WO2021225078A1 - 連続熱処理設備の制御方法 - Google Patents

連続熱処理設備の制御方法 Download PDF

Info

Publication number
WO2021225078A1
WO2021225078A1 PCT/JP2021/016209 JP2021016209W WO2021225078A1 WO 2021225078 A1 WO2021225078 A1 WO 2021225078A1 JP 2021016209 W JP2021016209 W JP 2021016209W WO 2021225078 A1 WO2021225078 A1 WO 2021225078A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating unit
output power
unit
temperature
metal member
Prior art date
Application number
PCT/JP2021/016209
Other languages
English (en)
French (fr)
Inventor
洋 城野
翼 末永
Original Assignee
中外炉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020082681A external-priority patent/JP6849843B2/ja
Application filed by 中外炉工業株式会社 filed Critical 中外炉工業株式会社
Priority to KR1020227032724A priority Critical patent/KR20220143753A/ko
Priority to CN202180033652.3A priority patent/CN115516119B/zh
Publication of WO2021225078A1 publication Critical patent/WO2021225078A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a control method for a continuous heat treatment facility that continuously heat-treats a metal member.
  • Electromagnetic induction heating self-heats the metal member by the induced current, which enables rapid temperature rise and real-time temperature control.
  • Electromagnetic induction heating is roughly classified into a solenoid type and a transverse type.
  • a heating coil wound in a solenoid shape is arranged around the metal member, and an alternating current is passed through the heating coil to generate an induced current on the surface of the metal member to heat the metal member.
  • the transverse type a pair of heating coils are arranged so as to sandwich the metal member so as to be separated from each other in the thickness direction of the metal member so that the alternating magnetic field generated from the heating coils penetrates in the thickness direction of the metal member. Is.
  • Patent Document 1 describes a solenoid type induction heating unit that compensates for temperature inhomogeneity in the width direction caused by roll cooling water during rolling, and temperature compensation for temperature inhomogeneity in the longitudinal direction. Disclosed is a heating device having a solenoid type induction heating unit to perform.
  • Patent Document 2 describes that the temperature is 200 ° C. or more lower than the preheating temperature (less than the Curie temperature Tc of a thin steel sheet) by each of the transverse type and solenoid type induction heating portions arranged in the pretropical zone of the continuous annealing facility. Discloses that the thin steel sheet is preheated to the preheating temperature, respectively. Then, Patent Document 2 discloses that a heating zone and an even tropics are provided on the downstream side of the pre-tropics.
  • the solenoid type has excellent temperature uniformity in the width direction of the metal member, but when the temperature of the metal member rises and approaches the Curie temperature of the metal member, the relative magnetic permeability of the metal member drops significantly, so that the induced current Penetration depth becomes deeper. As a result, in the thin metal member, the induced current flowing on the front surface and the induced current flowing on the back surface of the metal member cancel each other out, and the heating efficiency is significantly lowered. On the other hand, in the solenoid type, the thickness of the metal member is not easily affected, but the width of the metal member is overheated because the induced current is concentrated on the end in the width direction of the metal member. The temperature uniformity in the direction is inferior to that of the solenoid type.
  • Patent Document 1 a transverse induction heating unit and a solenoid induction heating unit are used to compensate for temperature inhomogeneity, but sufficient temperature uniformity is obtained for a thin metal member. It is hard to say that it has been done.
  • Patent Document 2 only discloses that a thin steel sheet is rapidly heated to near the Curie temperature by a solenoid type induction heating unit, and controls for improving the temperature uniformity in the width direction in total in a continuous annealing facility. It is not disclosed.
  • an object of the present invention is to provide a control method for a continuous heat treatment facility capable of improving the temperature uniformity in the width direction orthogonal to the transport direction of the metal member in total.
  • the control method of the continuous heat treatment equipment is The first heating unit, the second heating unit, and the third heating unit, which are continuously arranged in order along the transport direction of the metal member, A control unit that controls the first output power, the second output power, and the third output power output to the first heating unit, the second heating unit, and the third heating unit, respectively.
  • a first measuring unit for measuring a first voltage and a first current in the first heating unit is provided.
  • the first heating unit, the second heating unit, and the third heating unit are a solenoid type induction heating unit, a transverse type induction heating unit, and a resistance heating unit, respectively.
  • the control unit calculates the equivalent impedance in the parallel resonant circuit based on the first voltage and the first current measured by the first measuring unit, and when the calculated equivalent impedance becomes larger than the threshold value.
  • the first output power is controlled so that the first output power is reduced.
  • the first output power is reduced when the equivalent impedance in the parallel resonance circuit of the first heating unit, that is, the solenoid type induction heating unit becomes larger than the threshold value.
  • the first output power is reduced before the temperature of the metal member heated by the first heating unit reaches the Curie temperature of the metal member.
  • FIG. 1 It is a perspective view schematically explaining the continuous heat treatment equipment which concerns on one Embodiment. It is a block diagram of the continuous heat treatment equipment shown in FIG. It is a flowchart at the time of determining the optimum setting value in the continuous heat treatment equipment. It is a flowchart at the time of operating a continuous heat treatment facility. It is a flowchart which concerns on the modification when operating the continuous heat treatment equipment.
  • FIG. 1 is a perspective view schematically illustrating a continuous heat treatment facility 1 according to an embodiment.
  • FIG. 2 is a block diagram of the continuous heat treatment equipment 1 shown in FIG.
  • FIG. 3 is a flowchart for determining the optimum set value in the continuous heat treatment equipment 1.
  • FIG. 4 is a flowchart when the continuous heat treatment equipment 1 is operated.
  • the continuous heat treatment equipment 1 includes a first heating unit 10 and a second heating unit 10 which are continuously arranged in order from the upstream side to the downstream side along the transport direction F of the metal member 3.
  • a heating unit 20 and a third heating unit 30 are provided.
  • the continuous heat treatment equipment 1 performs continuous heat treatment (for example, continuous annealing treatment) while transporting the metal member 3 in the transport direction F via a transport roller (not shown).
  • the metal member 3 as a work is, for example, a thin metal piece (for example, a steel piece) or a long metal strip obtained by rolling a metal piece.
  • the thickness of the metal member 3 is, for example, 0.1 mm to 5 mm.
  • a first temperature sensor 16 is arranged on the downstream side (outside side of the first heating unit 10) in the transport direction F of the first heating unit 10.
  • the first temperature sensor 16 is a radiation thermometer that spot-measures the exit side temperature of the central portion in the width direction W of the metal member 3, that is, the first exit side temperature.
  • a second temperature sensor 26 is arranged on the downstream side of the second heating unit 20 in the transport direction F (the exit side of the second heating unit 20).
  • the second temperature sensor 26 measures while scanning the exit side temperature of the metal member 3, that is, the second exit temperature in the width direction W orthogonal to the transport direction F.
  • the second temperature sensor 26 is, for example, a scanning pyrometer.
  • a third temperature sensor 36 is arranged on the downstream side (outside side of the third heating unit 30) in the transport direction F of the third heating unit 30.
  • the third temperature sensor 36 measures while scanning the exit side temperature of the metal member 3, that is, the third exit temperature in the width direction W orthogonal to the transport direction F.
  • the third temperature sensor 36 is, for example, a scanning pyrometer.
  • the continuous heat treatment equipment 1 includes a first heating unit 10, a second heating unit 20, a third heating unit 30, a first temperature sensor 16, a second temperature sensor 26, and a third. It includes a temperature sensor 36 and a control unit 5.
  • the first heating unit 10 is a solenoid type induction heating unit, and includes a first heating coil 12, a first power supply 13, a first output power control unit 14, and a first measurement unit 18.
  • the first heating coil 12 is a coil that winds around the metal member 3.
  • the first power supply 13 outputs the first output power of high-frequency alternating current to the first heating coil 12.
  • the first output power control unit 14 controls the first output power output to the first heating coil 12 by the first power supply 13.
  • An induced current is generated on the front surface, the back surface, and the side surface of the metal member 3 by the alternating magnetic field generated by the first heating coil 12 so as to penetrate the longitudinal cross section of the metal member 3.
  • the metal member 3 is heated by Joule heat based on the induced current and the electric resistance of the metal member 3.
  • the first measuring unit 18 measures the first voltage and the first current of the first output power output to the first heating coil 12.
  • the control unit 5 acquires each measured value of the measured first voltage and the first current, and controls the storage unit 7 to store
