WO2021229935A1 - 半導体装置および電圧制御方法 - Google Patents

半導体装置および電圧制御方法 Download PDF

Info

Publication number
WO2021229935A1
WO2021229935A1 PCT/JP2021/013254 JP2021013254W WO2021229935A1 WO 2021229935 A1 WO2021229935 A1 WO 2021229935A1 JP 2021013254 W JP2021013254 W JP 2021013254W WO 2021229935 A1 WO2021229935 A1 WO 2021229935A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transistor
gate
semiconductor device
control signal
Prior art date
Application number
PCT/JP2021/013254
Other languages
English (en)
French (fr)
Inventor
理市 西野
陽太郎 森
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202180033076.2A priority Critical patent/CN115516401A/zh
Publication of WO2021229935A1 publication Critical patent/WO2021229935A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Definitions

  • the present disclosure relates to semiconductor devices and voltage control methods used in semiconductor devices.
  • Patent Document 1 discloses a voltage regulator capable of suppressing the occurrence of an excessive overshoot in the output voltage.
  • the semiconductor device includes an error amplifier, a drive transistor, a first switch, a load circuit, and a control unit.
  • the error amplifier is configured to generate an error voltage according to the difference between the output voltage and the reference voltage.
  • the drive transistor has a gate to which an error voltage is supplied and a drain or source to which the output voltage is output.
  • the first switch is configured to be turned on to adjust the voltage at the gate of the drive transistor so that the state of the drive transistor is directed to the off state.
  • the load circuit is configured to supply an output voltage.
  • the control unit is configured to control the operation sequence of the load circuit and to turn on the first switch in the first period including the timing when the load of the load circuit changes.
  • the voltage control method is to generate an error voltage according to the difference between the output voltage and the reference voltage, and the output voltage from the drain or source of the drive transistor having the gate to which the error voltage is supplied.
  • an error voltage corresponding to the difference between the output voltage and the reference voltage is generated, and the output voltage is generated by the drive transistor based on this error voltage.
  • This output voltage is supplied to the load circuit.
  • the operation sequence of the load circuit is controlled, and the voltage of the gate of the drive transistor turns off the state of the drive transistor by turning on the first switch in the first period including the timing when the load of the load circuit changes. Adjusted to face the condition.
  • FIG. 1 shows a configuration example of a semiconductor device (semiconductor device 1) according to an embodiment.
  • the semiconductor device 1 is, in this example, a so-called cross-point type storage device. Since the voltage control method according to the embodiment of the present disclosure is embodied by the present embodiment, it will be described at the same time.
  • the semiconductor device 1 includes a memory array 11, a bit line selection unit 12, a word line selection unit 13, voltage regulators 20H and 20L, a voltage selection unit 30, a current limiting unit 14, a sense amplifier 15, and a control unit. It is equipped with 16.
  • the memory array 11 is configured such that a plurality of memory cells MC are arranged in an array and store information.
  • FIG. 2 shows an example of a configuration of the memory array 11.
  • the memory array 11 has a plurality of bit lines BL, a plurality of word lines WL, and a plurality of memory cells MC.
  • the plurality of bit lines BL are stretched in the Y direction and arranged side by side in the X direction in the XY plane parallel to the substrate surface S of the semiconductor substrate.
  • the plurality of word lines WL extend in the X direction and are arranged side by side in the Y direction in the XY plane.
  • the plurality of bit lines BL are arranged on the upper layer of the layer in which the plurality of word lines WL are arranged. With this configuration, the plurality of bit lines BL and the plurality of word lines WL intersect each other in the XY plane.
  • the plurality of memory cells MC include a layer in which a plurality of bit line BLs are arranged and a layer in which a plurality of word line WLs are arranged in a portion where a plurality of bit line BLs and a plurality of word line WLs intersect in an XY plane. Placed between.
  • FIG. 3 shows an example of a configuration of the memory cell MC.
  • the memory cell MC has a storage element VR, a selection element SE, and terminals TU and TL.
  • the storage element VR is a resistance change type storage element, and is configured so that the resistance state RS reversibly changes according to the polarity of the voltage difference of the voltage applied between both ends. In other words, the storage element VR reversibly changes the resistance state RS according to the direction of the current flowing between both ends.
  • the storage element VR is configured by, for example, laminating an ion source layer and a resistance changing layer. One end of the storage element VR is connected to the terminal TU of the memory cell MC, and the other end is connected to one end of the selection element SE.
  • FIG. 4 schematically shows the distribution of the resistance value of the storage element VR.
  • the storage element VR may have two distinguishable resistance states RS (high resistance state HRS and low resistance state LRS).
  • the high resistance state HRS is associated with the data "0"
  • the low resistance state LRS is associated with the data "1”. That is, the storage element VR stores 1-bit data. For example, changing from a high resistance state HRS to a low resistance state LRS is called “set”, and changing from a low resistance state LRS to a high resistance state HRS is called "reset”.
  • the selection element SE (FIG. 3) is configured to have bidirectional diode characteristics. Specifically, the selection element SE is in a conduction state (on state) when the absolute value of the voltage difference of the voltage applied between both ends is larger than the predetermined value, and the absolute value of the voltage difference is from this predetermined value. If it is small, it will be in a non-conducting state (off state). One end of the selection element SE is connected to the other end of the storage element VR, and the other end is connected to the terminal TL of the memory cell MC.
  • the terminal TU is connected to the bit line BL on the storage layer on which the memory cell MC is formed.
  • the terminal TL is connected to the word line WL under the storage layer in which the memory cell MC is formed.
  • the terminal TU of the memory cell MC is connected to any one of the plurality of bit lines BL, and the terminal TL is connected to any one of the plurality of word lines WL. ..
  • a voltage VH is applied to the terminal TU and, for example, a voltage VL is applied to the terminal TL.
  • the voltage VH is a voltage higher than the voltage VL.
  • the selection element SE is turned on, the set current Iset flows from the terminal TU toward the terminal TL, and the resistance state RS of the storage element VR becomes the low resistance state LRS, as shown in FIG. In this way, the memory cell MC is set.
  • a voltage VH is applied to the terminal TL and a voltage VL is applied to the terminal TU.
  • the selection element SE is turned on, the reset current Irst flows from the terminal TL toward the terminal TU, and the resistance state RS of the storage element VR becomes the high resistance state HRS. In this way, the memory cell MC is reset. Further, when performing a read operation on the memory cell MC, for example, a voltage VH is applied to the terminal TU and a voltage VL is applied to the terminal TL, for example. For the difference voltage between the voltage VH and the voltage VL, the selection element SE is turned on when the resistance state RS of the storage element VR is the low resistance state LRS, and the resistance state RS of the storage element VR is the high resistance state HRS. In this case, the voltage is set so as to turn off the selection element SE.
  • a sense current Isns corresponding to the resistance state RS of the storage element VR flows from the terminal TU toward the terminal TL, and a voltage corresponding to this sense current Isns is generated.
  • the sense amplifier 15 (described later) is adapted to discriminate the resistance state RS of the storage element VR based on the voltage generated by the sense current Isns in this way.
  • the sense amplifier 15 (described later) is adapted to discriminate the resistance state RS of the storage element VR based on the voltage generated by the sense current Isns in this way.
  • the bit line selection unit 12 (FIG. 1) is configured to select one of a plurality of bit line BLs in the memory array 11 based on the selection control signal CTLB.
  • FIG. 5 shows an example of the configuration of the bit line selection unit 12. Note that FIG. 5 also depicts a plurality of bit lines BL in the current limiting unit 14, the sense amplifier 15, and the memory array 11.
  • the selection control signal CTLB includes a plurality of bits of the control signal CB1, a plurality of bits of the control signal CB2, a plurality of bits of the control signal CB3, and a plurality of bits of the control signal CB4.
  • the bit line selection unit 12 has a selection circuit 101, a plurality of selection circuits 102, a plurality of selection circuits 103, and a plurality of selection circuits 104.
  • the selection circuit 101 has a plurality of transistors TR1.
  • the transistor TR1 is an N-type MOS (Metal Oxide Semiconductor) transistor.
  • the sources of the plurality of transistors TR1 are connected to the current limiting unit 14 and the sense amplifier 15.
  • the gates of the plurality of transistors TR1 are supplied with the signals of the corresponding bits in the control signal CB1, and the drains are connected to the plurality of selection circuits 102, respectively.
  • Each of the plurality of selection circuits 102 has a plurality of transistors TR2.
  • the transistor TR2 is an N-type MOS transistor.
  • the sources of these plurality of transistors TR2 are connected to the selection circuit 101.
  • the gates of the plurality of transistors TR2 are supplied with the signals of the corresponding bits in the control signal CB2, and the drains are connected to the plurality of selection circuits 103, respectively.
  • Each of the plurality of selection circuits 103 has a plurality of transistors TR3.
  • the transistor TR3 is an N-type MOS transistor.
  • the source of these plurality of transistors TR3 is connected to one of the plurality of selection circuits 102.
  • the gates of the plurality of transistors TR3 are supplied with the signals of the corresponding bits in the control signal CB3, and the drains are connected to the plurality of selection circuits 104, respectively.
  • Each of the plurality of selection circuits 104 has a plurality of transistors TR4.
  • the transistor TR4 is an N-type MOS transistor.
  • the source of these plurality of transistors TR4 is connected to one of the plurality of selection circuits 103.
  • a signal of the corresponding bit in the control signal CB4 is supplied to the gate of the plurality of transistors TR4, and the drain is connected to each of the plurality of bit lines BL.
  • the bit line selection unit 12 selects one of the plurality of bit line BLs in the memory array 11 based on the selection control signal CTLB, and uses the selected bit line BL as the current limiting unit 14 and the sense. It is designed to be connected to the amplifier 15.
  • the bit line selection unit 12 is configured by using an N-type MOS transistor, but the present invention is not limited to this. Instead of this, for example, the bit line selection unit 12 may be configured by using a P-type MOS transistor, or for example, the bit line selection unit may be configured by using both a P-type MOS transistor and an N-type MOS transistor. 12 may be configured.
  • the word line selection unit 13 (FIG. 1) is configured to select one of a plurality of word line WLs in the memory array 11 based on the selection control signal CTLW.
  • FIG. 6 shows an example of the configuration of the word line selection unit 13.
  • the selection control signal CTLW includes a plurality of bits of the control signal CW1, a plurality of bits of the control signal CW2, a plurality of bits of the control signal CW3, and a plurality of bits of the control signal CW4.
  • the word line selection unit 13 has a selection circuit 201, a plurality of selection circuits 202, a plurality of selection circuits 203, and a plurality of selection circuits 204.
  • the configuration of the selection circuits 201 to 204 is the same as the configuration of the selection circuits 101 to 104 (FIG. 5).
  • the sources of the plurality of transistors TR1 in the selection circuit 201 are connected to the voltage selection unit 30.
  • the drains of the plurality of transistors TR4 in each of the plurality of selection circuits 204 are connected to the plurality of word line WLs, respectively.
  • the word line selection unit 13 selects one of the plurality of word line WLs in the memory array 11 based on the selection control signal CTLW, and connects the selected word line WL to the voltage selection unit 30. It is designed to do.
  • the word line selection unit 13 is configured by using an N-type MOS transistor, but the present invention is not limited to this. Instead of this, for example, the word line selection unit 13 may be configured by using a P-type MOS transistor, or for example, a word line selection unit may be configured by using both a P-type MOS transistor and an N-type MOS transistor. 13 may be configured.
  • the voltage regulator 20H (FIG. 1) is configured to generate a voltage VH.
  • the control signals SLCM, SSW1H, and SSW2 are supplied to the voltage regulator 20H.
  • FIG. 7 shows an example of a configuration of the voltage regulator 20H.
  • the voltage regulator 20H includes an error amplifier AMP1, a transistor MP11, a constant current source CS1, a capacitor C1, and transistors MP12 to MP14.
  • the transistors MP11 to MP14 are P-type MOS transistors.
  • the error amplifier AMP1 is configured to generate an error voltage according to the difference between the output voltage of the voltage regulator 20H and the reference voltage VREFH.
  • the positive input terminal of the error amplifier AMP1 is connected to the output terminal OUTH of the voltage regulator 20H, the reference voltage VREFH is supplied to the negative input terminal, and the output terminal is connected to the gate of the transistor MP11 and the drain of the transistors MP13 and MP14.
  • the error amplifier AMP1 is configured to be able to reduce power consumption based on the control signal SLCM. Specifically, the error amplifier AMP1 can reduce power consumption when the control signal SLCM is at a high level by reducing the current flowing through the constant current source as compared with the case where the control signal SLCM is at a low level. You can do it.
  • the gate of the transistor MP11 is connected to the output terminal of the error amplifier AMP1 and the drain of the transistors MP13 and MP14, the source is connected to the power supply node N VDD to which the power supply voltage VDD is supplied, and the drain is connected to the output terminal OUTH of the voltage regulator 20H. NS.
  • the constant current source CS1 is configured to pass a current of a predetermined current value, one end is connected to the output terminal OUTH of the voltage regulator 20H, and the other end is connected to the ground node NVSS to which the ground voltage VSS is supplied.
  • the constant current source CS1 can reduce the current to flow when the control signal SLCM is at a high level as compared with the case where the control signal SLCM is at a low level.
  • One end of the capacitor C1 is connected to the output terminal OUTH of the voltage regulator 20H, and the other end is connected to the ground node NVSS.
  • the gate of the transistor MP12 is connected to the drain of the transistor MP12 and the source of the transistor MP13, the source is connected to the power supply node N VDD, and the drain is connected to the gate of the transistor MP12 and the source of the transistor MP13.
  • the gate and drain of the transistor MP12 are connected to each other by a so-called diode connection.
  • the control signal SSW1H is supplied to the gate of the transistor MP13, the source is connected to the gate and drain of the transistor MP12, and the drain is connected to the gate of the transistor MP11, the output terminal of the error amplifier AMP1, and the drain of the transistor MP14.
  • the transistor MP13 is turned on based on the control signal SSW1H, so that the power supply node N VDD and the gate of the transistor MP11 are connected to each other via the diode-connected transistor MP12.
  • the transistor MP13 can adjust the voltage of the gate of the transistor MP11 so that the transistor MP11 is directed to the off state.
  • the control signal SSW2 is supplied to the gate of the transistor MP14, the power supply node N VDD is connected to the source, and the drain is connected to the gate of the transistor MP11, the output terminal of the error amplifier AMP1, and the drain of the transistor MP13.
  • the transistor MP14 is turned on based on the control signal SSW2, so that the power supply node N whether and the gate of the transistor MP11 are connected to each other.
  • the transistor MP14 can adjust the voltage of the gate of the transistor MP11 so that the transistor MP11 is directed to the off state.
  • the voltage regulator 20H generates a voltage VH corresponding to the reference voltage VREFH by performing a negative feedback operation.
  • the voltage regulator 20H can maintain an operating point while reducing power consumption when the control signal SLCM is at a high level. Then, the voltage regulator 20H drives the memory array 11 based on the generated voltage VH when the control signal SLCM is at a low level.
  • the voltage regulator 20L (FIG. 1) is configured to generate a voltage VL.
  • the control signals SLCM, SSW1L, and SSW2 are supplied to the voltage regulator 20L.
  • FIG. 8 shows an example of a configuration of the voltage regulator 20L.
  • the voltage regulator 20L includes an error amplifier AMP2, a transistor MN21, a constant current source CS2, a capacitor C2, inverters IV1 and IV2, and transistors MN21 to MN24.
  • the transistors MN21 to MN24 are N-type MOS transistors.
  • the error amplifier AMP2 is configured to generate an error voltage according to the difference between the output voltage of the voltage regulator 20L and the reference voltage VREFL.
  • the positive input terminal of the error amplifier AMP2 is connected to the output terminal OUTL of the voltage regulator 20L, the reference voltage VREFL is supplied to the negative input terminal, and the output terminal is connected to the gate of the transistor MN21 and the drain of the transistors MN22 and MN24.
  • the error amplifier AMP2 is configured to be able to reduce power consumption based on the control signal SLCM. Specifically, the error amplifier AMP2 can reduce power consumption when the control signal SLCM is at a high level by reducing the current flowing through the constant current source as compared with the case where the control signal SLCM is at a low level. You can do it.
  • the gate of the transistor MN21 is connected to the output terminal of the error amplifier AMP2 and the drain of the transistors MN22 and MN24, the drain is connected to the output terminal OUTL of the voltage regulator 20L, and the source is connected to the ground node NVSS to which the ground voltage VSS is supplied. NS.
  • the constant current source CS2 is configured to pass a current of a predetermined current value, one end is connected to the power supply node N VDD to which the power supply voltage VDD is supplied, and the other end is connected to the output terminal OUTL of the voltage regulator 20L.
  • the constant current source CS2 can reduce the current to flow when the control signal SLCM is at a high level as compared with the case where the control signal SLCM is at a low level.
  • One end of the capacitor C2 is connected to the output terminal OUTL of the voltage regulator 20L, and the other end is connected to the ground node NVSS.
  • the control signal SSW1L is supplied to the input terminal of the inverter IV1, and the output terminal is connected to the gate of the transistor MN22.
  • the control signal SSW2 is supplied to the input terminal of the inverter IV2, and the output terminal is connected to the gate of the transistor MN24.
  • the gate of the transistor MN22 is connected to the output terminal of the inverter IV1, the drain is connected to the gate of the transistor MN21, the output terminal of the error amplifier AMP2, and the drain of the transistor MN24, and the source is connected to the gate and drain of the transistor MN23.
  • the gate of the transistor MN23 is connected to the drain of the transistor MN23 and the source of the transistor MN22, the drain is connected to the gate of the transistor MN23 and the source of the transistor MN22, and the source is connected to the ground node NVSS. In this way, the gate and drain of the transistor MN23 are connected to each other by a so-called diode connection.
  • the transistor MN22 is turned on based on the control signal SSW1L, so that the ground node NVSS and the gate of the transistor MN21 are connected to each other via the diode-connected transistor MN23. Thereby, the transistor MN22 can adjust the voltage of the gate of the transistor MN21 so that the transistor MN21 is directed to the off state.
