WO2021233132A1 - 一种锂硫电池插层材料及锂硫电池 - Google Patents

一种锂硫电池插层材料及锂硫电池 Download PDF

Info

Publication number
WO2021233132A1
WO2021233132A1 PCT/CN2021/092142 CN2021092142W WO2021233132A1 WO 2021233132 A1 WO2021233132 A1 WO 2021233132A1 CN 2021092142 W CN2021092142 W CN 2021092142W WO 2021233132 A1 WO2021233132 A1 WO 2021233132A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber paper
lithium
hitp
sulfur battery
Prior art date
Application number
PCT/CN2021/092142
Other languages
English (en)
French (fr)
Inventor
周国伟
顾少楠
王轶男
何妍妍
宋晓艺
刘冰洁
任永强
Original Assignee
齐鲁工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐鲁工业大学 filed Critical 齐鲁工业大学
Priority to US17/615,974 priority Critical patent/US20220328837A1/en
Publication of WO2021233132A1 publication Critical patent/WO2021233132A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/42Coatings with pigments characterised by the pigments at least partly organic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/30Pretreatment of the paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/22Addition to the formed paper
    • D21H23/32Addition to the formed paper by contacting paper with an excess of material, e.g. from a reservoir or in a manner necessitating removal of applied excess material from the paper
    • D21H23/42Paper being at least partly surrounded by the material on both sides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium-sulfur batteries, and relates to nanomaterial technology, in particular to a preparation method and application of a conductive MOF modified carbon fiber paper intercalation material for lithium-sulfur batteries.
  • Lithium-sulfur batteries have attracted much attention because their theoretical capacity (1675mAh/g) and energy density (2600Wh/kg) are far greater than commercial lithium-ion batteries ( ⁇ 300mAh/g, ⁇ 420Wh/kg), and have high research value and applications prospect.
  • lithium-sulfur batteries are still facing huge challenges, the most important of which is the "shuttle effect" generated by the lithium polysulfide (LiPSs), which is an intermediate product of the battery reaction, deposited on the side of the negative electrode through the separator.
  • LiPSs lithium polysulfide
  • the shuttle effect during the charging and discharging process of the battery mainly brings about three negative effects: (1) the coulombic efficiency of the battery is low; (2) the capacity attenuation is serious; (3) the effective active material is lost quickly. Eventually, the actual capacity of the lithium-sulfur battery is low, and the service life is drastically reduced, which seriously hinders its practical application.
  • An intercalation layer is introduced between the positive electrode and the diaphragm.
  • This structure can be used as a second current collector to accelerate the transfer of electrons to improve conductivity and at the same time have a certain interception effect on polysulfides.
  • more and more intercalation materials are gradually being applied to lithium-sulfur batteries.
  • the Chinese patent document with the application publication number 109920957A (201910095425.8) discloses a patent for a lithium-sulfur battery intercalation material, which uses a polypropylene diaphragm as the matrix layer of the intercalation, and bismuth telluride as the isolation layer. It forms a barrier on the surface of the polypropylene membrane to inhibit the shuttle effect of lithium polysulfide.
  • the inventors of the present invention have discovered through research that the material is a semiconductor, and therefore the intercalation layer prepared from the material cannot fully play the role of accelerating electron transfer in the battery reaction process, and the battery performance is bound to be affected.
  • the inventors of the present invention also found that, in order to improve the conductivity of the intercalation layer, the current intercalation layer is mostly based on carbon-based materials, but the non-polar surface of the carbon-based materials adsorbs polar lithium polysulfide. Very limited.
  • the purpose of the present invention is to provide a lithium-sulfur battery intercalation material and a lithium-sulfur battery, so as to solve the technical problems of low conductivity of the existing intercalation material and low shuttle inhibition efficiency for lithium polysulfide; and at the same time solve the existing lithium-sulfur battery intercalation material.
  • the present invention adopts the following technical solutions:
  • a lithium-sulfur battery intercalation material which includes a conductive MOF-modified carbon fiber paper material, which is used as a lithium-sulfur battery intercalation material and is placed between the separator and the positive electrode for accelerating electron transfer. At the same time, it has a catalytic and blocking effect on lithium polysulfide;
  • the conductive MOF modified carbon fiber paper material includes hydrophilic carbon fiber paper and metal-organic framework material Co 3 (HITP) 2 , and the metal-organic framework material Co 3 (HITP) 2 is attached to the affinity On the surface of the carbon fiber in the water-based carbon fiber paper;
  • the morphology of the metal-organic framework material Co 3 (HITP) 2 is a flower-like morphology, which is characterized by: narrow and narrow columns, the petals become sharper, the petals are compact and neatly arranged, the length is several micrometers, and the width is nanometer level. ;
  • the conductive MOF modified carbon fiber paper material is prepared by the following method:
  • the pretreatment of carbon fiber paper the carbon fiber paper material is subjected to hydrophilic treatment; the carbon fiber paper is soaked in a mixture of acetone, isopropanol and water, ultrasonically treated for 30 to 90 minutes, then washed and dried to prepare the hydrophilic treatment Carbon fiber paper;
  • Co 3 (HITP) 2 Cobalt ions Co 2+ and hexaaminotriphenylene are coordinated on the surface of hydrophilic carbon fiber paper and grow in situ; before the reaction, the reaction ligand HITP and divalent cobalt The salt is dissolved in the mixed solution containing DMF and water; the reaction temperature is 80 ⁇ 90°C, and the reaction time is 22 ⁇ 26h;
  • Removal of structural impurities remove Co 2+ , HITP, solvent DMF molecules that are not involved in the reaction, and/or free MOF molecules on the surface of carbon fiber paper.
  • a lithium-sulfur battery is provided, the negative electrode is lithium, the positive electrode is a sulfur/carbon composite, and the conductive MOF modified carbon fiber paper material is used as an intercalation layer.
  • the present invention provides a conductive MOF modified carbon fiber paper material.
  • a layer of MOF material-Co 3 (HITP) 2 , hexaaminotriphenylene Co 3 (HITP) 2 modified carbon fiber is grown on the surface of the carbon fiber paper after hydrophilic treatment. Paper has high conductivity.
  • the conductive MOF-Co 3 (HITP) 2 prepared by the present invention modified carbon fiber paper is used as an interlayer material for lithium-sulfur batteries, in which carbon fiber paper provides the necessary conductive matrix to ensure high-speed movement of electrons between the positive electrode and the separator; carbon fiber paper
  • the on-grown Co 3 (HITP) 2 can not only provide sufficient polarity for the adsorption of lithium polysulfide and fill the shortage of carbon materials, but also promote the reaction of lithium polysulfide through the catalysis of Co-N 4 and effectively inhibit polysulfide. The shuttle effect. More importantly, Co 3 (HITP) 2 itself also has high conductivity, and the overall conductivity will not be greatly reduced due to the modification of functional materials on the carbon matrix. Using a lithium sheet as a negative electrode, it has been verified by experiments that the lithium-sulfur battery can still maintain a capacity of 93.7% after 600 cycles when the current is 1C, and has excellent cycle stability.