  • the second heating unit 20 is a transverse induction heating unit, and includes a second heating coil 22, a second power supply 23, and a second output power control unit 24.
  • the second heating coil 22 is a pair of heating coils arranged so as to sandwich the metal member 3 so as to be spaced apart from each other in the thickness direction of the metal member 3.
  • the second power supply 23 outputs the second output power of high-frequency alternating current to the second heating coil 22.
  • the second output power control unit 24 controls the second output power output to the second heating coil 22 by the second power supply 23.
  • the alternating magnetic field generated from the second heating coil 22 penetrates in the thickness direction of the metal member 3. An induced current is generated on the surface of the metal member 3 by this alternating magnetic field, and the metal member 3 is heated by Joule heat based on the induced current and the electric resistance of the metal member 3.
  • the third heating unit 30 is a resistance heating unit, and includes a heating heater 32, a third power supply 33, and a third output power control unit 34.
  • the heating heater 32 is a resistance heating element.
  • the third power supply 33 outputs the third output power of alternating current to the heater 32.
  • the third output power control unit 34 controls the third output power output to the heater 32 by the third power supply 33.
  • the metal member 3 is heated by indirect resistance heating that transfers the heat energy generated by energizing the heating heater 32 to the metal member 3.
  • the control unit 5 controls each heating unit of the continuous heat treatment equipment 1, and more specifically, controls each of the first heating unit 10, the second heating unit 20, and the third heating unit 30.
  • the control unit 5 is, for example, a computer, and includes an arithmetic unit (CPU: central processing unit) 6 and a storage unit (memory such as ROM or RAM) 7.
  • the storage unit 7 performs the following storage operation, for example. That is, the storage unit 7 stores various programs for executing the heat treatment in each of the first heating unit 10, the second heating unit 20, and the third heating unit 30.
  • the storage unit 7 includes data on various metal members 3 to be heat-treated (for example, curry temperature, heat content, specific resistance, width, thickness, heat treatment conditions), first rated output power of the first heating unit 10, and the first rated output power of the first heating unit 10.
  • the second rated output power of the second heating unit 20 and the third rated output power of the third heating unit 30 are stored.
  • the storage unit 7 stores the temperature data (first output side temperature, second output side temperature, and third output side temperature) measured by each of the first temperature sensor 16, the second temperature sensor 26, and the third temperature sensor 36.
  • the storage unit 7 is a first for calculating the first temperature unevenness in the width direction W of the first heating unit 10 from the temperature rise width (first outlet side temperature-first inlet side temperature) in the first heating unit 10. Store the calculation formula.
  • the storage unit 7 is a second for calculating the second temperature unevenness in the width direction W of the second heating unit 20 from the temperature rise width (second outlet side temperature-second inlet side temperature) in the second heating unit 20. Store the calculation formula.
  • the storage unit 7 is the final temperature in the width direction of the metal member 3 carried out from the third heating unit 30 based on the heat treatment conditions of the metal member 3, the third rated output power, the calculated cumulative temperature unevenness due to the induced heating, and the like.
  • the third calculation formula for calculating the magnitude T of the unevenness (hereinafter referred to as the third temperature unevenness) is stored.
  • the calculation unit 6 performs the following calculation operation, for example. That is, the calculation unit 6 calculates the first output power output to the first heating unit 10, the second output power output to the second heating unit 20, and the third output power output to the third heating unit 30, respectively. calculate.
  • the calculation unit 6 calculates an optimum set value in which the magnitude T of the third temperature unevenness becomes smaller than the permissible value based on the Curie temperature of the metal member 3 and the heat treatment conditions. Specifically, the optimum set values relate to the first output side temperature, the second output side temperature, the first output power, the second output power, and the third output power.
  • the calculation unit 6 calculates the equivalent impedance based on the first voltage and the first current measured by the first measurement unit 18.
  • the calculation unit 6 calculates the threshold value based on the material of the metal member 3 and the width dimension in the width direction W orthogonal to the transport direction F of the metal member 3. As a result, the threshold value is optimized according to the material and width dimension of the metal member 3.
  • the solenoid type induction heating unit as the first heating unit 10 is excellent in temperature uniformity in the width direction W of the metal member 3, but when the thickness of the metal member 3 is thin, the temperature of the metal member 3 becomes the Curie temperature. When approaching, there is a problem that the heating efficiency is significantly lowered. That is, the penetration depth of the induced current is proportional to the square root of the intrinsic resistance of the metal member 3 and inversely proportional to the square root of the relative magnetic permeability of the metal member 3. When the temperature of the metal member 3 rises and approaches the Curie temperature of the metal member 3, the relative magnetic permeability of the metal member 3 greatly decreases, so that the penetration depth of the induced current becomes deeper. As a result, when the thickness of the metal member 3 is thin, the induced current flowing on the front surface and the induced current flowing on the back surface of the metal member 3 cancel each other out, and the heating efficiency is significantly lowered.
  • the heating efficiency does not decrease even if the thickness of the metal member 3 becomes thin, but the induced current is concentrated at the end portion of the metal member 3 in the width direction W. Since the portion is overheated, there is a problem that the temperature uniformity in the width direction W is inferior to that of the solenoid type.
  • the resistance heating unit as the third heating unit 30 has excellent temperature uniformity in the width direction W of the metal member 3, and the heating efficiency does not decrease even if the thickness of the metal member 3 becomes thin, but the temperature rises and falls rapidly. It is difficult to operate.
  • the solenoid type induction heating unit 10 As described above, the solenoid type induction heating unit 10, the transverse type induction heating unit 20, and the resistance heating unit 30 have advantages and disadvantages, but in order to improve the temperature uniformity in the width direction W of the metal member 3 in total. The control of the above will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a flowchart for determining the optimum set value in the continuous heat treatment equipment 1.
  • FIG. 4 is a flowchart when the continuous heat treatment equipment 1 is operated.
  • step S1 a step for determining an optimum set value for heat-treating a metal member 3 of a certain material with the continuous heat treatment equipment 1 starts (step S1).
  • step S2 the control unit 5 calculates what temperature the first outlet side temperature of the first heating unit 10 should be based on the Curie temperature of the metal member 3 stored in the storage unit 7.
  • step S3 the control unit 5 should output to the first heating unit 10 based on the width and thickness of the metal member 3 stored in the storage unit 7 and the heat treatment conditions (including the difference in heat content). 1 Calculate the output power.
  • step S4 the control unit 5 determines the second outlet temperature (in other words, in other words) of the second heating unit 20 based on the heat treatment conditions stored in the storage unit 7 and the third rated output power of the third heating unit 30. , A temperature close to the temperature of the metal member 3 carried into the third heating unit 30) is calculated.
  • step S5 the control unit 5 should output to the second heating unit 20 based on the width and thickness of the metal member 3 stored in the storage unit 7 and the heat treatment conditions (including the difference in heat content). 2 Calculate the output power.
  • step S6 the control unit 5 uses the first calculation formula and the second calculation formula stored in the storage unit 7 to obtain the first temperature unevenness of the first heating unit 10 and the second of the second heating unit 20, respectively. Calculate the temperature unevenness. Then, the control unit 5 calculates the calculated square root of the sum of squares of the first temperature unevenness and the second temperature unevenness, and stores the calculated value of the sum of square roots as the cumulative temperature unevenness due to induction heating. Control to do.
  • step S7 the control unit 5 should output to the third heating unit 30 based on the width and thickness of the metal member 3 stored in the storage unit 7 and the heat treatment conditions (including the difference in heat content). 3
  • the output power is calculated, and the magnitude T of the third temperature unevenness is calculated from the third calculation formula also stored in the storage unit 7.
  • step S8 the control unit 5 determines whether or not the magnitude T of the third temperature unevenness is smaller than the permissible value.
  • step S9 the control unit 5 sets the third output power of the third heating unit 30 to the upper limit, that is, to the third rated output power. Determine if it has been reached. If the third output power of the third heating unit 30 has not reached the upper limit in step S9, the control unit 5 sets the third output power of the third heating unit 30 to be high (step S10). Then, returning to step S4, the control unit 5 calculates the temperature of the metal member 3 carried into the third heating unit 30.