  • the gate of the transistor MN24 is connected to the output terminal of the inverter IV2, the drain is connected to the gate of the transistor MN21, the output terminal of the error amplifier AMP2, and the drain of the transistor MN22, and the source is connected to the ground node NVSS.
  • the transistor MN24 is turned on based on the control signal SSW2, so that the ground node NVSS and the gate of the transistor MN21 are connected. Thereby, the transistor MN24 can adjust the voltage of the gate of the transistor MN21 so that the transistor MN21 is directed to the off state.
  • the voltage regulator 20L generates a voltage VL corresponding to the reference voltage VREFL by performing a negative feedback operation.
  • the voltage regulator 20L can maintain an operating point while reducing power consumption when the control signal SLCM is at a high level. Then, the voltage regulator 20L drives the memory array 11 based on the generated voltage VL when the control signal SLCM is at a low level.
  • the voltage selection unit 30 selects the voltage for driving the bit line BL and the voltage for driving the word line WL from the voltages VH and VL based on the control signals SSET and SRST. It is composed.
  • the voltage selection unit 30 has switches 31 to 34.
  • the switch 31 is configured to supply the voltage VH supplied from the voltage regulator 20H to the word line selection unit 13 when the control signal SRST is at a high level.
  • the switch 32 is configured to supply the voltage VL supplied from the voltage regulator 20L to the word line selection unit 13 when the control signal SSET is at a high level.
  • the switch 33 is configured to supply the voltage VL supplied from the voltage regulator 20L to the current limiting unit 14 when the control signal SRST is at a high level.
  • the switch 34 is configured to supply the voltage VH supplied from the voltage regulator 20H to the current limiting unit 14 when the control signal SSET is at a high level.
  • the voltage selection unit 30 supplies the voltage VH supplied from the voltage regulator 20H to the current limiting unit 14 as well.
  • the voltage VL supplied from the voltage regulator 20L is supplied to the word line selection unit 13.
  • the control signal SSET is set to a high level and the control signal SRST is set to a low level when the write operation for setting the memory cell MC or the read operation is performed.
  • the voltage selection unit 30 supplies the voltage VH supplied from the voltage regulator 20H to the word line selection unit 13 and at the same time.
  • the voltage VL supplied from the voltage regulator 20L is supplied to the current limiting unit 14.
  • the control signal SRST is set to a high level and the control signal SSET is set to a low level when the write operation for resetting the memory cell MC is performed.
  • the current limiting unit 14 is configured to limit the current flowing between the voltage selection unit 30 and the bit line selection unit 12 based on the control signal SC. Specifically, the current limiting unit 14 determines the current value of the current flowing between the voltage selection unit 30 and the bit line selection unit 12 based on the control signal SC when the write operation and the read operation are performed. The current is limited so that it is less than or equal to the value of.
  • the sense amplifier 15 is configured to compare the input voltage with a predetermined threshold voltage. As a result, the sense amplifier 15 outputs a signal corresponding to the resistance state RS of the storage element VR in the read operation.
  • the control unit 16 is configured to control the operation of the semiconductor device 1 in response to a data write request and read request from a host (not shown). Specifically, the control unit 16 controls the operation of the voltage regulator 20H using the control signals SLCM, SSW1H, and SSW2, controls the operation of the voltage regulator 20L using the control signals SLCM, SSW1L, and SSW2, and controls the control signal.
  • the operation of the voltage selection unit 30 is controlled by using SSET and SRST, the operation of the current limiting unit 14 is controlled by using the control signal SC, and the operation of the bit line selection unit 12 is controlled by using the selection control signal CTLB.
  • the operation of the word line selection unit 13 is controlled by using the selection control signal CTLW.
  • the control unit 16 has a reference voltage generation unit 17.
  • the reference voltage generation unit 17 is configured to generate reference voltages VrefH and VrefL.
  • the reference voltage VrefH is set to different voltages, for example, in the write and read operations
  • the reference voltage VrefL is set to different voltages, for example, in the write and read operations.
  • the error amplifier AMP1 corresponds to a specific example of the "error amplifier” in the present disclosure.
  • the transistor MP11 corresponds to a specific example of the “driving transistor” in the present disclosure.
  • the transistor MP13 corresponds to a specific example of the "first switch” in the present disclosure.
  • the transistor MP13 corresponds to a specific example of the "transistor” in the present disclosure.
  • the transistor MP14 corresponds to a specific example of the "second switch” in the present disclosure.
  • the power node N VDD corresponds to a specific example of the "voltage node” in the present disclosure.
  • the memory array 11, the bit line selection unit 12, and the word line selection unit 13 correspond to a specific example of the “load circuit” in the present disclosure.
  • the memory cell MC corresponds to a specific example of the "memory cell” in the present disclosure.
  • the storage element VR corresponds to a specific example of the "memory element” in the present disclosure.
  • the control unit 16 corresponds to a specific example of the “control unit” in the present disclosure.
  • One of the plurality of bit lines BL and the plurality of word lines WL corresponds to a specific example of the "plurality of first wiring" in the present disclosure, and the other is a specific example of the "plurality of second wiring” in the present disclosure.
  • the bit line selection unit 12 or the word line selection unit 13 corresponds to a specific example of the “selection unit” in the present disclosure.
  • the voltage regulator 20H produces a voltage VH
  • the voltage regulator 20L produces a voltage VL.
  • the voltage selection unit 30 selects the voltage for driving the bit line BL from the voltages VH and VL based on the control signals SSET and SRST, and also selects the voltage for driving the word line WL.
  • the current limiting unit 14 limits the current flowing between the voltage selection unit 30 and the bit line selection unit 12 based on the control signal SC.
  • the bit line selection unit 12 selects one of the plurality of bit line BLs in the memory array 11 based on the selection control signal CTLB.
  • the word line selection unit 13 selects one of the plurality of word line WLs in the memory array 11 based on the selection control signal CTLW.
  • the sense amplifier 15 compares the input voltage with a predetermined threshold voltage.
  • the control unit 16 controls the operation of the semiconductor device 1 in response to a data write request and a data read request from the host.
  • the reference voltage generation unit 17 of the control unit 16 In the writing operation, first, the reference voltage generation unit 17 of the control unit 16 generates the reference voltages VrefH and VrefL used in the writing operation. Then, the control unit 16 generates control signals SSET and SRST based on the write data. Specifically, when the bit data to be written is "1", the control unit 16 sets the control signal SSET to a high level and the control signal SRST to a low level. As a result, the voltage selection unit 30 supplies the voltage VH generated by the voltage regulator 20H to the current limiting unit 14, and supplies the voltage VL generated by the voltage regulator 20L to the word line selection unit 13.
  • the control unit 16 sets the control signal SRST to a high level and the control signal SSET to a low level.
  • the voltage selection unit 30 supplies the voltage VH generated by the voltage regulator 20H to the word line selection unit 13, and supplies the voltage VL generated by the voltage regulator 20L to the current limiting unit 14.
  • control unit 16 generates a control signal SC.
  • the current limiting unit 14 limits the current based on the control signal SC so that the current value of the current flowing between the voltage selection unit 30 and the bit line selection unit 12 is equal to or less than a predetermined value. ..
  • control unit 16 generates selection control signals CTLB and CTLW based on the write address.
  • the bit line selection unit 12 selects one of the plurality of bit line BLs in the memory array 11 based on the selection control signal CTLB.
  • the word line selection unit 13 selects one of the plurality of word line WLs in the memory array 11 based on the selection control signal CTLW.
  • the memory array 11 when the bit data to be written is “1”, a voltage is applied to the bit line BL selected by the bit line selection unit 12 among the plurality of bit line BLs in the memory array 11.
  • the voltage VH generated by the regulator 20H is applied.
  • the voltage VL generated by the voltage regulator 20L is applied to the word line WL selected by the word line selection unit 13 among the plurality of word line WLs in the memory array 11.
  • the selection element SE is turned on, and as shown in FIG. 3, the set current is set from the terminal TU toward the terminal TL. Iset flows, and the resistance state RS of the storage element VR becomes the low resistance state LRS. In this way, the memory cell MC is set.
  • the voltage regulator 20H is generated in the word line WL selected by the word line selection unit 13 among the plurality of word line WLs in the memory array 11.
  • the voltage VH is applied.
  • the voltage VL generated by the voltage regulator 20L is applied to the bit line BL selected by the bit line selection unit 12 among the plurality of bit line BLs in the memory array 11.
  • the selection element SE is turned on, and as shown in FIG. 3, the reset current is reset from the terminal TL toward the terminal TU. Irst flows, and the resistance state RS of the memory element VR becomes the high resistance state HRS. In this way, the memory cell MC is reset.
  • the reference voltage generation unit 17 of the control unit 16 In the read operation, first, the reference voltage generation unit 17 of the control unit 16 generates the reference voltages VrefH and VrefL used in the read operation. Then, the control unit 16 sets the control signal SSET to a high level and the control signal SRST to a low level. As a result, the voltage selection unit 30 supplies the voltage VH generated by the voltage regulator 20H to the current limiting unit 14, and supplies the voltage VL generated by the voltage regulator 20L to the word line selection unit 13.
  • control unit 16 generates a control signal SC.
  • the current limiting unit 14 limits the current based on the control signal SC so that the current value of the current flowing between the voltage selection unit 30 and the bit line selection unit 12 is equal to or less than a predetermined value. ..
  • control unit 16 generates selection control signals CTLB and CTLW based on the read address.
  • the bit line selection unit 12 selects one of the plurality of bit line BLs in the memory array 11 based on the selection control signal CTLB.
  • the word line selection unit 13 selects one of the plurality of word line WLs in the memory array 11 based on the selection control signal CTLW.
  • the sense current Isns flows from the terminal TU toward the terminal TL in the memory cell MC related to the selected bit line BL and the selected word line WL.
  • a voltage corresponding to the resistance state RS of the storage element VR is generated in the selected bit line BL.
  • the sense amplifier 15 determines the resistance state RS of the storage element VR based on the voltage thus generated.
  • the voltage regulator 20H controls the operations of the transistors MP13 and MP14 based on the operation sequence of the semiconductor device 1, and the voltage regulator 20L controls the operations of the transistors MN22 and MN24 based on the operation sequence of the semiconductor device 1. This operation will be described in detail below.
  • FIG. 9A and 9B show an example of an operation of setting the selected memory cell MC, where FIG. 9A shows the waveforms of the control signals CB1 to CB3, FIG. 9B shows the waveforms of the control signals CB4, and FIG. 9C shows the waveforms of the control signals CB4.
  • FIG. 9A shows the waveforms of the control signals CW1 to CW4
  • D shows the waveform of the control signal SLCM
  • E shows the waveform of the control signal SSW1H
  • (F) shows the waveform of the control signal SSW1L
  • G Indicates the waveform of the control signal SSW2.
  • FIG. 9A shows the waveform of one signal corresponding to the selected memory cell MC among the signals of the plurality of bits in each of the control signals CB1 to CB3, and is shown in FIG. 9B.
  • the waveform of FIG. 9 shows the waveform of one signal corresponding to the selected memory cell MC among the signals of the plurality of bits in the control signal CB4, and the waveform of FIG. 9C is in each of the control signals CW1 to CW4.
  • the waveform of one signal corresponding to the selected memory cell MC among the signals of a plurality of bits is shown.
  • the control unit 16 changes the control signal SSW1H from a high level to a low level (FIG. 9 (E)).
  • the transistor MP13 is turned on, and the gates of the power supply node N VDD and the transistor MP11 to which the power supply voltage VDD is supplied are connected to each other via the diode-connected transistor MP12.
  • the voltage at the gate of the transistor MP11 rises so as to direct the transistor MP11 to the off state.
  • the negative feedback loop in the voltage regulator 20H becomes a slightly open loop state.
  • the control unit 16 changes the control signal SSW1L from a high level to a low level (FIG.
  • the transistor MN22 is turned on, and the ground node NVSS to which the ground voltage VSS is supplied and the gate of the transistor MN21 are connected to each other via the diode-connected transistor MN23.
  • the voltage at the gate of the transistor MN21 drops so as to direct the transistor MN21 to the off state.
  • the negative feedback loop in the voltage regulator 20L becomes a slightly open loop state.
  • the control unit 16 changes the control signal SLCM from a high level to a low level (FIG. 9 (D)).
  • the voltage regulator 20H the current flowing through the constant current source of the error amplifier AMP1 increases, and the current flowing through the constant current source CS1 increases.
  • the voltage regulator 20L the current flowing through the constant current source of the error amplifier AMP2 increases and the current flowing through the constant current source CS2 increases.
  • the voltages VH and VL fluctuate at the timing t12.
  • the negative feedback loop is in a slightly open loop state, and in the voltage regulator 20L, the negative feedback loop is in a slightly open loop state. It is possible to accelerate the convergence of the voltages VH and VL while reducing the voltage.
  • the control unit 16 changes the control signal SSW1H from a low level to a high level (FIG. 9 (E)).
  • the transistor MP13 is turned off, and the output voltage of the error amplifier AMP1 is supplied to the gate of the transistor MP11.
  • the negative feedback loop in the voltage regulator 20H returns to the closed loop state.
  • the control unit 16 changes the control signal SSW1L from a low level to a high level (FIG. 9 (F)).
  • the transistor MN22 is turned off, and the output voltage of the error amplifier AMP2 is supplied to the gate of the transistor MN21.
  • the negative feedback loop in the voltage regulator 20L returns to the closed loop state. In this way, the voltage regulators 20H and 20L are in a state where the memory array 11 can be driven.
  • the control unit 16 changes the control signal SSW1H from a high level to a low level (FIG. 9 (E)).
  • the transistor MP13 is turned on, the gates of the power supply node N VDD and the transistor MP11 are connected to each other via the diode-connected transistor MP12, and the negative feedback loop in the voltage regulator 20H is slightly opened. It goes into a loop state.
  • the control unit 16 changes the control signal SSW1L from a high level to a low level (FIG. 9 (F)).
  • the transistor MN22 is turned on, the gates of the ground node NVSS and the transistor MN21 are connected to each other via the diode-connected transistor MN23, and the negative feedback loop in the voltage regulator 20L is slightly opened. It goes into a loop state.
  • the control unit 16 is one of the signals corresponding to the selected memory cell MC among the signals of the plurality of bits included in the control signal CB1 and the signal of the plurality of bits included in the control signal CB2.
  • One signal corresponding to the selected memory cell MC and one signal corresponding to the selected memory cell MC among the multi-bit signals contained in the control signal CB3 are changed from low level to high level. (FIG. 9 (A)).
  • the bit line selection unit 12 one of the plurality of transistors TR1 is turned on based on the control signal CB1 in the selection circuit 101, and each of the plurality of selection circuits 102 is based on the control signal CB2.
  • One of the plurality of transistors TR2 is turned on, and in each of the plurality of selection circuits 103, one of the plurality of transistors TR3 is turned on based on the control signal CB3.
  • the voltage regulator 20H drives the selection circuit 101 and the selection circuits 102, 103, 104 corresponding to the selected memory cell MC in the bit line selection unit 12 via the voltage selection unit 30 and the current limiting unit 14. Therefore, the load seen from the voltage regulator 20H changes. Therefore, the voltage VH fluctuates at the timing t15.
  • the negative feedback loop is in a slightly open loop state, it is possible to accelerate the convergence of the voltage VH while reducing the fluctuation of the voltage VH, as will be described later.
  • the control unit 16 is a signal corresponding to the selected memory cell MC among the signals of the plurality of bits included in the control signal CW1, and a signal of the plurality of bits included in the control signal CW2.
  • One of the signals corresponding to the selected memory cell MC is changed from a low level to a high level (FIG. 9 (C)).
  • one of the plurality of transistors TR1 is turned on based on the control signal CW1, and in each of the plurality of selection circuits 202, based on the control signal CW2.
  • One of the plurality of transistors TR2 is turned on, and in each of the plurality of selection circuits 203, one of the plurality of transistors TR3 is turned on based on the control signal CW3, and each of the plurality of selection circuits 204 is turned on.
  • one of the plurality of transistors TR4 is turned on based on the control signal CW4.
  • the voltage regulator 20L receives the selection circuit 201, the selection circuits 202, 203, 204 corresponding to the selected memory cells MC, and the selected memory cells in the word line selection unit 13 via the voltage selection unit 30. Since the word line WL corresponding to the MC is driven, the load seen from the voltage regulator 20L changes. Therefore, the voltage VL fluctuates at the timing t15. In the voltage regulator 20L, since the negative feedback loop is in a slightly open loop state, it is possible to accelerate the convergence of the voltage VL while reducing the fluctuation of the voltage VL, as will be described later.
  • the control unit 16 changes the control signal SSW1H from a low level to a high level (FIG. 9 (E)).
  • the transistor MP13 is turned off, and the output voltage of the error amplifier AMP1 is supplied to the gate of the transistor MP11.
  • the negative feedback loop in the voltage regulator 20H returns to the closed loop state.
  • the control unit 16 changes the control signal SSW1L from a low level to a high level (FIG. 9 (F)).
  • the transistor MN22 is turned off, and the output voltage of the error amplifier AMP2 is supplied to the gate of the transistor MN21.
  • the negative feedback loop in the voltage regulator 20L returns to the closed loop state.
  • the control unit 16 changes the control signal SSW1H from a high level to a low level (FIG. 9 (E)).
  • the transistor MP13 is turned on, the gates of the power supply node N VDD and the transistor MP11 are connected to each other via the diode-connected transistor MP12, and the negative feedback loop in the voltage regulator 20H is slightly opened. It goes into a loop state.
  • the control unit 16 changes one signal corresponding to the selected memory cell MC among the signals of the plurality of bits included in the control signal CB4 from a low level to a high level (FIG. 9). (B)).
  • the bit line selection unit 12 one of the plurality of transistors TR4 is turned on based on the control signal CB4 in each of the plurality of selection circuits 104.
  • the voltage regulator 20H drives the bit line BL corresponding to the selected memory cell MC via the voltage selection unit 30 and the bit line selection unit 12, so that the load seen from the voltage regulator 20H changes. Therefore, the voltage VH fluctuates at the timing t18.
  • the negative feedback loop is in a slightly open loop state, it is possible to accelerate the convergence of the voltage VH while reducing the fluctuation of the voltage VH, as will be described later.
  • the voltage regulator 20H is connected to the bit line BL corresponding to the selected memory cell MC, and the voltage regulator 20L is connected to the word line WL corresponding to the selected memory cell MC.
