WO2021230194A1 - 組成物 - Google Patents

組成物 Download PDF

Info

Publication number
WO2021230194A1
WO2021230194A1 PCT/JP2021/017684 JP2021017684W WO2021230194A1 WO 2021230194 A1 WO2021230194 A1 WO 2021230194A1 JP 2021017684 W JP2021017684 W JP 2021017684W WO 2021230194 A1 WO2021230194 A1 WO 2021230194A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutadiene
rubber
mass
butadiene
compound
Prior art date
Application number
PCT/JP2021/017684
Other languages
English (en)
French (fr)
Inventor
恵太 中川
和志 浦山
秀明 高木
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2021230194A1 publication Critical patent/WO2021230194A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/02Rubber derivatives containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present disclosure relates to compositions, and more particularly to compositions containing polybutadiene.
  • Patent Document 1 a method of polymerizing 1,3-butadiene in the presence of a catalyst in an inert solvent such as a hydrocarbon is known (for example, Patent Document 1). , 2).
  • Patent Documents 1 and 2 describe cis 1,4-polymerization of 1,3-butadiene in the presence of 1,2-polybutadiene and a cobalt-based catalyst or nickel-based catalyst, followed by 1 of 1,3-butadiene.
  • 2-It is disclosed that a vinyl cis-polybutadiene rubber is obtained by polymerization.
  • the crosslinked rubber obtained by cross-linking polybutadiene is required to have excellent crack growth resistance and rigidity from the viewpoint of durability and economy. Further, the crosslinked rubber containing carbon black as a reinforcing agent tends to have a larger energy loss (hysteresis loss) at the time of deformation than the rubber containing silica instead of carbon black. On the other hand, as the crosslinked rubber, it is desired that the hysteresis loss is small even when carbon black is blended.
  • the present disclosure has been made in view of the above problems, and the main object of the present invention is to provide a composition capable of obtaining a crosslinked rubber having excellent crack growth resistance and rigidity while maintaining good low hysteresis loss performance. do.
  • compositions are provided in order to solve the above problems.
  • It is composed of (A) polybutadiene obtained by polymerizing 1,3-butadiene in the presence of 1,2-polybutadiene and a lanthanoid-based catalyst, and (B) halogenated isoprene-based rubber and epoxidized diene-based rubber.
  • a composition comprising at least one modified rubber selected from the group.
  • composition of the present disclosure by containing (A) polybutadiene and (B) modified rubber, a crosslinked rubber having excellent crack growth resistance and rigidity can be obtained while maintaining good low hysteresis loss performance. Can be done.
  • composition contains (A) polybutadiene and (B) a modified rubber. Each component will be described in detail below.
  • step Y a lanthanoid-based catalyst
  • step X 2-Polybutadiene and 1,4-Polybutadiene.
  • step X a step of obtaining 1,2-polybutadiene
  • the "rubber component” contained in the composition refers to a polymer capable of obtaining a cured product exhibiting rubber elasticity by thermosetting. This cured product exhibits a property of causing a large deformation (for example, a deformation that expands more than twice when stretched at room temperature) with a small force at room temperature, and rapidly returning to almost the original shape when the force is removed.
  • Crosslinked rubber refers to a cured product obtained by thermally curing a rubber component.
  • Step X is a step of producing 1,2-polybutadiene by polymerizing 1,3-butadiene in the presence of a cobalt-based catalyst.
  • This step X includes a step of preparing a mixture of 1,3-butadiene and an organic solvent, and a step of polymerizing 1,3-butadiene (more specifically, 1,2 polymerization) in the presence of a cobalt-based catalyst. It includes a step of stopping the polymerization reaction.
  • the 1,2-polybutadiene obtained by the polymerization reaction in step X is also referred to as “1,2-polybutadiene (X)”.
  • 1,2 polymerization is the ratio of the monomer unit which the bonding mode of 1,3-butadiene is 1,2 bond in the butadiene polymer produced by the polymerization of 1,3-butadiene. Refers to polymerization in which is more than 50% by mass.
  • the “1,2-polybutadiene” refers to a butadiene polymer in which the proportion of monomer units in which the bonding mode of 1,3-butadiene is 1,2 bonds is more than 50% by mass.
  • the organic solvent used in this step is a solvent containing a hydrocarbon or a halogenated hydrocarbon as a main component.
  • hydrocarbons include saturated aliphatic hydrocarbons having 4 to 10 carbon atoms such as butane, pentane, hexane and heptane; saturated alicyclic hydrocarbons having 6 to 20 carbon atoms such as cyclopentane and cyclohexane; 1-.
  • Monoolefins such as butene and 2-butene
  • aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned.
  • halogenated hydrocarbon examples include methylene chloride, chloroform, carbon tetrachloride, trichlorethylene, perchloroethylene, 1,2-dichloroethane, chlorobenzene, brombenzene, chlorotoluene and the like.
  • hydrocarbons can be preferably used as the organic solvent.
  • the phrase "mainly composed of a hydrocarbon or a halogenated hydrocarbon” means that the amount of the hydrocarbon or the halogenated hydrocarbon is more than 50% by mass, preferably 70, based on the total amount of the organic solvent used in this step. It is by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the amount of 1,3-butadiene with respect to the total amount of 1,3-butadiene and the organic solvent is preferably 0.5% by mass or more, preferably 2% by mass or more. Is more preferable.
  • the amount of 1,3-butadiene with respect to the total amount of 1,3-butadiene and the organic solvent is preferably 50% by mass or less, more preferably 30% by mass or less, and 15% by mass or less. Is even more preferable.
  • the temperature at which the mixture of 1,3-butadiene and the organic solvent is prepared is preferably 10 to 50 ° C, more preferably 20 to 40 ° C.
  • the cobalt-based catalyst used contains a cobalt compound.
  • the cobalt compound is preferably a cobalt salt, and specifically, a cobalt halide salt such as cobalt chloride, cobalt bromide, and cobalt iodide; an organic acid cobalt salt such as cobalt octylate, cobalt versatic acid, and cobalt naphthenate. , Etc. can be mentioned. Of these, it is preferable to use an organic acid cobalt salt as the cobalt compound in that it does not contain a halogen atom.
  • the ratio of the cobalt compound used is preferably such that the molar ratio of 1,3-butadiene (1,3-butadiene / Co) to the cobalt atom of the cobalt compound is 5,000 or more.
  • the proportion of the cobalt compound used is preferably such that 1,3-butadiene / Co (molar ratio) is 150,000 or less.
  • 1,3-butadiene / Co (molar ratio) By setting 1,3-butadiene / Co (molar ratio) to 150,000 or less, it is preferable in that a decrease in polymerization activity can be suppressed.
  • the 1,3-butadiene / Co (molar ratio) is more preferably 10,000 or more.
  • the 1,3-butadiene / Co (molar ratio) is more preferably 100,000 or less.
  • the cobalt-based catalyst used in step X preferably further contains a phosphine compound and an organoaluminum compound together with the cobalt compound.
  • the phosphine compound is a phosphine compound having one branched aliphatic hydrocarbon group having 3 or more carbon atoms or an alicyclic hydrocarbon group having 5 or more carbon atoms and two aromatic hydrocarbon groups. Is preferable.
  • the branched aliphatic hydrocarbon group having 3 or more carbon atoms is preferably a branched alkyl group having 3 to 10 carbon atoms.
  • the alicyclic hydrocarbon group having 5 or more carbon atoms is preferably a substituted or unsubstituted cycloalkyl group having 5 to 10 carbon atoms.
  • the aromatic hydrocarbon group is preferably a phenyl group.
  • Preferred specific examples of the phosphine compound include diphenylcyclohexylphosphine, diphenylisopropylphosphine, diphenylisobutylphosphine, diphenylt-butylphosphine, diphenylcyclopentylphosphine, diphenyl (4-methylcyclohexyl) phosphine, diphenylcycloheptylphosphine, diphenylcyclooctylphosphine and the like.
  • the phosphine compound one type can be used alone or two or more types can be used in combination.
  • the blending ratio of the phosphine compound is preferably 1 to 5 mol, more preferably 1.5 to 4 mol, with respect to 1 mol of the cobalt compound.
  • organoaluminum compounds examples include aluminoxane (methylaminoxane and the like) and compounds formed by contacting trialkylaluminum with water (hereinafter referred to as "aluminum hydride compound").
  • aluminoxane one synthesized in advance may be used, or one synthesized in a polymerization system may be used.
  • the contact method between trialkylaluminum and water is such that water is contacted with an inert organic solvent solution of trialkylaluminum in any of steam, liquid and solid (ice) states. good. Further, the contact may be carried out as a dissolved state, a dispersed state or an emulsified state in the inert organic solvent, or as a gas state or a mist state existing in the inert gas.
  • the ratio of the organoaluminum compound used is preferably such that the molar ratio of 1,3-butadiene (1,3-butadiene / Al) to the aluminum atom of the organoaluminum compound is 500 or more. ..
  • 1,3-butadiene / Al (molar ratio) is 500 or more, the reaction easily proceeds sufficiently.
  • the proportion of the organoaluminum compound used is preferably such that 1,3-butadiene / Al is 4,000 or less. When 1,3-butadiene / Al (molar ratio) is 4,000 or less, the polymerization activity tends to be high, which is preferable.
  • the amount of 1,3-butadiene / Al is more preferably 800 or more. Further, 1,3-butadiene / Al is more preferably 2,000 or less.
  • the reaction temperature in 1 and 2 polymerization is usually ⁇ 20 ° C. to 80 ° C., preferably 10 ° C. to 60 ° C.
  • the reaction time is preferably 5 minutes to 6 hours, more preferably 10 to 3 hours.
  • the polymerization reaction may be a batch type or a continuous type.
  • the concentration of 1,3-butadiene in the reaction solution is usually 5 to 80% by mass, preferably 8 to 25% by mass.
  • measures may be taken to suppress the mixing of inactivating compounds such as oxygen, water, or carbon dioxide in the polymerization system.
  • step X it is preferable to terminate the 1,2 polymerization reaction by adding an organoaluminum compound to the polymerization system after the syndiotactic-1, 2 polymerization reaction reaches a desired reaction conversion rate.
  • Examples of the organoaluminum compound used for stopping the polymerization reaction include an alkylaluminum compound and an aluminum hydride compound. Specific examples of these include alkylaluminum compounds such as trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-t-butylaluminum, and tripentyl. Examples thereof include aluminum, trihexyl aluminum, tricyclohexyl aluminum, and trioctyl aluminum.
  • the aluminum hydride compound examples include, for example, diethyl aluminum hydride, di-n-propyl aluminum hydride, di-n-butyl aluminum hydride, diisobutyl aluminum hydride, dihexyl aluminum hydride, and diisohexyl aluminum hydride. , Dioctyl aluminum hydride, diisooctyl aluminum hydride and the like.
  • the organoaluminum compound used for terminating the 1, 2 polymerization reaction is at least one selected from the group consisting of diisobutylaluminum hydride, triethylaluminum, triisobutylaluminum, and diethylaluminum hydride. preferable.
  • the organoaluminum compound it can be used alone or in combination of two or more.
  • the ratio of the organoaluminum compound used is preferably 1 mol or more, more preferably 5 mol or more, per 1 mol of the cobalt compound used in the 1,2 polymerization reaction.
  • the proportion of the organoaluminum compound used is preferably 20 mol or less, and more preferably 15 mol or less, per 1 mol of the cobalt compound used in the 1,2 polymerization reaction.
  • the temperature at which the polymerization termination reaction is carried out is usually ⁇ 20 ° C. to 80 ° C., preferably 10 ° C. to 60 ° C.
  • the reaction conversion rate in the 1,2 polymerization reaction is preferably 50% or more, more preferably 55% or more, still more preferably 60% or more.
  • 1,2-syndiotactic polybutadiene can be produced as 1,2-polybutadiene (X).
  • the melting point of the obtained 1,2-polybutadiene (X) is preferably 60 ° C. or higher, more preferably 100 ° C. or higher, and even more preferably 120 ° C. or higher.
  • the melting point of 1,2-polybutadiene (X) is preferably 150 ° C. or lower, more preferably 145 ° C. or lower, and even more preferably 140 ° C. or lower.
  • the melting point of 1,2-polybutadiene (X) to 60 ° C. or higher, it is preferable in that the low hysteresis loss performance can be sufficiently increased. Further, it is preferable to set the melting point of 1,2-polybutadiene (X) to 150 ° C. or lower in that the processability of the composition can be improved.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) is preferably 50,000 or more, preferably 70,000 or more. Is more preferable, and 100,000 or more is particularly preferable.
  • the Mw of 1,2-polybutadiene (X) is preferably 500,000 or less, more preferably 400,000 or less, and even more preferably 350,000 or less.
  • the content of 1,2-vinyl bond (1,2-vinyl bond content) in 1,2-polybutadiene (X) is preferably 70% or more, more preferably 80% or more, and 90%. It is more preferably more than that, and even more preferably 95% or more. In particular, when the content of the 1,2-vinyl bond is 90% or more, it is preferable in that the low hysteresis loss performance of the crosslinked rubber obtained by using the present composition can be further improved.
  • the 1,2-vinyl bond content is a value measured using an infrared spectrophotometer.
  • Step Y 1,4-polybutadiene is produced by polymerizing 1,3-butadiene (cis-1,4 polymerization) in the presence of 1,2-polybutadiene and a lanthanoid-based catalyst.
  • 1,2-polybutadiene that is, 1,2-polybutadiene (X)
  • step X 1,2-polybutadiene
  • the production process can be simplified by adding a lanthanide-based catalyst to the reaction solution obtained in the above step X and adding 1,3-butadiene as necessary to polymerize 1,3-butadiene.
  • step Y by adding isoprene at the time of performing cis-1,4 polymerization, isoprene can be polymerized in addition to 1,3-butadiene.
  • 1,4-polybutadiene obtained by the polymerization reaction in step Y is also referred to as "1,4-polybutadiene (Y)".
  • cis-1,4 polymerization means that in the butadiene polymer produced by the polymerization of 1,3-butadiene, the bonding mode of 1,3-butadiene is cis-1,4 bond. Polymerization in which the proportion of monomer units is more than 50% by mass.
  • 1,4-Polybutadiene means that the ratio of the monomer unit in which the bond mode of 1,3-butadiene is 1,4 bond (including cis-1,4 bond and trans-1,4 bond) is 50% by mass.
  • a super butadiene polymer is
  • the lanthanoid catalyst used in step Y contains a lanthanoid compound.
  • a lanthanoid compound is a compound having at least one element belonging to a lanthanoid.
  • the lanthanoid compound may be a reaction product of a compound having a lanthanoid and a Lewis base.
  • the lanthanoid contained in the lanthanoid compound is preferably at least one selected from the group consisting of neodymium, praseodymium, cerium, lanthanum, gadolinium and samarium, and neodymium is particularly preferable.
  • Specific examples of the lanthanoid compound include lanthanoid carboxylates, alcoholides, ⁇ -diketone complexes, phosphates, phosphites and the like.
  • lanthanoid carboxylate examples include the compound represented by the formula (1); "(R 1- CO 2 ) 3 M" (where M is a lanthanoid and R 1 has 1 to 20 carbon atoms. It is a monovalent hydrocarbon group.).
  • R 1 is preferably a saturated or unsaturated monovalent chain hydrocarbon group, and is preferably a linear or branched alkyl group or a cycloalkyl group. Carbonyl group in the formula (1), primary which R 1 has, bonded to secondary or tertiary carbon atom.
  • M neodymium, praseodymium, cerium, lanthanum, gadolinium or samarium are preferable, and neodymium is more preferable.
  • the compound represented by the above formula (1) examples include octanoic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, benzoic acid, naphthenic acid, and trade name "versatic acid” (manufactured by Shell Chemical Co., Ltd., carboxyl). Examples thereof include salts such as carboxylic acid) whose group is bonded to a tertiary carbon atom. Of these, the compound represented by the above formula (1) is preferably a salt of versatic acid, 2-ethylhexanoic acid or naphthenic acid.
  • alkoxide of lanthanoid has the formula (2); (R 2 O ) compound represented by the 3 M (however, M is a lanthanoid, R 2 is a monovalent hydrocarbon group having 1 to 20 carbon atoms Is mentioned.).
  • R 2 include a monovalent chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • R 2 is preferably a monovalent aromatic hydrocarbon group.
  • groups of formula (2) in "R 2 O-" for example, 2-ethyl - hexyl alkoxy group, oleyl alkoxy group, stearyl alkoxy group, a phenoxy group, a benzyl alkoxy group.
  • R 2 O- is 2-ethyl - hexyl alkoxy group, or a benzyl alkoxy group are preferred.
  • the explanation of the above formula (1) is applied to the explanation of M and the preferable example.
  • the ⁇ -diketone complex of the lanthanoid include an acetylacetone complex, a benzoylacetone complex, a propionitrile acetone complex, a valeryl acetone complex, an ethyl acetylacetone complex and the like. Of these, an acetylacetone complex or an ethylacetylacetone complex is preferable.
  • lanthanoid phosphate or phosphite include bis phosphate (2-ethylhexyl) bis phosphate (1-methylheptyl), bis phosphate (p-nonylphenyl), and bis phosphate (polyethylene glycol).