  • step S9 When the third output power of the third heating unit 30 has reached the upper limit in step S9, the process proceeds to step S13, and the control unit 5 determines whether or not the first output side temperature of the first heating unit 10 has reached the limit temperature. To judge. When the first outlet temperature of the first heating unit 10 has reached the limit temperature in step S13, the control unit 5 notifies the setting error and ends the setting flow (step S16).
  • the limit temperature is a temperature lower than the Curie temperature at which the relative magnetic permeability of the metal member 3 becomes 1, and is a temperature at which the heating efficiency drops significantly.
  • step S13 When the first output side temperature of the first heating unit 10 has not reached the limit temperature in step S13, the control unit 5 sets the first output side temperature of the first heating unit 10 to be high, and the first The first output power is calculated according to the above paragraph number [0029] using the first output side temperature of the heating unit 10 (step S14). In step S15, the control unit 5 determines whether or not the first output power of the first heating unit 10 reaches the upper limit, that is, the first rated output power.
  • step S15 If the first output power of the first heating unit 10 has not reached the upper limit in step S15, returning to step S3, the control unit 5 calculates the output power of the first heating unit 10. When the first output power of the first heating unit 10 has reached the upper limit in step S15, the process proceeds to step S16, and the control unit 5 notifies the setting error and ends the setting flow.
  • the control unit 5 determines the calculated first output side temperature and second output side temperature, and the first output power, the second output power, and the second output power.
  • Each optimum set value with the third output power is stored in the storage unit 7 (step S11). That is, the control unit 5 determines the first output side temperature and the second output side temperature based on the Curie temperature of the metal member 3 and the heat treatment conditions so that the magnitude T of the third temperature unevenness becomes smaller than the permissible value.
  • Each optimum setting value for the first output power, the second output power, and the third output power is calculated in advance, and each optimum setting value is stored in the storage unit 7.
  • the magnitude T of the third temperature unevenness can be made smaller than the permissible value by using the optimum set value calculated in advance as the initial value when the continuous heat treatment equipment 1 is operated.
  • step S12 the flow for determining the optimum set value in the continuous heat treatment equipment 1 is completed.
  • FIG. 4 shows a flowchart in which the first heating coil 12 and a capacitor (not shown) form a parallel resonant circuit.
  • step S21 the step for operating the continuous heat treatment equipment 1 starts (step S21).
  • step S22 the control unit 5 sets the optimum set values stored in the storage unit 7 (that is, the first output side temperature and the first output power for the first heating unit 10, and the second output for the second heating unit 20). The side temperature, the second output power, the third output power with respect to the third heating unit 30) and the target output side temperature of the third heating unit 30 are set.
  • step S23 the control unit 5 acquires the measured values of the first voltage and the first current output to the first heating coil 12 via the first measuring unit 18.
  • step S24 the control unit 5 calculates the equivalent impedance based on the measured values of the first voltage and the first current measured in step S23.
  • step S25 the control unit 5 determines whether or not the calculated equivalent impedance is larger than the threshold value.
  • the control unit 5 sets the temperature on the first output side of the first heating unit 10 to be low (step S26).
  • step S27 the control unit 5 determines the first output power of the first heating unit 10 and the second of the second heating unit 20 based on the first output side temperature of the first heating unit 10 set in step S26. Calculate each output power. Therefore, in step S26 and step 27, when the calculated equivalent impedance is larger than the threshold value, the control unit 5 controls the first output power so that the first output power of the first heating unit 10 decreases. Then, returning to step S23, the control unit 5 acquires the measured values of the first voltage and the first current output to the first heating coil 12 via the first measuring unit 18.
  • step S25 When the equivalent impedance calculated in step S25 is equal to or less than the threshold value, the control unit 5 has the final temperature unevenness in the width direction of the metal member 3 carried out from the third heating unit 30, that is, the third temperature sensor 36. 3
  • the magnitude T of the temperature unevenness is measured (step S28).
  • step S29 the control unit 5 determines whether or not the magnitude T of the third temperature unevenness is smaller than the permissible value.
  • step S29 When the magnitude T of the third temperature unevenness is smaller than the permissible value in step S29, returning to step S23, the control unit 5 outputs to the first heating coil 12 via the first measurement unit 18. Obtain the measured values of voltage and first current.
  • step S30 the control unit 5 sets the third output power of the third heating unit 30 to the upper limit, that is, to the third rated output power. Determine if it has been reached. If the third output power of the third heating unit 30 has not reached the upper limit in step S30, the control unit 5 sets the third output power of the third heating unit 30 to be high (step S31). As a result, the share of the third heating portion 30, that is, the resistance heating portion, which is excellent in temperature uniformity, is increased, so that the temperature uniformity in the width direction W is improved.
  • step S32 the control unit 5 calculates the temperature of the metal member 3 carried into the third heating unit 30.
  • step S34 the control unit 5 approximates the temperature of the second exit side of the second heating unit 20 calculated in step S32 (that is, the temperature of the metal member 3 carried into the third heating unit 30).
  • the first output power of the first heating unit 10 and the second output power of the second heating unit 20 are calculated based on the above.
  • step S23 the control unit 5 acquires the measured values of the first voltage and the first current output to the first heating coil 12 via the first measuring unit 18.
  • step S35 the control unit 5 determines whether or not the first output side temperature of the first heating unit 10 has reached the limit temperature. To judge. When the first exit temperature of the first heating unit 10 has reached the limit temperature in step S35, the control unit 5 notifies that the transfer speed is slowed down (step S37). Then, returning to step S34, the control unit 5 calculates the first output power of the first heating unit 10 and the second output power of the second heating unit 20, respectively.
  • the control unit 5 sets the first output side temperature of the first heating unit 10 to be high (step S36). ..
  • the share ratio of the first heating unit 10, that is, the solenoid type induction heating unit, which is excellent in temperature uniformity in the width direction W, is increased, so that the temperature uniformity in the width direction W is improved.
  • the control unit 5 calculates the first output power of the first heating unit 10 and the second output power of the second heating unit 20, respectively.
  • the continuous heat treatment equipment 1 is continuously operated according to the flowchart of FIG.
  • FIG. 5 is a flowchart relating to a modified example when the continuous heat treatment equipment 1 is operated.
  • FIG. 5 shows a flowchart in which the first heating coil 12 and a capacitor (not shown) form a series resonant circuit.
  • step S41 the step for operating the continuous heat treatment equipment 1 starts (step S41).
  • step S42 the control unit 5 sets the optimum set values stored in the storage unit 7 (that is, the first output side temperature and the first output power for the first heating unit 10, and the second output for the second heating unit 20). The side temperature, the second output power, the third output power with respect to the third heating unit 30) and the target output side temperature of the third heating unit 30 are set.
  • step S43 the control unit 5 acquires the measured values of the first voltage and the first current output to the first heating coil 12 via the first measuring unit 18.
  • step S44 the control unit 5 calculates the equivalent impedance based on the measured values of the first voltage and the first current measured in step S43.
  • step S45 the control unit 5 determines whether or not the calculated equivalent impedance is smaller than the threshold value.
  • the control unit 5 sets the first exit temperature of the first heating unit 10 to be low (step S46).
  • step S47 the control unit 5 determines the first output power of the first heating unit 10 and the second of the second heating unit 20 based on the first output side temperature of the first heating unit 10 set in step S46. Calculate each output power. Therefore, in step S46 and step 47, when the calculated equivalent impedance is larger than the threshold value, the control unit 5 controls the first output power so that the first output power of the first heating unit 10 decreases. Then, returning to step S43, the control unit 5 acquires the measured values of the first voltage and the first current output to the first heating coil 12 via the first measuring unit 18.
  • step S45 When the equivalent impedance calculated in step S45 is equal to or greater than the threshold value, the control unit 5 has the final temperature unevenness in the width direction of the metal member 3 carried out from the third heating unit 30 via the third temperature sensor 36, that is, the third temperature unevenness. 3
  • the magnitude T of the temperature unevenness is measured (step S48).