  • the set current Iset flows in the selected memory cell MC, and the memory cell MC is set.
  • the control unit 16 changes the control signal SSW1H from a low level to a high level (FIG. 9 (E)).
  • the transistor MP13 is turned off, and the output voltage of the error amplifier AMP1 is supplied to the gate of the transistor MP11.
  • the negative feedback loop in the voltage regulator 20H returns to the closed loop state.
  • the control unit 16 changes the control signal SSW1H from a high level to a low level (FIG. 9 (E)).
  • the transistor MP13 is turned on, the gates of the power supply node N VDD and the transistor MP11 are connected to each other via the diode-connected transistor MP12, and the negative feedback loop in the voltage regulator 20H is slightly opened. It goes into a loop state.
  • the control unit 16 is one of the signals corresponding to the selected memory cell MC among the signals of the plurality of bits included in the control signal CB1, and the signal of the plurality of bits included in the control signal CB2.
  • One of the signals corresponding to the selected memory cell MC is changed from a high level to a low level (FIGS. 9A and 9B).
  • the plurality of transistors TR1 are turned off in the selection circuit 101, the plurality of transistors TR2 are turned off in each of the plurality of selection circuits 102, and the plurality of selection circuits 103 are turned off.
  • the plurality of transistors TR3 are turned off, and in each of the plurality of selection circuits 104, the plurality of transistors TR4 are turned off.
  • the voltage regulator 20H is disconnected from the bit line BL corresponding to the selected memory cell MC, so that the load seen from the voltage regulator 20H changes, and the voltage VH fluctuates at the timing t21.
  • the negative feedback loop is in a slightly open loop state, it is possible to accelerate the convergence of the voltage VH while reducing the fluctuation of the voltage VH, as will be described later.
  • the writing period T ends.
  • the control unit 16 changes the control signal SSW1H from a low level to a high level (FIG. 9 (E)).
  • the transistor MP13 is turned off, and the output voltage of the error amplifier AMP1 is supplied to the gate of the transistor MP11.
  • the negative feedback loop in the voltage regulator 20H returns to the closed loop state.
  • the control unit 16 changes the control signal SSW2 from a high level to a low level (FIG. 9 (G)).
  • the transistor MP14 is turned on, the gates of the power supply node N VDD and the transistor MP11 are connected to each other, and the negative feedback loop in the voltage regulator 20H is in a slightly open loop state.
  • the transistor MN24 is turned on, the ground node NVSS and the gate of the transistor MN21 are connected to each other, and the negative feedback loop in the voltage regulator 20L is in a slightly open loop state.
  • the control unit 16 is one of the signals corresponding to the selected memory cell MC among the signals of the plurality of bits included in the control signal CW1, and the signal of the plurality of bits included in the control signal CW2.
  • One of the signals corresponding to the selected memory cell MC is changed from a high level to a low level (FIG. 9 (C)).
  • the plurality of transistors TR1 are turned off in the selection circuit 201, the plurality of transistors TR2 are turned off in each of the plurality of selection circuits 202, and the plurality of selection circuits 203 are turned off.
  • the plurality of transistors TR3 are turned off, and in each of the plurality of selection circuits 204, the plurality of transistors TR4 are turned off.
  • the voltage regulator 20L is disconnected from the word line WL corresponding to the selected memory cell MC, so that the load seen from the voltage regulator 20L changes, and the voltage VL fluctuates at the timing t24.
  • the negative feedback loop is in a slightly open loop state, it is possible to accelerate the convergence of the voltage VL while reducing the fluctuation of the voltage VL, as will be described later.
  • the control unit 16 changes the control signal SLCM from a low level to a high level (FIG. 9 (D)).
  • the voltage regulator 20H the current flowing through the constant current source of the error amplifier AMP1 is reduced, and the current flowing through the constant current source CS1 is reduced.
  • the voltage regulator 20L the current flowing through the constant current source of the error amplifier AMP2 decreases and the current flowing through the constant current source CS2 decreases.
  • the voltages VH and VL fluctuate at the timing t25.
  • the negative feedback loop is in a slightly open loop state, it is possible to accelerate the convergence of the voltage VH and VL while reducing the fluctuation of the voltage VH and VL as described later.
  • the control unit 16 changes the control signal SSW2 from a low level to a high level (FIG. 9 (G)).
  • the transistor MP14 is turned off, and the output voltage of the error amplifier AMP1 is supplied to the gate of the transistor MP11.
  • the negative feedback loop in the voltage regulator 20H returns to the closed loop state.
  • the transistor MN24 is turned off, and the output voltage of the error amplifier AMP2 is supplied to the gate of the transistor MN21.
  • the negative feedback loop in the voltage regulator 20L returns to the closed loop state.
  • FIG. 10A and 10B are simulation results showing an operation example of the voltage regulator 20H near the timing t18 shown in FIG. 9, where FIG. 10A shows the waveform of the control signal CB4 and FIG. 10B shows the waveform of the control signal SSW1H. , (C) show the waveform of the voltage VH output by the voltage regulator 20H.
  • the transistor MP13 is turned on by setting the control signal SSW1H to a low level during the period including the timing when the control signal CB4 changes from a low level to a high level (FIGS. 10A, 10A, B)).
  • the voltage regulator 20H the power supply node N VDD to which the power supply voltage VDD is supplied and the gate of the transistor MP11 are connected to each other via the diode-connected transistor MP12, and the negative feedback loop in the voltage regulator 20H is slightly open. Become a state. In this state, when the control signal CB4 changes from a low level to a high level, the load of the voltage regulator 20H changes, so that the voltage VH fluctuates as shown in the waveform W1 (FIG. 10 (C)). This voltage VH does not overshoot and converges to the original voltage in a relatively short time.
  • the negative feedback loop in the voltage regulator 20H maintains a closed loop state. Therefore, when the control signal CB4 changes from a low level to a high level and the load of the voltage regulator 20H changes, negative feedback is applied so as to increase the voltage VH based on the transient decrease of the voltage VH, so that the voltage VH becomes Causes a large overshoot, as shown in waveform W2. Then, the voltage VH converges to the original voltage over a long period of time.
  • the semiconductor device 1 as shown in the waveform W1, overshoot in the voltage VH can be suppressed, so that the possibility that a memory cell MC other than the selected memory cell MC is set can be reduced. Further, it is possible to reduce the possibility that the memory cell MC is destroyed. Moreover, since the convergence time can be shortened, the throughput of memory access can be improved. The same applies to the read operation, and for example, the possibility of reading information from a memory cell MC other than the selected memory cell MC may be reduced.
  • the operation of the transistor MP13 of the voltage regulator 20H has been described above as an example, but the same applies to the operation of the transistor MP14.
  • the transistor MP14 When the transistor MP14 is turned on, the power supply node N VDD to which the power supply voltage VDD is supplied and the gate of the transistor MP11 are connected to each other.
  • the negative feedback loop in the voltage regulator 20H approaches the open loop state more than in the case where the transistor MP13 is turned on. Even in this case, the overshoot in the voltage VH can be suppressed, and the convergence time can be shortened.
  • the voltage regulator 20H has been described as an example, but the same applies to the voltage regulator 20L.
  • the transistor MN22 when the transistor MN22 is turned on, the ground node NVSS to which the ground voltage VSS is supplied and the gate of the transistor MN21 are connected to each other.
  • the negative feedback loop in the voltage regulator 20L becomes a slightly open loop state.
  • undershoot in which the voltage VL drops significantly can be suppressed, and the convergence time can be shortened.
  • the transistor MN24 is turned on, the ground node NVSS to which the ground voltage VSS is supplied and the gate of the transistor MN21 are connected to each other.
  • the negative feedback loop in the voltage regulator 20L approaches the open loop state more than in the case where the transistor MN22 is turned on. Even in this case, the undershoot in the voltage VL can be suppressed, and the convergence time can be shortened.
  • the transistor MP13 is provided in the voltage regulator 20H, and the transistor MP13 is turned on to adjust the voltage of the gate of the transistor MP11 so that the state of the transistor MP11 is directed to the off state. I tried to do it.
  • the control unit 16 controls the operation sequence of the semiconductor device 1, for example, a period of timings t14 to t16 including the timing t15 in which the load changes, a period of the timings t17 to t19 including the timing t18, and a timing t20 including the timing t21.
  • the transistor MP13 was turned on.
  • the overshoot in the voltage VH can be suppressed at the timing when the load changes, and the convergence time can be shortened, so that the voltage VH can be stabilized.
  • the control unit 16 turns on the transistor MP13 during the period from timing t11 to t13 including the timing t12 for switching from the operation for reducing power consumption to the normal operation.
  • the overshoot in the voltage VH can be suppressed at the timing when the operation changes, and the convergence time can be shortened, so that the voltage VH can be stabilized.
  • the transistors MP12 and MP13 are provided in the path connecting the power supply node N VDD and the gate of the transistor MP11 so that the gate and drain of the transistor MP12 are connected to each other.
  • the negative feedback loop in the voltage regulator 20H can be made into a slightly open loop state, so that the voltage at the gate of the transistor MP13 can be adjusted appropriately. Can be done.
  • the overshoot in the voltage VH can be effectively suppressed, and the convergence time can be shortened, so that the voltage VH can be effectively stabilized.
  • a transistor MN22 is provided in the voltage regulator 20L, and by turning the transistor MN22 on, the voltage at the gate of the transistor MN21 is adjusted so that the state of the transistor MN21 is directed to the off state. .. Then, the control unit 16 controls the operation sequence of the semiconductor device 1, for example, during the period from timing t14 to t16 including the timing t15 where the load changes, the transistor MN22 is turned on. As a result, in the semiconductor device 1, the undershoot in the voltage VL can be suppressed at the timing when the load changes, and the convergence time can be shortened, so that the voltage VL can be stabilized.
  • the transistor MP13 is provided in the voltage regulator 20H, and the transistor MP13 is turned on so that the gate voltage of the transistor MP11 is directed to the off state of the transistor MP11. I tried to adjust it. Then, the control unit controls the operation sequence of the semiconductor device, and the transistor MP13 is turned on during a period including, for example, a timing when the load changes. Thereby, the voltage VH can be stabilized.
  • the transistors MP12 and MP13 are provided in the path connecting the power supply node N VDD and the gate of the transistor MP11 so that the gate and drain of the transistor MP12 are connected to each other, so that the voltage is effectively applied. VH can be stabilized.
  • the transistor MN22 is provided in the voltage regulator 20L, and the transistor MN22 is turned on to adjust the voltage of the gate of the transistor MN21 so that the state of the transistor MN21 is directed to the off state. I did it. Then, the control unit controls the operation sequence of the semiconductor device, and the transistor MN22 is turned on during a period including, for example, a timing when the load changes. Thereby, the voltage VL can be stabilized.
  • the transistor MP12 is provided between the power supply node N VDD to which the power supply voltage VDD is supplied and the transistor MP13, but the present invention is not limited thereto.
  • the transistor MP12 may be provided between the transistor MP13 and the gate of the transistor MP11.
  • the transistor MN23 may be provided between the transistor MN22 and the gate of the transistor MN21.
  • the voltage regulator 20H is provided with the diode-connected transistor MP12, but the voltage regulator 20H is not limited to this.
  • a resistance element R1 may be provided in place of the transistor MP12.
  • One end of the resistance element R1 is connected to the power supply node N VDD to which the power supply voltage VDD is supplied, and the other end is connected to the source of the transistor MP13.
  • a resistance element may be provided instead of the transistor MN23.
  • the output stage is configured by using a so-called grounded source amplifier, but the present invention is not limited to this. Instead of this, the output stage may be configured by using a source follower as in the voltage regulator 20HC shown in FIG.
  • the voltage regulator 20HC has an error amplifier AMP1, transistors MN31, inverters IV3 and IV4, and transistors MN32 to MN34.
  • the transistors MN31 to MN34 are N-type MOS transistors.
  • the reference voltage VREFH is supplied to the positive input terminal of the error amplifier AMP1, the negative input terminal is connected to the output terminal OUTH of the voltage regulator 20HC, and the output terminal is connected to the gate of the transistor MN31 and the drain of the transistors MN32 and MN34.
  • the gate of the transistor MN31 is connected to the output terminal of the error amplifier AMP1 and the drain of the transistors MN32 and MN34, the drain is connected to the power supply node N VDD to which the power supply voltage VDD is supplied, and the source is connected to the output terminal OUTH of the voltage regulator 20HC. NS.
  • the control signal SSW1L is supplied to the input terminal of the inverter IV3, and the output terminal is connected to the gate of the transistor MN32.
  • the control signal SSW2 is supplied to the input terminal of the inverter IV4, and the output terminal is connected to the gate of the transistor MN34.
  • the gate of the transistor MN32 is connected to the output terminal of the inverter IV3, the drain is connected to the gate of the transistor MN31, the output terminal of the error amplifier AMP1, and the drain of the transistor MN34, and the source is connected to the gate and drain of the transistor MN33.
  • the gate of the transistor MN33 is connected to the drain of the transistor MN33 and the source of the transistor MN32, the drain is connected to the gate of the transistor MN33 and the source of the transistor MN32, and the source is connected to the ground node NVSS to which the ground voltage VSS is supplied. In this way, the gate and drain of the transistor MN33 are connected to each other by a so-called diode connection.
  • the transistor MN32 is turned on based on the control signal SSW1L, so that the ground node NVSS and the gate of the transistor MN31 are connected to each other via the diode-connected transistor MN33. Thereby, the transistor MN32 can adjust the voltage of the gate of the transistor MN31 so that the transistor MN31 is directed to the off state.
  • the gate of the transistor MN34 is connected to the output terminal of the inverter IV4, the drain is connected to the gate of the transistor MN31, the output terminal of the error amplifier AMP1, and the drain of the transistor MN32, and the source is connected to the ground node NVSS.
  • the transistor MN34 is turned on based on the control signal SSW2, so that the ground node NVSS and the gate of the transistor MN31 are connected. Thereby, the transistor MN34 can adjust the voltage of the gate of the transistor MN31 so that the transistor MN31 is directed to the off state.
  • this modification is applied to the voltage regulator 20H, but the present invention is not limited to this, and may be applied to the voltage regulator 20L, for example.
  • the voltage VH generated by the voltage regulator 20H is supplied to the positive input terminal of the error amplifier AMP1, but the present invention is not limited to this. Instead of this, for example, as in the voltage regulator 20HD shown in FIG. 14, the voltage generated by dividing the voltage VH may be supplied to the positive input terminal of the error amplifier AMP1.
  • the voltage regulator 20HD has resistance elements R2 and R3. One end of the resistance element R2 is connected to the output terminal OUTH of the voltage regulator 20H, and the other end is connected to one end of the resistance element R3 and the positive input terminal of the error amplifier AMP1.
  • the resistance element R3 is connected to the other end of the resistance element R2 and the positive input terminal of the error amplifier AMP1, and the other end is connected to the ground node NVSS to which the ground voltage VSS is supplied.
  • the reference voltage VREFH1 is supplied to the negative input terminal of the error amplifier AMP1.
  • the error amplifier AMP1 generates an error voltage according to the difference between the voltage VH which is the output voltage of the voltage regulator 20H and the reference voltage VREFH1 based on the voltage dividing voltage by the resistance elements R2 and R3 and the reference voltage VREFH1.
  • the voltage regulator 20H generates a voltage VH by performing a negative feedback operation. In the above, this modification is applied to the voltage regulator 20H, but the present invention is not limited to this, and may be applied to the voltage regulator 20L, for example.
  • the transistor MP13 is turned on during the period including the timing when the load changes, but the present invention is not limited to this. Instead of this, for example, the transistor MP14 may be turned on during a period including the timing when the load changes.
  • An error amplifier that generates an error voltage according to the difference between the output voltage and the reference voltage, and A drive transistor having a gate to which the error voltage is supplied and a drain or source to which the output voltage is output.
  • a first switch that adjusts the voltage of the gate of the drive transistor to turn the state of the drive transistor toward the off state by being turned on.
  • the semiconductor device according to (2) above further comprising a transistor provided in the first path and having a gate, a drain connected to the gate, and a source.
  • the semiconductor device according to (2) wherein the first switch is turned on to connect the voltage node and the gate of the drive transistor.
  • a second switch that is provided in a second path connecting the voltage node and the gate of the drive transistor and is turned on to connect the voltage node and the gate of the drive transistor is provided.
  • the first period includes the timing when the load of the load circuit changes from the first load state to the second load state in which the load is heavier than the first load state (1).
  • the first period includes the timing when the load of the load circuit changes from the second load state, which is heavier than the first load state, to the first load state, from (1) to (5). ).
  • the semiconductor device according to any one of. (8)
  • the error amplifier has a first operation mode and a second operation mode in which power consumption is lower than that of the first operation mode.
  • the control unit sets the operation mode of the error amplifier to the first operation mode or the second operation mode according to the operation sequence, and includes a timing at which the operation mode of the error amplifier changes.
  • the semiconductor device according to any one of (1) to (7) above, wherein the first switch is turned on in the period of 2.
  • each of the load circuits includes a plurality of storage cells having a storage element that can be driven by the drive transistor.
  • the load circuit is A plurality of first wires extending in a first direction, each connected to one or more of the plurality of storage cells.
  • a plurality of second wires extending in a second direction intersecting the first direction, each connected to one or more storage cells among the plurality of memory cells.
  • the first period includes a timing in which the selection unit selects one of the plurality of first wirings.
  • (11) Generating an error voltage according to the difference between the output voltage and the reference voltage, and To output the output voltage from the drain or source of the drive transistor having the gate to which the error voltage is supplied, To control the operation sequence of the load circuit to which the output voltage is supplied, By turning on the first switch in the first period including the timing when the load of the load circuit changes, the voltage of the gate of the drive transistor is directed to the off state of the drive transistor. To regulate and include voltage control methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