  • the phosphate or phosphite includes bis phosphate (2-ethylhexyl), bis phosphate (1-methylheptyl), 2-ethylhexylphosphonate mono-2-ethylhexyl or bis (2-ethylhexyl). ) Phosphoric acid salts are preferred.
  • the lanthanoid compound used in step Y is preferably a carboxylate or a phosphate, and more preferably a carboxylate.
  • neodymic phosphate or neodymium carboxylate is more preferable, and neodymic versatic acid salt or neodymium 2-ethylhexanoate is particularly preferable.
  • the lanthanoid compound and a Lewis base may be mixed, or the lanthanoid compound and a Lewis base may be reacted to obtain a reaction product.
  • the amount of the Lewis base used is preferably 0 to 30 mol, more preferably 1 to 10 mol, with respect to 1 mol of the lanthanide contained in the lanthanoid compound.
  • Lewis bases include acetylacetone, tetrahydrofuran, pyridine, N, N-dimethylformamide, thiophene, diphenyl ether, triethylamine, organophosphorus compounds, monovalent or divalent alcohols and the like.
  • one type of lanthanoid compound may be used alone or two or more types may be used in combination.
  • the ratio of the lanthanoid compound used in the step Y is preferably 0.00001 to 1.0 mmol, preferably 0.0001 to 0.5 mmol, based on 100 g of 1,3-butadiene used in the step Y. Is more preferable. It is preferable that the ratio of the lanthanoid compound used is 0.00001 mmol or more because the polymerization activity can be sufficiently increased. Further, by setting the ratio of the lanthanoid compound to 1.0 mmol or less, it is possible to prevent the catalyst concentration from becoming too high, and it is preferable that a decalcification step is not required.
  • the lanthanoid catalyst used in step Y preferably further contains an organoaluminum compound and a halogen compound together with the lanthanoid compound.
  • the organoaluminum compound it is preferable to use at least one selected from the group consisting of aluminoxane, an alkylaluminum compound and an aluminum hydride compound. Among these, it is particularly preferable to use at least one compound selected from the group consisting of an alkylaluminum compound and an aluminum hydride compound (hereinafter referred to as "aluminum compound (L)") in combination with aluminoxane.
  • aluminum compound (L) an aluminum hydride compound
  • aluminoxane used in this step include a compound represented by the following formula (3) and a compound represented by the following formula (4). Also described in Fine Chemicals, 23, (9) 5 (1994), J.Am.Chem.Soc., 115,4971 (1993), and J.Am.Che.Soc., 117,6465 (1995). You may use an aggregate of aluminoxane that is present.
  • R 3 and R 4 are independently monovalent hydrocarbon groups having 1 to 20 carbon atoms, and k and m are independently integers of 2 or more.
  • equation (3) a plurality of R 3 in the case of .m is 2 or more identical groups or different groups from each other, a plurality of R 4 in the formula (4) is the same group or different groups from each other .
  • R 4 in the formula (3) R 3 and the formula in (4) for example a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, t- butyl group, a hexyl group, isohexyl group, octyl Groups, isooctyl groups and the like can be mentioned.
  • a methyl group, an ethyl group, an isobutyl group or a t-butyl group is preferable, and a methyl group is particularly preferable.
  • k and m are preferably integers of 4 to 100.
  • aluminoxane examples include methylaluminoxane (hereinafter also referred to as “MAO”), ethylaluminoxane, n-propylaluminoxane, n-butylaluminoxane, isobutylaluminoxane, t-butylaluminoxane, hexylaluminoxane, isohexylaluminoxane and the like. Can be done. Among these, MAO is preferable.
  • the aluminoxane one type can be used alone or two or more types can be used in combination.
  • the ratio of aluminoxane used shall be such that the amount of aluminum (Al) contained in aluminoxane is 1 to 500 mol with respect to 1 mol of the lanthanoid compound used in the 1,4 polymerization reaction.
  • the amount is preferably 3 to 250 mol, more preferably 5 to 200 mol, and even more preferably 5 to 200 mol.
  • the aluminum compound (L) include the alkylaluminum compound and the hydrided aluminum compound exemplified in the description of the stopping step.
  • the aluminum compound (L) one type may be used alone, or two or more types may be used in combination.
  • the aluminum compound (L) is preferably at least one selected from the group consisting of diisobutylaluminum hydride, triethylaluminum, triisobutylaluminum, and diethylaluminum hydride.
  • the ratio of the aluminum compound (L) to be used is 1 to 700 mol with respect to 1 mol of the lanthanoid compound used in the 1,4 polymerization reaction. It is preferable to use 3 to 500 mol, and more preferably 3 to 500 mol.
  • the halogen compound used as one component of the lanthanoid catalyst is preferably a chlorine-containing compound, and more preferably at least one selected from the group consisting of silicon chloride compounds and hydrocarbon compounds.
  • silicon chloride compound used include trimethylsilyl chloride, triethylsilyl chloride, dimethylsilyl dichloride and the like. Of these, trimethylsilyl chloride can be preferably used as the silicon chloride compound.
  • Specific examples of the chloride hydrocarbon compound include methyl chloride, butyl chloride, hexyl chloride, octyl chloride, chloroform, dichloromethane, benziliden chloride and the like. Of these, it is preferable to use methyl chloride, chloroform or dichloromethane.
  • the ratio of the halogen compound used is such that the molar ratio of the halogen atom (halogen atom / lanthanoid compound) of the halogen compound to 1 mol of the lanthanoid compound is 0.5 to 3.0. Is preferable, 1.0 to 2.5 is more preferable, and 1.2 to 1.8 is even more preferable.
  • the polymerization catalytic activity can be sufficiently increased. Further, by setting the molar ratio to 3.0 or less, the halogen compound can be prevented from becoming a catalytic poison.
  • the reaction temperature at the time of 1,4 polymerization in step Y is preferably ⁇ 30 ° C. to 200 ° C., more preferably 0 ° C. to 150 ° C.
  • the type of the polymerization reaction is not particularly limited, and it may be carried out by using a batch type reactor or by using a multi-stage continuous type reactor or the like.
  • the monomer concentration in the solvent is preferably 5 to 50% by mass, more preferably 7 to 35% by mass. ..
  • the polymerization system has an inactivating action such as oxygen, water or carbon dioxide. It is preferable to take measures to prevent the contamination of compounds.
  • 1,4-polybutadiene having an active terminal can be obtained.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by GPC is preferably 50,000 or more, more preferably 100,000 or more, and 150,000 or more. The above is more preferable.
  • the weight average molecular weight (Mw) of 1,4-polybutadiene (Y) is preferably 2,000,000 or less, more preferably 1,500,000 or less, and 1,000,000 or less. Is more preferable.
  • the weight average molecular weight of 1,4-polybutadiene (Y) is 50,000 or more, the rigidity and wear resistance of the crosslinked rubber tend to be sufficiently high, and when it is 2,000,000 or less, the present composition There is a tendency to ensure sufficient workability.
  • the content of the cis-1,4 structure in 1,4-polybutadiene (Y) is preferably 70% or more, more preferably 80% or more, further preferably 89% or more, 93. % Or more is even more preferable. In particular, when the content of the cis-1,4 structure is 89% or more, it is preferable in that the crack resistance of the crosslinked rubber obtained by using this composition can be improved.
  • the step Y as the (A) polybutadiene, a mixture of 1,4-polybutadiene (Y) and 1,2-polybutadiene (preferably 1,2-syndiotactic polybutadiene) can be obtained.
  • the content ratio of 1,2-polybutadiene is preferably 3% by mass or more with respect to the total amount of 1,2-polybutadiene and 1,4-polybutadiene. It is more preferably 5% by mass or more, and further preferably 10% by mass or more. Further, the content ratio of 1,2-polybutadiene in (A) polybutadiene is preferably 99% by mass or less, preferably 95% by mass or less, based on the total amount of 1,2-polybutadiene and 1,4-polybutadiene. Is more preferable.
  • an antiaging agent for example, 2,4-di-tert-butyl-p-cresol, 4,6-bis (octyl)). Thiomethyl) -o-cresol, etc.
  • an antiaging agent for example, 2,4-di-tert-butyl-p-cresol, 4,6-bis (octyl)). Thiomethyl) -o-cresol, etc.
  • the polymerization terminal of 1,4-polybutadiene having an active terminal may be modified with an alkoxysilane compound. By such a modification reaction, 1,4-polybutadiene having a silicon-containing group derived from an alkoxysilane compound introduced at the polymerization terminal can be obtained.
  • the alkoxysilane compound used in the modification reaction may be any compound that can react with the active terminal, and is not particularly limited.
  • the alkoxysilane compound include epoxy group-containing alkoxysilane compounds such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • An isocyanate group-containing alkoxysilane compound such as 3-isocyanuppropyltrimethoxysilane and 3-isoxapropylmethyldiethoxysilane; 3- (meth) acryloyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropylmethyldi.
  • Carbonyl group-containing alkoxysilane compounds such as ethoxysilane; cyano group-containing alkoxysilane compounds such as 3-cyanopropyltriethoxysilane and 3-cyanopropylmethyldiethoxysilane can be mentioned.
  • (meta) acrylo" means to include "acrylo" and "methacrylo".
  • condensation catalyst When 1,4-polybutadiene is terminal-modified, the compound that undergoes a condensation reaction with the residue of the alkoxysilane compound introduced at the active terminal and is consumed in the desolubilization step after the modification reaction (hereinafter, also referred to as "condensation catalyst"). ) May be further added.
  • the condensation catalyst used is preferably a condensation catalyst containing at least one element among the elements contained in Group 4A, Group 2B, Group 3B, Group 4B and Group 5B of the Periodic Table, for example, tetramethoxytitanium, tetratert-. Examples thereof include butoxytitanium, bis (n-octanoate) tin, tetraethoxyzirconium and the like.
  • polybutadiene containing 1,2-polybutadiene and 1,4-polybutadiene can be obtained.
  • Isolation of polybutadiene can be carried out by a known desolvation method such as steam stripping and a drying operation such as heat treatment.
  • the content of the cis-1,4 bond in the polybutadiene is preferably 1% or more, more preferably 2% or more, and further preferably 5% or more.
  • the content of the cis-1,4 bond in (A) polybutadiene is preferably 95% or less, more preferably 90% or less.
  • the content of cis-1,4 bonds is a value measured using an infrared spectrophotometer.
  • the content of 1 and 2 bonds in (A) polybutadiene is preferably 99% or less, more preferably 98% or less, and even more preferably 95% or less. Further, the content of 1 and 2 bonds in (A) polybutadiene is preferably 5% or more, and more preferably 10% or more. The content of 1 and 2 bonds is a value measured using an infrared spectrophotometer.
  • the Mooney viscosity (ML1 + 4,100 ° C.) of polybutadiene is preferably 10 or more, and more preferably 20 or more. Further, the Mooney viscosity (ML1 + 4,100 ° C.) of (A) polybutadiene is preferably 150 or less, more preferably 100 or less.
  • the Mooney viscosity (ML1 + 4,100 ° C.) of polybutadiene is in the above range, the processability of the present composition can be improved and uniform kneading with various compounding agents can be performed, which is preferable. Is. In this specification, the Mooney viscosity (ML1 + 4,100 ° C.) is a value measured according to JIS K6300-1: 2013.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in polybutadiene is preferably 1.1 or more, more preferably 2.0 or more, from the viewpoint of ease of production. 2.2 or more is more preferable.
  • the Mw / Mn of (A) polybutadiene is preferably 4.0 or less, more preferably 3.5 or less. When the Mw / Mn of (A) polybutadiene is 4.0 or less, the fracture characteristics of the crosslinked rubber can be further improved.
  • the blending ratio of (A) polybutadiene is preferably 1% by mass or more, more preferably 2% by mass or more, based on the total amount of the rubber component contained in the present composition.
  • the blending ratio of (A) polybutadiene is preferably 70% by mass or less, more preferably 60% by mass or less, still more preferably 50% by mass or less, based on the total amount of the rubber component contained in the present composition.
  • the blending ratio of (A) polybutadiene can be appropriately set according to the content ratio of 1,2-polybutadiene and 1,4-polybutadiene in (A) polybutadiene.
  • the content ratio of 1,2-polybutadiene is 1 to 20% by mass and the content ratio of 1,4-polybutadiene is 0.1 to 60% by mass with respect to the total amount of the rubber component contained in the present composition. It is preferable to set the blending ratio of (A) polybutadiene so as to be%.
  • the content ratio of 1,2-polybutadiene is more preferably 2 to 15% by mass, still more preferably 2 to 10% by mass, based on the total amount of the rubber component contained in the present composition.
  • the content of 1,4-polybutadiene is more preferably 0.2 to 50% by mass, still more preferably 0.2 to 40% by mass, based on the total amount of the rubber component contained in the present composition. Is.
  • the modified rubber (B) blended in the present composition is at least one rubber component selected from the group consisting of halogenated isoprene-based rubber and epoxidized diene-based rubber.
  • Halogenated isoprene rubber is a rubber component obtained by halogenating (preferably chlorinating or brominating) a copolymer of isoprene and isoolefin.
  • the isoolefin constituting the main skeleton of the halogenated isoprene rubber preferably has 4 to 6 carbon atoms, and more preferably isobutylene.
  • the content ratio of the structural unit derived from isoolefin is preferably 90.0 to 99.9% by mass, and the content ratio of the structural unit derived from isoprene is preferably 0.1 to 10. It is 0.0% by mass.
  • the halogen content of the halogenated isoprene rubber is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass.
  • the halogenated isoprene rubber is preferably a halogenated isobutylene-isoprene copolymer (hereinafter, also referred to as "halogenated butyl rubber").
  • halogenated butyl rubber chlorinated butyl rubber obtained by reacting an isobutylene-isoprene copolymer with chlorine and brominated butyl rubber obtained by reacting an isobutylene-isoprene copolymer with bromine are preferable.
  • the halogenated isoprene rubber may be a graft copolymer of a halogenated rubber such as chlorinated butyl rubber or brominated butyl rubber and a conjugated diene polymer.
  • the halogenated isoprene rubber preferably has a Mooney viscosity of ML1 + 8 (125 ° C.) of 20 to 60, and more preferably 30 to 60.
  • the Mooney viscosity ML1 + 8 (125 ° C.) is a value measured at a temperature of 125 ° C., where the residual heat time of the L-shaped rotor is 1 minute and the rotation time of the rotor is 8 minutes, in accordance with JIS K-6300-1: 2001. be.
  • halogenated isoprene rubber examples include JSR CHLOROBUTYL1066 and the like as commercial products of chlorinated butyl rubber (Cl-IIR); JSR BROMOBUTYL2222 and JSR BROMOBUTYL2244 as commercial products of brominated butyl rubber (Br-IIR). JSR BROMOBUTYL2255, JSR BROMOBUTYL2266 (all manufactured by JSR Corporation) and the like can be mentioned respectively.
  • epoxidized diene-based rubber examples include, but are not limited to, epoxidized natural rubber (ENR) and epoxidized butadiene rubber (EBR).
  • EMR epoxidized natural rubber
  • EBR epoxidized butadiene rubber
  • the epoxidized diene rubber preferably has an isoprene unit, and the epoxidized natural rubber is more preferable, because it has a high affinity with (A) polybutadiene.
  • the epoxidation rate of the epoxidized diene rubber is preferably 1 mol% or more, more preferably 2 mol% or more, and 5 mol% or more from the viewpoint of sufficiently increasing the rigidity of the crosslinked rubber obtained by using this composition. Is more preferable.
  • the epoxidation rate is preferably 70 mol% or less, more preferably 60 mol% or less, and further preferably 50 mol% or less, from the viewpoint of suppressing deterioration of the crack growth resistance and low hysteresis loss performance of the crosslinked rubber.
  • the epoxidation rate of the epoxidized diene rubber is a value measured by 1 H-NMR.
  • the weight average molecular weight (Mw) of the epoxidized diene rubber is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of sufficiently increasing the crack resistance of the crosslinked product. It is more preferably 3,000 or more. Further, from the viewpoint of ensuring the processability of the present composition, the Mw of the epoxidized diene rubber is preferably 200,000 or less, more preferably 100,000 or less, and more preferably 50,000 or less. Is even more preferable.
  • the blending ratio of the modified rubber is preferably 1 part by mass or more with respect to 100 parts by mass of the rubber component contained in the present composition.
  • the blending ratio of the modified rubber (B) is more preferably 3 parts by mass or more, and further preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component.
  • the blending ratio of (B) the modified rubber is preferably relative to 100 parts by mass of the rubber component contained in the present composition from the viewpoint of maintaining good rigidity and low hysteresis loss performance of the crosslinked rubber. It is 50 parts by mass or less, more preferably 40 parts by mass or less, and further preferably 30 parts by mass or less.