  • step S49 the control unit 5 determines whether or not the magnitude T of the third temperature unevenness is smaller than the permissible value.
  • step S49 When the magnitude T of the third temperature unevenness is smaller than the permissible value in step S49, returning to step S43, the control unit 5 outputs to the first heating coil 12 via the first measurement unit 18. Obtain the measured values of voltage and first current.
  • step S50 the control unit 5 sets the third output power of the third heating unit 30 to the upper limit, that is, to the third rated output power. Determine if it has been reached. If the third output power of the third heating unit 30 has not reached the upper limit in step S50, the control unit 5 sets the third output power of the third heating unit 30 to be high (step S51). As a result, the share of the third heating portion 30, that is, the resistance heating portion, which is excellent in temperature uniformity, is increased, so that the temperature uniformity in the width direction W is improved.
  • step S52 the control unit 5 calculates the temperature of the metal member 3 carried into the third heating unit 30.
  • step S54 the control unit 5 approximates the temperature of the second exit side of the second heating unit 20 calculated in step S52 (that is, the temperature of the metal member 3 carried into the third heating unit 30).
  • the first output power of the first heating unit 10 and the second output power of the second heating unit 20 are calculated based on the above.
  • step S43 the control unit 5 acquires the measured values of the first voltage and the first current output to the first heating coil 12 via the first measuring unit 18.
  • step S55 the control unit 5 determines whether or not the first output side temperature of the first heating unit 10 has reached the limit temperature. To judge. When the first exit temperature of the first heating unit 10 has reached the limit temperature in step S55, the control unit 5 notifies that the transfer speed is slowed down (step S57). Then, returning to step S54, the control unit 5 calculates the first output power of the first heating unit 10 and the second output power of the second heating unit 20, respectively.
  • the control unit 5 sets the first output side temperature of the first heating unit 10 to be high (step S56). ..
  • the share ratio of the first heating unit 10, that is, the solenoid type induction heating unit, which is excellent in temperature uniformity in the width direction W, is increased, so that the temperature uniformity in the width direction W is improved.
  • the control unit 5 calculates the first output power of the first heating unit 10 and the second output power of the second heating unit 20, respectively.
  • the continuous heat treatment equipment 1 is continuously operated according to the flowchart of FIG.
  • the first heating unit 10 does not necessarily have to be composed of a single heating zone, and may be divided into a plurality of heating zones so that the plurality of heating zones are arranged in series in the transport direction F. can. Similar to the first heating unit 10, each of the second heating unit 20 and the third heating unit 30 may be configured such that a plurality of heating zones are arranged in series in the transport direction F.
  • the control method of the continuous heat treatment equipment 1 is The first heating unit 10, the second heating unit 20, and the third heating unit 30, which are continuously arranged in order along the transport direction F of the metal member 3, A control unit 5 that controls the first output power, the second output power, and the third output power output to the first heating unit 10, the second heating unit 20, and the third heating unit 30, respectively.
  • a first measuring unit 18 for measuring a first voltage and a first current in the first heating unit 10 is provided.
  • the first heating unit 10, the second heating unit 20, and the third heating unit 30 are a solenoid type induction heating unit, a transverse type induction heating unit, and a resistance heating unit, respectively.
  • the control unit 5 calculates the equivalent impedance in the parallel resonant circuit based on the first voltage and the first current measured by the first measurement unit 18, and the calculated equivalent impedance becomes larger than the threshold value. At that time, the first output power is controlled so that the first output power is reduced.
  • the first output power is reduced when the equivalent impedance in the parallel resonance circuit of the first heating unit 10, that is, the solenoid type induction heating unit becomes larger than the threshold value.
  • the first output power is reduced before the temperature of the metal member 3 heated by the first heating unit 10 reaches the Curie temperature of the metal member 3.
  • the solenoid type induction heating unit having excellent temperature uniformity in the width direction W orthogonal to the transport direction F is maintained.
  • the temperature uniformity in the width direction W can be improved in total.
  • the temperature of the metal member 3 reaches the vicinity of the Curie temperature, the heating efficiency drops significantly. Therefore, the value before reaching the Curie temperature is selected as the threshold value of the equivalent impedance.
  • the control method of the continuous heat treatment equipment 1 is The first heating unit 10, the second heating unit 20, and the third heating unit 30, which are continuously arranged in order along the transport direction F of the metal member 3, A control unit 5 that controls the first output power, the second output power, and the third output power output to the first heating unit 10, the second heating unit 20, and the third heating unit 30, respectively.
  • a first measuring unit 18 for measuring a first voltage and a first current in the first heating unit 10 is provided.
  • the first heating unit 10, the second heating unit 20, and the third heating unit 30 are a solenoid type induction heating unit, a transverse type induction heating unit, and a resistance heating unit, respectively.
  • the control unit 5 calculates the equivalent impedance in the series resonance circuit based on the first voltage and the first current measured by the first measurement unit 18, and the calculated equivalent impedance becomes smaller than the threshold value. At that time, the first output power is controlled so that the first output power is reduced.
  • the first output power is reduced when the equivalent impedance in the series resonance circuit of the first heating unit 10, that is, the solenoid type induction heating unit becomes smaller than the threshold value.
  • the first output power is reduced before the temperature of the metal member 3 heated by the first heating unit 10 reaches the Curie temperature of the metal member 3.
  • heating by the solenoid type induction heating unit having excellent temperature uniformity in the width direction W orthogonal to the transport direction F is maintained. , The temperature uniformity in the width direction W can be improved in total.
  • the threshold value is calculated based on the material of the metal member 3 and the width dimension in the width direction W orthogonal to the transport direction F of the metal member 3.
  • the threshold value is optimized according to the material and width dimension of the metal member 3.
  • a third temperature sensor 36 for measuring the third temperature unevenness in the width direction W orthogonal to the transport direction F of the metal member 3 carried out from the third heating unit 30 is provided.
  • the control unit 5 determines whether or not the magnitude T of the third temperature unevenness is equal to or greater than the permissible value, and when the magnitude T of the third temperature unevenness is equal to or greater than the permissible value, the third The third output power is controlled so that the output power increases.
  • the share of the third heating unit 30, that is, the resistance heating unit, which is excellent in temperature uniformity, is increased, so that the temperature uniformity in the width direction W is improved.
  • the control unit 5 determines whether or not the third output power is the third rated output power of the third heating unit 30, and the third output power becomes the third rated output power. At that time, the first output power is controlled so that the output side temperature of the first heating unit 10 becomes high.
  • the share of the first heating unit 10, that is, the solenoid type induction heating unit, which is excellent in temperature uniformity in the width direction W, is increased, so that the temperature uniformity in the width direction W is improved.
  • the control method of the continuous heat treatment equipment 1 is The first heating unit 10, the second heating unit 20, and the third heating unit 30, which are continuously arranged in order along the transport direction F of the metal member 3, A control unit 5 that controls the first output power, the second output power, and the third output power output to the first heating unit 10, the second heating unit 20, and the third heating unit 30, respectively.
  • a third temperature sensor 36 for measuring the third temperature unevenness in the width direction W orthogonal to the transport direction F of the metal member 3 carried out from the third heating unit 30 is provided.
  • the first heating unit 10, the second heating unit 20, and the third heating unit 30 are a solenoid type induction heating unit, a transverse type induction heating unit, and a resistance heating unit, respectively.
  • the control unit 5 is the first outlet side of the first heating unit 10 based on the Curie temperature of the metal member 3 and the heat treatment conditions so that the magnitude T of the third temperature unevenness becomes smaller than the permissible value. It is characterized in that the optimum set values for the temperature, the second output side temperature of the second heating unit 20, the first output power, the second output power, and the third output power are calculated in advance.
  • the third temperature unevenness of the metal member 3 carried out from the third heating unit 30 is affected.
  • the size T can be made smaller than the allowable value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • General Induction Heating (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