生成された電圧を速やかに安定させることができる半導体装置を提供する。 半導体装置は、出力電圧(VH)と基準電圧(VREFH)との差に応じた誤差電圧を生成する誤差アンプ(AMP1)と、誤差電圧が供給されたゲートと、出力電圧(VH)が出力されるドレインまたはソースとを有する駆動トランジスタ(MP11)と、オン状態となることにより、駆動トランジスタ(MP11)のゲート電圧を、駆動トランジスタ(MP11)の状態をオフ状態に向かわせるように調節する第1のスイッチ(MP13)と、出力電圧(VH)が供給される負荷回路と、負荷回路の動作シーケンスを制御するとともに、負荷回路の負荷が変化するタイミングを含む第1の期間において第1のスイッチ(MP13)をオン状態にする制御部とを備える。

Description

半導体装置および電圧制御方法
 本開示は、半導体装置および半導体装置において用いられる電圧制御方法に関する。
 半導体装置では、しばしば電圧レギュレータが用いられる。特許文献1には、出力電圧に過大なオーバーシュートが発生することを抑制することができる電圧レギュレータが開示されている。
特開2014-67394号公報
 半導体装置では、電圧レギュレータにより生成された電圧を速やかに安定させることが望まれており、さらなる速やかな安定化が期待されている。
 生成された電圧を速やかに安定させることができる半導体装置および電圧制御方法を提供することが望ましい。
 本開示の一実施の形態における半導体装置は、誤差アンプと、駆動トランジスタと、第1のスイッチと、負荷回路と、制御部とを備えている。誤差アンプは、出力電圧と基準電圧との差に応じた誤差電圧を生成するように構成される。駆動トランジスタは、誤差電圧が供給されたゲートと、出力電圧が出力されるドレインまたはソースとを有するものである。第1のスイッチは、オン状態になることにより、駆動トランジスタのゲートの電圧を、駆動トランジスタの状態をオフ状態に向かわせるように調節するように構成される。負荷回路は、出力電圧が供給されるように構成される。制御部は、負荷回路の動作シーケンスを制御するとともに、負荷回路の負荷が変化するタイミングを含む第1の期間において第1のスイッチをオン状態にするように構成される。
 本開示の一実施の形態における電圧制御方法は、出力電圧と基準電圧との差に応じた誤差電圧を生成することと、誤差電圧が供給されたゲートを有する駆動トランジスタのドレインまたはソースから出力電圧を出力することと、出力電圧が供給される負荷回路の動作シーケンスを制御することと、負荷回路の負荷が変化するタイミングを含む第1の期間において第1のスイッチをオン状態にすることにより、駆動トランジスタのゲートを、駆動トランジスタの状態をオフ状態に向かわせるように調節することとを含む。
 本開示の一実施の形態における半導体装置および電圧制御方法では、出力電圧と基準電圧との差に応じた誤差電圧が生成され、この誤差電圧に基づいて駆動トランジスタにより出力電圧が生成される。この出力電圧は負荷回路に供給される。負荷回路の動作シーケンスは制御され、負荷回路の負荷が変化するタイミングを含む第1の期間において第1のスイッチをオン状態にすることにより、駆動トランジスタのゲートの電圧が、駆動トランジスタの状態をオフ状態に向かわせるように調節される。
本開示の一実施の形態に係る半導体装置の一構成例を表すブロック図である。 図1に示したメモリアレイの一構成例を表す斜視図である。 図2に示したメモリセルの一構成例を表す回路図である。 図3に示した記憶素子の一特性例を表す説明図である。 図1に示したビット線選択部の一構成例を表すブロック図である。 図1に示したワード線選択部の一構成例を表すブロック図である。 図1に示した電圧レギュレータの一構成例を表す回路図である。 図1に示した他の電圧レギュレータの一構成例を表す回路図である。 図1に示した半導体装置の一動作例を表すタイミング波形図である。 図1に示した半導体装置の一動作例を表すシミュレーション波形図である。 変形例に係る電圧レギュレータの一構成例を表す回路図である。 他の変形例に係る電圧レギュレータの一構成例を表す回路図である。 他の変形例に係る電圧レギュレータの一構成例を表す回路図である。 他の変形例に係る電圧レギュレータの一構成例を表す回路図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。
<実施の形態>
[構成例]
 図1は、一実施の形態に係る半導体装置(半導体装置1)の一構成例を表すものである。半導体装置1は、この例では、いわゆるクロスポイント型の記憶装置である。なお、本開示の実施の形態に係る電圧制御方法は、本実施の形態により具現化されるので、併せて説明する。
 半導体装置1は、メモリアレイ11と、ビット線選択部12と、ワード線選択部13と、電圧レギュレータ20H,20Lと、電圧選択部30と、電流制限部14と、センスアンプ15と、制御部16とを備えている。
 メモリアレイ11は、複数のメモリセルMCがアレイ状に配置され、情報を記憶するように構成される。
 図2は、メモリアレイ11の一構成例を表すものである。メモリアレイ11は、複数のビット線BLと、複数のワード線WLと、複数のメモリセルMCとを有している。
 複数のビット線BLは、半導体基板の基板面Sに平行なXY面内において、Y方向に延伸するとともにX方向に並んで配置される。複数のワード線WLは、このXY面内において、X方向に延伸するとともにY方向に並んで配置される。複数のビット線BLは、複数のワード線WLが配置された層の上層に配置される。この構成により、複数のビット線BLおよび複数のワード線WLは、XY面内において互いに交差する。複数のメモリセルMCは、XY面内において複数のビット線BLおよび複数のワード線WLが交差する部分における、複数のビット線BLが配置された層と複数のワード線WLが配置された層との間に配置される。
 図3は、メモリセルMCの一構成例を表すものである。メモリセルMCは、記憶素子VRと、選択素子SEと、端子TU,TLとを有している。
 記憶素子VRは、抵抗変化型の記憶素子であり、両端間に印加される電圧の電圧差の極性に応じて、可逆的に抵抗状態RSが変化するように構成される。言い換えれば、記憶素子VRは、両端間に流れる電流の方向に応じて、可逆的に抵抗状態RSが変化するようになっている。記憶素子VRは、例えば、イオン源層および抵抗変化層が積層されて構成される。記憶素子VRの一端は、メモリセルMCの端子TUに接続され、他端は選択素子SEの一端に接続される。
 図4は、記憶素子VRの抵抗値の分布を模式的に表すものである。記憶素子VRは、識別可能な2つの抵抗状態RS(高抵抗状態HRSおよび低抵抗状態LRS)をとり得る。この例では、高抵抗状態HRSはデータ“0”に対応づけられ、低抵抗状態LRSはデータ“1”に対応づけられている。すなわち、記憶素子VRは、1ビットのデータを記憶する。例えば、高抵抗状態HRSから低抵抗状態LRSへ変化させることを“セット”と呼び、低抵抗状態LRSから高抵抗状態HRSへ変化させることを“リセット”と呼ぶ。
 選択素子SE(図3)は、双方向ダイオード特性を有するように構成される。具体的には、選択素子SEは、両端間に印加される電圧の電圧差の絶対値が所定値よりも大きい場合に導通状態(オン状態)になり、電圧差の絶対値がこの所定値よりも小さい場合に非導通状態(オフ状態)になる。選択素子SEの一端は記憶素子VRの他端に接続され、他端はメモリセルMCの端子TLに接続される。
 端子TUは、そのメモリセルMCが形成された記憶層の上のビット線BLに接続される。端子TLは、そのメモリセルMCが形成された記憶層の下のワード線WLに接続される。この例では、図2に示したように、メモリセルMCの端子TUは複数のビット線BLのいずれか1つに接続され、端子TLは複数のワード線WLのいずれか1つに接続される。
 メモリセルMCをセットする書込動作を行う場合には、端子TUに例えば電圧VHを印加するとともに端子TLに例えば電圧VLを印加する。電圧VHは電圧VLよりも高い電圧である。これにより、選択素子SEがオン状態になり、図3に示したように、端子TUから端子TLに向かってセット電流Isetが流れ、記憶素子VRの抵抗状態RSが低抵抗状態LRSになる。このようにして、メモリセルMCがセットされる。メモリセルMCをリセットする書込動作を行う場合には、端子TLに電圧VHを印加するとともに端子TUに電圧VLを印加する。これにより、選択素子SEがオン状態になり、端子TLから端子TUに向かってリセット電流Irstが流れ、記憶素子VRの抵抗状態RSが高抵抗状態HRSになる。このようにして、メモリセルMCがリセットされる。また、メモリセルMCに対して読出動作を行う場合には、端子TUに例えば電圧VHを印加するとともに端子TLに例えば電圧VLを印加する。電圧VHと電圧VLとの差電圧は、記憶素子VRの抵抗状態RSが低抵抗状態LRSである場合には選択素子SEをオン状態にし、記憶素子VRの抵抗状態RSが高抵抗状態HRSである場合には選択素子SEをオフ状態にするような電圧に設定される。これにより、メモリセルMCでは、端子TUから端子TLに向かって記憶素子VRの抵抗状態RSに応じたセンス電流Isnsが流れ、このセンス電流Isnsに応じた電圧が生じる。センスアンプ15(後述)は、このようにしてセンス電流Isnsにより生じた電圧に基づいて、記憶素子VRの抵抗状態RSを判別するようになっている。センスアンプ15(後述)は、このようにしてセンス電流Isnsにより生じた電圧に基づいて、記憶素子VRの抵抗状態RSを判別するようになっている。
 ビット線選択部12(図1)は、選択制御信号CTLBに基づいて、メモリアレイ11における複数のビット線BLのうちの1つを選択するように構成される。
 図5は、ビット線選択部12の一構成例を表すものである。なお、この図5では、電流制限部14、センスアンプ15、およびメモリアレイ11における複数のビット線BLをも描いている。選択制御信号CTLBは、複数ビットの制御信号CB1と、複数ビットの制御信号CB2と、複数ビットの制御信号CB3と、複数ビットの制御信号CB4とを含んでいる。ビット線選択部12は、選択回路101と、複数の選択回路102と、複数の選択回路103と、複数の選択回路104とを有している。
 選択回路101は、複数のトランジスタTR1を有している。トランジスタTR1は、N型のMOS(Metal Oxide Semiconductor)トランジスタである。複数のトランジスタTR1のソースは電流制限部14およびセンスアンプ15に接続される。複数のトランジスタTR1のゲートには、制御信号CB1における対応するビットの信号がそれぞれ供給され、ドレインは複数の選択回路102にそれぞれ接続される。
 複数の選択回路102のそれぞれは、複数のトランジスタTR2を有している。トランジスタTR2は、N型のMOSトランジスタである。これらの複数のトランジスタTR2のソースは選択回路101に接続される。複数のトランジスタTR2のゲートには、制御信号CB2における対応するビットの信号がそれぞれ供給され、ドレインは複数の選択回路103にそれぞれ接続される。
 複数の選択回路103のそれぞれは、複数のトランジスタTR3を有している。トランジスタTR3は、N型のMOSトランジスタである。これらの複数のトランジスタTR3のソースは複数の選択回路102のうちの1つに接続される。複数のトランジスタTR3のゲートには、制御信号CB3における対応するビットの信号がそれぞれ供給され、ドレインは複数の選択回路104にそれぞれ接続される。
 複数の選択回路104のそれぞれは、複数のトランジスタTR4を有している。トランジスタTR4は、N型のMOSトランジスタである。これらの複数のトランジスタTR4のソースは複数の選択回路103のうちの1つに接続される。複数のトランジスタTR4のゲートには、制御信号CB4における対応するビットの信号がそれぞれ供給され、ドレインは複数のビット線BLにそれぞれ接続される。
 この構成により、ビット線選択部12は、選択制御信号CTLBに基づいて、メモリアレイ11における複数のビット線BLのうちの1つを選択し、選択されたビット線BLを電流制限部14およびセンスアンプ15に接続するようになっている。なお、この例では、N型のMOSトランジスタを用いてビット線選択部12を構成したが、これに限定されるものではない。これに代えて、例えば、P型のMOSトランジスタを用いてビット線選択部12を構成してもよいし、例えば、P型のMOSトランジスタおよびN型のMOSトランジスタの両方を用いてビット線選択部12を構成してもよい。
 ワード線選択部13(図1)は、選択制御信号CTLWに基づいて、メモリアレイ11における複数のワード線WLのうちの1つを選択するように構成される。
 図6は、ワード線選択部13の一構成例を表すものである。なお、この図6では、電圧選択部30およびメモリアレイ11における複数のワード線WLをも描いている。選択制御信号CTLWは、複数ビットの制御信号CW1と、複数ビットの制御信号CW2と、複数ビットの制御信号CW3と、複数ビットの制御信号CW4とを含んでいる。ワード線選択部13は、選択回路201と、複数の選択回路202と、複数の選択回路203と、複数の選択回路204とを有している。選択回路201~204の構成は、選択回路101~104(図5)の構成と同様である。選択回路201における複数のトランジスタTR1のソースは電圧選択部30に接続される。複数の選択回路204のそれぞれにおける複数のトランジスタTR4のドレインは、複数のワード線WLにそれぞれ接続される。
 この構成により、ワード線選択部13は、選択制御信号CTLWに基づいて、メモリアレイ11における複数のワード線WLのうちの1つを選択し、選択されたワード線WLを電圧選択部30に接続するようになっている。なお、この例では、N型のMOSトランジスタを用いてワード線選択部13を構成したが、これに限定されるものではない。これに代えて、例えば、P型のMOSトランジスタを用いてワード線選択部13を構成してもよいし、例えば、P型のMOSトランジスタおよびN型のMOSトランジスタの両方を用いてワード線選択部13を構成してもよい。
 電圧レギュレータ20H(図1)は、電圧VHを生成するように構成される。電圧レギュレータ20Hには、制御信号SLCM、SSW1H,SSW2が供給されるようになっている。
 図7は、電圧レギュレータ20Hの一構成例を表すものである。電圧レギュレータ20Hは、誤差アンプAMP1と、トランジスタMP11と、定電流源CS1と、キャパシタC1と、トランジスタMP12~MP14とを有している。トランジスタMP11~MP14は、P型のMOSトランジスタである。
 誤差アンプAMP1は、電圧レギュレータ20Hの出力電圧と基準電圧VREFHとの差に応じた誤差電圧を生成するように構成される。誤差アンプAMP1の正入力端子は電圧レギュレータ20Hの出力端子OUTHに接続され、負入力端子には基準電圧VREFHが供給され、出力端子はトランジスタMP11のゲートおよびトランジスタMP13,MP14のドレインに接続される。誤差アンプAMP1は、制御信号SLCMに基づいて消費電力を低減することができるように構成される。具体的には、誤差アンプAMP1は、制御信号SLCMが高レベルである場合に、制御信号SLCMが低レベルである場合に比べて定電流源に流れる電流を絞ることにより消費電力を低減することができるようになっている。
 トランジスタMP11のゲートは誤差アンプAMP1の出力端子およびトランジスタMP13,MP14のドレインに接続され、ソースは電源電圧VDDが供給された電源ノードNVDDに接続され、ドレインは電圧レギュレータ20Hの出力端子OUTHに接続される。
 定電流源CS1は、所定の電流値の電流を流すように構成され、一端は電圧レギュレータ20Hの出力端子OUTHに接続され、他端は接地電圧VSSが供給された接地ノードNVSSに接続される。定電流源CS1は、制御信号SLCMが高レベルである場合に、制御信号SLCMが低レベルである場合に比べて流す電流を絞ることができるようになっている。
 キャパシタC1の一端は電圧レギュレータ20Hの出力端子OUTHに接続され、他端は接地ノードNVSSに接続される。
 トランジスタMP12のゲートはトランジスタMP12のドレインおよびトランジスタMP13のソースに接続され、ソースは電源ノードNVDDに接続され、ドレインはトランジスタMP12のゲートおよびトランジスタMP13のソースに接続される。このように、トランジスタMP12は、いわゆるダイオード接続により、ゲートおよびドレインが互いに接続される。トランジスタMP13のゲートには制御信号SSW1Hが供給され、ソースはトランジスタMP12のゲートおよびドレインに接続され、ドレインはトランジスタMP11のゲート、誤差アンプAMP1の出力端子、およびトランジスタMP14のドレインに接続される。この構成により、トランジスタMP13が制御信号SSW1Hに基づいてオン状態になることにより、電源ノードNVDDおよびトランジスタMP11のゲートが、ダイオード接続されたトランジスタMP12を介して互いに接続される。これにより、トランジスタMP13は、トランジスタMP11のゲートの電圧を、このトランジスタMP11をオフ状態に向かわせるように調節することができるようになっている。
 トランジスタMP14のゲートには制御信号SSW2が供給され、ソースは電源ノードNVDDが接続され、ドレインはトランジスタMP11のゲート、誤差アンプAMP1の出力端子、およびトランジスタMP13のドレインに接続される。この構成により、トランジスタMP14が制御信号SSW2に基づいてオン状態になることにより、電源ノードNVDDおよびトランジスタMP11のゲートが互いに接続される。これにより、トランジスタMP14は、トランジスタMP11のゲートの電圧を、このトランジスタMP11をオフ状態に向かわせるように調節することができるようになっている。
 この構成により、電圧レギュレータ20Hは、負帰還動作を行うことにより、基準電圧VREFHに応じた電圧VHを生成する。電圧レギュレータ20Hは、制御信号SLCMが高レベルである場合には、消費電力を低減しつつ、動作点を維持することができる。そして、電圧レギュレータ20Hは、制御信号SLCMが低レベルである場合には、生成した電圧VHに基づいてメモリアレイ11を駆動するようになっている。
 電圧レギュレータ20L(図1)は、電圧VLを生成するように構成される。電圧レギュレータ20Lには、制御信号SLCM、SSW1L,SSW2が供給されるようになっている。
 図8は、電圧レギュレータ20Lの一構成例を表すものである。電圧レギュレータ20Lは、誤差アンプAMP2と、トランジスタMN21と、定電流源CS2と、キャパシタC2と、インバータIV1,IV2と、トランジスタMN21~MN24とを有している。トランジスタMN21~MN24は、N型のMOSトランジスタである。
 誤差アンプAMP2は、電圧レギュレータ20Lの出力電圧と基準電圧VREFLとの差に応じた誤差電圧を生成するように構成される。誤差アンプAMP2の正入力端子は電圧レギュレータ20Lの出力端子OUTLに接続され、負入力端子には基準電圧VREFLが供給され、出力端子はトランジスタMN21のゲートおよびトランジスタMN22,MN24のドレインに接続される。誤差アンプAMP2は、制御信号SLCMに基づいて消費電力を低減することができるように構成される。具体的には、誤差アンプAMP2は、制御信号SLCMが高レベルである場合に、制御信号SLCMが低レベルである場合に比べて定電流源に流れる電流を絞ることにより消費電力を低減することができるようになっている。
 トランジスタMN21のゲートは誤差アンプAMP2の出力端子およびトランジスタMN22,MN24のドレインに接続され、ドレインは電圧レギュレータ20Lの出力端子OUTLに接続され、ソースは接地電圧VSSが供給された接地ノードNVSSに接続される。
 定電流源CS2は、所定の電流値の電流を流すように構成され、一端は電源電圧VDDが供給された電源ノードNVDDに接続され、他端は電圧レギュレータ20Lの出力端子OUTLに接続される。定電流源CS2は、制御信号SLCMが高レベルである場合に、制御信号SLCMが低レベルである場合に比べて流す電流を絞ることができるようになっている。
 キャパシタC2の一端は電圧レギュレータ20Lの出力端子OUTLに接続され、他端は接地ノードNVSSに接続される。
 インバータIV1の入力端子には制御信号SSW1Lが供給され、出力端子はトランジスタMN22のゲートに接続される。インバータIV2の入力端子には制御信号SSW2が供給され、出力端子はトランジスタMN24のゲートに接続される。
 トランジスタMN22のゲートはインバータIV1の出力端子に接続され、ドレインはトランジスタMN21のゲート、誤差アンプAMP2の出力端子、およびトランジスタMN24のドレインに接続され、ソースはトランジスタMN23のゲートおよびドレインに接続される。トランジスタMN23のゲートはトランジスタMN23のドレインおよびトランジスタMN22のソースに接続され、ドレインはトランジスタMN23のゲートおよびトランジスタMN22のソースに接続され、ソースは接地ノードNVSSに接続される。このように、トランジスタMN23は、いわゆるダイオード接続により、ゲートおよびドレインが互いに接続される。この構成により、トランジスタMN22が制御信号SSW1Lに基づいてオン状態になることにより、接地ノードNVSSおよびトランジスタMN21のゲートが、ダイオード接続されたトランジスタMN23を介して互いに接続される。これにより、トランジスタMN22は、トランジスタMN21のゲートの電圧を、このトランジスタMN21をオフ状態に向かわせるように調節することができるようになっている。
 トランジスタMN24のゲートはインバータIV2の出力端子に接続され、ドレインはトランジスタMN21のゲート、誤差アンプAMP2の出力端子、およびトランジスタMN22のドレインに接続され、ソースは接地ノードNVSSに接続される。この構成により、トランジスタMN24が制御信号SSW2に基づいてオン状態になることにより、接地ノードNVSSおよびトランジスタMN21のゲートが接続される。これにより、トランジスタMN24は、トランジスタMN21のゲートの電圧を、このトランジスタMN21をオフ状態に向かわせるように調節することができるようになっている。
 この構成により、電圧レギュレータ20Lは、負帰還動作を行うことにより、基準電圧VREFLに応じた電圧VLを生成する。電圧レギュレータ20Lは、制御信号SLCMが高レベルである場合には、消費電力を低減しつつ、動作点を維持することができる。そして、電圧レギュレータ20Lは、制御信号SLCMが低レベルである場合には、生成した電圧VLに基づいてメモリアレイ11を駆動するようになっている。
 電圧選択部30(図1)は、制御信号SSET,SRSTに基づいて、電圧VH,VLのうち、ビット線BLを駆動する電圧を選択するとともに、ワード線WLを駆動する電圧を選択するように構成される。電圧選択部30は、スイッチ31~34を有している。