  • Figure 1 is the SEM image of the hydrophilic treated carbon fiber paper and the flower-like Co 3 (HITP) 2 modified carbon fiber paper in Example 1 of the present invention; (a) the carbon fiber paper and (b ⁇ d) the flower-like Co 3 (HITP) ) 2 SEM images of modified carbon fiber paper (different magnifications).
  • FIG. 2 is a picture of the intercalation layer for lithium-sulfur batteries made of carbon fiber paper modified with Co 3 (HITP) 2 in the first embodiment of the present invention.
  • Fig. 3 is an electrochemical impedance diagram of carbon fiber paper, Co 3 (HITP) 2 modified carbon fiber paper, ZIF-67 (non-conductive MOF containing the same elements but different structures) in Example 1 of the present invention.
  • Example 4 is a comparison diagram of charge and discharge cycles of a lithium-sulfur battery intercalated with Co 3 (HITP) 2 modified carbon fiber paper in Example 1 of the present invention, and the test condition is 1C.
  • HITP Co 3
  • Fig. 6 is an SEM image of Ni 3 (HITP) 2 modified carbon fiber paper in Comparative Example 1 of the present invention.
  • some current intercalation materials have technical problems such as low conductivity and low shuttle suppression efficiency for lithium polysulfide.
  • a conductive MOF modified carbon fiber paper material including hydrophilic carbon fiber paper and metal-organic framework material Co 3 (HITP) 2
  • the metal-organic framework material Co 3 (HITP) 2 is attached to the affinity Water-based carbon fiber paper on the surface of the carbon fiber.
  • the Co 3 (HITP) 2 modified carbon fiber paper material has high conductivity, ensures high-speed transfer of electrons in the electrode, and can effectively inhibit the dissolution and loss of lithium polysulfide, thereby greatly improving the lithium-sulfur battery performance.
  • the microscopic morphology of the metal-organic framework material Co 3 (HITP) 2 is a flower-like morphology, and the flower-like morphology is characterized by narrow stubs, and the petals become more and more sharp. , The petals are compact and neatly arranged, with a length of several microns and a width of nanometers, and the uniformity of length and width is relatively good.
  • the flower-shaped Co 3 (HITP) 2 modified carbon fiber paper material has high conductivity, can effectively inhibit the dissolution and loss of lithium polysulfide, and greatly improve the performance of the lithium-sulfur battery.
  • the inventor’s team also studied related MOF-modified carbon fiber paper materials formed by other transition metal ions (such as Ni, Cu, etc.), and found that Co 3 (HITP) 2 formed by the coordination of metal cobalt ions with hexaaminotriphenylene in the present invention
  • the electrochemical performance of carbon fiber paper materials is more excellent; and the appearance and controllability are good, which is conducive to industrial production.
  • the flower-shaped metal-organic framework material Co 3 (HITP) 2 uniformly, A single layer is attached to the surface of the carbon fiber in the hydrophilic carbon fiber paper.
  • each carbon fiber in the hydrophilic carbon fiber paper is uniformly and single-layered with flower-shaped metal-organic framework material Co 3 (HITP) 2 .
  • the carbon fiber paper in order to enable Co 2+ to be uniformly distributed on the surface of carbon fiber, and to make the coordination reaction product grow on the surface of carbon fiber instead of being accumulated and covered, the carbon fiber paper should be hydrophilic treated to make the surface of the carbon fiber have hydroxyl -OH, as carbon fiber Anchor point with MOF. Because only grown on the surface of the carbon fiber can the conductive MOF be in close contact with the carbon matrix as much as possible, reduce the contact resistance of different crystal planes, and ensure the conductivity of the material.
  • the carbon fiber paper can be prepared by carbonizing polyacrylonitrile fiber, pitch fiber, viscose fiber or phenolic fiber, respectively. Carbon fiber paper prepared from polyacrylonitrile fibers is preferred. In some embodiments of the present invention, the carbon fiber paper is selected to have a uniform and flat pore size distribution, the porosity of the carbon fiber paper is 70-80%, the basis weight is 40-90 g/m 2 , and the thickness is 0.15-0.25 mm.
  • a method for preparing the conductive MOF modified carbon fiber paper material includes the following steps:
  • Pretreatment of carbon fiber paper Hydrophilic treatment of carbon fiber paper material
  • Co 3 (HITP) 2 Cobalt ions Co 2+ and hexaaminotriphenylene (HITP) are coordinated on the surface of hydrophilic carbon fiber paper and grown in situ;
  • Removal of structural impurities Removal of Co 2+ , ligand HITP, solvent DMF molecules and free MOF molecules on the surface of carbon fiber paper that are not involved in the reaction.
  • a method is provided.
  • the method includes the following steps:
  • the carbon fiber paper is soaked in a mixed solution composed of acetone, isopropanol and water, ultrasonically treated for 30 to 90 minutes, then washed and dried to prepare a hydrophilic treated carbon fiber paper.
  • the volume ratio of acetone, isopropanol and water is 1:1:1.
  • a more preferred treatment method includes the following steps: soaking the carbon fiber paper in a mixed solution composed of acetone, isopropanol and water, and sealing with a paraffin sealing film, ultrasonic treatment for 60 minutes, after the treatment, take it out and ultrasonically clean with deionized water 3
  • the carbon fiber paper was transferred to a glass dish lined with filter paper, and dried in an oven at 100°C for 12 hours after ultrasonic cleaning with absolute ethanol for 3 times, 5 minutes each time.
  • the hydrophilic treatment method has simple operation, significant effects, mild conditions, no need for high-temperature strong acid treatment, and is beneficial to subsequent in-situ coordination reactions.
  • reaction ligand HITP and divalent cobalt salt are dissolved in DMF and water ( Volume 1:1) in the mixed solution.
  • the cobalt salt is Co(OAc) 2 ⁇ 4H 2 O.
  • the molar ratio of the HITP and Co 2+ is 1: (1.5-2.5);
  • the molar ratio of the HITP and Co 2+ is 1:2.
  • a ratio of carbon fiber paper and coordinating raw material is provided, with an area of 180-220 mm
  • the carbon fiber paper of 2 corresponds to (0.010 ⁇ 0.022) mmol of HITP, which can ensure that a layer of flower-like Co 3 (HITP) 2 can be attached to each fiber on the carbon fiber paper.
  • the reaction temperature is 80-90° C., and the reaction time is 22-26 h;
  • reaction temperature 85°C
  • reaction time 24h
  • the specific method includes: putting the carbon fiber paper attached with Co 3 (HITP) 2 into 80-90°C water and letting it stand for 22-26 hours, during which time the water is replaced every 6-8 hours; Take out the carbon fiber paper with Co 3 (HITP) 2 attached and transfer it to the reactor filled with acetone (to avoid acetone volatilization during high temperature process), and let it stand in acetone at 80 ⁇ 90°C for 22 ⁇ 26h, during which it will be replaced every 6 ⁇ 8h One time acetone; finally drying at 60°C for 24h.
  • acetone to avoid acetone volatilization during high temperature process
  • a higher temperature 80-90° C.
  • the method for removing structural impurities of the present invention can completely remove cobalt ions, ligands, DMF molecules and MOF molecules free on the surface of the carbon fiber paper, so that the prepared carbon fiber paper material has high purity.