  • the modified rubber (B) one type may be blended alone, or two or more kinds may be blended together.
  • the present composition contains (A) polybutadiene and (B) modified rubber, but may further contain other components if necessary.
  • the other components can be appropriately selected depending on the intended use of the composition, and examples thereof include inorganic fillers, cross-linking agents, vulcanization accelerators, process oils, and other rubber components.
  • Examples of the inorganic filler include silica and carbon black.
  • Examples of silica include wet silica (hydrous silicic acid), dry silica (silicic anhydride), colloidal silica, precipitated silica, calcium silicate, aluminum silicate and the like. Of these, wet silica is preferable.
  • Examples of carbon black include GPF, FEF, HAF, ISAF, SAF, and the like, but the carbon black is not particularly limited.
  • various reinforcing fillers such as clay and calcium carbonate may be blended in addition to silica and carbon black.
  • the present composition preferably contains at least one filler selected from the group consisting of carbon black and silica as the inorganic filler in that the mechanical properties such as the strength and rigidity of the obtained rubber can be enhanced.
  • the content ratio of the inorganic filler in the present composition is preferably 25 to 130 parts by mass, and more preferably 30 to 110 parts by mass with respect to 100 parts by mass of the total amount of the rubber component contained in the present composition.
  • Cross-linking agent examples include organic peroxides, phenolic resins, sulfur, sulfur compounds, p-quinone, p-quinone dioxime derivatives, bismaleimide compounds, epoxy compounds, silane compounds, amino resins, polyols, polyamines, and triazine compounds. Metal soap and the like can be mentioned.
  • the cross-linking agent is preferably at least one selected from the group consisting of organic peroxides, phenolic resins and sulfur.
  • organic peroxide examples include 1,3-bis (t-butylperoxyisopropyl) benzene and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexin-3,2,5-dimethyl. -2,5-bis (t-butylperoxy) hexene-3,2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, 2,2'-bis (t-butylperoxy) -P-Isopropylbenzene, dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxide and the like can be mentioned.
  • phenol resin examples include a p-substituted phenol-based compound represented by the following general formula (8), an o-substituted phenol / aldehyde condensate, an m-substituted phenol / aldehyde condensate, a brominated alkylphenol / aldehyde condensate, and the like. Can be mentioned. Of these, p-substituted phenolic compounds are preferred.
  • X is a hydroxyl group, an alkyl halide group, or a halogen atom
  • R is a saturated hydrocarbon group having 1 to 15 carbon atoms
  • n is an integer of 0 to 10.
  • the p-substituted phenolic compound can be obtained by a condensation reaction between the p-substituted phenol and an aldehyde (preferably formaldehyde) in the presence of an alkaline catalyst.
  • phenolic resins include the trade name “Tackiroll 201” (alkylphenol formaldehyde resin, manufactured by Taoka Chemical Industry Co., Ltd.) and the trade name “Tackiroll 250-I” (brominated alkylphenol formaldehyde resin with a bromization rate of 4%, Taoka Chemical Industry Co., Ltd.).
  • the amount of the cross-linking agent used is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, based on 100 parts by mass of the total rubber components contained in the present composition. It is more preferably 1 to 10 parts by mass.
  • the amount of the organic peroxide used may be 0.05 to 10 parts by mass with respect to 100 parts by mass of the total rubber components contained in the present composition. It is preferably 0.1 to 5 parts by mass, and more preferably 0.1 to 5 parts by mass.
  • the amount of the organic peroxide used exceeds 10 parts by mass, the degree of cross-linking tends to be excessively high, the moldability is lowered, and the mechanical properties of the obtained cross-linked rubber tend to be lowered.
  • the amount of the organic peroxide used is less than 0.05 parts by mass, the degree of cross-linking is insufficient, and the rubber elasticity and mechanical strength of the obtained cross-linked rubber tend to decrease.
  • the amount of the phenol resin used is preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the total rubber components contained in the present composition. It is more preferably 0.5 to 5 parts by mass.
  • the amount of the phenol resin used exceeds 10 parts by mass, the molding processability tends to decrease.
  • the amount of the phenol resin used is less than 0.2, the degree of cross-linking is insufficient, and the rubber elasticity and mechanical strength of the obtained cross-linked rubber tend to decrease.
  • the amount of sulfur used is preferably 0.1 to 5 parts by mass, preferably 0.5 to 5 parts by mass, based on 100 parts by mass of the total rubber components contained in the present composition. It is more preferable to use 3 parts by mass.
  • a cross-linking aid and a cross-linking accelerator together with the cross-linking agent because the cross-linking reaction can be carried out gently and uniform cross-linking can be formed.
  • an organic peroxide is used as the cross-linking agent
  • sulfur, sulfur compounds powdered sulfur, colloidal sulfur, precipitated sulfur, insoluble sulfur, surface-treated sulfur, dipentamethylene thiuram tetrasulfide, etc.
  • oxime compounds are used as cross-linking aids.
  • N, N'-m-phenylene bismaleimide, and divinylbenzene are preferable. These can be used alone or in combination of two or more. Since N, N'-m-phenylene bismaleimide exhibits an action as a cross-linking agent, it can also be used alone as a cross-linking agent.
  • the amount of the cross-linking aid used is preferably 10 parts by mass or less with respect to 100 parts by mass in total of the rubber components contained in the present composition. It is more preferably 2 to 5 parts by mass.
  • the amount of the cross-linking auxiliary used is more than 10 parts by mass, the degree of cross-linking tends to be excessively high, the molding processability is lowered, and the mechanical properties of the obtained cross-linked rubber tend to be lowered.
  • a metal halide strand chloride, ferric chloride, etc.
  • an organic halide chlorinated polypropylene, chloroprene rubber, etc.
  • a metal oxide such as zinc oxide or a dispersant such as stearic acid in addition to the cross-linking accelerator.
  • the vulcanization accelerator is not particularly limited, and examples thereof include sulfenamide-based, guanidine-based, thiuram-based, thiourea-based, thiazole-based, dithiocarbamic acid-based, and xanthate-based compounds.
  • Specific examples of the sulfide accelerator include 2-mercaptobenzothiazole, dibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazolesulfenamide, N.
  • the blending amount of the vulcanization accelerator is usually 0.1 to 10 parts by mass, preferably 0.4 to 5 parts by mass with respect to 100 parts by mass of the total amount of the rubber component contained in the present composition. ..
  • the present composition may contain a process oil generally used for oil-expanding a polymer as an oil for oil-expanding.
  • the process oil is blended into the composition, for example, by adding the oil directly during the rubber blending.
  • Preferred process oils include various oils known in the art, such as aromatic oils, paraffin oils, naphthenic oils, vegetable oils, and oils with a low content of polycyclic aromatic compounds (low).
  • PCA oil for example, mild extraction solvate (MES), treated distillate aromatic extract (TDAE), special aromatic extraction from residual oil. Examples include substances (SRAE: special residual aromatic extract) and heavy naphthenic oils.
  • MES MES
  • TDAE Shellex SNR (heavy paraffin obtained by dewaxing distillate oil with a solvent)
  • MES Shellex SNR
  • Vivatec 500 manufactured by H & R Wasag AG
  • SRAE Japan Energy Corp
  • NC140 made by.
  • the blending amount of the process oil is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the total amount of the rubber components contained in the present composition.
  • the present composition may contain a rubber component (other rubber component) different from (A) polybutadiene and (B) modified rubber.
  • the type of such other rubber components is not particularly limited, but for example, styrene butadiene rubber (SBR), natural rubber (NR), isoprene rubber (IR), styrene isoprene copolymer rubber, butadiene isoprene copolymer rubber, modified SBR. , Modified or unmodified polybutadiene obtained by a method not including step Y, and the like.
  • SBR styrene butadiene rubber
  • NR natural rubber
  • IR isoprene rubber
  • styrene isoprene copolymer rubber butadiene isoprene copolymer rubber
  • Modified or unmodified polybutadiene obtained by a method not including step Y, and the like it is preferable that the composition contains at least natural rubber as another rubber component because the effect of improving the
  • the blending ratio of the other rubber components in the present composition is preferably 100 parts by mass with respect to the total amount of the rubber components contained in the present composition, from the viewpoint of obtaining a crosslinked rubber having sufficiently improved crack growth resistance. It is 60 parts by mass or less, more preferably 50 parts by mass or less.
  • the mixing ratio of the other rubber components is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, based on 100 parts by mass of the total amount of the rubber components contained in the present composition.
  • the present composition includes, for example, an antiaging agent, zinc oxide, stearic acid, a softening agent, a silane coupling agent, a compatibilizer, a vulcanization aid, a processing aid, a scorch inhibitor, and a wax.
  • an antiaging agent zinc oxide, stearic acid, a softening agent, a silane coupling agent, a compatibilizer, a vulcanization aid, a processing aid, a scorch inhibitor, and a wax.
  • Various additives generally used in rubber compositions such as, etc. can be blended. These blending ratios can be appropriately selected according to various components as long as the effects of the present disclosure are not impaired.
  • This composition prepared by blending (A) polybutadiene and (B) modified rubber is kneaded using a kneader such as an open kneader (for example, a roll) or a closed kneader (for example, a Banbury mixer). It can be applied to various rubber products as a crosslinked product by being crosslinked (vulcanized) after molding. According to this composition, it is possible to produce a crosslinked body having excellent crack growth resistance while ensuring rigidity.
  • Applications of the bridge include, for example, tire applications such as tire tread, under tread, carcass, sidewall, bead part; sealing material such as packing, gasket, weather strip, O-ring; automobile, ship, aircraft, railway, etc.
  • hoses and hose covers such as diaphragms, rolls, radiator hoses, air hoses; Power transmission belts, etc. Belts; O-rings; Dust boots; Medical equipment materials; Gaskets; Insulation materials for electric wires; Applicable to other industrial products.
  • Q1 1,3-butadiene (for syndiotactic-1,2 polymerization) input amount
  • Q2 1,2-polybutadiene production amount
  • Q3 1,2-unreacted 1,3-butadiene amount in polymerization
  • Q4 1,3- Amount of butadiene (for cis-1,4 polymerization)
  • Q5 1,4-Polybutadiene production amount
  • Q2 Q1 ⁇ (reaction conversion rate of syndiotactic-1 and 2 polymerization) ...
  • Q3 Q1-Q2 ...
  • Q5 (Q3 + Q4) ⁇ (reaction conversion rate of cis-1,4 polymerization) ...
  • 1,3-butadiene was added to the obtained polymer solution.
  • a toluene solution containing 0.045 mmol of trimethylsilyl chloride (Me 3 SiCl) was reacted with 1,3-butadiene 4.5 mmol at 30 ° C. for 60 minutes to prepare the catalyst composition B.
  • This catalyst composition B was put into the above autoclave and reacted at 70 ° C. for 1 hour (cis-1,4 polymerization) to obtain a polymer solution.
  • the reaction conversion rate of the added 1,3-butadiene was almost 100%.
  • This catalyst composition B was put into the above autoclave and reacted at 70 ° C. for 1 hour (cis-1,4 polymerization) to obtain a polymer solution containing polybutadiene.
  • the reaction conversion rate of unreacted 1,3-butadiene in the 1,4 polymerization was about 25%.
  • the content of the -1,4 bond was 5.0%, the content of the 1,2-vinyl bond was 95.0%, and the weight average molecular weight (Mw) was 300,000.
  • the melting point of 1,2-polybutadiene contained in polybutadiene P2 was 121 ° C., and the weight average molecular weight (Mw) was 290,000.
  • Production Example 2 In Production Example 2, the same operations as in Production Example 2 were performed except that the polymerization formulations for the 1st and 2nd polymerizations were as shown in Table 1 below and the polymerization formulations for the cis-1 and 4 polymerizations were as shown in Table 2 below. , Polybutadiene P3 was obtained. The measurement results of each physical property value of the obtained polybutadiene P3 are shown in Table 3 below.
  • a catalyst composition B was prepared by reacting a toluene solution and a toluene solution containing 0.051 mmol of trimethylsilyl chloride (Me 3 SiCl) with 1,3-butadiene 5.1 mmol at 30 ° C. for 60 minutes.
  • This catalyst composition B was put into the above autoclave and reacted at 70 ° C. for 1 hour (cis-1,4 polymerization) to obtain a polymer solution.
  • the reaction conversion rate of the added 1,3-butadiene was almost 100%.
  • CoCL2 Cobalt Chloride
  • PCH Diphenylcyclohexylphosphine
  • AlBuH Diisobutylaluminum hydride
  • NdVer Neodymium versatic acid
  • MeSiCl Trimethylsilyl chloride
  • this rubber composition was vulcanized at 160 ° C. for 12 minutes to obtain a vulcanized rubber. Evaluation of various properties of the obtained vulcanized rubber was performed by the evaluation methods (1) to (3) shown below. The formulation and evaluation results are shown in Table 4 below.
  • a crosslinked rubber sheet having a thickness of 2 mm is formed by molding the obtained rubber composition into a sheet by calendar processing and then vulcanizing it at 160 ° C. for a predetermined time using a vulcanization press machine.
  • a test piece made of the IV type dumbbell described in ASTM D638 was prepared. At this time, the sheet was punched so that the longitudinal direction of the dumbbell was the columnar direction of the sheet, and a crack extending in the anti-columnar direction was formed at the center position of the dumbbell in the longitudinal direction.
  • the obtained test piece was subjected to a constant elongation fatigue test under the conditions of an elongation rate of 100%, a measurement temperature of 23 ° C., and a rotation speed of 300 cpm, and the number of cycles until the test piece broke was measured. It is shown as an index with Comparative Example 1 as 100, and the larger the value, the better the crack resistance.
  • Rigidity (M300) A tensile test was performed using vulcanized rubber as a measurement sample in accordance with JIS K6251: 2010. Using a dumbbell-shaped No. 3 type as a test sample, the tensile stress (M300) at the time of 300% elongation was measured at room temperature.
  • Examples 2 to 5, Comparative Examples 1 to 5 A rubber composition was obtained by kneading in the same manner as in Example 1 except that the compounding formulation was changed to the formulations shown in Tables 4 and 5 below. Further, a vulcanized rubber was produced using the obtained rubber composition in the same manner as in Example 1, and the physical properties were evaluated. The results are shown in Tables 4 and 5 below. Regarding the results of each evaluation, Examples 2 and 3 and Comparative Examples 2 and 3 are indicated by an index with Comparative Example 1 as 100, and Comparative Examples 4 and 5 and Comparative Example 5 are 100. It is shown by the index.
  • Silica 2 ULTRASIL VN3 manufactured by Evonik Industries Carbon Black N339: Mitsubishi Chemical Corporation Dia Black N339 Silane coupling agent: Evonik Si69 Sulfide compound: Rhenocure S manufactured by Rheinchemi Anti-aging agent: Nocrack 810NA manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Vulcanization accelerator CZ Noxeller CZ-G manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Vulcanization accelerator D Noxeller D manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd. In the table, "-" indicates that the compound in the corresponding column was not used.
  • Example 4 in which a rubber composition containing (A) polybutadiene and (B) an epoxidized natural rubber as a modified rubber was used, and the polybutadiene component of the rubber composition was made of high cis polybutadiene rubber and syndiotactic 1,2-polybutadiene.
  • the vulture rubber of Example 4 has crack resistance and crack resistance and crack resistance as compared with Comparative Example 4, as compared with Comparative Example 4 in which the epoxidized natural rubber was not blended. In addition to rigidity, low hysteresis loss performance was also excellent.
  • Example 4 The vulcanized rubber of Example 4 was excellent in crack growth resistance, rigidity and low hysteresis loss performance as compared with Comparative Example 5 having the same composition except for the polybutadiene component. Further, Example 5 was also excellent in crack growth resistance, rigidity and low hysteresis loss performance as compared with Comparative Examples 4 and 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)1,2-ポリブタジエンとランタノイド系触媒との存在下で1,3-ブタジエンを重合して得られるポリブタジエンと、(B)ハロゲン化イソプレン系ゴム及びエポキシ化ジエン系ゴムよりなる群から選択される少なくとも1種の変性ゴムと、を含有する組成物とする。

