、上記したようにして管状膜エレメントの透過流束と塩化ナトリウムおよび硫酸マグネシウムの塩阻止率を測定した。測定結果を表1に示す。
実施例2~5
 実施例1と同様にしてチューブラー型分離膜を製造した。但し、後処理工程における熱処理温度と温水通水時間を表1に示すように変化させた。実施例1と同様の測定を実施した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなとおり、塩化ナトリウム(1価イオン)の阻止率〔%〕が20%~90%以上に変化すると、透過流束〔L/m・h〕は下限値が75~18に変化したが、硫酸マグネシウム(2価イオン)の阻止率〔%〕の変化は小さく、10%の範囲内に抑制されていた。
産業上の利用可能性
 本開示のチューブラー型分離膜は、水溶性切削油加工企業、アルミダイカスト加工企業、石油精製企業などで発生する油を含有した廃水の減容化に使用することができる。
符号の説明
 10 チューブラー型分離膜(ろ過膜エレメント)
 11 多孔支持管
 12 分離膜
 20 チューブラー型分離膜集合体
 30 チューブラー型分離膜モジュール

Claims (10)

  1.  酢酸セルロースからなり膜厚が0.05~0.4mmであるチューブラー型分離膜であって、
     下記式1および式2で示される塩阻止率と透過流束の関係を満たしている、チューブラー型分離膜。
       式1:Y=AX1+B
    (式1中、Yは透過流束〔L/m・h〕、X1は塩化ナトリウム〔1価イオン〕の阻止率〔%〕、Aは-1.4<A<-1.0の範囲内の定数、Bは100<B<150の範囲内の定数を示す。)
       式2:Y=CX2+D
    (式2中、Yは透過流束〔L/m・h〕、X2は硫酸マグネシウム〔2価イオン〕の阻止率〔%〕、Cは-6.0<C<-4.0の範囲の定数、Dは300<D<800の範囲の定数を示す。)
  2.  酢酸セルロースからなり膜厚が0.05~0.4mmであるチューブラー型分離膜であって、
     塩化ナトリウム〔1価イオン〕の阻止率〔%〕が15%から100%未満までの範囲内で変化するとき、
     透過流束が120L/m・hから15L/m・hまでの範囲内で変化し、
     かつ硫酸マグネシウム〔2価イオン〕の阻止率〔%〕が100%未満から80%までの範囲内で変化する、チューブラー型分離膜。
  3.  塩化ナトリウム(1価イオン)阻止率が90%超、硫酸マグネシウム(2価イオン)阻止率が95%超で、純水透過流束の下限値が18L/m・hである第1形態、
     塩化ナトリウム(1価イオン)阻止率が80%超、硫酸マグネシウム(2価イオン)阻止率が93%超で、純水透過流束の下限値が33L/m・hである第2形態、
     塩化ナトリウム(1価イオン)阻止率が70%超、硫酸マグネシウム(2価イオン)阻止率が92%超で、純水透過流束の下限値が43L/m・hである第3形態、
     塩化ナトリウム(1価イオン)阻止率が50%超、硫酸マグネシウム(2価イオン)阻止率が90%超で、純水透過流束の下限値が55L/m・hである第4形態、および
     塩化ナトリウム(1価イオン)阻止率が20~40%、硫酸マグネシウム(2価イオン)阻止率が85%超で、純水透過流束が75~120L/m・hである第5形態から選ばれるいずれか一つである、請求項2記載のチューブラー型分離膜。
  4.  酢酸セルロースからなる逆浸透膜またはナノろ過膜の膜厚が0.1~0.3mmである、請求項1~3のいずれか1項記載のチューブラー型分離膜。
  5.  チューブラー型分離膜が逆浸透膜またはナノろ過膜である、請求項1~4のいずれか1項記載のチューブラー型分離膜。
  6.  請求項1~5のいずれか1項記載のチューブラー型分離膜が複数本連結されたチューブラー型分離膜の集合体がケースハウジング内に収容されている、チューブラー型分離膜モジュール。
  7.   造膜溶液調整工程、塗工工程、相分離膜化工程および後処理工程を含んでおり、
     前記後処理工程における熱処理温度を30℃~98℃の範囲内で変化させることで、塩化ナトリウム〔1価イオン〕の阻止率〔%〕、硫酸マグネシウム(2価イオン)阻止率および透過流束(L/m・h)を調整する、チューブラー型分離膜の製造方法。
  8.  前記後処理工程における熱処理温度を30℃~98℃の範囲内で変化させることで塩化ナトリウム〔1価イオン〕の阻止率〔%〕、硫酸マグネシウム(2価イオン)阻止率および透過流束(L/m・h)を調整する、請求項7記載のチューブラー型分離膜の製造方法。
  9.  造膜溶液調整工程は、酢酸セルロースを溶媒に、任意選択的に添加剤および/またはナノ材料を加えて溶解(分散)させ、必要に応じて不溶解物をろ過除去する工程であり、
     塗工工程は、管状支持体の内側に造膜溶液調整工程で調整した造膜溶液を塗工する工程であり、
     相分離膜化工程は、造膜溶液が塗工された管状支持体を、凝固液が仕込まれた凝固槽へ投入し、造膜溶液中の溶剤および添加剤を凝固液に溶解させて管状支持体の内側へ酢酸セルロース膜を形成させる工程である、請求項7または8記載のチューブラー型分離膜の製造方法。
  10.  チューブラー型分離膜が請求項1~5のいずれか1項記載のチューブラー型分離膜である、請求項7~9のいずれか1項記載のチューブラー型分離膜の製造方法。
     