幅方向の温度均一性をトータルで良好にできる連続熱処理設備の制御方法を提供する。連続熱処理設備は、金属部材の搬送方向Fに沿って配設される、第1加熱部、第2加熱部および第3加熱部と、第1加熱部、第2加熱部および第3加熱部のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部と、第1加熱部における第1電圧および第1電流を測定する第1測定部とを備える。第1加熱部、第2加熱部および第3加熱部が、それぞれ、ソレノイド式誘導加熱、トランスバース式誘導加熱および抵抗加熱である。制御部は、各加熱部の出力分担を合理的に按分し、また、第1電圧および第1電流に基づいて並列共振回路における等価インピーダンスを算出し、等価インピーダンスが閾値よりも大きくなったとき、第1出力電力が減少するように第1出力電力を制御する。

Description

連続熱処理設備の制御方法
 この発明は、金属部材を連続的に熱処理する連続熱処理設備の制御方法に関する。
 電磁誘導加熱は、誘導電流によって金属部材を自己発熱させるため、急速な昇温とリアルタイムでの温度調節とを可能にする。電磁誘導加熱は、ソレノイド式およびトランスバース式に大別される。ソレノイド式は、金属部材の周囲にソレノイド状に巻回した加熱コイルを配置し、加熱コイルに交番電流を流して、金属部材の表面に誘導電流を発生させることにより、金属部材を加熱する。トランスバース式は、金属部材を挟むように金属部材の厚み方向に一対の加熱コイルを離間して対向配置して、加熱コイルから発生した交番磁界が金属部材の厚み方向に貫通するようにしたものである。
 特許文献1は、圧延時のロール冷却水などに起因する幅方向における温度不均一性に対して温度補償を行うトランスバース式誘導加熱部と、長手方向における温度不均一性に対して温度補償を行うソレノイド式誘導加熱部とを有する加熱装置を開示する。
 特許文献2は、連続焼鈍設備の予熱帯に配設されるトランスバース式およびソレノイド式の各誘導加熱部によって、予熱温度(薄鋼板のキュリー温度Tc未満)よりも200℃以上低い温度に、および、予熱温度に、それぞれ、薄鋼板を予熱することを開示する。そして、特許文献2は、予熱帯の下流側において、加熱帯および均熱帯を設けることを開示する。
特開2003-290812号公報 特開2016-98420号公報
 ソレノイド式は、金属部材の幅方向の温度均一性が優れているが、金属部材の温度が上昇して金属部材のキュリー温度に近づくと、金属部材の比透磁率が大きく低下するので、誘導電流の浸透深さが深くなる。その結果、厚みが薄い金属部材では、金属部材のおもて面を流れる誘導電流と裏面を流れる誘導電流とが相互に打ち消し合うようになり、加熱効率が大幅に低下する。これに対して、トランスバース式では、金属部材の厚みの影響を受けにくいが、誘導電流が金属部材の幅方向の端部に集中することによって端部が過加熱されるため、金属部材の幅方向の温度均一性がソレノイド式よりも劣る。
 特許文献1では、トランスバース式誘導加熱部およびソレノイド式誘導加熱部によって、温度不均一性に対して温度補償を行おうとしているが、厚みが薄い金属部材に対して十分な温度均一性が得られているとは言い難い。
 特許文献2は、ソレノイド式誘導加熱部によってキュリー温度近傍まで薄鋼板を急速加熱することを開示するだけであり、幅方向の温度均一性を、連続焼鈍設備においてトータルで良好にするための制御を開示するものではない。
 そこで、この発明の課題は、金属部材の搬送方向に直交する幅方向における温度均一性をトータルで良好にできる連続熱処理設備の制御方法を提供することにある。
 上記課題を解決するため、この発明の一態様に係る連続熱処理設備の制御方法は、
 金属部材の搬送方向に沿って順に連続的に配設される、第1加熱部、第2加熱部および第3加熱部と、
 前記第1加熱部、前記第2加熱部および前記第3加熱部のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部と、
 前記第1加熱部における第1電圧および第1電流を測定する第1測定部とを備え、
 前記第1加熱部、前記第2加熱部および前記第3加熱部が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備において、
 前記制御部は、前記第1測定部によって測定された前記第1電圧および前記第1電流に基づいて並列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも大きくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御することを特徴とする。
 この発明によれば、第1加熱部すなわちソレノイド式誘導加熱部の並列共振回路における等価インピーダンスが閾値よりも大きくなったとき、第1出力電力を減少させている。言い換えると、第1加熱部によって加熱される金属部材の温度が金属部材のキュリー温度になる手前において、第1出力電力を減少させている。これにより、金属部材の温度が金属部材のキュリー温度よりも低い状態で、搬送方向に直交する幅方向における温度均一性が優れているソレノイド式誘導加熱部による加熱が維持されるので、幅方向における温度均一性をトータルで良好にできる。
一実施形態に係る連続熱処理設備を模式的に説明する斜視図である。 図1に示した連続熱処理設備のブロック図である。 連続熱処理設備における最適設定値を決めるときのフローチャートである。 連続熱処理設備を運転するときのフローチャートである。 連続熱処理設備を運転するときの変形例に係るフローチャートである。
 以下、図面を参照しながら、この発明に係る連続熱処理設備1の制御方法の実施の形態を説明する。
 〔実施形態〕
 図1から図4を参照しながら、一実施形態に係る連続熱処理設備1の制御方法を説明する。図1は、一実施形態に係る連続熱処理設備1を模式的に説明する斜視図である。図2は、図1に示した連続熱処理設備1のブロック図である。図3は、連続熱処理設備1における最適設定値を決めるときのフローチャートである。図4は、連続熱処理設備1を運転するときのフローチャートである。
 〔連続熱処理設備の全体構成〕
 図1に示すように、連続熱処理設備1は、金属部材3の搬送方向Fに沿って、上流側から下流側に向けて順に連続的に配設された、第1加熱部10と、第2加熱部20と、第3加熱部30とを備える。連続熱処理設備1は、搬送ローラー(図示しない)を介して、金属部材3を搬送方向Fに搬送しながら連続的な熱処理(例えば、連続焼鈍処理)を行う。ワークとしての金属部材3は、例えば、厚みが薄い金属片(例えば、鋼片)や、金属片を圧延させて得られた長尺状の金属ストリップである。金属部材3の厚みは、例えば0.1mm~5mmである。
 第1加熱部10の搬送方向Fの下流側(第1加熱部10の出側)には、第1温度センサ16が配設されている。第1温度センサ16は、金属部材3の幅方向Wにおける中央部の出側温度すなわち第1出側温度をスポット的に測定する放射温度計である。第2加熱部20の搬送方向Fの下流側(第2加熱部20の出側)には、第2温度センサ26が配設されている。第2温度センサ26は、搬送方向Fに直交する幅方向Wにおける金属部材3の出側温度すなわち第2出側温度をスキャンしながら測定する。第2温度センサ26は、例えばスキャニングパイロメーターである。第3加熱部30の搬送方向Fの下流側(第3加熱部30の出側)には、第3温度センサ36が配設されている。第3温度センサ36は、搬送方向Fに直交する幅方向Wにおける金属部材3の出側温度すなわち第3出側温度をスキャンしながら測定する。第3温度センサ36は、例えばスキャニングパイロメーターである。
 図2に示すように、連続熱処理設備1は、第1加熱部10と、第2加熱部20と、第3加熱部30と、第1温度センサ16と、第2温度センサ26と、第3温度センサ36と、制御部5とを備える。
 第1加熱部10は、ソレノイド式誘導加熱部であり、第1加熱コイル12と、第1電源13と、第1出力電力制御部14と、第1測定部18とを備える。第1加熱コイル12は、金属部材3の周囲を巻回するコイルである。第1電源13は、高周波の交流の第1出力電力を第1加熱コイル12に出力する。第1出力電力制御部14は、第1電源13によって第1加熱コイル12に出力される第1出力電力を制御する。第1加熱コイル12によって金属部材3の長手方向断面を貫通するように発生した交番磁界によって、金属部材3のおもて面、裏面および側面に誘導電流が発生する。そして、誘導電流と金属部材3の電気抵抗とに基づくジュール熱によって、金属部材3が加熱される。第1測定部18は、第1加熱コイル12に出力される第1出力電力の第1電圧および第1電流を測定する。制御部5は、測定された第1電圧および第1電流の各測定値を取得して、記憶部7が各測定値を記憶するように制御する。
 第2加熱部20は、トランスバース式誘導加熱部であり、第2加熱コイル22と、第2電源23と、第2出力電力制御部24とを備える。第2加熱コイル22は、金属部材3を挟むように金属部材3の厚み方向に離間して対向配置された一対の加熱コイルである。第2電源23は、高周波の交流の第2出力電力を第2加熱コイル22に出力する。第2出力電力制御部24は、第2電源23によって第2加熱コイル22に出力される第2出力電力を制御する。第2加熱コイル22から発生した交番磁界は、金属部材3の厚み方向に貫通する。この交番磁界によって誘導電流が金属部材3の表面に発生して、誘導電流と金属部材3の電気抵抗とに基づくジュール熱によって、金属部材3が加熱される。
 第3加熱部30は、抵抗加熱部であり、加熱ヒータ32と、第3電源33と、第3出力電力制御部34とを備える。加熱ヒータ32は、抵抗発熱体である。第3電源33は、交流の第3出力電力を加熱ヒータ32に出力する。第3出力電力制御部34は、第3電源33によって加熱ヒータ32に出力される第3出力電力を制御する。第3加熱部30では、加熱ヒータ32に通電することで発生した熱エネルギーを金属部材3に伝達する間接抵抗加熱によって、金属部材3が加熱される。
 制御部5は、連続熱処理設備1の各加熱部を制御し、詳細には、第1加熱部10、第2加熱部20および第3加熱部30のそれぞれを制御する。制御部5は、例えばコンピュータであり、演算部(CPU:中央演算装置)6と、記憶部(ROMやRAMなどのメモリ)7とを含む。
 記憶部7は、例えば次のような記憶動作を行う。すなわち、記憶部7は、第1加熱部10、第2加熱部20および第3加熱部30のそれぞれにおける熱処理を実行するための各種プログラムを記憶する。記憶部7は、熱処理対象物である各種の金属部材3に関するデータ(例えば、キュリー温度や含熱量や比抵抗や幅や厚みや熱処理条件)や、第1加熱部10の第1定格出力電力、第2加熱部20の第2定格出力電力および第3加熱部30の第3定格出力電力を記憶する。記憶部7は、第1温度センサ16、第2温度センサ26および第3温度センサ36のそれぞれによって測定された温度データ(第1出側温度、第2出側温度および第3出側温度)を記憶する。記憶部7は、第1加熱部10における昇温幅(第1出側温度-第1入側温度)から、第1加熱部10の幅方向Wにおける第1温度ムラを算出するための第1算出式を記憶する。記憶部7は、第2加熱部20における昇温幅(第2出側温度-第2入側温度)から、第2加熱部20の幅方向Wにおける第2温度ムラを算出するための第2算出式を記憶する。記憶部7は、金属部材3の熱処理条件、第3定格出力電力、算出された誘導加熱による累積温度ムラなどに基づいて、第3加熱部30から搬出される金属部材3の幅方向における最終温度ムラ(以下、第3温度ムラという)の大きさTを算出するための第3算出式を記憶する。