Description

組成物 関連出願の相互参照
 本出願は、2020年5月14日に出願された日本特許出願番号2020-85534号に基づくもので、ここにその記載内容を援用する。
 本開示は、組成物に関し、より詳細にはポリブタジエンを含有する組成物に関する。
 1,4-ポリブタジエンの製造方法としては、炭化水素等の不活性溶媒中、触媒の存在下において1,3-ブタジエンをシス-1,4重合する方法が知られている(例えば、特許文献1,2参照)。特許文献1,2には、1,2-ポリブタジエンと、コバルト系触媒又はニッケル系触媒との存在下で1,3-ブタジエンをシス1,4-重合し、続いて1,3-ブタジエンを1,2-重合することによりビニル・シス-ポリブタジエンゴムを得ることが開示されている。
特開2008-163144号公報 特開2017-132954号公報
 ポリブタジエンを架橋することにより得られる架橋ゴムとしては、耐久性や経済性等の観点から、耐亀裂成長性及び剛性に優れていることが求められる。また、補強剤としてカーボンブラックを配合した架橋ゴムは、カーボンブラックに替えてシリカを配合したものに比べて、変形時のエネルギーロス(ヒステリシスロス)が大きくなる傾向がある。その一方で、架橋ゴムとしては、カーボンブラックを配合した場合にもヒステリシスロスが小さいことが望まれる。
 本開示は、上記課題に鑑みなされたものであり、低ヒステリシスロス性能を良好に保ちながら、耐亀裂成長性及び剛性に優れた架橋ゴムを得ることができる組成物を提供することを主たる目的とする。
 上記課題を解決すべく、本開示によれば、以下の組成物が提供される。
 [1](A)1,2-ポリブタジエンとランタノイド系触媒との存在下で1,3-ブタジエンを重合して得られるポリブタジエンと、(B)ハロゲン化イソプレン系ゴム及びエポキシ化ジエン系ゴムよりなる群から選択される少なくとも1種の変性ゴムと、を含有する、組成物。
 [2]前記1,2-ポリブタジエンは、コバルト系触媒の存在下で1,3-ブタジエンを重合して得られる重合体である、上記[1]の組成物。
 [3]前記1,2-ポリブタジエンは、1,2-シンジオタクチックポリブタジエンである、上記[1]又は[2]の組成物。
 [4]更に、カーボンブラック及びシリカのうち少なくとも一方のフィラーを含有する、上記[1]~[3]のいずれかの組成物。
 本開示の組成物によれば、(A)ポリブタジエンと(B)変性ゴムとを含有することにより、低ヒステリシスロス性能を良好に保ちながら、耐亀裂成長性及び剛性に優れた架橋ゴムを得ることができる。
 以下、本開示の態様に関連する事項について詳細に説明する。なお、本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む意味である。
《組成物》
 本開示の組成物(以下「本組成物」ともいう)は、(A)ポリブタジエンと、(B)変性ゴムとを含有する。各成分について、以下に詳細に説明する。
<(A)ポリブタジエン>
 (A)ポリブタジエンは、1,2-ポリブタジエンとランタノイド系触媒との存在下で1,3-ブタジエンを重合する工程(以下「工程Y」という)を含む方法により製造されるゴム成分であり、1,2-ポリブタジエンと1,4-ポリブタジエンとを含む。(A)ポリブタジエンは、好適には、1,2-ポリブタジエンを得る工程(以下「工程X」という)を更に含む方法により製造される。以下、工程X及び工程Yについて順に説明する。なお、本明細書において、組成物に含まれる「ゴム成分」は、熱硬化によりゴム弾性を示す硬化物を得ることが可能な重合体をいう。この硬化物は、室温において小さな力で大きな変形(例えば、室温で伸ばすと2倍以上に伸びる変形)を起こし、力を取り除くと急速にほぼ元の形状に戻る性質を示す。「架橋ゴム」は、ゴム成分を熱硬化することにより得られる硬化物をいう。
<工程X(1,2重合工程)>
 工程Xは、コバルト系触媒の存在下で1,3-ブタジエンを重合することにより1,2-ポリブタジエンを製造する工程である。この工程Xは、1,3-ブタジエンと有機溶媒との混合物を調製する工程と、コバルト系触媒の存在下で1,3-ブタジエンを重合(より詳細には1,2重合)する工程と、重合反応を停止させる工程とを含む。以下では、工程Xの重合反応により得られる1,2-ポリブタジエンを「1,2-ポリブタジエン(X)」ともいう。なお、本明細書において、「1,2重合」とは、1,3-ブタジエンの重合により生成されるブタジエンポリマーにおいて、1,3-ブタジエンの結合様式が1,2結合であるモノマー単位の割合が50質量%超である重合をいう。「1,2-ポリブタジエン」とは、1,3-ブタジエンの結合様式が1,2結合であるモノマー単位の割合が50質量%超であるブタジエンポリマーをいう。
(調製工程)
 本工程で使用される有機溶媒は、炭化水素又はハロゲン化炭化水素を主成分とする溶媒である。炭化水素の具体例としては、ブタン、ペンタン、ヘキサン、ヘプタン等の炭素数4~10の飽和脂肪族炭化水素;シクロペンタン、シクロヘキサン等の炭素数6~20の飽和脂環式炭化水素;1-ブテン、2-ブテン等のモノオレフィン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。ハロゲン化炭化水素の具体例としては、塩化メチレン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、1,2-ジクロロエタン、クロロベンゼン、ブロムベンゼン、クロロトルエン等が挙げられる。これらのうち、有機溶媒としては炭化水素を好ましく用いることができる。なお、「炭化水素又はハロゲン化炭化水素を主成分とする」とは、本工程で使用される有機溶媒の全量に対し、炭化水素又はハロゲン化炭化水素が50質量%超であり、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上である。
 1,3-ブタジエンと有機溶媒との混合物において、1,3-ブタジエン及び有機溶媒の合計量に対する1,3-ブタジエンの量は、0.5質量%以上とすることが好ましく、2質量%以上とすることがより好ましい。また、1,3-ブタジエン及び有機溶媒の合計量に対する1,3-ブタジエンの量は、50質量%以下とすることが好ましく、30質量%以下とすることがより好ましく、15質量%以下とすることが更に好ましい。1,3-ブタジエンと有機溶媒との混合物を調製する際の温度は、好ましくは10~50℃、より好ましくは20~40℃である。
(重合工程)
 本工程では、上記調製工程により得られた1,3-ブタジエンと有機溶媒との混合物を用い、コバルト系触媒の存在下、炭化水素又はハロゲン化炭化水素を主成分とする有機溶媒中で1,3-ブタジエンを1,2重合(より詳細には、シンジオタクチック-1,2重合)する。
 使用されるコバルト系触媒は、コバルト化合物を含有する。コバルト化合物は、好ましくはコバルト塩であり、具体的には、塩化コバルト、臭化コバルト、ヨウ化コバルト等のハロゲン化コバルト塩;オクチル酸コバルト、バーサチック酸コバルト、ナフテン酸コバルト等の有機酸コバルト塩、等が挙げられる。これらのうち、ハロゲン原子を含有しない点において、コバルト化合物として有機酸コバルト塩を用いることが好ましい。
 コバルト化合物の使用割合は、コバルト化合物が有するコバルト原子に対する1,3-ブタジエンのモル比(1,3-ブタジエン/Co)が、5,000以上となる量とすることが好ましい。1,3-ブタジエン/Co(モル比)を5,000以上とすることにより、1,2-ポリブタジエン(X)の分子量が低くなりすぎることを抑制できる点で好適である。また、コバルト化合物の使用割合は、1,3-ブタジエン/Co(モル比)が、150,000以下となる量とすることが好ましい。1,3-ブタジエン/Co(モル比)を150,000以下とすることにより、重合活性の低下の抑制を図ることができる点で好ましい。1,3-ブタジエン/Co(モル比)は、10,000以上がより好ましい。また、1,3-ブタジエン/Co(モル比)は、100,000以下がより好ましい。
 工程Xで使用されるコバルト系触媒は、コバルト化合物と共に、ホスフィン化合物と有機アルミニウム化合物とを更に含有することが好ましい。ホスフィン化合物は、炭素数3以上の分岐状の脂肪族炭化水素基又は炭素数5以上の脂環式炭化水素基を1個と、2個の芳香族炭化水素基とを有するホスフィン化合物であることが好ましい。炭素数3以上の分岐状の脂肪族炭化水素基は、好ましくは炭素数3~10の分岐状アルキル基である。炭素数5以上の脂環式炭化水素基は、好ましくは炭素数5~10の置換又は無置換のシクロアルキル基である。芳香族炭化水素基は、好ましくはフェニル基である。
 ホスフィン化合物の好ましい具体例としては、ジフェニルシクロヘキシルホスフィン、ジフェニルイソプロピルホスフィン、ジフェニルイソブチルホスフィン、ジフェニルt-ブチルホスフィン、ジフェニルシクロペンチルホスフィン、ジフェニル(4-メチルシクロヘキシル)ホスフィン、ジフェニルシクロヘプチルホスフィン、ジフェニルシクロオクチルホスフィン等が挙げられる。なお、ホスフィン化合物としては、1種を単独で又は2種以上を組み合わせて使用することができる。ホスフィン化合物の配合割合は、コバルト化合物1モルに対し、1~5モルとすることが好ましく、1.5~4モルとすることがより好ましい。
 有機アルミニウム化合物としては、アルミノキサン(メチルアミノキサン等)、及びトリアルキルアルミニウムと水とを接触させてなる化合物(以下「水素化アルミニウム化合物」と記す)が挙げられる。アルミノキサンは、予め合成したものを使用してもよく、あるいは、重合系中で合成したものでもよい。水素化アルミニウム化合物につき、トリアルキルアルミニウムと水との接触方法は、トリアルキルアルミニウムの不活性有機溶媒溶液に対して、水を蒸気、液体及び固体(氷)のうちいずれの状態で接触させてもよい。また、不活性有機溶媒への溶解状態、分散状態、又は乳化状態として、もしくは、不活性ガス中に存在するガス状態、ミスト状態として接触させてもよい。
 コバルト系触媒において、有機アルミニウム化合物の使用割合は、有機アルミニウム化合物が有するアルミニウム原子に対する1,3-ブタジエンのモル比(1,3-ブタジエン/Al)が、500以上となる量とすることが好ましい。1,3-ブタジエン/Al(モル比)が500以上であると反応が十分に進行しやすい。また、有機アルミニウム化合物の使用割合は、1,3-ブタジエン/Alが、4,000以下となる量とすることが好ましい。1,3-ブタジエン/Al(モル比)が4,000以下であると重合活性を高くできる傾向にある点で好ましい。1,3-ブタジエン/Alは、800以上がより好ましい。また、1,3-ブタジエン/Alは、2,000以下がより好ましい。
 1,2重合における反応温度は、通常-20℃~80℃であり、好ましくは10℃~60℃である。反応時間は、好ましくは5分~6時間であり、より好ましくは10~3時間である。重合反応は、回分式でも連続式でもよい。反応溶液中の1,3-ブタジエン濃度は、通常、5~80質量%、好ましくは8~25質量%である。また、触媒及び重合体を失活させないようにするために、重合系内に酸素、水、又は炭酸ガス等の失活作用のある化合物の混入を抑制する措置を施してもよい。
(停止工程)
 工程Xにおいては、シンジオタクチック-1,2重合反応が所望の反応転化率に達した後に、有機アルミニウム化合物を重合系に添加することにより1,2重合反応を停止させることが好ましい。
 1,2重合反応の停止に際し使用される有機アルミニウム化合物としては、アルキルアルミニウム化合物及び水素化アルミニウム化合物等が挙げられる。これらの具体例としては、アルキルアルミニウム化合物として、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリイソプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム等が挙げられる。水素化アルミニウム化合物の具体例としては、例えば水素化ジエチルアルミニウム、水素化ジ-n-プロピルアルミニウム、水素化ジ-n-ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム等が挙げられる。これらのうち、1,2重合反応を停止させる際に使用される有機アルミニウム化合物は、水素化ジイソブチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、及び水素化ジエチルアルミニウムよりなる群から選択される少なくとも1種が好ましい。なお、有機アルミニウム化合物としては、単独で又は2種以上を組み合わせて用いることができる。
 1,2重合反応の停止に際し、有機アルミニウム化合物の使用割合は、1,2重合反応で用いるコバルト化合物1モルあたり、1モル以上とすることが好ましく、5モル以上とすることがより好ましい。また、有機アルミニウム化合物の使用割合は、1,2重合反応で用いるコバルト化合物1モルあたり、20モル以下とすることが好ましく、15モル以下とすることがより好ましい。有機アルミニウム化合物の使用割合を上記範囲内とすることにより、1,2-ポリブタジエン(X)の分子量が高くなりすぎず、又は工程Yにより得られる1,4-ポリブタジエンの分子量が低くなりすぎず好適である。重合停止反応を行う際の温度は、通常-20℃~80℃であり、好ましくは10℃~60℃である。1,2重合反応における反応転化率は、好ましくは50%以上であり、より好ましくは55%以上であり、更に好ましくは60%以上である。
 工程Xによれば、1,2-ポリブタジエン(X)として1,2-シンジオタクチックポリブタジエンを製造することができる。得られる1,2-ポリブタジエン(X)の融点は、60℃以上であることが好ましく、100℃以上であることがより好ましく、120℃以上であることが更に好ましい。また、1,2-ポリブタジエン(X)の融点は、150℃以下であることが好ましく、145℃以下であることがより好ましく、140℃以下であることが更に好ましい。1,2-ポリブタジエン(X)の融点を60℃以上とすることにより、低ヒステリシスロス性能を十分に高くできる点で好ましい。また、1,2-ポリブタジエン(X)の融点を150℃以下とすることにより、組成物の加工性を良好にできる点で好ましい。
 1,2-ポリブタジエン(X)につき、ゲルパーミエーションクロマトグラフ(GPC)により測定されるポリスチレン換算の重量平均分子量(Mw)は、50,000以上であることが好ましく、70,000以上であることがより好ましく、100,000以上であることが特に好ましい。また、1,2-ポリブタジエン(X)のMwは、500,000以下であることが好ましく、400,000以下であることがより好ましく、350,000以下であることが更に好ましい。1,2-ポリブタジエン(X)のMwが50,000以上であると、架橋ゴムの剛性及び耐摩耗性を十分に高くできる傾向にあり、500,000以下であると、組成物の加工性を十分に確保できる傾向にある。
 1,2-ポリブタジエン(X)における1,2-ビニル結合の含有率(1,2-ビニル結合含量)は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましく、95%以上であることがより更に好ましい。特に、1,2-ビニル結合の含有率が90%以上であると、本組成物を用いて得られる架橋ゴムの低ヒステリシスロス性能をより良好にできる点で好ましい。なお、1,2-ビニル結合含量は、赤外分光光度計を用いて測定された値である。
<工程Y(シス-1,4重合工程)>
 工程Yでは、1,2-ポリブタジエンとランタノイド系触媒との存在下で1,3-ブタジエンの重合(シス-1,4重合)を行うことにより1,4-ポリブタジエンを製造する。工程Yでは、1,2-ポリブタジエンとして、工程Xにより製造された1,2-ポリブタジエン(すなわち、1,2-ポリブタジエン(X))を用いることが好ましい。このとき、上記工程Xにより得られた反応溶液中にランタノイド系触媒を添加し、必要に応じて1,3-ブタジエンを添加することにより1,3-ブタジエンを重合することが、製造工程の簡略化を図る上で好ましい。また、工程Yでは、シス-1,4重合を行うときにイソプレンを加えることで、1,3-ブタジエンに加えて、イソプレンの重合を行うこともできる。以下では、工程Yの重合反応により得られた1,4-ポリブタジエンを「1,4-ポリブタジエン(Y)」ともいう。
 なお、本明細書において、「シス-1,4重合」とは、1,3-ブタジエンの重合により生成されるブタジエンポリマーにおいて、1,3-ブタジエンの結合様式がシス-1,4結合であるモノマー単位の割合が50質量%超である重合をいう。「1,4-ポリブタジエン」とは、1,3-ブタジエンの結合様式が1,4結合(シス-1,4結合及びトランス-1,4結合を含む)であるモノマー単位の割合が50質量%超であるブタジエンポリマーをいう。
 工程Yにおいて使用されるランタノイド系触媒は、ランタノイド化合物を含有する。ランタノイド化合物は、ランタノイドに属する少なくともいずれか1個の元素を有する化合物である。なお、ランタノイド化合物は、ランタノイドを有する化合物とルイス塩基との反応生成物であってもよい。ランタノイド化合物が有するランタノイドは、ネオジム、プラセオジウム、セリウム、ランタン、ガドリニウム及びサマリウムよりなる群から選ばれる少なくとも1種であることが好ましく、ネオジムであることが特に好ましい。ランタノイド化合物の具体例としては、ランタノイドのカルボン酸塩、アルコキサイド、β-ジケトン錯体、リン酸塩又は亜リン酸塩等を挙げることができる。