  • the preparation method of the conductive MOF modified carbon fiber paper material of the present invention is simple, high in efficiency, easy to control the preparation process, mild in conditions, environmentally friendly, and low in production cost, which is beneficial to industrial production.
  • an application of the conductive MOF modified carbon fiber paper material in the preparation of lithium-sulfur batteries is provided. Especially when it is used as an intercalation material, it can greatly improve the electrochemical performance of the lithium-sulfur battery.
  • a lithium-sulfur battery intercalation material including the conductive MOF-modified carbon fiber paper material, as the lithium-sulfur battery intercalation material, placed between the separator and the positive electrode, It is used to accelerate the transfer of electrons, and at the same time has a catalytic and barrier effect on lithium polysulfide.
  • a lithium-sulfur battery is provided, the negative electrode is lithium, the positive electrode is a sulfur/carbon composite, and the conductive MOF modified carbon fiber paper material is used as an interlayer.
  • the mass fraction of elemental sulfur in the positive electrode is 80%.
  • the preparation method of the material includes the following steps:
  • Hydrophilic treatment of carbon fiber paper Use a slicer to cut commercial carbon fiber paper (source: Carbon fiber paper of Physicochemical (Hong Kong) Co., Ltd. Model NOS1005) and store it for later use (diameter 16mm), weigh deionized water and acetone respectively , 10ml each of isopropanol, mix well in a 50ml beaker. Take a certain amount of carbon fiber paper slices, so that they are completely immersed in the mixed solution, and seal the beaker with paraffin sealing film and ultrasonic treatment for 60 minutes. After treatment, it was taken out and ultrasonically cleaned with deionized water 3 times, 5 min each time, and then ultrasonically cleaned 3 times with absolute ethanol, 5 min each time. The carbon fiber paper was transferred to a glass dish lined with filter paper, and dried in an oven at 100°C for 12 hours.
  • a method for preparing Cu 3 (HITP) 2 grown carbon fiber paper material includes the following steps:
  • a method for preparing Ni 3 (HITP) 2 grown carbon fiber paper material includes the following steps:
  • Ni 3 (HITP) 2 carbon fiber paper Use a pipette to pipette 500 ⁇ L of DMF and deionized water into a 20ml glass bottle and mix well, and use an analytical balance to weigh HITP (0.02mmol, 11.6mg). ) And Ni(OAc) 2 ⁇ 4H 2 O (0.04mmol, about 9.95mg) were mixed and poured into a 20ml glass bottle, sealed and sonicated for 10min, the pretreated carbon fiber paper was immersed in the glass bottle and placed in an oven at 85°C Incubate the reaction for 24h. After taking it out, wait for the glass bottle to cool to room temperature, take out the carbon fiber paper, and rinse with deionized water to obtain Ni 3 (HITP) 2 grown carbon fiber paper.
  • Figure 1 is an SEM image of carbon fiber paper and floral-like Co 3 (HITP) 2 modified carbon fiber paper in Example 1. It can be seen from Figure 1 that a layer of floral-like Co 3 (HITP) 2 is uniformly grown on the surface of the carbon fiber.
  • the flower-like morphology is characterized by narrow and narrow columns, the front petals become more and more sharp, the petals are compact, neatly arranged, and have regular shapes.
  • the length is a few microns, the width is nanometers, and the length and width are uniform.
  • FIG. 2 is a picture of the intercalation layer for lithium-sulfur batteries made of carbon fiber paper modified with Co 3 (HITP) 2 in the first embodiment of the present invention.
  • Fig. 3 is an electrochemical impedance diagram of carbon fiber paper, Co 3 (HITP) 2 modified carbon fiber paper, ZIF-67 (non-conductive MOF containing the same elements but different structures) in Example 1 of the present invention. It can be seen from Fig. 3 that after the surface of the conductive carbon fiber paper is modified with conductive Co 3 (HITP) 2 , the electrochemical resistance of the battery does not change much, which is beneficial to the electrochemical reaction. In contrast, after modifying the non-conductive ZIF-67, the electrochemical resistance changes greatly, reducing the conductivity of the intercalation material.
  • FIG 4 is a comparison diagram of the charge and discharge cycle of a lithium-sulfur battery intercalated with Co 3 (HITP) 2 modified carbon fiber paper in Example 1 of the present invention.
  • the test condition is 1C current
  • the negative electrode of the battery is a metal lithium sheet
  • the positive electrode is 80wt. % Sulfur/carbon composite
  • the diaphragm is Celgard 2325 diaphragm
  • 40 ⁇ L electrolyte the charging and discharging voltage is between 1.7V and 2.8V. It can be seen from Figure 4 that the lithium-sulfur battery with Co 3 (HITP) 2 modified carbon fiber paper as intercalation has better charge and discharge performance.
  • Fig. 5 is an SEM image of Cu 3 (HITP) 2 modified carbon fiber paper in Comparative Example 2. Compared with Fig. 1, its morphology and dispersibility are poor, and the adhesion amount is lower. Compared with the flower-like Co 3 (HITP) 2 modified carbon fiber paper material in Example 1, the preparation efficiency and electrochemical performance of the material are lower.
  • Figure 6 is the SEM image of Ni 3 (HITP) 2 modified carbon fiber paper in Comparative Example 3.
  • the flower-like morphology is not obvious, the length of the petals is different, and the petals are not uniformly dense.
  • the overall appearance is relatively In a sparse state, the amount of adhesion is low.
  • the preparation efficiency and electrochemical performance of the material are lower.
  • a carbon fiber paper material with flower-like Co 3 (HITP) 2 grown which is prepared by the following method:
  • Hydrophilic treatment of carbon fiber paper Cut commercial carbon fiber paper with a microtome and store it for later use (diameter 16mm). Weigh 12ml each of deionized water, acetone, and isopropanol, and mix them evenly in a 50ml beaker. Take a certain amount of carbon fiber paper slices, so that they are completely immersed in the mixed solution, and seal the beaker with paraffin sealing film and ultrasonic treatment for 75 minutes. After treatment, it was taken out and ultrasonically cleaned with deionized water 3 times, 4 min each time, and then ultrasonically cleaned 3 times with absolute ethanol, 4 min each time. The carbon fiber paper was transferred to a glass dish lined with filter paper, and dried in an oven at 100°C for 13 hours.
  • a carbon fiber paper material with flower-like Co 3 (HITP) 2 grown which is prepared by the following method:
  • Hydrophilic treatment of carbon fiber paper Cut commercial carbon fiber paper with a microtome and store it for later use (diameter 16mm). Weigh 10ml each of deionized water, acetone, and isopropanol, and mix them evenly in a 50ml beaker. Take a certain amount of carbon fiber paper slices, make them completely immersed in the mixed solution, and seal the beaker with paraffin sealing film and ultrasonic treatment for 55 minutes. After treatment, it was taken out and ultrasonically cleaned with deionized water 3 times, 5 min each time, and then ultrasonically cleaned 3 times with absolute ethanol, 5 min each time. The carbon fiber paper was transferred to a glass dish lined with filter paper, and dried in an oven at 100°C for 10 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paper (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