 演算部6は、例えば次のような演算動作を行う。すなわち、演算部6は、第1加熱部10に出力される第1出力電力、第2加熱部20に出力される第2出力電力および第3加熱部30に出力される第3出力電力をそれぞれ算出する。演算部6は、金属部材3のキュリー温度および熱処理条件に基づいて、第3温度ムラの大きさTが、許容値よりも小さくなる最適設定値を算出する。最適設定値は、具体的には、第1出側温度、第2出側温度、第1出力電力、第2出力電力および第3出力電力に関するものである。演算部6は、第1測定部18によって測定される第1電圧および第1電流に基づいて、等価インピーダンスを算出する。演算部6は、金属部材3の材質と、金属部材3の搬送方向Fに直交する幅方向Wにおける幅寸法とに基づいて、閾値を算出する。これにより、閾値が、金属部材3の材質および幅寸法に応じて最適化される。
 第1加熱部10としてのソレノイド式誘導加熱部は、金属部材3の幅方向Wにおける温度均一性が優れているが、金属部材3の厚みが薄い場合、金属部材3の温度がそのキュリー温度に近づくと、加熱効率が大幅に低下するという問題を有する。すなわち、誘導電流の浸透深さは、金属部材3の固有抵抗の平方根に比例し、金属部材3の比透磁率の平方根に反比例するという関係にある。金属部材3の温度が上昇して金属部材3のキュリー温度に近づくと、金属部材3の比透磁率が大きく低下するので、誘導電流の浸透深さが深くなる。その結果、金属部材3の厚みが薄い場合、金属部材3のおもて面を流れる誘導電流と裏面を流れる誘導電流とが相互に打ち消し合うようになり、加熱効率が大幅に低下する。
 第2加熱部20としてのトランスバース式誘導加熱部は、金属部材3の厚みが薄くなっても加熱効率が低下しないが、誘導電流が金属部材3の幅方向Wの端部に集中して端部が過加熱されるため、幅方向Wにおける温度均一性がソレノイド式よりも劣るという問題を有する。
 第3加熱部30としての抵抗加熱部は、金属部材3の幅方向Wにおける温度均一性が優れているとともに、金属部材3の厚みが薄くなっても加熱効率が低下しないが、急激な昇降温動作が困難である。
 このように、ソレノイド式誘導加熱部10、トランスバース式誘導加熱部20および抵抗加熱部30には、一長一短がある中で、金属部材3の幅方向Wにおける温度均一性をトータルで良好にするための制御を、図3および図4を参照しながら説明する。
 〔連続熱処理設備の制御方法〕
 図3は、連続熱処理設備1における最適設定値を決めるときのフローチャートである。図4は、連続熱処理設備1を運転するときのフローチャートである。
 図3において、連続熱処理設備1を運転することに先だって、或る材質の金属部材3を連続熱処理設備1で熱処理するための最適設定値を決めるためのステップが開始する(ステップS1)。ステップS2では、制御部5は、記憶部7に記憶されている金属部材3のキュリー温度に基づいて、第1加熱部10の第1出側温度を何℃にするべきかを算出する。ステップS3では、制御部5は、記憶部7に記憶されている金属部材3の幅や厚みと熱処理条件(含熱量差を含む)とに基づいて、第1加熱部10に出力されるべき第1出力電力を算出する。ステップS4では、制御部5は、記憶部7に記憶されている熱処理条件と第3加熱部30の第3定格出力電力とに基づいて、第2加熱部20の第2出側温度(言い換えると、第3加熱部30に搬入される金属部材3の温度に近似した温度)を算出する。
 ステップS5では、制御部5は、記憶部7に記憶されている金属部材3の幅や厚みと熱処理条件(含熱量差を含む)とに基づいて、第2加熱部20に出力されるべき第2出力電力を算出する。ステップS6では、制御部5は、記憶部7に記憶されている第1算出式と第2算出式とから、それぞれ、第1加熱部10の第1温度ムラと第2加熱部20の第2温度ムラとを算出する。そして、制御部5は、算出された第1温度ムラおよび第2温度ムラの二乗和平方根を算出して、算出された二乗和平方根の値を誘導加熱による累積温度ムラとして、記憶部7が記憶するように制御する。
 ステップS7では、制御部5は、記憶部7に記憶されている金属部材3の幅や厚みと熱処理条件(含熱量差を含む)とに基づいて、第3加熱部30に出力されるべき第3出力電力を算出し、また、同じく記憶部7に記憶されている第3算出式から、第3温度ムラの大きさTを算出する。
 ステップS8では、制御部5は、第3温度ムラの大きさTが許容値よりも小さいか否かを判断する。
 ステップS8において第3温度ムラの大きさTが許容値以上である場合、ステップS9に進み、制御部5は、第3加熱部30の第3出力電力が、上限にすなわち第3定格出力電力に達しているか否かを判断する。ステップS9において第3加熱部30の第3出力電力が上限に達していない場合、制御部5は、第3加熱部30の第3出力電力が高くなるように設定する(ステップS10)。そして、ステップS4に戻って、制御部5は、第3加熱部30に搬入される金属部材3の温度を算出する。
 ステップS9において第3加熱部30の第3出力電力が上限に達している場合、ステップS13に進み、制御部5は、第1加熱部10の第1出側温度が限界温度になっているか否かを判断する。ステップS13において第1加熱部10の第1出側温度が限界温度になっている場合、制御部5は、設定エラーを報知して設定フローを終了する(ステップS16)。なお、限界温度は、金属部材3の比透磁率が1になるキュリー温度よりも低い温度であって、加熱効率が大幅に低下するときの温度である。
 ステップS13において第1加熱部10の第1出側温度が限界温度になっていない場合、制御部5は、第1加熱部10の第1出側温度が高くなるように設定するとともに、第1加熱部10の第1出側温度を用いて上記段落番号[0029]に準じて第1出力電力を算出する(ステップS14)。ステップS15では、制御部5は、第1加熱部10の第1出力電力が、上限にすなわち第1定格出力電力に達するか否かを判断する。
 ステップS15において第1加熱部10の第1出力電力が上限に達していない場合、ステップS3に戻って、制御部5は、第1加熱部10の出力電力を算出する。ステップS15において第1加熱部10の第1出力電力が上限に達している場合、ステップS16に進み、制御部5は、設定エラーを報知して設定フローを終了する。
 ステップS8において第3温度ムラの大きさTが許容値よりも小さい場合、制御部5は、算出された第1出側温度および第2出側温度と、第1出力電力、第2出力電力および第3出力電力との各最適設定値を記憶部7に保存する(ステップS11)。すなわち、制御部5は、第3温度ムラの大きさTが許容値よりも小さくなるように、金属部材3のキュリー温度および熱処理条件に基づいて、第1出側温度、第2出側温度、第1出力電力、第2出力電力および第3出力電力に関する各最適設定値を予め算出して、各最適設定値を記憶部7に保存する。これにより、連続熱処理設備1を運転するときの初期値として、予め算出された最適設定値を用いることにより、第3温度ムラの大きさTを許容値よりも小さくできるようになる。
 そして、ステップS12では、連続熱処理設備1における最適設定値を決めるフローが終了する。
 図4は、第1加熱コイル12および図示しないコンデンサが、並列共振回路を構成する場合のフローチャートを示している。
 図4において、連続熱処理設備1を運転するためのステップが開始する(ステップS21)。ステップS22では、制御部5は、記憶部7に記憶されている各最適設定値(すなわち、第1加熱部10に対する第1出側温度および第1出力電力、第2加熱部20に対する第2出側温度および第2出力電力、第3加熱部30に対する第3出力電力)と、第3加熱部30の目標出側温度とを設定する。ステップS23では、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。ステップS24では、制御部5は、ステップS23で測定された第1電圧および第1電流の各測定値に基づいて、等価インピーダンスを算出する。
 ステップS25では、制御部5は、算出された等価インピーダンスが閾値よりも大きいか否かを判断する。ステップS24において算出された等価インピーダンスが閾値よりも大きい場合、制御部5は、第1加熱部10の第1出側温度が低くなるように設定する(ステップS26)。ステップS27では、制御部5は、ステップS26で設定された第1加熱部10での第1出側温度に基づいて、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。したがって、ステップS26およびステップ27では、算出された等価インピーダンスが閾値よりも大きい場合、制御部5は、第1加熱部10の第1出力電力が減少するように第1出力電力を制御する。そして、ステップS23に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
 ステップS25において算出された等価インピーダンスが閾値以下である場合、制御部5は、第3温度センサ36を介して、第3加熱部30から搬出される金属部材3の幅方向における最終温度ムラすなわち第3温度ムラの大きさTを測定する(ステップS28)。ステップS29では、制御部5は、第3温度ムラの大きさTが、許容値よりも小さいか否かを判断する。
 ステップS29において第3温度ムラの大きさTが許容値よりも小さい場合、ステップS23に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
 ステップS29において第3温度ムラの大きさTが許容値以上である場合、ステップS30に進み、制御部5は、第3加熱部30の第3出力電力が、上限にすなわち第3定格出力電力に達しているか否かを判断する。ステップS30において第3加熱部30の第3出力電力が上限に達していない場合、制御部5は、第3加熱部30の第3出力電力が高くなるように設定する(ステップS31)。これにより、温度均一性が優れている第3加熱部30すなわち抵抗加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。
 ステップS32では、制御部5は、第3加熱部30に搬入される金属部材3の温度を算出する。ステップS34では、制御部5は、ステップS32で算出された第2加熱部20での第2出側温度(すなわち、第3加熱部30に搬入される金属部材3の温度に近似している)に基づいて、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。そして、ステップS23に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
 ステップS30において第3加熱部30の第3出力電力が上限に達している場合、ステップS35に進み、制御部5は、第1加熱部10の第1出側温度が限界温度になっているか否かを判断する。ステップS35において第1加熱部10の第1出側温度が限界温度になっている場合、制御部5は、搬送速度を遅くすることを報知する(ステップS37)。そして、ステップS34に戻って、制御部5は、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。
 ステップS35において第1加熱部10の第1出側温度が限界温度になっていない場合、制御部5は、第1加熱部10の第1出側温度が高くなるように設定する(ステップS36)。これにより、幅方向Wの温度均一性が優れている第1加熱部10すなわちソレノイド式誘導加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。そして、ステップS34に戻って、制御部5は、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。
 計算エラーのような何らかの異常が発生した場合を除き、図4のフローチャートに従って、連続熱処理設備1の運転が連続的に行われる。
 〔変形例〕
 図5を参照しながら、変形例に係る連続熱処理設備1の制御方法を説明する。図5は、連続熱処理設備1を運転するときの変形例に係るフローチャートである。
 図5は、第1加熱コイル12および図示しないコンデンサが、直列共振回路を構成する場合のフローチャートを示している。