 ランタノイドのカルボン酸塩の具体例としては、式(1);「(R-COM」で表される化合物(ただし、Mはランタノイドであり、Rは炭素数1~20の1価の炭化水素基である。)が挙げられる。上記式(1)において、Rは、飽和又は不飽和の1価の鎖状炭化水素基であることが好ましく、直鎖状若しくは分岐状のアルキル基又はシクロアルキル基であることが好ましい。上記式(1)中のカルボニル基は、Rが有する一級、二級又は三級の炭素原子に結合している。Mは、ネオジム、プラセオジウム、セリウム、ランタン、ガドリニウム又はサマリウムが好ましく、ネオジムがより好ましい。
 上記式(1)で表される化合物の具体例としては、オクタン酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、商品名「バーサチック酸」(シェル化学社製、カルボキシル基が三級炭素原子に結合しているカルボン酸)等の塩を挙げることができる。これらのうち、上記式(1)で表される化合物は、バーサチック酸、2-エチルヘキサン酸又はナフテン酸の塩であることが好ましい。
 ランタノイドのアルコキサイドの具体例としては、式(2);(RO)Mで表される化合物(ただし、Mはランタノイドであり、Rは炭素数1~20の1価の炭化水素基である。)が挙げられる。上記式(2)において、Rとしては、1価の鎖状炭化水素基、脂環式炭化水素基、芳香族炭化水素基等が挙げられる。Rは、好ましくは1価の芳香族炭化水素基である。上記式(2)中の基「RO-」の具体例としては、例えば2-エチル-ヘキシルアルコキシ基、オレイルアルコキシ基、ステアリルアルコキシ基、フェノキシ基、ベンジルアルコキシ基等を挙げることができる。これらのうち、基「RO-」は、2-エチル-ヘキシルアルコキシ基、又はベンジルアルコキシ基が好ましい。Mの説明及び好ましい例示については上記式(1)の説明が適用される。
 ランタノイドのβ-ジケトン錯体の具体例としては、アセチルアセトン錯体、ベンゾイルアセトン錯体、プロピオニトリルアセトン錯体、バレリルアセトン錯体、エチルアセチルアセトン錯体等を挙げることができる。これらのうち、アセチルアセトン錯体又はエチルアセチルアセトン錯体が好ましい。
 ランタノイドのリン酸塩又は亜リン酸塩の具体例としては、リン酸ビス(2-エチルヘキシル)リン酸ビス(1-メチルヘプチル)、リン酸ビス(p-ノニルフェニル)、リン酸ビス(ポリエチレングリコール-p-ノニルフェニル)、リン酸(1-メチルヘプチル)(2-エチルヘキシル)、リン酸(2-エチルヘキシル)(p-ノニルフェニル)、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル、2-エチルヘキシルホスホン酸モノ-p-ノニルフェニル、ビス(2-エチルヘキシル)ホスフィン酸、ビス(1-メチルヘプチル)ホスフィン酸、ビス(p-ノニルフェニル)ホスフィン酸、(1-メチルヘプチル)(2-エチルヘキシル)ホスフィン酸、(2-エチルヘキシル)(p-ノニルフェニル)ホスフィン酸等の塩を挙げることができる。これらのうち、リン酸塩又は亜リン酸塩としては、リン酸ビス(2-エチルヘキシル)、リン酸ビス(1-メチルヘプチル)、2-エチルヘキシルホスホン酸モノ-2-エチルヘキシル又はビス(2-エチルヘキシル)ホスフィン酸の塩が好ましい。
 工程Yで使用するランタノイド化合物としては、これらのうち、カルボン酸塩又はリン酸塩であることが好ましく、カルボン酸塩であることがより好ましい。これらの中でも、ネオジムのリン酸塩又はネオジムのカルボン酸塩が更に好ましく、ネオジムのバーサチック酸塩又はネオジムの2-エチルヘキサン酸塩等のカルボン酸塩が特に好ましい。
 ランタノイド化合物を溶剤に可溶化させるため、又は長期間安定に貯蔵するために、ランタノイド化合物とルイス塩基とを混合したり、又はランタノイド化合物とルイス塩基とを反応させて反応生成物としたりすることも好ましい。ルイス塩基の使用量は、ランタノイド化合物が有するランタノイド1モルに対して、0~30モルとすることが好ましく、1~10モルとすることがより好ましい。ルイス塩基の具体例としては、アセチルアセトン、テトラヒドロフラン、ピリジン、N,N-ジメチルホルムアミド、チオフェン、ジフェニルエーテル、トリエチルアミン、有機リン化合物、一価又は二価のアルコール等を挙げることができる。なお、工程Yにおいて、ランタノイド化合物としては、1種を単独で又は2種以上を組み合わせて用いることができる。
 工程Yにおけるランタノイド化合物の使用割合は、工程Yで使用する1,3-ブタジエン100gに対して、0.00001~1.0ミリモルとすることが好ましく、0.0001~0.5ミリモルとすることがより好ましい。ランタノイド化合物の使用割合を0.00001ミリモル以上とすることにより重合活性を十分に高くできる点で好ましい。また、ランタノイド化合物の使用割合を1.0ミリモル以下とすることにより触媒濃度が高くなり過ぎることを抑制でき、脱灰工程を設けなくてよい点で好ましい。
 工程Yで使用されるランタノイド系触媒は、ランタノイド化合物と共に、有機アルミニウム化合物とハロゲン化合物とを更に含有することが好ましい。
 有機アルミニウム化合物としては、アルミノキサン、アルキルアルミニウム化合物及び水素化アルミニウム化合物よりなる群から選択される少なくとも1種を用いることが好ましい。これらのうち、アルキルアルミニウム化合物及び水素化アルミニウム化合物よりなる群から選択される少なくとも1種の化合物(以下「アルミニウム化合物(L)」という)と、アルミノキサンとを組み合わせて用いることが特に好ましい。
 本工程において使用されるアルミノキサンの好ましい具体例としては、下記式(3)で表される化合物及び下記式(4)で表される化合物が挙げられる。また、ファインケミカル,23,(9)5(1994),J.Am.Chem.Soc.,115,4971(1993)、及び J.Am.Che.Soc.,117,6465(1995)に記載されているアルミノキサンの会合体を用いてもよい。
Figure JPOXMLDOC01-appb-C000001
(式(3)及び式(4)中、R及びRは、それぞれ独立に炭素数1~20の1価の炭化水素基であり、k及びmは、それぞれ独立に2以上の整数である。式(3)中の複数のRは互いに同一の基又は異なる基である。mが2以上の場合、式(4)中の複数のRは互いに同一の基又は異なる基である。)
 上記式(3)中のR及び上記式(4)中のRとしては、例えばメチル基、エチル基、プロピル基、ブチル基、イソブチル基、t-ブチル基、ヘキシル基、イソヘキシル基、オクチル基、イソオクチル基等を挙げることができる。これらのうち、メチル基、エチル基、イソブチル基又はt-ブチル基が好ましく、メチル基が特に好ましい。k及びmは、4~100の整数であることが好ましい。
 アルミノキサンの具体例としては、メチルアルミノキサン(以下「MAO」ともいう。)、エチルアルミノキサン、n-プロピルアルミノキサン、n-ブチルアルミノキサン、イソブチルアルミノキサン、t-ブチルアルミノキサン、ヘキシルアルミノキサン、イソヘキシルアルミノキサン等を挙げることができる。これらの中でも、MAOが好ましい。なお、アルミノキサンとしては、1種を単独で又は2種以上を組み合わせて使用することができる。
 ランタノイド系触媒の調製に際し、アルミノキサンの使用割合は、1,4重合反応において使用されるランタノイド化合物1モルに対し、アルミノキサンが有するアルミニウム(Al)の量が、1~500モルとなる量とすることが好ましく、3~250モルとなる量とすることがより好ましく、5~200モルとなる量とすることが更に好ましい。アルミノキサンの使用割合を上記範囲とすることにより、触媒活性の低下を抑制し、また触媒残渣を除去する工程を設けなくて済む点で好適である。
 アルミニウム化合物(L)の具体例としては、上記停止工程の説明において例示したアルキルアルミニウム化合物及び水素化アルミニウム化合物が挙げられる。なお、アルミニウム化合物(L)としては、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうち、アルミニウム化合物(L)は、好ましくは、水素化ジイソブチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、及び水素化ジエチルアルミニウムよりなる群から選択される少なくとも1種である。ランタノイド系触媒の調製に際し、アルミニウム化合物(L)の使用割合は、1,4重合反応において使用されるランタノイド化合物1モルに対し、アルミニウム化合物(L)の合計の使用量を、1~700モルとすることが好ましく、3~500モルとすることがより好ましい。
 ランタノイド系触媒の一成分として使用されるハロゲン化合物としては、塩素含有化合物であることが好ましく、塩化ケイ素化合物及び塩化炭化水素化合物よりなる群から選ばれる少なくとも一種であることがより好ましい。使用される塩化ケイ素化合物としては、トリメチルシリルクロライド、トリエチルシリルクロライド、ジメチルシリルジクロリド等を挙げることができる。これらのうち、塩化ケイ素化合物としては、トリメチルシリルクロライドを好ましく用いることができる。また、塩化炭化水素化合物の具体例としては、メチルクロライド、ブチルクロライド、ヘキシルクロライド、オクチルクロライド、クロロホルム、ジクロロメタン、ベンジリデンクロライド等を挙げることができる。これらのうち、メチルクロライド、クロロホルム又はジクロロメタンを用いることが好ましい。
 ランタノイド系触媒の調製に際し、ハロゲン化合物の使用割合は、ランタノイド化合物1モルに対して、ハロゲン化合物が有するハロゲン原子のモル比(ハロゲン原子/ランタノイド化合物)が、0.5~3.0であることが好ましく、1.0~2.5であることがより好ましく、1.2~1.8であることが更に好ましい。ハロゲン原子/ランタノイド化合物のモル比を0.5以上とすることにより、重合触媒活性を十分に高くできる。また、当該モル比を3.0以下とすることにより、ハロゲン化合物が触媒毒とならないようにすることができる。
 工程Yにおいて1,4重合の際の反応温度は、-30℃~200℃とすることが好ましく、0℃~150℃とすることがより好ましい。重合反応の形式は特に制限はなく、バッチ式反応器を用いて行ってもよく、多段連続式反応器等を用いて連続式で行ってもよい。1,3-ブタジエンの1,4重合反応を重合溶媒を用いて行う場合には、溶媒中のモノマー濃度を5~50質量%とすることが好ましく、7~35質量%とすることがより好ましい。なお、1,4-ポリブタジエンを製造する観点、及び活性末端を有する1,4-ポリブタジエンを失活させないようにする観点から、重合系内に、酸素、水又は炭酸ガス等といった失活作用のある化合物が混入しない措置を取ることが好ましい。
 上記1,4重合反応により、活性末端を有する1,4-ポリブタジエンを得ることができる。1,4-ポリブタジエン(Y)につき、GPCにより測定されるポリスチレン換算の重量平均分子量(Mw)は、50,000以上であることが好ましく、100,000以上であることがより好ましく、150,000以上であることが更に好ましい。また、1,4-ポリブタジエン(Y)の重量平均分子量(Mw)は、2,000,000以下であることが好ましく、1,500,000以下であることがより好ましく、1,000,000以下であることが更に好ましい。1,4-ポリブタジエン(Y)の重量平均分子量が50,000以上あると、架橋ゴムの剛性及び耐摩耗性を十分に高くできる傾向にあり、2,000,000以下であると、本組成物の加工性を十分に確保できる傾向にある。
 1,4-ポリブタジエン(Y)におけるシス-1,4構造の含有率は、70%以上であることが好ましく、80%以上であることがより好ましく、89%以上であることが更に好ましく、93%以上であることがより更に好ましい。特に、シス-1,4構造の含有率が89%以上であると、本組成物を用いて得られる架橋ゴムの耐亀裂成長性をより良好にできる点で好適である。工程Yによれば、(A)ポリブタジエンとして、1,4-ポリブタジエン(Y)と、1,2-ポリブタジエン(好ましくは、1,2-シンジオタクチックポリブタジエン)との混合物を得ることができる。
 工程Yにより得られる(A)ポリブタジエンにおいて、1,2-ポリブタジエンの含有割合は、1,2-ポリブタジエンと1,4-ポリブタジエンとの合計量に対して、3質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。また、(A)ポリブタジエンにおける1,2-ポリブタジエンの含有割合は、1,2-ポリブタジエンと1,4-ポリブタジエンとの合計量に対して、99質量%以下であることが好ましく、95質量%以下であることがより好ましい。
 上記工程Yにおいてシス-1,4重合反応が所望の反応転化率に達した後は、老化防止剤(例えば、2,4-ジ-tert-ブチル-p-クレゾール、4,6-ビス(オクチルチオメチル)-o-クレゾール等)を重合系に添加し、反応を停止させてもよい。また、シス-1,4重合反応が所望の反応転化率に達した後に、アルコキシシラン化合物を用いて、活性末端を有する1,4-ポリブタジエンの重合末端を変性してもよい。こうした変性反応により、重合末端に、アルコキシシラン化合物に由来するケイ素含有基が導入された1,4-ポリブタジエンを得ることができる。
 変性反応において使用するアルコキシシラン化合物としては、活性末端と反応し得る化合物であればよく、特に限定されない。アルコキシシラン化合物としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物;3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン等のイソシアネート基含有アルコキシシラン化合物;3-(メタ)アクリロイロキシプロピルトリエトキシシラン、3-(メタ)アクリロイロキシプロピルメチルジエトキシシラン等のカルボニル基含有アルコキシシラン化合物;3-シアノプロピルトリエトキシシラン、3-シアノプロピルメチルジエトキシシラン等のシアノ基含有アルコキシシラン化合物等を挙げることができる。なお、「(メタ)アクリロ」は、「アクリロ」及び「メタクリロ」を包含する意味である。
 1,4-ポリブタジエンを末端変性した場合、変性反応後の脱溶工程において、活性末端に導入されたアルコキシシラン化合物の残基と縮合反応し、かつ消費される化合物(以下「縮合触媒」ともいう)を更に添加してもよい。使用する縮合触媒は、周期律表の4A族、2B族、3B族、4B族及び5B族に含まれる元素のうち少なくとも1つの元素を含有する縮合触媒が好ましく、例えばテトラメトキシチタニウム、テトラtert-ブトキシチタニウム、ビス(n-オクタノエート)スズ、テトラエトキシジルコニウム等が挙げられる。
 上記で得られた反応溶液から溶媒を除去し重合体を単離することにより、1,2-ポリブタジエンと1,4-ポリブタジエンとを含む(A)ポリブタジエンを得ることができる。(A)ポリブタジエンの単離は、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。
 (A)ポリブタジエンにおけるシス-1,4結合の含有率は、1%以上であることが好ましく、2%以上であることがより好ましく、5%以上であることが更に好ましい。シス-1,4結合の含有率が1%以上であると、得られる架橋体の耐亀裂成長性をより良好にすることができる。また、(A)ポリブタジエンにおけるシス-1,4結合の含有率は、95%以下であることが好ましく、90%以下であることがより好ましい。なお、シス-1,4結合の含有率は、赤外分光光度計を用いて測定した値である。
 (A)ポリブタジエンにおける1,2結合の含有率は、99%以下であることが好ましく、98%以下であることがより好ましく、95%以下であることが更に好ましい。また、(A)ポリブタジエンにおける1,2結合の含有率は、5%以上であることが好ましく、10%以上であることがより好ましい。なお、1,2結合の含有率は、赤外分光光度計を用いて測定した値である。
 (A)ポリブタジエンのムーニー粘度(ML1+4,100℃)は、10以上であることが好ましく、20以上であることがより好ましい。また、(A)ポリブタジエンのムーニー粘度(ML1+4,100℃)は、150以下であることが好ましく、100以下であることがより好ましい。(A)ポリブタジエンのムーニー粘度(ML1+4,100℃)が上記範囲であると、本組成物の加工性を良好にすることができ、各種配合剤とともに均一な混練りを行うことができる点で好適である。なお、本明細書においてムーニー粘度(ML1+4,100℃)は、JIS K6300-1:2013に従って測定した値である。
 (A)ポリブタジエンにおける重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、製造しやすさの観点から、1.1以上が好ましく、2.0以上がより好ましく、2.2以上が更に好ましい。また、(A)ポリブタジエンのMw/Mnは、4.0以下が好ましく、3.5以下がより好ましい。(A)ポリブタジエンのMw/Mnが4.0以下であると、架橋ゴムの破壊特性をより良好にすることができる。