一种锂硫电池插层材料及锂硫电池,包括导电MOF修饰的碳纤维纸材料,置于隔膜与正极之间,用于加速电子转移,同时对多硫化锂具有催化与阻隔作用,导电MOF修饰的碳纤维纸材料的制备方法包括:碳纤维纸的预处理:将碳纤维纸材料进行亲水处理;制备生长有Co 3(HITP) 2的碳纤维纸:Co 2+与六氨基三亚苯在亲水碳纤维纸表面配位并原位生长;去除结构杂质。其中碳纤维纸提供必要的导电基质,确保在正极与隔膜间电子的高速移动;碳纤维纸上生长的Co 3(HITP) 2不仅可以提供吸附多硫化锂足够的极性,填补碳材料的不足,并且还能够通过Co-N 4的催化作用促进多硫化锂反应,高效的抑制多硫化物的穿梭效应。

Description

一种锂硫电池插层材料及锂硫电池 技术领域
本发明属于锂硫电池技术领域,涉及纳米材料技术,具体涉及一种锂硫电池用导电MOF修饰碳纤维纸插层材料的制备方法与应用。
背景技术
这里的陈述仅提供与本发明有关的背景信息,而不必然构成现有技术。
锂硫电池因其理论容量(1675mAh/g)和能量密度(2600Wh/kg)远大于商业锂离子电池(<300mAh/g,<420Wh/kg)而备受关注,具有较高的研究价值和应用前景。然而,锂硫电池目前仍面临巨大挑战,其中最重要的问题是电池反应中间产物多硫化锂(LiPSs)穿过隔膜沉积在负极一侧产生的“穿梭效应”。电池充放电过程中的穿梭效应主要带来三方面负面影响:(1)电池库伦效率低;(2)容量衰减严重;(3)有效活性物质损失快。最终导致锂硫电池实际容量低、使用寿命骤减,严重阻碍其实际应用。
关于解决锂硫电池穿梭效应的近期报道中,工艺简单且结构性能可控的方法是通过将极性的无机固硫材料引入到锂硫电池的正极中,使其抑制多硫化物的穿梭效应,从而提高锂硫电池的循环稳定情况。但该法也存在不利的因素。主要是大部分的无机固硫材料常常是不导电或者导电能力很差,因此,一旦大量加入,势必会大大增加电极本身的内部阻值,影响电池性能。
在正极和膈膜之间引入插层,这种结构可以作为第二集流体,用于加速电子的转移,以提高导电性,同时对多硫化物具有一定的拦截作用。鉴于这种思路,越来越多的插层材料渐渐被应用到锂硫电池中。如申请公布号为109920957A(201910095425.8)的中国专利文献公开了一种锂硫电池插层材料 的专利,该专利利用聚丙烯隔膜作为插层的基体层,碲化铋作为隔离层,该隔离层用于在聚丙烯隔膜的表面形成阻隔,抑制多硫化锂的穿梭效应。但是本发明发明人研究发现,该材料属于半导体,因此由该材料制备的插层没有能够充分起到电池反应过程中加速电子转移的作用,电池性能势必会受到影响。除此之外,本发明发明人还发现,为了提高插层的导电性,目前的插层多以碳基材料为基质,但碳基材料的非极性表面对极性多硫化锂的吸附作用非常有限,为提高插层对多硫化锂的拦截作用,不可避免的需要加入导电性较差的无极固硫材料,如金属氧化物、硫化物等,导致最终插层材料导电性降低,电池性能差强人意。
发明内容
本发明的目的是是提供一种锂硫电池插层材料及锂硫电池,以解决现有的插层材料导电性不高、对多硫化锂穿梭抑制效率低等技术问题;同时解决现有锂硫电池循环稳定性差的技术问题。
具体的,本发明采用以下技术方案:
根据本发明的第一个方面,提供一种锂硫电池插层材料,包括导电MOF修饰的碳纤维纸材料,作为锂硫电池插层材料,置于隔膜与正极之间,用于加速电子转移,同时对多硫化锂具有催化与阻隔作用;
其中,所述导电MOF修饰的碳纤维纸材料,包括亲水性的碳纤维纸和金属-有机框架材料Co 3(HITP) 2,所述金属-有机框架材料Co 3(HITP) 2附着在所述亲水性的碳纤维纸中碳纤维的表面上;
所述金属-有机框架材料Co 3(HITP) 2的形态为花状形态,特征是:细狭柱、瓣前幅起愈趋尖锐状,花瓣紧凑,排列整齐,长度为数微米,宽度为纳米级;
所述导电MOF修饰的碳纤维纸材料是通过以下方法制备得到的:
碳纤维纸的预处理:将碳纤维纸材料进行亲水处理;将碳纤维纸浸泡在由丙酮、异丙醇和水组成的混合液中,超声处理30~90min,然后洗涤、干燥,制备得到亲水处理后的碳纤维纸;
制备生长有Co 3(HITP) 2的碳纤维纸:二价钴离子Co 2+与六氨基三亚苯在亲水碳纤维纸表面配位并原位生长;反应之前,将反应配体HITP和二价钴盐溶解于包含有DMF和水的混合液中;反应温度为80~90℃,反应时间为22~26h;
去除结构杂质:去除未参与反应的Co 2+、HITP、溶剂DMF分子、和/或碳纤维纸表面上游离的MOF分子。
根据本发明的第二个方面,提供一种锂硫电池,负极为锂,正极为硫/碳复合物,同时将所述导电MOF修饰碳纤维纸材料作为插层。
与本发明人知晓的相关技术相比,本发明其中的一个技术方案具有如下有益效果:
本发明提供了一种导电MOF修饰的碳纤维纸材料,碳纤维纸经亲水处理后在其表面生长一层MOF材料-Co 3(HITP) 2,六氨基三亚苯Co 3(HITP) 2修饰的碳纤维纸具有较高的导电性。
本发明制备得到的导电MOF-Co 3(HITP) 2,修饰的碳纤维纸作为锂硫电池的插层材料,其中碳纤维纸提供必要的导电基质,确保在正极与隔膜间电子的高速移动;碳纤维纸上生长的Co 3(HITP) 2不仅可以提供吸附多硫化锂足够的极性,填补碳材料的不足,并且还能够通过Co-N 4的催化作用促进多硫化锂反应,高效的抑制多硫化物的穿梭效应。更重要的是,Co 3(HITP) 2本身也具有较高的导电性,不会因在碳基质上修饰了功能材料后使整体的导电性大大降低。以锂片作为负极,经过试验验证,该锂硫电池在电流为1C时,循环600圈后仍可保持93.7%的容量,具有优异的循环稳定性。
附图说明
构成本发明一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例一中的亲水处理后的碳纤维纸与花状Co 3(HITP) 2修饰的碳纤维纸SEM图;(a)碳纤维纸和(b~d)花状Co 3(HITP) 2修饰的碳纤维纸(不同放大倍数)的SEM图。
图2为本发明实施例一中采用Co 3(HITP) 2修饰的碳纤维纸制成的锂硫电池用插层图片。
图3为本发明实施例一中碳纤维纸,Co 3(HITP) 2修饰的碳纤维纸,ZIF-67(含有相同元素但结构不同的不导电MOF)的电化学阻抗图。
图4为本发明实施例一中的Co 3(HITP) 2修饰的碳纤维纸做插层的锂硫电池充放电循环对比图,测试条件为1C。
图5为本发明对比例二中Cu 3(HITP) 2修饰的碳纤维纸的SEM图。
图6为本发明对比例一中Ni 3(HITP) 2修饰的碳纤维纸的SEM图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作和/或它们的组合。
正如背景技术所介绍的,目前的一些插层材料存在导电性较低、对多硫化锂穿梭抑制效率低等技术问题,为了解决如上的技术问题,在本发明的第一个典型的实施方式中,提供一种导电MOF修饰的碳纤维纸材料,包括亲水性的碳纤维纸和金属-有机框架材料Co 3(HITP) 2,所述金属-有机框架材料Co 3(HITP) 2附着在所述亲水性的碳纤维纸中碳纤维的表面上。
本发明中Co 3(HITP) 2修饰的碳纤维纸材料,该材料具有较高的导电性,保证电极中电子的高速转移同时,还可以有效抑制多硫化锂溶解流失,从而大大提升锂硫电池的性能。