 図5において、連続熱処理設備1を運転するためのステップが開始する(ステップS41)。ステップS42では、制御部5は、記憶部7に記憶されている各最適設定値(すなわち、第1加熱部10に対する第1出側温度および第1出力電力、第2加熱部20に対する第2出側温度および第2出力電力、第3加熱部30に対する第3出力電力)と、第3加熱部30の目標出側温度とを設定する。ステップS43では、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。ステップS44では、制御部5は、ステップS43で測定された第1電圧および第1電流の各測定値に基づいて、等価インピーダンスを算出する。
 ステップS45では、制御部5は、算出された等価インピーダンスが閾値よりも小さいか否かを判断する。ステップS44において算出された等価インピーダンスが閾値よりも小さい場合、制御部5は、第1加熱部10の第1出側温度が低くなるように設定する(ステップS46)。ステップS47では、制御部5は、ステップS46で設定された第1加熱部10での第1出側温度に基づいて、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。したがって、ステップS46およびステップ47では、算出された等価インピーダンスが閾値よりも大きい場合、制御部5は、第1加熱部10の第1出力電力が減少するように第1出力電力を制御する。そして、ステップS43に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
 ステップS45において算出された等価インピーダンスが閾値以上である場合、制御部5は、第3温度センサ36を介して、第3加熱部30から搬出される金属部材3の幅方向における最終温度ムラすなわち第3温度ムラの大きさTを測定する(ステップS48)。ステップS49では、制御部5は、第3温度ムラの大きさTが許容値よりも小さいか否かを判断する。
 ステップS49において第3温度ムラの大きさTが許容値よりも小さい場合、ステップS43に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
 ステップS49において第3温度ムラの大きさTが許容値以上である場合、ステップS50に進み、制御部5は、第3加熱部30の第3出力電力が、上限にすなわち第3定格出力電力に達しているか否かを判断する。ステップS50において第3加熱部30の第3出力電力が上限に達していない場合、制御部5は、第3加熱部30の第3出力電力が高くなるように設定する(ステップS51)。これにより、温度均一性が優れている第3加熱部30すなわち抵抗加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。
 ステップS52では、制御部5は、第3加熱部30に搬入される金属部材3の温度を算出する。ステップS54では、制御部5は、ステップS52で算出された第2加熱部20での第2出側温度(すなわち、第3加熱部30に搬入される金属部材3の温度に近似している)に基づいて、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。そして、ステップS43に戻って、制御部5は、第1測定部18を介して、第1加熱コイル12に出力される第1電圧および第1電流の各測定値を取得する。
 ステップS50において第3加熱部30の第3出力電力が上限に達している場合、ステップS55に進み、制御部5は、第1加熱部10の第1出側温度が限界温度になっているか否かを判断する。ステップS55において第1加熱部10の第1出側温度が限界温度になっている場合、制御部5は、搬送速度を遅くすることを報知する(ステップS57)。そして、ステップS54に戻って、制御部5は、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。
 ステップS55において第1加熱部10の第1出側温度が限界温度になっていない場合、制御部5は、第1加熱部10の第1出側温度が高くなるように設定する(ステップS56)。これにより、幅方向Wの温度均一性が優れている第1加熱部10すなわちソレノイド式誘導加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。そして、ステップS54に戻って、制御部5は、第1加熱部10の第1出力電力および第2加熱部20の第2出力電力をそれぞれ算出する。
 計算エラーのような何らかの異常が発生した場合を除き、図5のフローチャートに従って、連続熱処理設備1の運転が連続的に行われる。
 この発明の具体的な実施の形態や数値について説明したが、この発明は、上記実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。
 第1加熱部10は、必ずしも単一の加熱ゾーンから構成されている必要は無く、複数の加熱ゾーンに分割して複数の加熱ゾーンが搬送方向Fに直列に配設される構成にすることもできる。第2加熱部20および第3加熱部30のそれぞれも、第1加熱部10と同様に、複数の加熱ゾーンが搬送方向Fに直列に配設される構成にすることもできる。
 この発明および実施形態をまとめると、次のようになる。
 この発明の一態様に係る連続熱処理設備1の制御方法は、
 金属部材3の搬送方向Fに沿って順に連続的に配設される、第1加熱部10、第2加熱部20および第3加熱部30と、
 前記第1加熱部10、前記第2加熱部20および前記第3加熱部30のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部5と、
 前記第1加熱部10における第1電圧および第1電流を測定する第1測定部18とを備え、
 前記第1加熱部10、前記第2加熱部20および前記第3加熱部30が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備1において、
 前記制御部5は、前記第1測定部18によって測定された前記第1電圧および前記第1電流に基づいて並列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも大きくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御することを特徴とする。
 上記制御方法によれば、第1加熱部10すなわちソレノイド式誘導加熱部の並列共振回路における等価インピーダンスが閾値よりも大きくなったとき、第1出力電力を減少させている。言い換えると、第1加熱部10によって加熱される金属部材3の温度が金属部材3のキュリー温度になる手前において、第1出力電力を減少させている。これにより、金属部材3の温度が金属部材3のキュリー温度よりも低い状態で、搬送方向Fに直交する幅方向Wの温度均一性が優れているソレノイド式誘導加熱部による加熱が維持されるので、幅方向Wにおける温度均一性をトータルで良好にできる。なお、金属部材3の温度がキュリー温度付近に達すると加熱効率が大幅に低下するので、等価インピーダンスの閾値は、キュリー温度に達する手前の値が選ばれる。
 この発明の別の局面に係る連続熱処理設備1の制御方法は、
 金属部材3の搬送方向Fに沿って順に連続的に配設される、第1加熱部10、第2加熱部20および第3加熱部30と、
 前記第1加熱部10、前記第2加熱部20および前記第3加熱部30のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部5と、
 前記第1加熱部10における第1電圧および第1電流を測定する第1測定部18とを備え、
 前記第1加熱部10、前記第2加熱部20および前記第3加熱部30が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備1において、
 前記制御部5は、前記第1測定部18によって測定された前記第1電圧および前記第1電流に基づいて直列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも小さくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御することを特徴とする。
 上記制御方法によれば、第1加熱部10すなわちソレノイド式誘導加熱部の直列共振回路における等価インピーダンスが閾値よりも小さくなったとき、第1出力電力を減少させている。言い換えると、第1加熱部10によって加熱される金属部材3の温度が金属部材3のキュリー温度になる手前において、第1出力電力を減少させている。これにより、金属部材3の温度が金属部材3のキュリー温度よりも低い状態で、搬送方向Fに直交する幅方向Wの温度均一性が優れているソレノイド式誘導加熱部による加熱が維持されるので、幅方向Wにおける温度均一性をトータルで良好にできる。
 また、一実施形態の連続熱処理設備1の制御方法では、
 前記閾値は、前記金属部材3の材質と、前記金属部材3の搬送方向Fに直交する幅方向Wにおける幅寸法とに基づいて算出される。
 上記実施形態によれば、閾値が、金属部材3の材質および幅寸法に応じて最適化される。
 また、一実施形態の連続熱処理設備1の制御方法では、
 前記第3加熱部30から搬出される前記金属部材3の、前記搬送方向Fに直交する幅方向Wにおける第3温度ムラを測定する第3温度センサ36を備え、
 前記制御部5は、前記第3温度ムラの大きさTが許容値以上であるか否かを判断し、前記第3温度ムラの前記大きさTが前記許容値以上であるとき、前記第3出力電力が増加するように前記第3出力電力を制御する。
 上記実施形態によれば、温度均一性が優れている第3加熱部30すなわち抵抗加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。
 また、一実施形態の連続熱処理設備1の制御方法では、
 前記制御部5は、前記第3出力電力が、前記第3加熱部30の第3定格出力電力になっているか否かを判断し、前記第3出力電力が前記第3定格出力電力になっているとき、前記第1加熱部10の出側温度が高くなるように前記第1出力電力を制御する。
 上記実施形態によれば、幅方向Wの温度均一性が優れている第1加熱部10すなわちソレノイド式誘導加熱部の分担割合が大きくなるので、幅方向Wにおける温度均一性が向上する。
 この発明のさらに別の局面に係る連続熱処理設備1の制御方法は、
 金属部材3の搬送方向Fに沿って順に連続的に配設される、第1加熱部10、第2加熱部20および第3加熱部30と、
 前記第1加熱部10、前記第2加熱部20および前記第3加熱部30のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部5と、
 前記第3加熱部30から搬出される前記金属部材3の、前記搬送方向Fに直交する幅方向Wにおける第3温度ムラを測定する第3温度センサ36とを備え、
 前記第1加熱部10、前記第2加熱部20および前記第3加熱部30が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備1において、
 前記制御部5は、前記第3温度ムラの大きさTが許容値よりも小さくなるように、前記金属部材3のキュリー温度および熱処理条件に基づいて、前記第1加熱部10の第1出側温度、前記第2加熱部20の第2出側温度、前記第1出力電力、前記第2出力電力および前記第3出力電力に関する最適設定値を予め算出することを特徴とする。
 上記制御方法によれば、連続熱処理設備1を運転するときの初期値として、予め算出された最適設定値を用いることにより、第3加熱部30から搬出される金属部材3の第3温度ムラの大きさTを許容値よりも小さくできるようになる。
 1…連続熱処理設備
 3…金属部材
 5…制御部
 6…演算部
 7…記憶部
10…第1加熱部(ソレノイド式誘導加熱部)
12…第1加熱コイル
13…第1電源
14…第1出力電力制御部
16…第1温度センサ
18…第1測定部
20…第2加熱部(トランスバース式誘導加熱部)
22…第2加熱コイル
23…第2電源
24…第2出力電力制御部
26…第2温度センサ
30…第3加熱部(抵抗加熱部)
32…加熱ヒータ
33…第3電源
34…第3出力電力制御部
36…第3温度センサ
 F…搬送方向
 T…第3温度ムラ(第3加熱部から搬出される金属部材の幅方向における最終温度ムラ)の大きさ
 W…幅方向