 スイッチ31は、制御信号SRSTが高レベルである場合に、電圧レギュレータ20Hから供給された電圧VHをワード線選択部13に供給するように構成される。スイッチ32は、制御信号SSETが高レベルである場合に、電圧レギュレータ20Lから供給された電圧VLをワード線選択部13に供給するように構成される。スイッチ33は、制御信号SRSTが高レベルである場合に、電圧レギュレータ20Lから供給された電圧VLを電流制限部14に供給するように構成される。スイッチ34は、制御信号SSETが高レベルである場合に、電圧レギュレータ20Hから供給された電圧VHを電流制限部14に供給するように構成される。
 この構成により、電圧選択部30は、例えば、制御信号SSETが高レベルであり制御信号SRSTが低レベルである場合には、電圧レギュレータ20Hから供給された電圧VHを電流制限部14に供給するとともに、電圧レギュレータ20Lから供給された電圧VLをワード線選択部13に供給する。半導体装置1では、メモリセルMCをセットする書込動作を行う場合や、読出動作を行う場合において、制御信号SSETが高レベルに設定されるとともに制御信号SRSTが低レベルに設定される。
 また、電圧選択部30は、例えば、制御信号SRSTが高レベルであり制御信号SSETが低レベルである場合には、電圧レギュレータ20Hから供給された電圧VHをワード線選択部13に供給するとともに、電圧レギュレータ20Lから供給された電圧VLを電流制限部14に供給する。半導体装置1では、メモリセルMCをリセットする書込動作を行う場合において、制御信号SRSTが高レベルに設定されるとともに制御信号SSETが低レベルに設定されるようになっている。
 電流制限部14は、制御信号SCに基づいて電圧選択部30とビット線選択部12との間に流れる電流を制限するように構成される。具体的には、電流制限部14は、書込動作および読出動作を行う場合に、制御信号SCに基づいて、電圧選択部30とビット線選択部12との間に流れる電流の電流値が所定の値以下になるように、電流を制限するようになっている。
 センスアンプ15は、入力された電圧を所定のしきい値電圧と比較するように構成される。これにより、センスアンプ15は、読出動作において、記憶素子VRの抵抗状態RSに応じた信号を出力するようになっている。
 制御部16は、ホスト(図示せず)からのデータの書込要求および読出要求に応じて、半導体装置1の動作を制御するように構成される。具体的には、制御部16は、制御信号SLCM、SSW1H,SSW2を用いて電圧レギュレータ20Hの動作を制御し、制御信号SLCM,SSW1L,SSW2を用いて電圧レギュレータ20Lの動作を制御し、制御信号SSET,SRSTを用いて電圧選択部30の動作を制御し、制御信号SCを用いて電流制限部14の動作を制御し、選択制御信号CTLBを用いてビット線選択部12の動作を制御し、選択制御信号CTLWを用いてワード線選択部13の動作を制御するようになっている。制御部16は、基準電圧生成部17を有している。基準電圧生成部17は、基準電圧VrefH,VrefLを生成するように構成される。基準電圧VrefHは、書込動作および読出動作において、例えば互いに異なる電圧に設定され、基準電圧VrefLは、書込動作および読出動作において、例えば互いに異なる電圧に設定される。
 ここで、誤差アンプAMP1は、本開示における「誤差アンプ」の一具体例に対応する。トランジスタMP11は、本開示における「駆動トランジスタ」の一具体例に対応する。トランジスタMP13は、本開示における「第1のスイッチ」の一具体例に対応する。トランジスタMP13は、本開示における「トランジスタ」の一具体例に対応する。トランジスタMP14は、本開示における「第2のスイッチ」の一具体例に対応する。電源ノードNVDDは、本開示における「電圧ノード」の一具体例に対応する。メモリアレイ11、ビット線選択部12、およびワード線選択部13は、本開示における「負荷回路」の一具体例に対応する。メモリセルMCは、本開示における「メモリセル」の一具体例に対応する。記憶素子VRは、本開示における「記憶素子」の一具体例に対応する。制御部16は、本開示における「制御部」の一具体例に対応する。複数のビット線BLおよび複数のワード線WLの一方は、本開示における「複数の第1の配線」の一具体例に対応し、他方は本開示における「複数の第2の配線」の一具体例に対応する。ビット線選択部12またはワード線選択部13は、本開示における「選択部」の一具体例に対応する。
[動作および作用]
 続いて、本実施の形態の半導体装置1の動作および作用について説明する。
(全体動作概要)
 まず、図1を参照して、半導体装置1の全体動作概要を説明する。電圧レギュレータ20Hは電圧VHを生成し、電圧レギュレータ20Lは電圧VLを生成する。電圧選択部30は、制御信号SSET,SRSTに基づいて、電圧VH,VLのうち、ビット線BLを駆動する電圧を選択するとともに、ワード線WLを駆動する電圧を選択する。電流制限部14は、制御信号SCに基づいて電圧選択部30とビット線選択部12との間に流れる電流を制限する。ビット線選択部12は、選択制御信号CTLBに基づいて、メモリアレイ11における複数のビット線BLのうちの1つを選択する。ワード線選択部13は、選択制御信号CTLWに基づいて、メモリアレイ11における複数のワード線WLのうちの1つを選択する。センスアンプ15は、入力された電圧を所定のしきい値電圧と比較する。制御部16は、ホストからのデータの書込要求および読出要求に応じて、半導体装置1の動作を制御する。
 まず、半導体装置1における書込動作および読出動作について説明する。
(書込動作について)
 半導体装置1は、ホストから、書込コマンド、書込アドレス、および書込データを受け取ると、書込動作を行う。
 書込動作では、まず、制御部16の基準電圧生成部17は、書込動作で用いる基準電圧VrefH,VrefLを生成する。そして、制御部16は、書込データに基づいて、制御信号SSET,SRSTを生成する。具体的には、書き込むべきビットデータが“1”である場合には、制御部16は、制御信号SSETを高レベルにするとともに制御信号SRSTを低レベルにする。これにより、電圧選択部30は、電圧レギュレータ20Hが生成した電圧VHを電流制限部14に供給するとともに、電圧レギュレータ20Lが生成した電圧VLをワード線選択部13に供給する。また、書き込むべきビットデータが“0”である場合には、制御部16は、制御信号SRSTを高レベルにするとともに制御信号SSETを低レベルにする。これにより、電圧選択部30は、電圧レギュレータ20Hが生成した電圧VHをワード線選択部13に供給するとともに、電圧レギュレータ20Lが生成した電圧VLを電流制限部14に供給する。
 また、制御部16は、制御信号SCを生成する。これにより、電流制限部14は、この制御信号SCに基づいて、電圧選択部30とビット線選択部12との間に流れる電流の電流値が所定の値以下になるように、電流を制限する。
 また、制御部16は、書込アドレスに基づいて、選択制御信号CTLB,CTLWを生成する。ビット線選択部12は、選択制御信号CTLBに基づいて、メモリアレイ11における複数のビット線BLのうちの1つを選択する。ワード線選択部13は、選択制御信号CTLWに基づいて、メモリアレイ11における複数のワード線WLのうちの1つを選択する。
 これにより、メモリアレイ11では、書き込むべきビットデータが“1”である場合には、メモリアレイ11における複数のビット線BLのうちの、ビット線選択部12により選択されたビット線BLに、電圧レギュレータ20Hにより生成された電圧VHが印加される。また、メモリアレイ11における複数のワード線WLのうちの、ワード線選択部13により選択されたワード線WLに、電圧レギュレータ20Lにより生成された電圧VLが印加される。これにより、選択されたビット線BLおよび選択されたワード線WLに係るメモリセルMCでは、選択素子SEがオン状態になり、図3に示したように、端子TUから端子TLに向かってセット電流Isetが流れ、記憶素子VRの抵抗状態RSが低抵抗状態LRSになる。このようにして、メモリセルMCがセットされる。
 また、書き込むべきビットデータが“0”である場合には、メモリアレイ11における複数のワード線WLのうちの、ワード線選択部13により選択されたワード線WLに、電圧レギュレータ20Hにより生成された電圧VHが印加される。また、メモリアレイ11における複数のビット線BLのうちの、ビット線選択部12により選択されたビット線BLに、電圧レギュレータ20Lにより生成された電圧VLが印加される。これにより、選択されたビット線BLおよび選択されたワード線WLに係るメモリセルMCでは、選択素子SEがオン状態になり、図3に示したように、端子TLから端子TUに向かってリセット電流Irstが流れ、記憶素子VRの抵抗状態RSが高抵抗状態HRSになる。このようにして、メモリセルMCがリセットされる。
(読出動作について)
 半導体装置1は、ホストから、読出コマンドおよび読出アドレスを受け取ると、読出動作を行う。
 読出動作では、まず、制御部16の基準電圧生成部17は、読出動作で用いる基準電圧VrefH,VrefLを生成する。そして、制御部16は、制御信号SSETを高レベルにするとともに制御信号SRSTを低レベルにする。これにより、電圧選択部30は、電圧レギュレータ20Hが生成した電圧VHを電流制限部14に供給するとともに、電圧レギュレータ20Lが生成した電圧VLをワード線選択部13に供給する。
 また、制御部16は、制御信号SCを生成する。これにより、電流制限部14は、この制御信号SCに基づいて、電圧選択部30とビット線選択部12との間に流れる電流の電流値が所定の値以下になるように、電流を制限する。
 また、制御部16は、読出アドレスに基づいて、選択制御信号CTLB,CTLWを生成する。ビット線選択部12は、選択制御信号CTLBに基づいて、メモリアレイ11における複数のビット線BLのうちの1つを選択する。ワード線選択部13は、選択制御信号CTLWに基づいて、メモリアレイ11における複数のワード線WLのうちの1つを選択する。
 これにより、メモリアレイ11では、選択されたビット線BLおよび選択されたワード線WLに係るメモリセルMCにおいて、端子TUから端子TLに向かってセンス電流Isnsが流れる。これにより、選択されたビット線BLには、記憶素子VRの抵抗状態RSに応じた電圧が生じる。センスアンプ15は、このようにして生じた電圧に基づいて、記憶素子VRの抵抗状態RSを判別する。
(電圧レギュレータ20H,20Lの動作について)
 電圧レギュレータ20Hでは、半導体装置1の動作シーケンスに基づいてトランジスタMP13,MP14の動作を制御し、電圧レギュレータ20Lでは、半導体装置1の動作シーケンスに基づいてトランジスタMN22,MN24の動作を制御する。以下に、この動作について詳細に説明する。
 図9は、選択されたメモリセルMCをセットする動作の一例を表すものであり、(A)は制御信号CB1~CB3の波形を示し、(B)は制御信号CB4の波形を示し、(C)は制御信号CW1~CW4の波形を示し、(D)は制御信号SLCMの波形を示し、(E)は制御信号SSW1Hの波形を示し、(F)は制御信号SSW1Lの波形を示し、(G)は制御信号SSW2の波形を示す。ここで、図9(A)の波形は、制御信号CB1~CB3のそれぞれにおける複数ビットの信号のうちの、選択されたメモリセルMCに対応する1つの信号の波形を示し、図9(B)の波形は、制御信号CB4における複数ビットの信号のうちの、選択されたメモリセルMCに対応する1つの信号の波形を示し、図9(C)の波形は、制御信号CW1~CW4のそれぞれにおける複数ビットの信号のうちの、選択されたメモリセルMCに対応する1つの信号の波形を示す。
 まず、タイミングt11において、制御部16は、制御信号SSW1Hを高レベルから低レベルに変化させる(図9(E))。これにより、電圧レギュレータ20Hでは、トランジスタMP13がオン状態になり、電源電圧VDDが供給された電源ノードNVDDおよびトランジスタMP11のゲートが、ダイオード接続されたトランジスタMP12を介して互いに接続される。これにより、トランジスタMP11のゲートの電圧は、トランジスタMP11をオフ状態に向かわせるように上昇する。その結果、電圧レギュレータ20Hにおける負帰還のループがやや開ループ状態になる。同様に、このタイミングt11において、制御部16は、制御信号SSW1Lを高レベルから低レベルに変化させる(図9(F))。これにより、電圧レギュレータ20Lでは、トランジスタMN22がオン状態になり、接地電圧VSSが供給された接地ノードNVSSおよびトランジスタMN21のゲートが、ダイオード接続されたトランジスタMN23を介して互いに接続される。これにより、トランジスタMN21のゲートの電圧は、トランジスタMN21をオフ状態に向かわせるように低下する。その結果、電圧レギュレータ20Lにおける負帰還のループがやや開ループ状態になる。
 次に、タイミングt12において、制御部16は、制御信号SLCMを高レベルから低レベルに変化させる(図9(D))。これにより、電圧レギュレータ20Hでは、誤差アンプAMP1の定電流源に流れる電流が増加するとともに、定電流源CS1に流れる電流が増加する。同様に、電圧レギュレータ20Lでは、誤差アンプAMP2の定電流源に流れる電流が増加するとともに定電流源CS2に流れる電流が増加する。これにより、タイミングt12において電圧VH,VLに揺れが生じる。電圧レギュレータ20Hでは、負帰還のループがやや開ループ状態になっており、電圧レギュレータ20Lでは、負帰還のループがやや開ループ状態になっているので、後述するように、電圧VH,VLの揺れを低減しつつ、電圧VH,VLの収束を早めることができる。
 次に、タイミングt13において、制御部16は、制御信号SSW1Hを低レベルから高レベルに変化させる(図9(E))。これにより、電圧レギュレータ20Hでは、トランジスタMP13がオフ状態になり、誤差アンプAMP1の出力電圧がトランジスタMP11のゲートに供給される。これにより、電圧レギュレータ20Hにおける負帰還のループが閉ループ状態に戻る。同様に、このタイミングt13において、制御部16は、制御信号SSW1Lを低レベルから高レベルに変化させる(図9(F))。これにより、電圧レギュレータ20Lでは、トランジスタMN22がオフ状態になり、誤差アンプAMP2の出力電圧がトランジスタMN21のゲートに供給される。これにより、電圧レギュレータ20Lにおける負帰還のループが閉ループ状態に戻る。このようにして、電圧レギュレータ20H,20Lは、メモリアレイ11を駆動することが出来る状態になる。
 次に、タイミングt14において、制御部16は、制御信号SSW1Hを高レベルから低レベルに変化させる(図9(E))。これにより、電圧レギュレータ20Hでは、トランジスタMP13がオン状態になり、電源ノードNVDDおよびトランジスタMP11のゲートが、ダイオード接続されたトランジスタMP12を介して互いに接続され、電圧レギュレータ20Hにおける負帰還のループがやや開ループ状態になる。同様に、このタイミングt14において、制御部16は、制御信号SSW1Lを高レベルから低レベルに変化させる(図9(F))。これにより、電圧レギュレータ20Lでは、トランジスタMN22がオン状態になり、接地ノードNVSSおよびトランジスタMN21のゲートが、ダイオード接続されたトランジスタMN23を介して互いに接続され、電圧レギュレータ20Lにおける負帰還のループがやや開ループ状態になる。
 次に、タイミングt15において、制御部16は、制御信号CB1に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、制御信号CB2に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、および制御信号CB3に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号を、低レベルから高レベルに変化させる(図9(A))。これにより、ビット線選択部12では、選択回路101において、制御信号CB1に基づいて複数のトランジスタTR1のうちの1つがオン状態になり、複数の選択回路102のそれぞれにおいて、制御信号CB2に基づいて複数のトランジスタTR2のうちの1つがオン状態になり、複数の選択回路103のそれぞれにおいて、制御信号CB3に基づいて複数のトランジスタTR3のうちの1つがオン状態になる。これにより、電圧レギュレータ20Hは、電圧選択部30および電流制限部14を介して、ビット線選択部12における、選択回路101、選択されたメモリセルMCに対応する選択回路102,103,104を駆動するので、電圧レギュレータ20Hから見た負荷が変化する。よって、タイミングt15において電圧VHに揺れが生じる。電圧レギュレータ20Hでは、負帰還のループがやや開ループ状態になっているので、後述するように、電圧VHの揺れを低減しつつ、電圧VHの収束を早めることができる。
 同様に、このタイミングt15において、制御部16は、制御信号CW1に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、制御信号CW2に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、制御信号CW3に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、および制御信号CW4に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号を、低レベルから高レベルに変化させる(図9(C))。これにより、ワード線選択部13では、選択回路201において、制御信号CW1に基づいて複数のトランジスタTR1のうちの1つがオン状態になり、複数の選択回路202のそれぞれにおいて、制御信号CW2に基づいて複数のトランジスタTR2のうちの1つがオン状態になり、複数の選択回路203のそれぞれにおいて、制御信号CW3に基づいて複数のトランジスタTR3のうちの1つがオン状態になり、複数の選択回路204のそれぞれにおいて、制御信号CW4に基づいて複数のトランジスタTR4のうちの1つがオン状態になる。これにより、電圧レギュレータ20Lは、電圧選択部30を介して、ワード線選択部13における、選択回路201、選択されたメモリセルMCに対応する選択回路202,203,204、および選択されたメモリセルMCに対応するワード線WLを駆動するので、電圧レギュレータ20Lから見た負荷が変化する。よって、タイミングt15において電圧VLに揺れが生じる。電圧レギュレータ20Lでは、負帰還のループがやや開ループ状態になっているので、後述するように、電圧VLの揺れを低減しつつ、電圧VLの収束を早めることができる。
 次に、タイミングt16において、制御部16は、制御信号SSW1Hを低レベルから高レベルに変化させる(図9(E))。これにより、電圧レギュレータ20Hでは、トランジスタMP13がオフ状態になり、誤差アンプAMP1の出力電圧がトランジスタMP11のゲートに供給される。これにより、電圧レギュレータ20Hにおける負帰還のループが閉ループ状態に戻る。同様に、このタイミングt13において、制御部16は、制御信号SSW1Lを低レベルから高レベルに変化させる(図9(F))。これにより、電圧レギュレータ20Lでは、トランジスタMN22がオフ状態になり、誤差アンプAMP2の出力電圧がトランジスタMN21のゲートに供給される。これにより、電圧レギュレータ20Lにおける負帰還のループが閉ループ状態に戻る。
 次に、タイミングt17において、制御部16は、制御信号SSW1Hを高レベルから低レベルに変化させる(図9(E))。これにより、電圧レギュレータ20Hでは、トランジスタMP13がオン状態になり、電源ノードNVDDおよびトランジスタMP11のゲートが、ダイオード接続されたトランジスタMP12を介して互いに接続され、電圧レギュレータ20Hにおける負帰還のループがやや開ループ状態になる。
 次に、タイミングt18において、制御部16は、制御信号CB4に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号を、低レベルから高レベルに変化させる(図9(B))。これにより、ビット線選択部12では、複数の選択回路104のそれぞれにおいて、制御信号CB4に基づいて複数のトランジスタTR4のうちの1つがオン状態になる。これにより、電圧レギュレータ20Hは、電圧選択部30およびビット線選択部12を介して、選択されたメモリセルMCに対応するビット線BLを駆動するので、電圧レギュレータ20Hから見た負荷が変化する。よって、タイミングt18において電圧VHに揺れが生じる。電圧レギュレータ20Hでは、負帰還のループがやや開ループ状態になっているので、後述するように、電圧VHの揺れを低減しつつ、電圧VHの収束を早めることができる。
 このようにして、電圧レギュレータ20Hは選択されたメモリセルMCに対応するビット線BLに接続され、電圧レギュレータ20Lは選択されたメモリセルMCに対応するワード線WLに接続される。その結果、このタイミングt18~t21の期間(書込期間T)において、選択されたメモリセルMCにはセット電流Isetが流れ、このメモリセルMCはセットされる。
 次に、タイミングt19において、制御部16は、制御信号SSW1Hを低レベルから高レベルに変化させる(図9(E))。これにより、電圧レギュレータ20Hでは、トランジスタMP13がオフ状態になり、誤差アンプAMP1の出力電圧がトランジスタMP11のゲートに供給される。これにより、電圧レギュレータ20Hにおける負帰還のループが閉ループ状態に戻る。
 次に、タイミングt20において、制御部16は、制御信号SSW1Hを高レベルから低レベルに変化させる(図9(E))。これにより、電圧レギュレータ20Hでは、トランジスタMP13がオン状態になり、電源ノードNVDDおよびトランジスタMP11のゲートが、ダイオード接続されたトランジスタMP12を介して互いに接続され、電圧レギュレータ20Hにおける負帰還のループがやや開ループ状態になる。
 次に、タイミングt21において、制御部16は、制御信号CB1に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、制御信号CB2に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、制御信号CB3に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、および制御信号CB4に含まれる複数のビットの信号のうちの選択されたメモリセルMCに対応する1つの信号を、高レベルから低レベルに変化させる(図9(A),(B))。これにより、ビット線選択部12では、選択回路101において、複数のトランジスタTR1がオフ状態になり、複数の選択回路102のそれぞれにおいて、複数のトランジスタTR2がオフ状態になり、複数の選択回路103のそれぞれにおいて、複数のトランジスタTR3がオフ状態になり、複数の選択回路104のそれぞれにおいて、複数のトランジスタTR4がオフ状態になる。これにより、電圧レギュレータ20Hは、選択されたメモリセルMCに対応するビット線BLと切断されるので、電圧レギュレータ20Hから見た負荷が変化し、タイミングt21において電圧VHに揺れが生じる。電圧レギュレータ20Hでは、負帰還のループがやや開ループ状態になっているので、後述するように、電圧VHの揺れを低減しつつ、電圧VHの収束を早めることができる。