在本发明的一些实施方式中,所述金属-有机框架材料Co 3(HITP) 2的微观形貌为花状形态,该花状形态特征为:细狭柱、瓣前幅起愈趋尖锐状,花瓣紧凑,排列整齐,长度为数微米,宽度为纳米级,长度和宽度均一性比较好。经过试验验证,该花状形貌的Co 3(HITP) 2修饰的碳纤维纸材料具有较高的导电性,能够有效抑制多硫化锂溶解流失,大幅提升锂硫电池的性能。
本发明人团队还研究了其他过渡金属离子(比如Ni、Cu等)形成的相关MOF修饰的碳纤维纸材料,发现本发明中金属钴离子与六氨基三亚苯配位形成的Co 3(HITP) 2碳纤维纸材料的电化学性能更加优异;且形貌好、可控性好,有利于工业化生产。
为了使得导电MOF修饰的碳纤维纸材料具有更加优异的导电性以及提高对多硫化锂穿梭抑制效率,在本发明的一些实施方式中,花状金属-有机框架材料Co 3(HITP) 2均匀地、单层地附着在所述亲水性的碳纤维纸中碳纤维的表面上。
进一步的,所述亲水性的碳纤维纸中的每条碳纤维的表面上都均匀、单层地生长着花状金属-有机框架材料Co 3(HITP) 2
在本发明中,为了使Co 2+能够均匀的分布在碳纤维表面,使配位反应产物生长在碳纤维表面而非堆积覆盖,要对碳纤维纸进行亲水处理使其表面存在羟基-OH,作为碳纤维与MOF的锚点。因为只有生长在碳纤维表面,才能尽可能保证导电MOF与碳基质紧密接触,减少不同晶面的接触电阻,保证材料的导电性。
在本发明中,所述碳纤维纸可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得。优选由聚丙烯腈纤维制备得到的碳纤维纸。在本发明的一些实施方式中,选择具有均匀平整的碳纤维孔径分布,碳纤维纸的孔隙率为70~80%,定量为40~90g/m 2,厚度为0.15~0.25mm。
在本发明的第二个典型的实施方式中,提供所述导电MOF修饰的碳纤维纸材料的制备方法,该方法包括以下步骤:
碳纤维纸的预处理:将碳纤维纸材料进行亲水处理;
制备生长有Co 3(HITP) 2的碳纤维纸:二价钴离子Co 2+与六氨基三亚苯(HITP)在亲水碳纤维纸表面配位并原位生长;
去除结构杂质:去除未参与反应的Co 2+、配体HITP、溶剂DMF分子和碳纤维纸表面上游离的MOF分子。
在本发明中,碳纤维的亲水处理方法可以有多种,但是为了更好地保持碳纤维的完整性以及更好地提高亲水性能-均匀性,在本发明的一些实施方式中,提供了一种较为优选的方法,该方法包括以下步骤:
将碳纤维纸浸泡在由丙酮、异丙醇和水组成的混合液中,超声处理30~90min,然后洗涤、干燥,制备得到亲水处理后的碳纤维纸。
进一步的,所述混合液中,丙酮、异丙醇和水的体积比例为1:1:1。
进一步的,更加优选的处理方法包括以下步骤:将碳纤维纸浸泡在由丙酮、 异丙醇和水组成的混合液中,并用石蜡封口膜封口,超声处理60min,处理后取出并用去离子水超声清洗3次,每次5min,再用无水乙醇超声清洗3次,每次5min,将碳纤维纸转移至垫有滤纸的玻璃皿中,放入100℃烘箱干燥12h。
该亲水处理方法操作简单,效果显著,条件温和、无需高温强酸处理,有利于后续原位配位反应进行。
在本发明的制备生长有Co 3(HITP) 2的碳纤维纸的步骤中,为了使反应原料更好的溶解,反应之前,将反应配体HITP和二价钴盐溶解于包含有DMF和水(体积1:1)的混合液中。
进一步的,所述钴盐为Co(OAc) 2·4H 2O。
为了使得配位反应进行得更加充分,钴离子过量,在本发明的一些实施方式中,所述HITP和Co 2+的摩尔比例为1:(1.5~2.5);
进一步,所述HITP和Co 2+的摩尔比例为1:2。
为了至少能够使得Co 3(HITP) 2能够单层、均匀地附着在碳纤维纸表面上,在本发明的一些实施方式中,提供了一种碳纤维纸和配位原料的比例,面积为180~220mm 2的碳纤维纸对应着(0.010~0.022)mmol的HITP,可确保碳纤维纸上的每条纤维上都能附着一层花状Co 3(HITP) 2
经试验验证,当反应物浓度远大于碳纤维纸可承担浓度时,反应结束后,容器中游离粉末MOF质量远大于生长在碳纤维的质量。
为了促进配位反应的进行,使得反应效率提高,在本发明的一些实施方式中,反应温度为80~90℃,反应时间为22~26h;
进一步的,反应温度为85℃,反应时间为24h。
在本发明去除结构杂质的步骤中,具体方法包括:将附着有Co 3(HITP) 2 的碳纤维纸放入80~90℃水中静置22~26h,期间每隔6~8h更换一次水;将附着有Co 3(HITP) 2的碳纤维纸取出,移入加有丙酮的反应釜中(避免高温过程丙酮挥发),在80~90℃丙酮中静置22~26h,期间每隔6~8h后更换一次丙酮;最后在60℃干燥24h。
本发明的去除结构杂质的方法中,较高的温度(80~90℃)有利于溶剂分子DMF分子从多孔结构中脱出,而更高温度会破坏MOF结构。采用本发明的去除结构杂质的方法能够彻底的除去钴离子、配体、DMF分子以及游离在碳纤维纸表面的MOF分子,使制备得到的碳纤维纸材料纯度高。
本发明的导电MOF修饰的碳纤维纸材料的制备方法简单,效率高,制备工艺容易控制,条件温和,环境友好,生产成本低,有利于工业化生产。
在本发明的第三个典型的实施方式中,提供所述导电MOF修饰碳纤维纸材料在制备锂硫电池中的应用。尤其当采用其作为插层材料时,能够大大提高锂硫电池的电化学性能。
在本发明的第四个典型的实施方式中,提供一种锂硫电池插层材料,包括所述导电MOF修饰的碳纤维纸材料,作为锂硫电池插层材料,置于隔膜与正极之间,用于加速电子转移,同时对多硫化锂具有催化与阻隔作用。
在本发明的第五个典型的实施方式中,提供一种锂硫电池,负极为锂,正极为硫/碳复合物,同时将所述导电MOF修饰碳纤维纸材料作为插层。
在本发明的一些实施方式中,正极中的单质硫的质量分数为80%。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例一
一种生长有花状Co 3(HITP) 2的碳纤维纸材料,二价钴离子Co 2+与HITP在亲 水碳纤维纸表面配位并原位生长。
该材料的制备方法,包括以下步骤:
(1)碳纤维纸的亲水处理:用切片机裁切商用碳纤维纸(来源:理化(香港)有限公司型号为N0S1005的碳纤维纸)并存储备用(直径16mm),分别称取去离子水、丙酮、异丙醇各10ml,于50ml烧杯中混合均匀。取一定数量的碳纤维纸切片,使之在混合液中完全浸没,并用石蜡封口膜将此烧杯封口并超声处理60min。处理后取出并用去离子水超声清洗3次,每次5min,再用无水乙醇超声清洗3次,每次5min。将碳纤维纸转移至垫有滤纸的玻璃皿中,放入100℃烘箱干燥12h。
(2)制备生长有花状Co 3(HITP) 2的碳纤维纸:用移液枪分别移取DMF和去离子水各500μL于20ml玻璃瓶中混合均匀,并用分析天平分别称取HITP(0.02mmol,11.6mg)和Co(OAc) 2·4H 2O(0.04mmol,10mg)混合后倒入20ml玻璃瓶中,密封并超声10min,将预处理的碳纤维纸浸没在玻璃瓶中,放入烘箱85℃培育反应24h。取出后,等待玻璃瓶冷却至室温,取出碳纤维纸,再用去离子水冲洗,即得到生长有花状Co 3(HITP) 2的碳纤维纸。