Claims (6)

  1.  金属部材の搬送方向に沿って順に連続的に配設される、第1加熱部、第2加熱部および第3加熱部と、
     前記第1加熱部、前記第2加熱部および前記第3加熱部のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部と、
     前記第1加熱部における第1電圧および第1電流を測定する第1測定部とを備え、
     前記第1加熱部、前記第2加熱部および前記第3加熱部が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備において、
     前記制御部は、前記第1測定部によって測定された前記第1電圧および前記第1電流に基づいて並列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも大きくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御する、連続熱処理設備の制御方法。
  2.  金属部材の搬送方向に沿って順に連続的に配設される、第1加熱部、第2加熱部および第3加熱部と、
     前記第1加熱部、前記第2加熱部および前記第3加熱部のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部と、
     前記第1加熱部における第1電圧および第1電流を測定する第1測定部とを備え、
     前記第1加熱部、前記第2加熱部および前記第3加熱部が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備において、
     前記制御部は、前記第1測定部によって測定された前記第1電圧および前記第1電流に基づいて直列共振回路における等価インピーダンスを算出し、算出された前記等価インピーダンスが閾値よりも小さくなったとき、前記第1出力電力が減少するように前記第1出力電力を制御する、連続熱処理設備の制御方法。
  3.  前記閾値は、前記金属部材の材質と、前記金属部材の搬送方向に直交する幅方向における幅寸法とに基づいて算出される、請求項1または請求項2に記載の制御方法。
  4.  前記第3加熱部から搬出される前記金属部材の、前記搬送方向に直交する幅方向における第3温度ムラを測定する第3温度センサを備え、
     前記制御部は、前記第3温度ムラの大きさが許容値以上であるか否かを判断し、前記第3温度ムラの前記大きさが前記許容値以上であるとき、前記第3出力電力が増加するように前記第3出力電力を制御する、請求項1から請求項3のいずれか1項に記載の制御方法。
  5.  前記制御部は、前記第3出力電力が、前記第3加熱部の第3定格出力電力になっているか否かを判断し、前記第3出力電力が前記第3定格出力電力になっているとき、前記第1加熱部の出側温度が高くなるように前記第1出力電力を制御する、請求項4に記載の制御方法。
  6.  金属部材の搬送方向に沿って順に連続的に配設される、第1加熱部、第2加熱部および第3加熱部と、
     前記第1加熱部、前記第2加熱部および前記第3加熱部のそれぞれに出力される第1出力電力、第2出力電力および第3出力電力をそれぞれ制御する制御部と、
     前記第3加熱部から搬出される前記金属部材の、前記搬送方向に直交する幅方向における第3温度ムラを測定する第3温度センサとを備え、
     前記第1加熱部、前記第2加熱部および前記第3加熱部が、それぞれ、ソレノイド式誘導加熱部、トランスバース式誘導加熱部および抵抗加熱部である連続熱処理設備において、
     前記制御部は、前記第3温度ムラの大きさが許容値よりも小さくなるように、前記金属部材のキュリー温度および熱処理条件に基づいて、前記第1加熱部の第1出側温度、前記第2加熱部の第2出側温度、前記第1出力電力、前記第2出力電力および前記第3出力電力に関する最適設定値を予め算出する、連続熱処理設備の制御方法。
PCT/JP2021/016209 2020-05-08 2021-04-21 連続熱処理設備の制御方法 WO2021225078A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227032724A KR20220143753A (ko) 2020-05-08 2021-04-21 연속 열 처리 설비의 제어 방법
CN202180033652.3A CN115516119B (zh) 2020-05-08 2021-04-21 连续热处理设备的控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020082681A JP6849843B2 (ja) 2020-05-08 2020-05-08 連続熱処理設備の制御方法
JP2020-082681 2020-05-08
JP2020-169990 2020-10-07
JP2020169990 2020-10-07

Publications (1)

Publication Number Publication Date
WO2021225078A1 true WO2021225078A1 (ja) 2021-11-11

Family

ID=78468018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016209 WO2021225078A1 (ja) 2020-05-08 2021-04-21 連続熱処理設備の制御方法

Country Status (4)

Country Link
KR (1) KR20220143753A (ja)
CN (1) CN115516119B (ja)
TW (1) TW202146131A (ja)
WO (1) WO2021225078A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197135A (ja) * 1994-01-07 1995-08-01 Nippon Steel Corp 温度制御装置
JPH11172402A (ja) * 1997-12-05 1999-06-29 Mitsubishi Heavy Ind Ltd 高品位亜鉛めっき鋼板の合金化装置及び加熱制御装置
JP2003290812A (ja) * 2002-01-31 2003-10-14 Toshiba Ge Automation Systems Corp 誘導加熱装置および熱間圧延設備
JP2007144475A (ja) * 2005-11-29 2007-06-14 Mitsui Eng & Shipbuild Co Ltd 鋼材の加熱方法及び誘導加熱装置
JP2009221577A (ja) * 2008-03-18 2009-10-01 Nippon Steel Corp キュリー点を有する鋼帯の連続焼鈍方法及び連続焼鈍設備
JP2016098420A (ja) * 2014-11-25 2016-05-30 Jfeスチール株式会社 薄鋼板の加熱方法および連続焼鈍設備
JP2018048387A (ja) * 2016-09-23 2018-03-29 新日鐵住金株式会社 連続溶融亜鉛めっき方法及び連続溶融亜鉛めっき装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694946B (zh) * 2017-10-24 2020-06-23 宝山钢铁股份有限公司 快速加热冷轧带钢的装置与方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197135A (ja) * 1994-01-07 1995-08-01 Nippon Steel Corp 温度制御装置
JPH11172402A (ja) * 1997-12-05 1999-06-29 Mitsubishi Heavy Ind Ltd 高品位亜鉛めっき鋼板の合金化装置及び加熱制御装置
JP2003290812A (ja) * 2002-01-31 2003-10-14 Toshiba Ge Automation Systems Corp 誘導加熱装置および熱間圧延設備
JP2007144475A (ja) * 2005-11-29 2007-06-14 Mitsui Eng & Shipbuild Co Ltd 鋼材の加熱方法及び誘導加熱装置
JP2009221577A (ja) * 2008-03-18 2009-10-01 Nippon Steel Corp キュリー点を有する鋼帯の連続焼鈍方法及び連続焼鈍設備
JP2016098420A (ja) * 2014-11-25 2016-05-30 Jfeスチール株式会社 薄鋼板の加熱方法および連続焼鈍設備
JP2018048387A (ja) * 2016-09-23 2018-03-29 新日鐵住金株式会社 連続溶融亜鉛めっき方法及び連続溶融亜鉛めっき装置

Also Published As

Publication number Publication date
TW202146131A (zh) 2021-12-16
CN115516119A (zh) 2022-12-23
KR20220143753A (ko) 2022-10-25
CN115516119B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
JP6849843B2 (ja) 連続熱処理設備の制御方法
TWI224144B (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
CN101652485B (zh) 具有居里点的钢带的连续退火方法以及连续退火设备
JP2006294396A (ja) 誘導加熱装置
WO2021225078A1 (ja) 連続熱処理設備の制御方法
JP4964737B2 (ja) 金属材の誘導加熱方法及び装置
JP5217543B2 (ja) キュリー点を有する鋼帯の連続焼鈍方法及び連続焼鈍設備
JP6164181B2 (ja) 誘導加熱装置および誘導加熱方法
JP2014175082A (ja) 誘導加熱装置および誘導加熱方法
JP5217542B2 (ja) キュリー点を有する鋼帯の連続焼鈍方法及び連続焼鈍設備
JP6402696B2 (ja) 高張力鋼板の製造設備および製造方法
JP4923390B2 (ja) 熱処理装置及び鋼材の製造方法
JP3614295B2 (ja) 搬送中の導電材の誘導加熱温度制御方法
JP4631247B2 (ja) 鋼材の熱処理方法及びそのプログラム
WO2016143048A1 (ja) 圧延設備
CN102220475B (zh) 细钢丝二级加热热处理的方法及设备
JP4396237B2 (ja) 鋼材の熱処理装置及び鋼材の製造方法
JP5749416B2 (ja) 鋼材の熱処理装置及び鋼材の製造方法
JP4714658B2 (ja) 鋼材の加熱方法
KR100460662B1 (ko) 표피효과 보상형 유도가열기의 제어방법
JP2004283846A (ja) 熱間圧延方法およびその設備
JP2004006106A (ja) シートバーのエッジ加熱方法及び装置
JP6880980B2 (ja) 誘導加熱装置及び誘導加熱方法
JP2011108513A (ja) 磁気加熱装置
JP2005120409A (ja) 鋼板長手方向の材質均一性に優れた高強度鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227032724

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800453

Country of ref document: EP

Kind code of ref document: A1