 このようにして、半導体装置1では、書込期間Tが終了する。
 次に、タイミングt22において、制御部16は、制御信号SSW1Hを低レベルから高レベルに変化させる(図9(E))。これにより、電圧レギュレータ20Hでは、トランジスタMP13がオフ状態になり、誤差アンプAMP1の出力電圧がトランジスタMP11のゲートに供給される。これにより、電圧レギュレータ20Hにおける負帰還のループが閉ループ状態に戻る。
 次に、タイミングt23において、制御部16は、制御信号SSW2を高レベルから低レベルに変化させる(図9(G))。これにより、電圧レギュレータ20Hでは、トランジスタMP14がオン状態になり、電源ノードNVDDおよびトランジスタMP11のゲートが互いに接続され、電圧レギュレータ20Hにおける負帰還のループがやや開ループ状態になる。同様に、電圧レギュレータ20Lでは、トランジスタMN24がオン状態になり、接地ノードNVSSおよびトランジスタMN21のゲートが互いに接続され、電圧レギュレータ20Lにおける負帰還のループがやや開ループ状態になる。
 次に、タイミングt24において、制御部16は、制御信号CW1に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、制御信号CW2に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、制御信号CW3に含まれる複数ビットの信号のうちの選択されたメモリセルMCに対応する1つの信号、および制御信号CW4に含まれる複数のビットの信号のうちの選択されたメモリセルMCに対応する1つの信号を、高レベルから低レベルに変化させる(図9(C))。これにより、ワード線選択部13では、選択回路201において、複数のトランジスタTR1がオフ状態になり、複数の選択回路202のそれぞれにおいて、複数のトランジスタTR2がオフ状態になり、複数の選択回路203のそれぞれにおいて、複数のトランジスタTR3がオフ状態になり、複数の選択回路204のそれぞれにおいて、複数のトランジスタTR4がオフ状態になる。これにより、電圧レギュレータ20Lは、選択されたメモリセルMCに対応するワード線WLと切断されるので、電圧レギュレータ20Lから見た負荷が変化し、タイミングt24において電圧VLに揺れが生じる。電圧レギュレータ20Lでは、負帰還のループがやや開ループ状態になっているので、後述するように、電圧VLの揺れを低減しつつ、電圧VLの収束を早めることができる。
 次に、タイミングt25において、制御部16は、制御信号SLCMを低レベルから高レベルに変化させる(図9(D))。これにより、電圧レギュレータ20Hでは、誤差アンプAMP1の定電流源に流れる電流が減少するとともに、定電流源CS1に流れる電流が減少する。また、電圧レギュレータ20Lでは、誤差アンプAMP2の定電流源に流れる電流が減少するとともに定電流源CS2に流れる電流が減少する。これにより、タイミングt25において電圧VH,VLに揺れが生じる。電圧レギュレータ20H,20Lでは、負帰還のループがやや開ループ状態になっているので、後述するように、電圧VH,VLの揺れを低減しつつ、電圧VH,VLの収束を早めることができる。
 次に、タイミングt26において、制御部16は、制御信号SSW2を低レベルから高レベルに変化させる(図9(G))。これにより、電圧レギュレータ20Hでは、トランジスタMP14がオフ状態になり、誤差アンプAMP1の出力電圧がトランジスタMP11のゲートに供給される。これにより、電圧レギュレータ20Hにおける負帰還のループが閉ループ状態に戻る。同様に、電圧レギュレータ20Lでは、トランジスタMN24がオフ状態になり、誤差アンプAMP2の出力電圧がトランジスタMN21のゲートに供給される。これにより、電圧レギュレータ20Lにおける負帰還のループが閉ループ状態に戻る。
 以上、選択されたメモリセルMCをセットする動作を例に挙げて説明したが、選択されたメモリセルMCをリセットする動作についても同様であり、読出動作についても同様である。
 図10は、図9に示したタイミングt18付近における電圧レギュレータ20Hの一動作例を表すシミュレーション結果であり、(A)は制御信号CB4の波形を示し、(B)は制御信号SSW1Hの波形を示し、(C)は電圧レギュレータ20Hが出力する電圧VHの波形を示す。
 半導体装置1では、制御信号CB4が低レベルから高レベルに変化するタイミングを含む期間において、制御信号SSW1Hを低レベルに設定することにより、トランジスタMP13をオン状態にする(図10(A),(B))。これにより、電圧レギュレータ20Hでは、電源電圧VDDが供給された電源ノードNVDDおよびトランジスタMP11のゲートが、ダイオード接続されたトランジスタMP12を介して互いに接続され、電圧レギュレータ20Hにおける負帰還のループがやや開ループ状態になる。この状態において、制御信号CB4が低レベルから高レベルに変化すると、電圧レギュレータ20Hの負荷が変化するので、電圧VHは、波形W1に示したように揺れる(図10(C))。この電圧VHは、オーバーシュートが生じておらず、また、比較的短い時間で、元の電圧に収束する。
 仮に、電圧レギュレータ20HにトランジスタMP12~MP14を設けない場合には、電圧レギュレータ20Hにおける負帰還のループは閉ループ状態を維持する。よって、制御信号CB4が低レベルから高レベルに変化し、電圧レギュレータ20Hの負荷が変化すると、電圧VHの過渡的な低下に基づいて電圧VHを上昇させるように負帰還がかかるので、電圧VHには、波形W2に示したように、大きなオーバーシュートが生じる。そして、電圧VHは、長い時間をかけて元の電圧に収束する。このように電圧VHに大きなオーバーシュートが生じた場合には、このような電圧VHが印加されたビット線BLに接続された、選択されたメモリセルMC以外のメモリセルMCがセットされてしまうおそれがある。また、メモリセルMCに印加される電圧が耐圧を超え、メモリセルMCが破壊されてしまうおそれがある。また、このように収束時間が長い場合には、メモリアクセスのスループットが低下するおそれがある。なお、この例では、書込動作を例に挙げて説明したが、読出動作においても同様であり、例えば、選択されたメモリセルMC以外のメモリセルMCの情報を読み出すおそれがある。
 一方、半導体装置1では、波形W1に示したように、電圧VHにおけるオーバーシュートを抑えることができるので、選択されたメモリセルMC以外のメモリセルMCがセットされるおそれを低減することができ、また、メモリセルMCが破壊されるおそれを低減することができる。また、収束時間を短くすることができるので、メモリアクセスのスループットを向上することができる。また、読出動作においても同様であり、例えば、選択されたメモリセルMC以外のメモリセルMCの情報を読み出すおそれを低減することがある。
 以上、電圧レギュレータ20HのトランジスタMP13の動作を例に挙げて説明したが、トランジスタMP14の動作についても同様である。トランジスタMP14がオン状態になると、電源電圧VDDが供給された電源ノードNVDDとトランジスタMP11のゲートとが互いに接続される。これにより、電圧レギュレータ20Hにおける負帰還のループが、トランジスタMP13をオン状態した場合に比べて、より開ループ状態に近づく。この場合でも、電圧VHにおけるオーバーシュートを抑えることができ、また収束時間を短くすることができる。
 また、この例では電圧レギュレータ20Hを例に挙げて説明したが、電圧レギュレータ20Lについても同様である。例えば、トランジスタMN22がオン状態になると、接地電圧VSSが供給された接地ノードNVSSとトランジスタMN21のゲートとが互いに接続される。これにより、電圧レギュレータ20Lにおける負帰還のループがやや開ループ状態になる。これにより、電圧VLが大きく低下するアンダーシュートを抑えることができ、また収束時間を短くすることができる。また、例えば、トランジスタMN24がオン状態になると、接地電圧VSSが供給された接地ノードNVSSとトランジスタMN21のゲートとが互いに接続される。これにより、電圧レギュレータ20Lにおける負帰還のループが、トランジスタMN22をオン状態した場合に比べて、より開ループ状態に近づく。この場合でも、電圧VLにおけるアンダーシュートを抑えることができ、また収束時間を短くすることができる。
 このように、半導体装置1では、電圧レギュレータ20HにトランジスタMP13を設け、このトランジスタMP13をオン状態にすることにより、トランジスタMP11のゲートの電圧を、トランジスタMP11の状態をオフ状態に向かわせるように調節するようにした。そして、制御部16が半導体装置1の動作シーケンスを制御し、例えば負荷が変化するタイミングt15を含むタイミングt14~t16の期間、タイミングt18を含むタイミングt17~t19の期間、およびタイミングt21を含むタイミングt20~t21の期間において、トランジスタMP13をオン状態にした。これにより、半導体装置1では、負荷が変化するタイミングで、電圧VHにおけるオーバーシュートを抑えることができ、また収束時間を短くすることができるので、電圧VHを安定させることができる。
 また、半導体装置1では、制御部16が、消費電力を低減する動作から通常動作に切り替わるタイミングt12を含むタイミングt11~t13の期間において、トランジスタMP13をオン状態にした。これにより、半導体装置1では、動作が変化するタイミングで、電圧VHにおけるオーバーシュートを抑えることができ、また収束時間を短くすることができるので、電圧VHを安定させることができる。
 また、半導体装置1では、トランジスタMP12,MP13を、電源ノードNVDDとトランジスタMP11のゲートとを結ぶ経路に設け、トランジスタMP12のゲートとドレインとを互いに接続するようにした。これにより、半導体装置1では、トランジスタMP13がオン状態になることにより、電圧レギュレータ20Hにおける負帰還のループをやや開ループ状態にすることができるので、トランジスタMP13のゲートの電圧を適切に調節することができる。その結果、半導体装置1では、効果的に、電圧VHにおけるオーバーシュートを抑えることができるとともに、収束時間を短くすることができるので、電圧VHを効果的に安定させることができる。
 半導体装置1では、電圧レギュレータ20LにトランジスタMN22を設け、このトランジスタMN22をオン状態にすることにより、トランジスタMN21のゲートの電圧を、トランジスタMN21の状態をオフ状態に向かわせるように調節するようにした。そして、制御部16が半導体装置1の動作シーケンスを制御し、例えば負荷が変化するタイミングt15を含むタイミングt14~t16の期間において、トランジスタMN22をオン状態にした。これにより、半導体装置1では、負荷が変化するタイミングで、電圧VLにおけるアンダーシュートを抑えることができ、また収束時間を短くすることができるので、電圧VLを安定させることができる。
[効果]
 以上のように本実施の形態では、電圧レギュレータ20HにトランジスタMP13を設け、このトランジスタMP13をオン状態にすることにより、トランジスタMP11のゲートの電圧を、トランジスタMP11の状態をオフ状態に向かわせるように調節するようにした。そして、制御部が半導体装置の動作シーケンスを制御し、例えば負荷が変化するタイミングを含む期間において、トランジスタMP13をオン状態にした。これにより、電圧VHを安定させることができる。
 また、本実施の形態では、トランジスタMP12,MP13を、電源ノードNVDDとトランジスタMP11のゲートとを結ぶ経路に設け、トランジスタMP12のゲートとドレインとを互いに接続するようにしたので、効果的に、電圧VHを安定させることができる。
 また、本実施の形態では、電圧レギュレータ20LにトランジスタMN22を設け、このトランジスタMN22をオン状態にすることにより、トランジスタMN21のゲートの電圧を、トランジスタMN21の状態をオフ状態に向かわせるように調節するようにした。そして、制御部が半導体装置の動作シーケンスを制御し、例えば負荷が変化するタイミングを含む期間において、トランジスタMN22をオン状態にした。これにより、電圧VLを安定させることができる。
[変形例1]
 上記実施の形態では、電圧レギュレータ20Hにおいて、トランジスタMP12を、電源電圧VDDが供給された電源ノードNVDDとトランジスタMP13との間に設けたが、これに限定されるものではない。これに代えて、例えば、図11に示す電圧レギュレータ20HAのように、トランジスタMP12を、トランジスタMP13とトランジスタMP11のゲートとの間に設けてもよい。電圧レギュレータ20Lについても同様であり、例えば、トランジスタMN23を、トランジスタMN22とトランジスタMN21のゲートとの間に設けてもよい。
[変形例2]
 上記実施の形態では、電圧レギュレータ20Hにおいて、ダイオード接続されたトランジスタMP12を設けたが、これに限定されるものではない。これに代えて、例えば、図12に示す電圧レギュレータ20HBのように、このトランジスタMP12に代えて、抵抗素子R1を設けてもよい。抵抗素子R1の一端は電源電圧VDDが供給された電源ノードNVDDに接続され、他端はトランジスタMP13のソースに接続される。電圧レギュレータ20Lについても同様であり、例えば、トランジスタMN23に代えて、抵抗素子を設けてもよい。
[変形例3]
 上記実施の形態では、電圧レギュレータ20Hにおいて、いわゆるソース接地アンプを用いて出力段を構成したが、これに限定されるものではない。これに代えて、図13に示す電圧レギュレータ20HCのように、ソースフォロワを用いて出力段を構成してもよい。この電圧レギュレータ20HCは、誤差アンプAMP1と、トランジスタMN31と、インバータIV3,IV4と、トランジスタMN32~MN34とを有している。トランジスタMN31~MN34は、N型のMOSトランジスタである。
 誤差アンプAMP1の正入力端子には基準電圧VREFHが供給され、負入力端子は電圧レギュレータ20HCの出力端子OUTHに接続され、出力端子はトランジスタMN31のゲートおよびトランジスタMN32,MN34のドレインに接続される。
 トランジスタMN31のゲートは誤差アンプAMP1の出力端子およびトランジスタMN32,MN34のドレインに接続され、ドレインは電源電圧VDDが供給された電源ノードNVDDに接続され、ソースは電圧レギュレータ20HCの出力端子OUTHに接続される。
 インバータIV3の入力端子には制御信号SSW1Lが供給され、出力端子はトランジスタMN32のゲートに接続される。インバータIV4の入力端子には制御信号SSW2が供給され、出力端子はトランジスタMN34のゲートに接続される。
 トランジスタMN32のゲートはインバータIV3の出力端子に接続され、ドレインはトランジスタMN31のゲート、誤差アンプAMP1の出力端子、およびトランジスタMN34のドレインに接続され、ソースはトランジスタMN33のゲートおよびドレインに接続される。トランジスタMN33のゲートはトランジスタMN33のドレインおよびトランジスタMN32のソースに接続され、ドレインはトランジスタMN33のゲートおよびトランジスタMN32のソースに接続され、ソースは接地電圧VSSが供給された接地ノードNVSSに接続される。このように、トランジスタMN33は、いわゆるダイオード接続により、ゲートおよびドレインが互いに接続される。この構成により、トランジスタMN32が制御信号SSW1Lに基づいてオン状態になることにより、接地ノードNVSSおよびトランジスタMN31のゲートが、ダイオード接続されたトランジスタMN33を介して互いに接続される。これにより、トランジスタMN32は、トランジスタMN31のゲートの電圧を、このトランジスタMN31をオフ状態に向かわせるように調節することができるようになっている。
 トランジスタMN34のゲートはインバータIV4の出力端子に接続され、ドレインはトランジスタMN31のゲート、誤差アンプAMP1の出力端子、およびトランジスタMN32のドレインに接続され、ソースは接地ノードNVSSに接続される。この構成により、トランジスタMN34が制御信号SSW2に基づいてオン状態になることにより、接地ノードNVSSおよびトランジスタMN31のゲートが接続される。これにより、トランジスタMN34は、トランジスタMN31のゲートの電圧を、このトランジスタMN31をオフ状態に向かわせるように調節することができるようになっている。
 以上では、本変形例を電圧レギュレータ20Hに適用したが、これに限定されるものではなく、例えば、電圧レギュレータ20Lに適用してもよい。
[変形例4]
 上記実施の形態では、電圧レギュレータ20Hが生成する電圧VHを誤差アンプAMP1の正入力端子に供給したが、これに限定されるものではない。これに代えて、例えば、図14に示す電圧レギュレータ20HDのように、電圧VHを分圧することにより生成された電圧を誤差アンプAMP1の正入力端子に供給してもよい。電圧レギュレータ20HDは、抵抗素子R2,R3を有している。抵抗素子R2の一端は電圧レギュレータ20Hの出力端子OUTHに接続され、他端は抵抗素子R3の一端および誤差アンプAMP1の正入力端子に接続される。抵抗素子R3の一端は抵抗素子R2の他端および誤差アンプAMP1の正入力端子に接続され、他端は接地電圧VSSが供給された接地ノードNVSSに接続される。誤差アンプAMP1の負入力端子には基準電圧VREFH1が供給される。誤差アンプAMP1は、抵抗素子R2,R3による分圧電圧および基準電圧VREFH1に基づいて、電圧レギュレータ20Hの出力電圧である電圧VHと基準電圧VREFH1との差に応じた誤差電圧を生成する。電圧レギュレータ20Hは、負帰還動作を行うことにより電圧VHを生成する。以上では、本変形例を電圧レギュレータ20Hに適用したが、これに限定されるものではなく、例えば、電圧レギュレータ20Lに適用してもよい。
[その他の変形例]
 また、これらの変形例のうちの2以上を組み合わせてもよい。
 以上、実施の形態およびいくつかの変形例を挙げて本技術を説明したが、本技術はこれらの実施の形態等には限定されず、種々の変形が可能である。
 例えば、上記実施の形態等では、負荷が変化するタイミングを含む期間において、トランジスタMP13をオン状態にしたが、これに限定されるものではない。これに代えて、例えば、負荷が変化するタイミングを含む期間において、トランジスタMP14をオン状態にしてもよい。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成とすることができる。以下の構成の本技術によれば、生成された電圧を安定させることができる。
(1)出力電圧と基準電圧との差に応じた誤差電圧を生成する誤差アンプと、
 前記誤差電圧が供給されたゲートと、前記出力電圧が出力されるドレインまたはソースとを有する駆動トランジスタと、
 オン状態になることにより、前記駆動トランジスタの前記ゲートの電圧を、前記駆動トランジスタの状態をオフ状態に向かわせるように調節する第1のスイッチと、
 前記出力電圧が供給される負荷回路と、
 前記負荷回路の動作シーケンスを制御するとともに、前記負荷回路の負荷が変化するタイミングを含む第1の期間において前記第1のスイッチをオン状態にする制御部と
 を備えた半導体装置。
(2)前記第1のスイッチは、所定の電圧が印加された電圧ノードと前記駆動トランジスタの前記ゲートとを結ぶ第1の経路に設けられた
 前記(1)に記載の半導体装置。
(3)前記第1の経路に設けられ、ゲートと、前記ゲートに接続されたドレインと、ソースとを有するトランジスタをさらに備えた
 前記(2)に記載の半導体装置。
(4)前記第1のスイッチは、オン状態になることにより、前記電圧ノードと前記駆動トランジスタの前記ゲートとを接続する
 前記(2)に記載の半導体装置。
(5)前記電圧ノードと前記駆動トランジスタの前記ゲートとを結ぶ第2の経路に設けられ、オン状態になることにより、前記電圧ノードと前記駆動トランジスタの前記ゲートとを接続する第2のスイッチをさらに備えた
 前記(3)または(4)に記載の半導体装置。
(6)前記第1の期間は、前記負荷回路の負荷が第1の負荷状態から前記第1の負荷状態よりも負荷が重い第2の負荷状態に変化するタイミングを含む
 前記(1)から(5)のいずれかに記載の半導体装置。
(7)前記第1の期間は、前記負荷回路の負荷が第1の負荷状態よりも重い第2の負荷状態から、前記第1の負荷状態に変化するタイミングを含む
 前記(1)から(5)のいずれかに記載の半導体装置。
(8)前記誤差アンプは、第1の動作モードと、前記第1の動作モードよりも消費電力が低い第2の動作モードとを有し、
 前記制御部は、前記動作シーケンスに応じて前記誤差アンプの動作モードを前記第1の動作モードまたは前記第2の動作モードに設定するとともに、前記誤差アンプの前記動作モードが変化するタイミングを含む第2の期間において前記第1のスイッチをオン状態にする
 前記(1)から(7)のいずれかに記載の半導体装置。
(9)前記負荷回路は、それぞれが、前記駆動トランジスタにより駆動されることが可能な記憶素子を有する複数の記憶セルを含む
 前記(1)から(8)のいずれかに記載の半導体装置。
(10)前記負荷回路は、
 第1の方向に延伸し、それぞれが、前記複数の記憶セルのうちの1以上の記憶セルに接続された複数の第1の配線と、
 前記第1の方向と交差する第2の方向に延伸し、それぞれが、前記複数のメモリセルのうちの1以上の記憶セルに接続された複数の第2の配線と、
 前記複数の第1の配線のうちの1つを選択することにより、選択された第1の配線に前記出力電圧を供給する選択部と
 をさらに備え、
 前記制御部は、前記選択部の動作を制御し、
 前記第1の期間は、前記選択部が前記複数の第1の配線のうちの1つを選択するタイミングを含む
 前記(9)に記載の半導体装置。
(11)出力電圧と基準電圧との差に応じた誤差電圧を生成することと、
 前記誤差電圧が供給されたゲートを有する駆動トランジスタのドレインまたはソースから前記出力電圧を出力することと、
 前記出力電圧が供給される負荷回路の動作シーケンスを制御することと、
 前記負荷回路の負荷が変化するタイミングを含む第1の期間において第1のスイッチをオン状態にすることにより、前記駆動トランジスタの前記ゲートの電圧を、前記駆動トランジスタの状態をオフ状態に向かわせるように調節することと
 を含む電圧制御方法。
 本出願は、日本国特許庁において2020年5月11日に出願された日本特許出願番号2020-083337号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (11)