(3)去除结构杂质:将生长有Co 3(HITP) 2的碳纤维纸放入20ml玻璃瓶中,加入适量去离子水,密封,并放入烘箱85℃静置,每隔8h更换一次去离子水,共更换3次。再使其置于反应釜(防止丙酮挥发)中,加入适量丙酮,并放入烘箱85℃静置,每隔8h更换一次丙酮,共更换3次。最后,将碳纤维纸转换至烘箱60℃干燥24h。
对比例一:
(1)碳纤维纸的亲水处理:同实施例一。
(2)制备生长有ZIF-67的碳纤维纸:用移液枪分别移取DMF和去离子水 各500μL于20ml玻璃瓶中混合均匀,并用分析天平分别称取二甲基咪唑(0.02mmol)和Co(OAc) 2·4H 2O(0.04mmol)混合后倒入20ml玻璃瓶中,密封并超声10min,将预处理的碳纤维纸浸没在玻璃瓶中,放入烘箱85℃培育反应24h。取出后,等待玻璃瓶冷却至室温,取出碳纤维纸,再用去离子水冲洗,即得到生长有ZIF-67的碳纤维纸。
(3)去除结构杂质:同实施例一。
对比例二
一种生长Cu 3(HITP) 2的碳纤维纸材料的制备方法,包括以下步骤:
(1)碳纤维纸的亲水处理:处理方法如实施例一。
(2)制备生长Cu 3(HITP) 2的碳纤维纸:用移液枪分别移取DMF和去离子水各500μL于20ml玻璃瓶中混合均匀,并用分析天平分别称取HITP(0.02mmol,11.6mg)和Cu(OAc) 2·H 2O(0.04mmol,约7.98mg)混合后倒入20ml玻璃瓶中,密封并超声10min,将预处理的碳纤维纸浸没在玻璃瓶中,放入烘箱85℃培育反应24h。取出后,等待玻璃瓶冷却至室温,取出碳纤维纸,再用去离子水冲洗,即得到生长Cu 3(HITP) 2的碳纤维纸。
(3)去除结构杂质:处理方法如实施例一。
对比例三
一种生长Ni 3(HITP) 2的碳纤维纸材料的制备方法,包括以下步骤:
(1)碳纤维纸的亲水处理:处理方法如实施例一。
(2)制备生长Ni 3(HITP) 2的碳纤维纸:用移液枪分别移取DMF和去离子水各500μL于20ml玻璃瓶中混合均匀,并用分析天平分别称取HITP(0.02mmol,11.6mg)和Ni(OAc) 2·4H 2O(0.04mmol,约9.95mg)混合后倒入20ml玻璃瓶中,密封并超声10min,将预处理的碳纤维纸浸没在玻璃瓶中,放入烘箱85℃ 培育反应24h。取出后,等待玻璃瓶冷却至室温,取出碳纤维纸,再用去离子水冲洗,即得到生长Ni 3(HITP) 2的碳纤维纸。
(3)去除结构杂质:处理方法如实施例一。
图1为实施例一中碳纤维纸和花状Co 3(HITP) 2修饰的碳纤维纸的SEM图,由图1可知,在碳纤维表面均匀的生长了一层花状Co 3(HITP) 2,该花状形态特征为:细狭柱、瓣前幅起愈趋尖锐状,花瓣紧凑,排列整齐,形状规则,长度为数微米,宽度为纳米级,长度和宽度均一性比较好。
图2为本发明实施例一中采用Co 3(HITP) 2修饰的碳纤维纸制成的锂硫电池用插层图片。
图3为本发明实施例一中碳纤维纸,Co 3(HITP) 2修饰的碳纤维纸,ZIF-67(含有相同元素但结构不同的不导电MOF)的电化学阻抗图。由图3可知,在导电性的碳纤维纸表面修饰导电的Co 3(HITP) 2后,电池的电化学电阻变化不大,有利于电化学反应。作为对比,修饰不导电的ZIF-67后,电化学电阻变化很大,降低了插层材料的导电性。
图4为本发明实施例一中的Co 3(HITP) 2修饰的碳纤维纸做插层的锂硫电池充放电循环对比图,测试条件为1C电流,电池负极为金属锂片,正极为80wt.%硫/碳复合物,隔膜为Celgard 2325隔膜,40μL电解液,充放电压在1.7~2.8V之间。由图4可知,采用Co 3(HITP) 2修饰的碳纤维纸做插层的锂硫电池充放电性能较好。
图5是对比例二中的Cu 3(HITP) 2修饰的碳纤维纸的SEM图,与图1相比,其形貌和分散性均较差,附着量较低。相比于实施例一中的花状Co 3(HITP) 2修饰的碳纤维纸材料,该材料的制备效率和电化学性能均较低。
图6是对比例三中的Ni 3(HITP) 2修饰的碳纤维纸的SEM图,与图1相比,其 花状形貌不明显,花瓣长短不一、花瓣疏密不匀,总体呈现较为稀疏的状态,附着量低。相比于实施例一中的花状Co 3(HITP) 2修饰的碳纤维纸材料,该材料的制备效率和电化学性能均较低。
实施例二
一种生长有花状Co 3(HITP) 2的碳纤维纸材料,该材料是通过以下方法制备得到:
(1)碳纤维纸的亲水处理:用切片机裁切商用碳纤维纸并存储备用(直径16mm),分别称取去离子水、丙酮、异丙醇各12ml,于50ml烧杯中混合均匀。取一定数量的碳纤维纸切片,使之在混合液中完全浸没,并用石蜡封口膜将此烧杯封口并超声处理75min。处理后取出并用去离子水超声清洗3次,每次4min,再用无水乙醇超声清洗3次,每次4min。将碳纤维纸转移至垫有滤纸的玻璃皿中,放入100℃烘箱干燥13h。
(2)制备生长有花状Co 3(HITP) 2的碳纤维纸:用移液枪分别移取DMF和去离子水各500μL于20ml玻璃瓶中混合均匀,并用分析天平分别称取HITP(0.022mmol,12.76mg)和Co(OAc) 2·4H 2O(0.044mmol,11mg)混合后倒入20ml玻璃瓶中,密封并超声10min,将预处理的碳纤维纸浸没在玻璃瓶中,放入烘箱80℃培育反应25h。取出后,等待玻璃瓶冷却至室温,取出碳纤维纸,再用去离子水冲洗,即得到生长有花状Co 3(HITP) 2的碳纤维纸。
(3)去除结构杂质:将生长有Co 3(HITP) 2的碳纤维纸放入20ml玻璃瓶中,加入适量去离子水,密封,并放入烘箱85℃静置,每隔8h更换一次去离子水,共更换3次。再使其置于反应釜(防止丙酮挥发)中,加入适量丙酮,并放入烘箱85℃静置,每隔8h更换一次丙酮,共更换3次。最后,将碳纤维纸转换至烘箱60℃干燥24h。
实施例三
一种生长有花状Co 3(HITP) 2的碳纤维纸材料,该材料是通过以下方法制备得到:
(1)碳纤维纸的亲水处理:用切片机裁切商用碳纤维纸并存储备用(直径16mm),分别称取去离子水、丙酮、异丙醇各10ml,于50ml烧杯中混合均匀。取一定数量的碳纤维纸切片,使之在混合液中完全浸没,并用石蜡封口膜将此烧杯封口并超声处理55min。处理后取出并用去离子水超声清洗3次,每次5min,再用无水乙醇超声清洗3次,每次5min。将碳纤维纸转移至垫有滤纸的玻璃皿中,放入100℃烘箱干燥10h。
(2)制备生长有花状Co 3(HITP) 2的碳纤维纸:用移液枪分别移取DMF和去离子水各500μL于20ml玻璃瓶中混合均匀,并用分析天平分别称取HITP(0.0182mmol,10.44mg)和Co(OAc) 2·4H 2O(0.036mmol,9mg)混合后倒入20ml玻璃瓶中,密封并超声10min,将预处理的碳纤维纸浸没在玻璃瓶中,放入烘箱90℃培育反应22h。取出后,等待玻璃瓶冷却至室温,取出碳纤维纸,再用去离子水冲洗,即得到生长有花状Co 3(HITP) 2的碳纤维纸。
(3)去除结构杂质:将生长有Co 3(HITP) 2的碳纤维纸放入20ml玻璃瓶中,加入适量去离子水,密封,并放入烘箱85℃静置,每隔8h更换一次去离子水,共更换3次。再使其置于反应釜(防止丙酮挥发)中,加入适量丙酮,并放入烘箱85℃静置,每隔8h更换一次丙酮,共更换3次。最后,将碳纤维纸转换至烘箱60℃干燥24h。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (12)