 本組成物の調製に際し、(A)ポリブタジエンの配合割合は、本組成物に含まれるゴム成分の全体量に対して、1質量%以上が好ましく、2質量%以上がより好ましい。また、(A)ポリブタジエンの配合割合は、本組成物に含まれるゴム成分の全体量に対して、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。(A)ポリブタジエンの配合割合が上記範囲であると、低ヒステリシスロス性を保ちながら、架橋ゴムの耐亀裂成長性及び剛性を十分に高くでき好適である。
 本組成物の調製に際し、(A)ポリブタジエンの配合割合は、(A)ポリブタジエン中の1,2-ポリブタジエンと1,4-ポリブタジエンとの含有割合に応じて適宜設定することもできる。具体的には、本組成物に含まれるゴム成分の全体量に対して、1,2-ポリブタジエンの含有割合が1~20質量%、1,4-ポリブタジエンの含有割合が0.1~60質量%となるように(A)ポリブタジエンの配合割合を設定することが好ましい。本組成物において、1,2-ポリブタジエンの含有割合は、本組成物に含まれるゴム成分の全体量に対して、より好ましくは2~15質量%であり、更に好ましくは2~10質量%である。また、1,4-ポリブタジエンの含有割合は、本組成物に含まれるゴム成分の全体量に対して、より好ましくは0.2~50質量%であり、更に好ましくは0.2~40質量%である。
<(B)変性ゴム>
 本組成物に配合される(B)変性ゴムは、ハロゲン化イソプレン系ゴム及びエポキシ化ジエン系ゴムよりなる群から選択される少なくとも1種のゴム成分である。
・ハロゲン化イソプレンゴム
 ハロゲン化イソプレンゴムは、イソプレンとイソオレフィンとの共重合体をハロゲン化(好ましくは、塩素化又は臭素化)することにより得られるゴム成分である。ハロゲン化イソプレンゴムの主骨格を構成するイソオレフィンは、炭素数4~6であることが好ましく、イソブチレンであることがより好ましい。ハロゲン化イソプレンゴムにおいて、イソオレフィンに由来する構造単位の含有割合は、好ましくは90.0~99.9質量%であり、イソプレンに由来する構造単位の含有割合は、好ましくは0.1~10.0質量%である。ハロゲン化イソプレンゴムのハロゲン含量は、0.1~10質量%であることが好ましく、0.2~5質量%であることがより好ましい。
 ハロゲン化イソプレンゴムは、これらのうち、ハロゲン化イソブチレン-イソプレン共重合体(以下「ハロゲン化ブチルゴム」ともいう)であることが好ましい。ハロゲン化ブチルゴムは、イソブチレン-イソプレン共重合体に塩素を反応させた塩素化ブチルゴム、及びイソブチレン-イソプレン共重合体に臭素を反応させた臭素化ブチルゴムが好ましい。また、ハロゲン化イソプレンゴムは、塩素化ブチルゴムや臭素化ブチルゴム等のハロゲン化ゴムと共役ジエン系重合体とのグラフト共重合体であってもよい。
 ハロゲン化イソプレンゴムは、ムーニー粘度ML1+8(125℃)が20~60であることが好ましく、30~60であることがより好ましい。なお、ムーニー粘度ML1+8(125℃)は、JIS K-6300-1:2001に準拠し、温度125℃において、L形ローターの余熱時間を1分、ローターの回転時間を8分として測定した値である。
 ハロゲン化イソプレンゴムの具体例としては、塩素化ブチルゴム(Cl-IIR)の市販品として、JSR社製 JSR CHLOROBUTYL1066等を;臭素化ブチルゴム(Br-IIR)の市販品として、JSR BROMOBUTYL2222、JSR BROMOBUTYL2244、JSR BROMOBUTYL2255、JSR BROMOBUTYL2266(以上、JSR社製)等を、それぞれ挙げることができる。
・エポキシ化ジエン系ゴム
 エポキシ化ジエン系ゴムとしては、特に限定されないが、エポキシ化天然ゴム(ENR)及びエポキシ化ブタジエンゴム(EBR)等が挙げられる。これらのうち、(A)ポリブタジエンとの親和性が高い点で、エポキシ化ジエン系ゴムは、イソプレン単位を有することが好ましく、エポキシ化天然ゴムがより好ましい。
 エポキシ化ジエン系ゴムのエポキシ化率は、本組成物を用いて得られる架橋ゴムの剛性を十分に高くする観点から、1モル%以上が好ましく、2モル%以上がより好ましく、5モル%以上が更に好ましい。また、エポキシ化率は、架橋ゴムの耐亀裂成長性及び低ヒステリシスロス性能が低下することを抑制する観点から、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。なお、エポキシ化ジエン系ゴムのエポキシ化率は、H-NMRにより測定した値である。
 エポキシ化ジエン系ゴムの重量平均分子量(Mw)は、架橋体の耐亀裂成長性を十分に高くする観点から、1,000以上であることが好ましく、2,000以上であることがより好ましく、3,000以上であることが更に好ましい。また、本組成物の加工性を確保する観点から、エポキシ化ジエン系ゴムのMwは、200,000以下であることが好ましく、100,000以下であることがより好ましく、50,000以下であることが更に好ましい。
 (B)変性ゴムの配合割合は、本組成物に含まれるゴム成分100質量部に対して、1質量部以上とすることが好ましい。(B)変性ゴムを1質量部以上配合することにより、本組成物を用いて得られる架橋ゴムにおいて、(B)変性ゴムの配合による耐亀裂成長性の改善効果を十分に高くできる。(B)変性ゴムの配合割合は、ゴム成分100質量部に対して、より好ましくは3質量部以上であり、更に好ましくは5質量部以上である。また、(B)変性ゴムの配合割合は、架橋ゴムの剛性及び低ヒステリシスロス性能が良好に維持されるようにする観点から、本組成物に含まれるゴム成分100質量部に対して、好ましくは50質量部以下であり、より好ましくは40質量部以下であり、更に好ましくは30質量部以下である。なお、(B)変性ゴムとしては、1種が単独で配合されてもよく、又は2種以上が組み合わされて配合されてもよい。
<その他の成分>
 本組成物は、(A)ポリブタジエンと(B)変性ゴムとを含有するが、必要に応じてその他の成分を更に含有していてもよい。その他の成分としては、本組成物の用途に応じて適宜選択することができるが、例えば無機フィラー、架橋剤、加硫促進剤、プロセスオイル、他のゴム成分等が挙げられる。
[無機フィラー]
 無機フィラーとしては、シリカ、カーボンブラック等が挙げられる。シリカとしては、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ、沈降シリカ、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらのうち、好ましくは湿式シリカである。カーボンブラックとしては、GPF、FEF、HAF、ISAF、SAFなどが挙げられるが、特に限定されるものではない。無機フィラーとしては、シリカ及びカーボンブラックの他に、クレー、炭酸カルシウム等の各種の補強性充填剤が配合されてもよい。本組成物は、得られるゴムの強度及び剛性等の機械的特性を高くできる点で、無機フィラーとして、カーボンブラック及びシリカよりなる群から選択される少なくとも1種のフィラーを含有することが好ましい。
 本組成物中における無機フィラーの含有割合は、本組成物に含まれるゴム成分の全体量100質量部に対して、好ましくは25~130質量部、より好ましくは30~110質量部である。
[架橋剤]
 架橋剤としては、有機過酸化物、フェノール樹脂、硫黄、硫黄化合物、p-キノン、p-キノンジオキシムの誘導体、ビスマレイミド化合物、エポキシ化合物、シラン化合物、アミノ樹脂、ポリオール、ポリアミン、トリアジン化合物、金属石鹸等を挙げることができる。これらのうち、架橋剤は、有機過酸化物、フェノール樹脂及び硫黄よりなる群から選択される少なくとも1種であることが好ましい。
 有機過酸化物としては、例えば1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキセン-3、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、2,2’-ビス(t-ブチルパーオキシ)-p-イソプロピルベンゼン、ジクミルパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルパーオキシド等を挙げることができる。
 フェノール樹脂としては、例えば、下記一般式(8)で表されるp-置換フェノール系化合物、o-置換フェノール・アルデヒド縮合物、m-置換フェノール・アルデヒド縮合物、臭素化アルキルフェノール・アルデヒド縮合物等を挙げることができる。なかでも、p-置換フェノール系化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記式(8)中、Xはヒドロキシル基、ハロゲン化アルキル基、又はハロゲン原子であり、Rは炭素数1~15の飽和炭化水素基であり、nは0~10の整数である。なお、p-置換フェノール系化合物は、アルカリ触媒の存在下における、p-置換フェノールとアルデヒド(好ましくはホルムアルデヒド)との縮合反応により得ることができる。
 フェノール樹脂の市販品としては、商品名「タッキロール201」(アルキルフェノールホルムアルデヒド樹脂、田岡化学工業社製)、商品名「タッキロール250-I」(臭素化率4%の臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業社製)、商品名「タッキロール250-III」(臭素化アルキルフェノールホルムアルデヒド樹脂、田岡化学工業社製)、商品名「PR-4507」(群栄化学工業社製)、商品名「ST137X」(ローム&ハース社製)、商品名「スミライトレジンPR-22193」(住友デュレズ社製)、商品名「タマノル531」(荒川化学工業社製)、商品名「SP1059」、商品名「SP1045」、商品名「SP1055」、商品名「SP1056」(以上、スケネクタディ社製)、商品名「CRM-0803」(昭和ユニオン合成社製)を挙げることができる。これらの中でも、「タッキロール201」が好ましく使用される。
 架橋剤の使用量は、本組成物に含まれるゴム成分の合計100質量部に対して、0.01~20質量部とすることが好ましく、0.1~15質量部とすることがより好ましく、1~10質量部とすることが更に好ましい。
 架橋剤として有機過酸化物を使用する場合において、有機過酸化物の使用量は、本組成物に含まれるゴム成分の合計100質量部に対して、0.05~10質量部とすることが好ましく、0.1~5質量部とすることがより好ましい。有機過酸化物の使用量が10質量部を超えると、架橋度が過度に高くなり、成形加工性が低下し、得られる架橋ゴムの機械的物性が低下する傾向にある。一方、有機過酸化物の使用量が0.05質量部未満であると、架橋度が不足し、得られる架橋ゴムのゴム弾性及び機械的強度が低下する傾向にある。
 また、架橋剤としてフェノール樹脂を使用する場合において、フェノール樹脂の使用量は、本組成物に含まれるゴム成分の合計100質量部に対して、0.2~10質量部とすることが好ましく、0.5~5質量部とすることがより好ましい。フェノール樹脂の使用量が10質量部超であると、成形加工性が低下する傾向にある。一方、フェノール樹脂の使用量が0.2未満であると、架橋度が不足し、得られる架橋ゴムのゴム弾性及び機械的強度が低下する傾向にある。
 架橋剤として硫黄を使用する場合において、硫黄の使用量は、本組成物に含まれるゴム成分の合計100質量部に対して、0.1~5質量部とすることが好ましく、0.5~3質量部とすることがより好ましい。
 架橋剤とともに、架橋助剤及び架橋促進剤の少なくともいずれかを用いると、架橋反応を穏やかに行うことができ、均一な架橋を形成することができるため好ましい。架橋剤として有機過酸化物を用いる場合には、架橋助剤として、硫黄、硫黄化合物(粉末硫黄、コロイド硫黄、沈降硫黄、不溶性硫黄、表面処理硫黄、ジペンタメチレンチウラムテトラスルフィド等)、オキシム化合物(p-キノンオキシム、p,p’-ジベンゾイルキノンオキシム等)、多官能性モノマー類(エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジアリルフタレート、テトラアリルオキシエタン、トリアリルシアヌレート、N,N’-m-フェニレンビスマレイミド、N,N’-トルイレンビスマレイミド、無水マレイン酸、ジビニルベンゼン、ジ(メタ)アクリル酸亜鉛等)等を用いることが好ましい。なかでも、p,p’-ジベンゾイルキノンオキシム、N,N’-m-フェニレンビスマレイミド、ジビニルベンゼンが好ましい。これらを1種単独で又は2種以上を組み合わせて用いることができる。なお、N,N’-m-フェニレンビスマレイミドは、架橋剤としての作用を示すものであるため、架橋剤として単独で使用することもできる。
 架橋剤として有機過酸化物を使用する場合における、架橋助剤の使用量は、本組成物に含まれるゴム成分の合計100質量部に対して、10質量部以下とすることが好ましく、0.2~5質量部とすることが更に好ましい。架橋助剤の使用量が10質量部超であると、架橋度が過度に高くなり、成形加工性が低下し、得られる架橋ゴムの機械的物性が低下する傾向にある。
 架橋剤としてフェノール樹脂を用いる場合には、架橋促進剤として、金属ハロゲン化物(塩化第一スズ、塩化第二鉄等)、有機ハロゲン化物(塩素化ポリプロピレン、クロロプレンゴム等)等を用いると、架橋速度を調節することができるために好ましい。また、架橋促進剤の他に、酸化亜鉛等の金属酸化物やステアリン酸等の分散剤を使用することが更に望ましい。
[加硫促進剤]
 加硫促進剤としては、特に限定されないが、例えばスルフェンアミド系、グアニジン系、チウラム系、チオウレア系、チアゾール系、ジチオカルバミン酸系、キサントゲン酸系の化合物が挙げられる。加硫促進剤の具体例としては、2-メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビスグアニジン等が挙げられる。加硫促進剤の配合量は、本組成物に含まれるゴム成分の全体量100質量部に対して、通常、0.1~10質量部であり、好ましくは0.4~5質量部である。
[プロセスオイル]
 本組成物には、油展のためのオイルとして、重合体を油展するために一般的に用いられるプロセスオイルが配合されていてもよい。プロセスオイルは、例えば、ゴム配合中にオイルを直接添加することによって本組成物に配合される。好ましいプロセスオイルとしては、当業界で公知の様々なオイルが挙げられ、例えば、芳香族系オイル、パラフィン系オイル、ナフテン系オイル、植物油、並びに、多環式芳香族化合物の含量の低いオイル(低PCAオイル)、例えば軽度抽出溶媒和物(MES:mild extraction solvate)、留出油からの芳香族系抽出物を処理した油(TDAE:treated distillate aromatic extract)、残油からの芳香族系特殊抽出物(SRAE:special residual aromatic extract)、及び重ナフテン系オイル等が挙げられる。市販のMES、TDAE及びSRAEの例としては、MESとしてShell製のCatenex SNR(留出油を溶媒で脱ワックスした重質パラフィン)、TDAEとしてH&R Wasag AG製のVivatec 500、及びSRAEとしてJapan Energy Corp.製のNC140等が挙げられる。プロセスオイルの配合量は、本組成物に含まれるゴム成分の合計量100質量部に対して、好ましくは10~100質量部である。
[他のゴム成分]
 本組成物には、(A)ポリブタジエン及び(B)変性ゴムとは異なるゴム成分(他のゴム成分)が配合されていてもよい。かかる他のゴム成分の種類は特に限定されないが、例えば、スチレンブタジエンゴム(SBR)、天然ゴム(NR)、イソプレンゴム(IR)、スチレンイソプレン共重合体ゴム、ブタジエンイソプレン共重合体ゴム、変性SBR、工程Yを含まない方法により得られた変性又は未変性のポリブタジエン等が挙げられる。本組成物は、これらのうち、他のゴム成分として少なくとも天然ゴムを含むことが、(A)ポリブタジエン及び(B)変性ゴムの配合による耐亀裂成長性の改善効果が高い点で好ましい。
 本組成物における他のゴム成分の配合割合は、耐亀裂成長性が十分に改善された架橋ゴムを得る観点から、本組成物に含まれるゴム成分の合計量100質量部に対して、好ましくは60質量部以下であり、より好ましくは50質量部以下である。また、他のゴム成分の配合割合は、本組成物に含まれるゴム成分の合計量100質量部に対して、好ましくは5質量部以上であり、より好ましくは10質量部以上である。
 本組成物には、上記した成分の他に、例えば老化防止剤、亜鉛華、ステアリン酸、軟化剤、シランカップリング剤、相溶化剤、加硫助剤、加工助剤、スコーチ防止剤、ワックス等といった、ゴム組成物において一般に使用される各種添加剤を配合させることができる。これらの配合割合は、本開示の効果を損なわない範囲で、各種成分に応じて適宜選択することができる。
《架橋体》
 (A)ポリブタジエン及び(B)変性ゴムを配合して調製された本組成物は、開放式混練機(例えば、ロール)、密閉式混練機(例えば、バンバリーミキサー)等の混練機を用いて混練され、成形加工後に架橋(加硫)されることにより、架橋体として各種ゴム製品に適用可能である。本組成物によれば、剛性を確保しながら、耐亀裂成長性に優れた架橋体を製造することができる。架橋体の用途としては、例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;パッキン、ガスケット、ウェザーストリップ、O-リング等のシール材;自動車、船舶、航空機、鉄道等の各種車両用の内外装表皮材;建築材料;産業機械用や設備用などの防振ゴム類;ダイヤフラム、ロール、ラジエータホース、エアーホース等の各種ホース及びホースカバー類;動力伝達用ベルトなどのベルト類;ライニング;ダストブーツ;医療用機器材料;防舷材;電線用絶縁材料;その他の工業品等の用途に適用できる。