  1.  出力電圧と基準電圧との差に応じた誤差電圧を生成する誤差アンプと、
     前記誤差電圧が供給されたゲートと、前記出力電圧が出力されるドレインまたはソースとを有する駆動トランジスタと、
     オン状態になることにより、前記駆動トランジスタの前記ゲートの電圧を、前記駆動トランジスタの状態をオフ状態に向かわせるように調節する第1のスイッチと、
     前記出力電圧が供給される負荷回路と、
     前記負荷回路の動作シーケンスを制御するとともに、前記負荷回路の負荷が変化するタイミングを含む第1の期間において前記第1のスイッチをオン状態にする制御部と
     を備えた半導体装置。
  2.  前記第1のスイッチは、所定の電圧が印加された電圧ノードと前記駆動トランジスタの前記ゲートとを結ぶ第1の経路に設けられた
     請求項1に記載の半導体装置。
  3.  前記第1の経路に設けられ、ゲートと、前記ゲートに接続されたドレインと、ソースとを有するトランジスタをさらに備えた
     請求項2に記載の半導体装置。
  4.  前記第1のスイッチは、オン状態になることにより、前記電圧ノードと前記駆動トランジスタの前記ゲートとを接続する
     請求項2に記載の半導体装置。
  5.  前記電圧ノードと前記駆動トランジスタの前記ゲートとを結ぶ第2の経路に設けられ、オン状態になることにより、前記電圧ノードと前記駆動トランジスタの前記ゲートとを接続する第2のスイッチをさらに備えた
     請求項3に記載の半導体装置。
  6.  前記第1の期間は、前記負荷回路の負荷が第1の負荷状態から前記第1の負荷状態よりも負荷が重い第2の負荷状態に変化するタイミングを含む
     請求項1に記載の半導体装置。
  7.  前記第1の期間は、前記負荷回路の負荷が第1の負荷状態よりも重い第2の負荷状態から、前記第1の負荷状態に変化するタイミングを含む
     請求項1に記載の半導体装置。
  8.  前記誤差アンプは、第1の動作モードと、前記第1の動作モードよりも消費電力が低い第2の動作モードとを有し、
     前記制御部は、前記動作シーケンスに応じて前記誤差アンプの動作モードを前記第1の動作モードまたは前記第2の動作モードに設定するとともに、前記誤差アンプの前記動作モードが変化するタイミングを含む第2の期間において前記第1のスイッチをオン状態にする
     請求項1に記載の半導体装置。
  9.  前記負荷回路は、それぞれが、前記駆動トランジスタにより駆動されることが可能な記憶素子を有する複数のメモリセルを含む
     請求項1に記載の半導体装置。
  10.  前記負荷回路は、
     第1の方向に延伸し、それぞれが、前記複数の記憶セルのうちの1以上の記憶セルに接続された複数の第1の配線と、
     前記第1の方向と交差する第2の方向に延伸し、それぞれが、前記複数の記憶セルのうちの1以上の記憶セルに接続された複数の第2の配線と、
     前記複数の第1の配線のうちの1つを選択することにより、選択された第1の配線に前記出力電圧を供給する選択部と
     をさらに備え、
     前記制御部は、前記選択部の動作を制御し、
     前記第1の期間は、前記選択部が前記複数の第1の配線のうちの1つを選択するタイミングを含む
     請求項9に記載の半導体装置。
  11.  出力電圧と基準電圧との差に応じた誤差電圧を生成することと、
     前記誤差電圧が供給されたゲートを有する駆動トランジスタのドレインまたはソースから前記出力電圧を出力することと、
     前記出力電圧が供給される負荷回路の動作シーケンスを制御することと、
     前記負荷回路の負荷が変化するタイミングを含む第1の期間において第1のスイッチをオン状態にすることにより、前記駆動トランジスタの前記ゲートの電圧を、前記駆動トランジスタの状態をオフ状態に向かわせるように調節することと
     を含む電圧制御方法。
PCT/JP2021/013254 2020-05-11 2021-03-29 半導体装置および電圧制御方法 WO2021229935A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180033076.2A CN115516401A (zh) 2020-05-11 2021-03-29 半导体装置以及电压控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-083337 2020-05-11
JP2020083337A JP2021179683A (ja) 2020-05-11 2020-05-11 半導体装置および電圧制御方法