  1. 一种锂硫电池插层材料,其特征是,包括导电MOF修饰的碳纤维纸材料,作为锂硫电池插层材料,置于隔膜与正极之间,用于加速电子转移,同时对多硫化锂具有催化与阻隔作用;
    其中,所述导电MOF修饰的碳纤维纸材料,包括亲水性的碳纤维纸和金属-有机框架材料Co 3(HITP) 2,所述金属-有机框架材料Co 3(HITP) 2附着在所述亲水性的碳纤维纸中碳纤维的表面上;
    所述金属-有机框架材料Co 3(HITP) 2的形态为花状形态,特征是:细狭柱、瓣前幅起愈趋尖锐状,花瓣紧凑,排列整齐,长度为数微米,宽度为纳米级;
    所述导电MOF修饰的碳纤维纸材料是通过以下方法制备得到的:
    碳纤维纸的预处理:将碳纤维纸材料进行亲水处理;将碳纤维纸浸泡在由丙酮、异丙醇和水组成的混合液中,超声处理30~90min,然后洗涤、干燥,制备得到亲水处理后的碳纤维纸;
    制备生长有Co 3(HITP) 2的碳纤维纸:二价钴离子Co 2+与六氨基三亚苯在亲水碳纤维纸表面配位并原位生长;反应之前,将反应配体HITP和二价钴盐溶解于包含有DMF和水的混合液中;反应温度为80~90℃,反应时间为22~26h;
    去除结构杂质:去除未参与反应的Co 2+、HITP、溶剂DMF分子、和/或碳纤维纸表面上游离的MOF分子。
  2. 如权利要求1所述的锂硫电池插层材料,其特征是,花状金属-有机框架材料Co 3(HITP) 2均匀地、单层地附着在所述亲水性的碳纤维纸中碳纤维的表面上。
  3. 如权利要求1所述的锂硫电池插层材料,其特征是,所述碳纤维纸的孔隙率为70~80%,定量为40~90g/m 2,厚度为0.15~0.25mm。
  4. 如权利要求1所述的锂硫电池插层材料,其特征是,所述混合液中,丙 酮、异丙醇和水的体积比例为1:1:1。
  5. 如权利要求1所述的锂硫电池插层材料,其特征是,碳纤维纸的亲水处理方法具体包括以下步骤:将碳纤维纸浸泡在由丙酮、异丙醇和水组成的混合液中,并用石蜡封口膜封口,超声处理60min,处理后取出并用去离子水超声清洗3次,每次5min,再用无水乙醇超声清洗3次,每次5min,将碳纤维纸转移至垫有滤纸的玻璃皿中,放入100℃烘箱干燥12h。
  6. 如权利要求1所述的锂硫电池插层材料,其特征是,所述钴盐为Co(OAc) 2·4H 2O。
  7. 如权利要求1所述的锂硫电池插层材料,其特征是,所述HITP和Co 2+的摩尔比例为1:(1.5~2.5)。
  8. 如权利要求7所述的锂硫电池插层材料,其特征是,所述HITP和Co 2+的摩尔比例为1:2。
  9. 如权利要求1所述的锂硫电池插层材料,其特征是,面积为180~220mm 2的碳纤维纸对应着(0.010~0.022)mmol的HITP。
  10. 如权利要求1所述的锂硫电池插层材料,其特征是,反应温度为85℃,反应时间为24h。
  11. 如权利要求1所述的锂硫电池插层材料,其特征是,去除结构杂质的方法包括:将附着有Co 3(HITP) 2的碳纤维纸放入80~90℃水中静置22~26h,期间每隔6~8h更换一次水;将附着有Co 3(HITP) 2的碳纤维纸取出,在80~90℃丙酮中静置22~26h,期间每隔6~8h后更换一次丙酮;最后干燥。
  12. 一种锂硫电池,其特征是,负极为锂,正极为硫/碳复合物,同时将权利要求1~11中任一项所述的锂硫电池插层材料作为插层。
PCT/CN2021/092142 2020-05-18 2021-05-07 一种锂硫电池插层材料及锂硫电池 WO2021233132A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/615,974 US20220328837A1 (en) 2020-05-18 2021-05-07 Interlayer material for lithium-sulfur battery, and lithium-sulfur battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010421996.9A CN111554936B (zh) 2020-05-18 2020-05-18 一种锂硫电池用导电mof修饰碳纤维纸插层材料
CN202010421996.9 2020-05-18