 以下、実施例に基づいて具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。重合体の各種物性値の測定方法を以下に示す。
[ムーニー粘度]:JISK6300-1:2013に従い、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で測定した。
[分子量分布]:ゲルパーミエーションクロマトグラフ(商品名;VISCOTEK GPCmax、Malvern社製)を使用し、検知器として示差屈折計を用いて以下の条件で測定し、標準ポリスチレン換算値として算出した。
カラム;商品名「GMHHR-H」(東ソー社製)2本、カラム温度;38℃
移動相;テトラヒドロフラン、流速;1.0ml/分
サンプル濃度;10mg/20ml
[シス-1,4結合の含有率及び1,2-ビニル結合の含有率]:赤外分光光度計(商品名;FT/IR-4100シリーズ、Jasco社製)を使用し、ZnSeプリズムを用いて、波数1000~600cm-1を測定した。
[1,2-ポリブタジエン含有率]:以下の計算式(1)~(4)に従い、1,2-シンジオタクチックポリブタジエンの含有率αを計算した。なお、計算式(1)~(4)中の略称は以下の意味である。
 Q1:1,3-ブタジエン(シンジオタクチック-1,2重合用)投入量
 Q2:1,2-ポリブタジエン生成量
 Q3:1,2重合における未反応1,3-ブタジエン量
 Q4:1,3-ブタジエン(シス-1,4重合用)投入量
 Q5:1,4-ポリブタジエン生成量
Q2=Q1×(シンジオタクチック-1,2重合の反応転化率) …(1)
Q3=Q1-Q2  …(2)
Q5=(Q3+Q4)×(シス-1,4重合の反応転化率)  …(3)
含有率α=(Q2÷(Q2+Q5))×100  …(4)
[エポキシ化率]:H-NMRにより、イソプレン単位が有する二重結合とエポキシ基結合部分のプロトンピークの比によりエポキシ化天然ゴムのエポキシ化率を測定した。
1.ポリブタジエンゴムの製造及び評価
[製造例1]
 シクロヘキサン1.5kg、1,3-ブタジエン50gを、窒素置換された3Lオートクレーブに投入した。これとは別に、塩化コバルトを0.02ミリモル含有するジクロライド溶液、ジフェニルシクロヘキシルホスフィンを0.04ミリモル含有するジクロライド溶液、及び0.60ミリモルのメチルアルミノキサン(MAO)を含有するトルエン溶液を混合し、30℃で60分間反応させることにより触媒組成物Aを調製した。この触媒組成物Aを上記オートクレーブに投入し、30℃で1時間反応(シンジオタクチック-1,2重合)させて重合体溶液を得た。なお、投入した1,3-ブタジエンの反応転化率は約75%であった。その後、重合反応を停止させるために、水素化ジイソブチルアルミニウムを0.2ミリモル含有するトルエン溶液を上記オートクレーブに投入し、15分間撹拌した。
 上記反応により得られたポリブタジエンの各種物性値を測定するため、上記重合体溶液から18gの重合体溶液を抜き取り、抜き取った重合体溶液に2,6-ジ-t-ブチル-p-クレゾールを含むトルエン溶液を添加し、重合反応を停止させた。その後、ホットプレート上で加熱することにより脱溶媒した。得られたポリブタジエン(1,2-シンジオタクチックポリブタジエン)の各種物性値を測定したところ、融点は137℃、重量平均分子量(Mw)は140,000であった。
 続いて、得られた重合体溶液に1,3-ブタジエン250gを投入した。また別途、0.037ミリモルのバーサチック酸ネオジム(Nd(ver))を含有するシクロヘキサン溶液、1.20ミリモルのMAOを含有するトルエン溶液、2.86ミリモルの水素化ジイソブチルアルミニウムを含有するトルエン溶液、及び0.045ミリモルのトリメチルシリルクロライド(MeSiCl)を含有するトルエン溶液と、1,3-ブタジエン4.5ミリモルを30℃で60分間反応させることにより触媒組成物Bを調製した。この触媒組成物Bを上記オートクレーブに投入し、70℃で1時間反応(シス-1,4重合)させて重合体溶液を得た。なお、投入した1,3-ブタジエンの反応転化率はほぼ100%であった。
 次いで、上記反応により得られたポリブタジエンの各種物性値を測定するため、上記重合体溶液から200gの重合体溶液を抜き取り、抜き取った重合体溶液に2,4-ジ-tert-ブチル-p-クレゾール1.5gを含むトルエン溶液を添加し、重合反応を停止させた。その後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥した。得られた乾燥物をポリブタジエンP1とした。ポリブタジエンP1の各種物性値を測定したところ、1,2-ポリブタジエン含有率が11%、1,4-ポリブタジエン含有率が89%、重量平均分子量(Mw)が140,000、分子量分布(Mw/Mn)が3.14、シス-1,4結合の含有率が87.6%、1,2-ビニル結合の含有率が11.1%であった。
[製造例2]
 シクロヘキサン1.5kg、1,3-ブタジエン300gを、窒素置換された3Lオートクレーブに投入した。これとは別に、塩化コバルトを0.12ミリモル含有するジクロライド溶液、ジフェニルシクロヘキシルホスフィンを0.24ミリモル含有するジクロライド溶液、及び3.60ミリモルのメチルアルミノキサン(MAO)を含有するトルエン溶液を混合し、30℃で60分間反応させることにより触媒組成物Aを調製した。この触媒組成物Aを上記オートクレーブに投入し、55℃で1時間反応(シンジオタクチック-1,2重合)させて重合体溶液を得た。なお、投入した1,3-ブタジエンの反応転化率は約80%であった。その後、重合反応を停止させるために、水素化ジイソブチルアルミニウムを1.2ミリモル含有するトルエン溶液を上記オートクレーブに投入し、15分間撹拌した。
 上記反応により得られたポリブタジエンの各種物性値を測定するため、上記重合体溶液から18gの重合体溶液を抜き取り、抜き取った重合体溶液に2,6-ジ-t-ブチル-p-クレゾールを含むトルエン溶液を添加し、重合反応を停止させた。その後、ホットプレート上で加熱することにより脱溶媒した。得られたポリブタジエン(1,2-シンジオタクチックポリブタジエン)の各種物性値を測定したところ、融点が121℃、重量平均分子量(Mw)は290,000であった。
 続いて、0.0087ミリモルのバーサチック酸ネオジム(Nd(ver))を含有するシクロヘキサン溶液、0.28ミリモルのMAOを含有するトルエン溶液、0.67ミリモルの水素化ジイソブチルアルミニウムを含有するトルエン溶液、及び0.011ミリモルのトリメチルシリルクロライド(MeSiCl)を含有するトルエン溶液と、1,3-ブタジエン1.1ミリモル(1,2-ポリブタジエン/1,3-ブタジエン=80/20に相当する量)を30℃で60分間反応させることにより触媒組成物Bを調製した。この触媒組成物Bを上記オートクレーブに投入し、70℃で1時間反応(シス-1,4重合)させて、ポリブタジエンを含有する重合体溶液を得た。なお、1,4重合における未反応1,3-ブタジエンの反応転化率は約25%であった。
 次いで、上記反応により得られたポリブタジエンの各種物性値を測定するため、上記重合体溶液から200gの重合体溶液を抜き取り、抜き取った重合体溶液に2,6-ジ-tert-ブチル-p-クレゾール1.5gを含むトルエン溶液を添加し、重合反応を停止させた。その後、ホットプレート上で加熱することにより脱溶媒し、ポリブタジエンP2を得た。ポリブタジエンP2の各種物性値を測定したところ、1,2-ポリブタジエン含有率が93.6%、1,4-ポリブタジエン含有率が6.4%、分子量分布(Mw/Mn)が2.82、シス-1,4結合の含有率が5.0%、1,2-ビニル結合の含有率が95.0%、重量平均分子量(Mw)が300,000であった。また、ポリブタジエンP2に含まれる1,2-ポリブタジエンの融点は121℃、重量平均分子量(Mw)は290,000であった。
[製造例3]
 製造例2において1,2重合の重合処方を下記表1のとおりとし、シス-1,4重合の重合処方を下記表2に記載のとおりとした点以外は製造例2と同様の操作を行い、ポリブタジエンP3を得た。また、得られたポリブタジエンP3の各物性値の測定結果を下記表3に示す。
[製造例4]
 シクロヘキサン1.5kg、1,3-ブタジエン300gを窒素置換された3Lオートクレーブに投入した。これとは別に、0.043ミリモルのバーサチック酸ネオジム(Nd(ver))を含有するシクロヘキサン溶液、1.37ミリモルのMAOを含有するトルエン溶液、3.09ミリモルの水素化ジイソブチルアルミニウムを含有するトルエン溶液、及び0.051ミリモルのトリメチルシリルクロライド(MeSiCl)を含有するトルエン溶液と、1,3-ブタジエン5.1ミリモルを30℃で60分間反応させることにより触媒組成物Bを調製した。この触媒組成物Bを上記オートクレーブに投入し、70℃で1時間反応(シス-1,4重合)させて重合体溶液を得た。なお、投入した1,3-ブタジエンの反応転化率はほぼ100%であった。
 続いて、重合体溶液を温度70℃に保持し、1.85ミリモルの3-グリシジルオキシプロピル(ジメトキシ)メチルシランを含有するトルエン溶液を添加し、30分間反応させて反応溶液を得た。その後、この反応溶液に、2,4-ジ-tert-ブチル-p-クレゾール1.5gを含むトルエン溶液を添加し、変性重合体溶液を得た(収量:1.6kg)。続いて、この変性重合体溶液に、水酸化ナトリウムによりpH10に調整した水溶液5Lを添加し、110℃で1時間、脱溶媒とともに縮合反応を行った。その後、110℃のロールで乾燥し、得られた乾燥物を変性ポリブタジエンゴムVとした。
[製造例5]
 天然ゴムラテックス(「LA ラテックス」、レジテックス社製、ゴム濃度60質量%)200gに対し、蟻酸24g及び過酸化水素(35質量%水溶液)108gを加え、50℃、24時間撹拌することにより、エポキシ化天然ゴムラテックス溶液(「三員複素環構造を構成する原子」が酸素原子)であるエポキシ化天然ゴムを得た。得られたエポキシ化天然ゴムの変性率は30モル%であった。得られたエポキシ化天然ゴムをエポキシ化NR1とした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び表2中の略称は以下の意味である。
CoCL2:塩化コバルト
PCH:ジフェニルシクロヘキシルホスフィン
AlBuH:水素化ジイソブチルアルミニウム
NdVer:バーサチック酸ネオジム
MeSiCl:トリメチルシリルクロライド
Figure JPOXMLDOC01-appb-T000005
2.ゴム組成物の調製及び評価
[実施例1]
 製造例1のポリブタジエンP1を40部、天然ゴムを40部、臭素化ブチルゴム(商品名「BROMOBUTYL 2222」、JSR社製)20部に対して、シリカ(商品名「ULTRASIL 360」、エボニック社製)45部、シリカ(商品名「ULTRASIL VN3」、エボニック社製)25部、カーボンブラック(商品名「ダイアブラックN339」、三菱ケミカル社製)5.6部、T-DAEプロセスオイル37.5部、シランカップリング剤(商品名「Si69」、エボニック社製)4.5部、スルフィド化合物(商品名「Rhenocure S」、ラインケミ社製)4.5部、ステアリン酸2部、老化防止剤(商品名「ノクラック810NA」、大内新興化学工業社製)1部、酸化亜鉛3部、加硫促進剤CZ(商品名「ノクセラーCZ-G」、大内新興化学工業社製)1.8部、加硫促進剤D(商品名「ノクセラーD」、大内新興化学工業社製)1.5部、及び硫黄1.5部を配合し、プラストミルを使用して混練することによりゴム組成物を得た。その後、このゴム組成物を160℃、12分の条件で加硫することにより加硫ゴムを得た。得られた加硫ゴムの諸特性の評価を以下に示す評価方法(1)~(3)により行った。配合処方及び評価結果を下記表4に示す。
(1)耐亀裂成長性
 得られたゴム組成物をカレンダー加工によってシート状に成型した後、加硫プレス機を用いて160℃で所定時間加硫処理することにより、厚みが2mmの架橋ゴムシートを作製した。得られたシートに対して打ち抜き加工を施すことにより、ASTM D638に記載のIV型のダンベルよりなる試験片を作製した。この際、ダンベルの長手方向がシートの列理方向となるよう、シートに対して打ち抜き加工を施すと共に、ダンベルにおける長手方向の中央位置に反列理方向に延びる亀裂を形成した。
 得られた試験片について、伸長率が100%、測定温度が23℃、回転数が300cpmの条件で定伸長疲労試験を行い、試験片が破断するまでのサイクル数を測定した。比較例1を100とした指数で示し、数値が大きいほど耐亀裂成長性が良好であることを示す。
(2)剛性(M300)
 加硫ゴムを測定用試料とし、JIS K6251:2010に準拠して引張試験を行った。試験サンプルとしてダンベル状3号形を用いて、300%伸長時の引張応力(M300)を室温で測定した。比較例1を100とした指数で示し、数値が大きいほど剛性が良好であることを示す。
(3)低ヒステリシスロス性能(50℃tanδ)
 加硫ゴムを測定用試料として、ARES-RDA(TA Instruments社製)を使用し、剪断歪1.0%、角速度100ラジアン毎秒、50℃の条件で測定した。比較例1を100とした指数で示し、数値が大きいほどエネルギーロスが小さく、低ヒステリシスロス性能が良好であることを示す。
[実施例2~5、比較例1~5]
 配合処方を下記表4及び表5に示す処方に変更した点以外は実施例1と同様にして混練を行うことによりゴム組成物を得た。また、得られたゴム組成物を用いて実施例1と同様にして加硫ゴムを製造し、物性評価を行った。それらの結果を下記表4及び表5に示した。なお、各評価の結果につき、実施例2,3及び比較例2,3については、比較例1を100とした指数で示し、実施例4,5及び比較例5については、比較例4を100とした指数で示した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4及び表5中の略称及び各成分は以下のものを用いたことを表す。
 P1:製造例1のポリブタジエン
 P2:製造例2のポリブタジエン
 P3:製造例3のポリブタジエン
 V:製造例4の変性ポリブタジエンゴムV
 BR01:商品名「BR01」、JSR社製ポリブタジエンゴム(シス-1,4結合量95%)
 RB840:商品名「RB840」、JSR社製シンジオタクチック1,2-ポリブタジエン
 VCR412:商品名「VCR412」、宇部興産社製ビニル・シス-ポリブタジエン(1,2-ポリブタジエン含量12.0質量%)
 天然ゴム(NR):RSS3号
 SBR:JSR社製 JSR 1502
 臭素化ブチルゴム:JSR社製 BROMOBUTYL 2222
 塩素化ブチルゴム:JSR社製 CHLOROBUTYL 1066
 エポキシ化NR1:製造例5のエポキシ化天然ゴム
 シリカ1:エボニック社製 ULTRASIL 360
 シリカ2:エボニック社製 ULTRASIL VN3
 カーボンブラックN339:三菱ケミカル社製 ダイアブラックN339
 シランカップリング剤:エボニック社製 Si69
 スルフィド化合物:ラインケミ社製 Rhenocure S
 老化防止剤:大内新興化学工業社製 ノクラック810NA
 加硫促進剤CZ:大内新興化学工業社製 ノクセラーCZ-G
 加硫促進剤D:大内新興化学工業社製 ノクセラーD
 表中、「-」は、該当する欄の化合物を使用しなかったことを表す。
 (A)ポリブタジエンを用いてゴム組成物を調製した実施例1~3、ポリブタジエン成分として高シスポリブタジエンゴムとシンジオタクチック1,2-ポリブタジエンとをブレンドしてゴム組成物を調製した比較例1~3について、ポリブタジエン以外については同一組成とした実施例1と比較例1、実施例2と比較例2、実施例3と比較例3をそれぞれ比較すると、表4に示すように、実施例1~3の加硫ゴムはいずれも、比較例と比べて、耐亀裂成長性及び剛性に優れていた。また、低ヒステリシスロス性能について、実施例1~3の加硫ゴムは比較例と同等の値を示した。
 また、(A)ポリブタジエンと共に(B)変性ゴムとしてエポキシ化天然ゴムを含むゴム組成物を用いた実施例4と、ゴム組成物のポリブタジエン成分を高シスポリブタジエンゴムとシンジオタクチック1,2-ポリブタジエンとのブレンドとし、エポキシ化天然ゴムを配合しなかった比較例4とを比較すると、表5に示すように、実施例4の加硫ゴムは、比較例4と比べて、耐亀裂成長性及び剛性に加え、低ヒステリシスロス性能も優れていた。実施例4の加硫ゴムは、ポリブタジエン成分以外は同一の組成とした比較例5と比べても、耐亀裂成長性、剛性及び低ヒステリシスロス性能に優れていた。また、実施例5についても、比較例4、5と比べて、耐亀裂成長性、剛性及び低ヒステリシスロス性能に優れていた。
 以上の結果から、本組成物によれば、低ヒステリシスロス性能を良好に保持したまま、耐亀裂成長性及び剛性に優れた架橋ゴムを得ることができることが明らかとなった。