Publications (1)

Publication Number Publication Date
WO2021229935A1 true WO2021229935A1 (ja) 2021-11-18

Family

ID=78511610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013254 WO2021229935A1 (ja) 2020-05-11 2021-03-29 半導体装置および電圧制御方法

Country Status (3)

Country Link
JP (1) JP2021179683A (ja)
CN (1) CN115516401A (ja)
WO (1) WO2021229935A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127902A (ja) * 2013-12-27 2015-07-09 セイコーインスツル株式会社 ボルテージレギュレータ
JP2019053728A (ja) * 2017-09-13 2019-04-04 ローム株式会社 レギュレータ回路
JP2019164800A (ja) * 2019-04-10 2019-09-26 エイブリック株式会社 ボルテージレギュレータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127902A (ja) * 2013-12-27 2015-07-09 セイコーインスツル株式会社 ボルテージレギュレータ
JP2019053728A (ja) * 2017-09-13 2019-04-04 ローム株式会社 レギュレータ回路
JP2019164800A (ja) * 2019-04-10 2019-09-26 エイブリック株式会社 ボルテージレギュレータ

Also Published As

Publication number Publication date
CN115516401A (zh) 2022-12-23
JP2021179683A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP7174596B2 (ja) メモリ装置、これを含むシステムオンチップ、及びメモリ装置の動作方法
TWI632549B (zh) 電壓產生電路
US10972101B2 (en) Level shifters, memory systems, and level shifting methods
US7286417B2 (en) Low power dissipation voltage generator
KR100725373B1 (ko) 플래쉬 메모리 장치
US8982634B2 (en) Flash memory
JP4960419B2 (ja) 半導体記憶装置及び半導体装置
KR20050037352A (ko) 반도체집적회로
KR100296005B1 (ko) 반도체장치
WO2021229935A1 (ja) 半導体装置および電圧制御方法
US10943647B1 (en) Bit-line mux driver with diode header for computer memory
US10763834B2 (en) Latch circuit
KR20180008173A (ko) 음의 전압 생성 장치를 포함하는 메모리 장치
WO2022014154A1 (ja) 半導体装置およびその制御方法
KR20170048665A (ko) 동작 오류를 감소시키는 레벨 변환 회로
US6795344B2 (en) Floating gate memory architecture with program voltage stable circuit
KR20230021573A (ko) Sram 셀에서의 네거티브 비트 라인 생성을 위한 로버스트 회로
CN112204495B (zh) 用于初始化带隙电路的系统及方法
US20070070720A1 (en) Voltage generator for use in semiconductor device
KR100597625B1 (ko) 내부 전원전압 발생회로
KR100825021B1 (ko) 내부전압 생성기
US10083726B2 (en) Input circuit and semiconductor device including the same
WO2023089959A1 (ja) 半導体回路
US20230135718A1 (en) Regulator circuit and methods thereof
WO2021241070A1 (ja) 半導体記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803234

Country of ref document: EP

Kind code of ref document: A1