Publications (1)

Publication Number Publication Date
WO2021233132A1 true WO2021233132A1 (zh) 2021-11-25

Family

ID=72006456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092142 WO2021233132A1 (zh) 2020-05-18 2021-05-07 一种锂硫电池插层材料及锂硫电池

Country Status (3)

Country Link
US (1) US20220328837A1 (zh)
CN (1) CN111554936B (zh)
WO (1) WO2021233132A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554936B (zh) * 2020-05-18 2021-03-26 齐鲁工业大学 一种锂硫电池用导电mof修饰碳纤维纸插层材料
CN112421133A (zh) * 2020-11-02 2021-02-26 广东工业大学 一种石墨烯/功能化金属-有机框架材料复合插层及其制备方法和应用
CN113410461B (zh) * 2021-02-20 2022-11-04 西安理工大学 锂硫电池自支撑电极MOFs/碳纸复合材料的制备方法及应用
CN114164708B (zh) * 2021-11-11 2022-08-02 江南大学 一种基于导电mof材料修饰的电磁屏蔽纸及其制备方法
CN114307254B (zh) * 2022-01-07 2023-10-24 四川农业大学 水下疏油/油下疏水可切换的油水分离材料及其制备方法
CN115162053B (zh) * 2022-07-26 2023-08-29 陕西煤业化工技术研究院有限责任公司 一种高导电性碳纤维纸及其制备方法
CN115425237A (zh) * 2022-08-15 2022-12-02 南开大学 一种锂-氧气电池双金属有机框架正极催化剂及制备方法
CN115651240B (zh) * 2022-10-26 2023-09-08 西湖大学 基于MOFs框架的阴离子交换膜及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552282A (zh) * 2015-11-13 2016-05-04 北京理工大学 基于功能性碳纤维布作为正极阻挡层的锂硫电池
CN109216045A (zh) * 2018-09-13 2019-01-15 辽宁大学 基于碳纤维布原位生长的cc@zif-67/8-ppy复合材料及其制备方法和应用
CN109742439A (zh) * 2018-12-24 2019-05-10 肇庆市华师大光电产业研究院 一种新型锂硫电池多孔夹层材料、制备方法及应用
CN110571418A (zh) * 2019-09-05 2019-12-13 深圳大学 一种锂硫电池正极材料及其制备方法
CN111554936A (zh) * 2020-05-18 2020-08-18 齐鲁工业大学 一种锂硫电池用导电mof修饰碳纤维纸插层材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900880B (zh) * 2015-06-03 2017-07-11 中国地质大学(武汉) 一种锂硫电池复合正极材料及其制备方法
CN104900830A (zh) * 2015-06-29 2015-09-09 北京理工大学 一种碳纤维布作为阻挡层的锂硫电池
CN107394089B (zh) * 2017-07-31 2020-01-10 北京理工大学 一种锂硫电池用zif颗粒和碳纳米管共修饰的隔膜材料
CN109709160B (zh) * 2017-10-26 2020-10-02 中国科学院福建物质结构研究所 一种电子导电金属有机框架薄膜及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552282A (zh) * 2015-11-13 2016-05-04 北京理工大学 基于功能性碳纤维布作为正极阻挡层的锂硫电池
CN109216045A (zh) * 2018-09-13 2019-01-15 辽宁大学 基于碳纤维布原位生长的cc@zif-67/8-ppy复合材料及其制备方法和应用
CN109742439A (zh) * 2018-12-24 2019-05-10 肇庆市华师大光电产业研究院 一种新型锂硫电池多孔夹层材料、制备方法及应用
CN110571418A (zh) * 2019-09-05 2019-12-13 深圳大学 一种锂硫电池正极材料及其制备方法
CN111554936A (zh) * 2020-05-18 2020-08-18 齐鲁工业大学 一种锂硫电池用导电mof修饰碳纤维纸插层材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI JING; JIAO CAIMING; ZHU JINGHUI; ZHONG LIUBIAO; KANG TUO; ASLAM SEHRISH; WANG JIANYONG; ZHAO SANFEI; QIU YEJUN: "Hybrid co-based MOF nanoboxes/CNFs interlayer as microreactors for polysulfides-trapping in lithium-sulfur batteries", JOURNAL OF ENERGY CHEMISTRY, ELSEVIER, AMSTERDAM, NL, vol. 57, 8 April 2020 (2020-04-08), AMSTERDAM, NL , pages 469 - 476, XP086548206, ISSN: 2095-4956, DOI: 10.1016/j.jechem.2020.03.024 *

Also Published As

Publication number Publication date
CN111554936A (zh) 2020-08-18
US20220328837A1 (en) 2022-10-13
CN111554936B (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2021233132A1 (zh) 一种锂硫电池插层材料及锂硫电池
Liu et al. Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes
CN104201389B (zh) 一种锂硒电池正极的制备方法
Li et al. Application and exploration of nanofibrous strategy in electrode design
CN103560235A (zh) 石墨烯包覆的硫/多孔碳复合正极材料及其制备方法
CN112279235B (zh) 一种金属掺杂的三维框架结构分级多孔生物炭及其制备方法
CN112531281A (zh) 一种基于纳米金属氢氧化物-碳复合材料的锂硫电池用改性隔膜的制备方法
CN103035893A (zh) 一种锂硫电池正极材料的制备方法
CN111224076B (zh) 一种抑制锂硫电池中聚硫离子飞梭的电极及制备和应用
CN102163711B (zh) 采用介孔碳负载纳米粒子制备锂离子电池负极材料的方法
CN110957455A (zh) 一种锂硫电池用功能化隔膜及其制备方法
CN113871598B (zh) 一种mof复合材料及其制备方法与应用
CN102386382A (zh) Cmk-5型介孔炭-纳米无机物复合材料、制法及应用
KR101348200B1 (ko) 실리콘 또는 실리콘산화물을 포함하는 실리콘계 탄소나노섬유복합체, 상기 복합체 제조방법 및 상기 복합체를 포함하는 리튬이차전지
WO2024114471A1 (zh) 一种具有双梯度结构的锂/钠离子电池负极及其制备方法
CN111146424A (zh) 一种金属硫化物/碳复合材料及其制备方法及其应用
CN110048124B (zh) 一种用于锂硫电池的多硫化物阻挡层及其制备方法
CN114057183B (zh) 一种氮掺杂的枝状多孔碳纳米管的制备方法
CN208923279U (zh) 一种金属锂电池、及其集流体和负极
CN110875467B (zh) 一种掺氮的复合平面金属锂阳极、制备及其在锂金属电池中的应用
CN112447953A (zh) 一种金属硒硫化物纳米晶@多孔碳球材料及其制备和在锂金属电池中的应用
Ren et al. Rational design of nanoarray structures for lithium–sulfur batteries: recent advances and future prospects
CN115347323B (zh) 一种应用于Li-S电池隔膜的BC负载MOFs衍生CNF/CoP复合材料及其制备与应用方法
CN114843524A (zh) 一种改性集流体及包括该改性集流体的无负极钠金属电池
CN115377607A (zh) 一种BC负载MOFs衍生CNF/Co-CoxSy-NC复合材料及其制备与应用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809496

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21809496

Country of ref document: EP

Kind code of ref document: A1