PCT/JP2021/016323 2020-05-19 2021-04-22 チューブラー型分離膜とそれを含むチューブラー型分離膜モジュール WO2021235168A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021528342A JP7021400B1 (ja) 2020-05-19 2021-04-22 チューブラー型分離膜とそれを含むチューブラー型分離膜モジュール
CN202180036176.0A CN115666769A (zh) 2020-05-19 2021-04-22 管型分离膜和包括该管型分离膜的管型分离膜组件
JP2022004952A JP7261328B2 (ja) 2020-05-19 2022-01-17 チューブラー型分離膜とそれを含むチューブラー型分離膜モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-087127 2020-05-19
JP2020087127 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021235168A1 true WO2021235168A1 (ja) 2021-11-25

Family

ID=78708573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016323 WO2021235168A1 (ja) 2020-05-19 2021-04-22 チューブラー型分離膜とそれを含むチューブラー型分離膜モジュール

Country Status (3)

Country Link
JP (2) JP7021400B1 (ja)
CN (1) CN115666769A (ja)
WO (1) WO2021235168A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745304A (en) * 1980-08-30 1982-03-15 Nitto Electric Ind Co Ltd Production of turbular semipermeable membrane
CN105327623A (zh) * 2015-12-03 2016-02-17 中国科学院化学研究所 一种醋酸纤维素纳滤膜及其制备方法
JP2019107575A (ja) * 2017-12-15 2019-07-04 ダイセン・メンブレン・システムズ株式会社 ろ過処理装置とその運転方法
JP2019111503A (ja) * 2017-12-25 2019-07-11 アクアス株式会社 含油排水の処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745304A (en) * 1980-08-30 1982-03-15 Nitto Electric Ind Co Ltd Production of turbular semipermeable membrane
CN105327623A (zh) * 2015-12-03 2016-02-17 中国科学院化学研究所 一种醋酸纤维素纳滤膜及其制备方法
JP2019107575A (ja) * 2017-12-15 2019-07-04 ダイセン・メンブレン・システムズ株式会社 ろ過処理装置とその運転方法
JP2019111503A (ja) * 2017-12-25 2019-07-11 アクアス株式会社 含油排水の処理方法

Also Published As

Publication number Publication date
JPWO2021235168A1 (ja) 2021-11-25
CN115666769A (zh) 2023-01-31
JP2022036298A (ja) 2022-03-04
JP7261328B2 (ja) 2023-04-19
JP7021400B1 (ja) 2022-02-16

Similar Documents

Publication Publication Date Title
US4351860A (en) Polyaryl ether sulfone semipermeable membrane and process for producing same
JP5370871B2 (ja) 中空糸型逆浸透膜
JPS6214905A (ja) 微孔性膜の製造方法
JP2017205740A (ja) 複合膜
JPWO2013005551A1 (ja) 排水処理用の逆浸透膜
JPS6356802B2 (ja)
Li et al. Engineering design of outer‐selective tribore hollow fiber membranes for forward osmosis and oil‐water separation
WO2021235168A1 (ja) チューブラー型分離膜とそれを含むチューブラー型分離膜モジュール
JP2015188778A (ja) Nf膜とその製造方法
EP0824960A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
WO2016182015A1 (ja) 多孔質中空糸膜及びその製造方法
JP6743810B2 (ja) 中空糸型半透膜、中空糸膜モジュールおよび正浸透水処理方法
KR20100079630A (ko) 투수도 및 기계적 강도가 개선된 한외여과막 및 그의 제조방법
CN113828174A (zh) 一种双层复合结构反渗透膜及其制备方法
KR20120077011A (ko) Ectfe 수처리 분리막 및 그의 제조방법
WO2019172077A1 (ja) 中空糸膜、及び中空糸膜の製造方法
JP6649779B2 (ja) 中空糸型半透膜とその製造方法
KR930003740B1 (ko) 폴리설폰 중공사 분리막의 제조방법
JP2020054994A (ja) ポリスルホン多孔質中空糸膜の製造法
JP3431623B1 (ja) 血漿浄化膜の製造方法
JPS59209611A (ja) 中空糸状膜及びその製造方法
JP2508732B2 (ja) 選択透過性中空糸複合膜及びその製造法
JPH08299770A (ja) ポリフッ化ビニリデン中空糸膜およびその製造法
KR102524361B1 (ko) 분리막의 제조방법, 분리막 및 수처리 모듈
JPS6029763B2 (ja) 中空糸膜の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021528342

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807828

Country of ref document: EP

Kind code of ref document: A1