Claims (4)

  1.  (A)1,2-ポリブタジエンとランタノイド系触媒との存在下で1,3-ブタジエンを重合して得られるポリブタジエンと、
     (B)ハロゲン化イソプレン系ゴム及びエポキシ化ジエン系ゴムよりなる群から選択される少なくとも1種の変性ゴムと、
    を含有する、組成物。
  2.  前記1,2-ポリブタジエンは、コバルト系触媒の存在下で1,3-ブタジエンを重合して得られる重合体である、請求項1に記載の組成物。
  3.  前記1,2-ポリブタジエンは、1,2-シンジオタクチックポリブタジエンである、請求項1又は2に記載の組成物。
  4.  更に、カーボンブラック及びシリカのうち少なくとも一方のフィラーを含有する、請求項1~3のいずれか一項に記載の組成物。
PCT/JP2021/017684 2020-05-14 2021-05-10 組成物 WO2021230194A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-085534 2020-05-14
JP2020085534 2020-05-14

Publications (1)

Publication Number Publication Date
WO2021230194A1 true WO2021230194A1 (ja) 2021-11-18

Family

ID=78524384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017684 WO2021230194A1 (ja) 2020-05-14 2021-05-10 組成物

Country Status (1)

Country Link
WO (1) WO2021230194A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122531A (ja) * 1982-12-28 1984-07-16 Japan Synthetic Rubber Co Ltd 強度の改良されたゴム組成物
WO2009093695A1 (ja) * 2008-01-23 2009-07-30 Ube Industries, Ltd. ゴム組成物、ベーストレッド用ゴム組成物、チェーファー用ゴム組成物、及びサイドウォール用ゴム組成物、並びにそれらを用いたタイヤ
JP2016540080A (ja) * 2013-12-03 2016-12-22 株式会社ブリヂストン シス−1,4−ポリブタジエンとシンジオタクチック1,2−ポリブタジエンのブレンドを調製するプロセス
JP2018536758A (ja) * 2015-12-07 2018-12-13 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH ゴム混合物
JP2019056073A (ja) * 2017-09-22 2019-04-11 宇部興産株式会社 ビニル・シス−ポリブタジエンゴム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122531A (ja) * 1982-12-28 1984-07-16 Japan Synthetic Rubber Co Ltd 強度の改良されたゴム組成物
WO2009093695A1 (ja) * 2008-01-23 2009-07-30 Ube Industries, Ltd. ゴム組成物、ベーストレッド用ゴム組成物、チェーファー用ゴム組成物、及びサイドウォール用ゴム組成物、並びにそれらを用いたタイヤ
JP2016540080A (ja) * 2013-12-03 2016-12-22 株式会社ブリヂストン シス−1,4−ポリブタジエンとシンジオタクチック1,2−ポリブタジエンのブレンドを調製するプロセス
JP2018536758A (ja) * 2015-12-07 2018-12-13 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH ゴム混合物
JP2019056073A (ja) * 2017-09-22 2019-04-11 宇部興産株式会社 ビニル・シス−ポリブタジエンゴム

Similar Documents

Publication Publication Date Title
CA2591711C (en) Process for production of vinyl-cis-polybutadiene rubber and rubber compositions
US8153723B2 (en) Process for producing conjugated diene polymer, conjugated diene polymer, and rubber composition
JP4332690B2 (ja) ゴム組成物
JP5458576B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
JP5369816B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
US8962752B2 (en) Rubber composition and tire using the same as well as modified conjugated diene-based polymer and method for producing the same
JP4367589B2 (ja) 共役ジエン系重合体の製造方法およびゴム組成物
JP2020122081A (ja) 重合体組成物及びタイヤ
EP2307468B1 (en) Tyre and crosslinkable elastomeric composition comprising an isotactic copolymer obtained by homogenous catalysis
JP6144008B2 (ja) ポリブタジエンゴム組成物、その製造方法及びタイヤ
JP7376504B2 (ja) ポリブタジエン組成物の製造方法
WO2021230194A1 (ja) 組成物
JP4807712B2 (ja) 変性共役ジエン系重合体、その製造方法およびゴム組成物
JP2010241982A (ja) タイヤ
JP2022001647A (ja) ゴム組成物及びその製造方法
WO2021230195A1 (ja) 組成物
JP6022920B2 (ja) トレッド用ゴム組成物、及び空気入りタイヤ
JP2017132959A (ja) ゴム組成物及びタイヤ
JPWO2019163869A1 (ja) 加硫ゴム組成物の製造方法
KR102374187B1 (ko) 고무 조성물의 제조방법, 이의 방법으로 제조된 고무 조성물 및 이를 이용하여 제조된 타이어
JP2020105372A (ja) 重合体組成物及びタイヤ
JP2017052860A (ja) ビニル・シス−ポリブタジエンゴムの製造方法、ビニル・シス−ポリブタジエンゴム、ビニル・シス−ポリブタジエンゴムを用いたゴム組成物の製造法、およびゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP