JP5749416B2 - 鋼材の熱処理装置及び鋼材の製造方法 - Google Patents

鋼材の熱処理装置及び鋼材の製造方法 Download PDF

Info

Publication number
JP5749416B2
JP5749416B2 JP2004379515A JP2004379515A JP5749416B2 JP 5749416 B2 JP5749416 B2 JP 5749416B2 JP 2004379515 A JP2004379515 A JP 2004379515A JP 2004379515 A JP2004379515 A JP 2004379515A JP 5749416 B2 JP5749416 B2 JP 5749416B2
Authority
JP
Japan
Prior art keywords
steel
temperature
steel material
heating
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004379515A
Other languages
English (en)
Other versions
JP2006183108A (ja
Inventor
飯島 慶次
慶次 飯島
水野 浩
浩 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004379515A priority Critical patent/JP5749416B2/ja
Publication of JP2006183108A publication Critical patent/JP2006183108A/ja
Application granted granted Critical
Publication of JP5749416B2 publication Critical patent/JP5749416B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Control Of Temperature (AREA)

Description

本発明は、誘導加熱装置を用いて鋼材を熱処理する技術に関する。
鉄鋼プロセスにおいては、製品となる鋼材の硬度、靭性等の性質を向上させ、より強く粘り強い鋼材を製造するため、焼き入れ、焼き戻し、焼きなまし等さまざまな熱処理が行われている。これらの熱処理は一般的に加熱過程と冷却過程に分けられる。このうち加熱過程では鋼材の成分に応じた変態点温度が基準となる。例えば、焼入れの場合は変態点よりも高温に加熱し、焼き戻しおよび焼きなましでは変態点に達しないように加熱を行わねばならない。
よって、熱処理の目的に応じて精度良く加熱することが必要である。また、同一部材内での品質のばらつきを抑えるためには、鋼材表面や内部の温度分布を所定の範囲内に抑える必要がある。この熱処理方法を均一加熱という。
また、一般に製造されている焼入れ、焼き戻しの熱処理を施された鋼材は、主に表面から冷却を受けるため、表面の硬度が内部に比べて高くなりがちである。このような板厚方向の硬度分布を持った鋼材は、腐食環境に弱く、海洋や、石油、天然ガスのパイプライン等に使用されると応力腐食割れを起こしやすいことがわかっている。
そこで、表層部を高温で加熱することにより軟化させ、表層部と内部の硬度差を少なくする処理が行われることもある。この熱処理方法を表層加熱という。
従来、これらの加熱条件を実現する加熱方法として、誘導加熱装置を用い、鋼材を誘導加熱炉内で昇温させる加熱段階と、加熱段階よりも周波数を高くし、かつ投入電力を下げて加熱する均熱段階との間に、加熱段階での誘導加熱と同一の周波数で、かつ加熱段階よりも投入電力を下げて誘導加熱する準加熱段階を設ける誘導加熱方法が提案されている(例えば、特許文献1参照)。
特開平9−170021号公報
しかしながら、特許文献1に開示された技術では、加熱時間が数十分を要するため効率的ではない。また、鋼材の加熱途中において誘導加熱装置の周波数を変更するものであるため、周波数を切り替える機構を装備する必要がある。従って装置が高価になり、さらに装置の構造が複雑になる。また、鋼材を加熱するための投入電力計算において、精度良い温度制御を実現する上で必要な要素である鋼材内部における誘導電流分布が考慮されていない。
そのため、誘導加熱装置を用いた圧延ライン上での熱処理のアイデアは従来から存在していたが、実用化には至らなかった。この理由には、誘導加熱能力の不足などのハード面の問題以外にも、熱処理方法を具体的にどのように問題を解けばよいのかという問題解決手法等のソフト面での問題もあった。熱処理を行うためには、長手方向・厚み方向の温度分布を所定の範囲内に加熱することが必要となる。このためには、誘導加熱時の鋼材の内部温度を精度よく推定する必要があり、この温度推定モデルを用いて加熱のための電力を求める計算する必要がある。さらには、加熱前の温度により加熱時の電力も異なるため、これらの処理をオンラインで行う必要がある。しかしながら、これらの問題に対して明確な解答を与えるような、電力の計算方法や搬送速度の決め方について検討した文献はほとんどなかった。
さらに、本発明のように誘導加熱装置を通過させて加熱する熱処理では、加熱後の幅方向の温度分布が不均一となる場合もあるため、幅方向での温度分布を考慮に入れた温度制御が必要となる。特に幅端部が温度条件から外れると、温度が外れた部分が切断され歩留まりが悪化する場合もある。
本発明は係る事情に鑑みてなされたものであって、鋼材の表面温度、内部温度が所定の制約条件を満たす加熱を行い、鋼材が目的の性質をもつような熱処理を行うことができる鋼材の熱処理装置及び鋼材の製造方法を提供することにある。
上記の課題を解決するために、本発明は以下の特徴を有する。
[1]鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、鋼材断面各位置の発熱量の比を定めて、供給される電力から鋼材の断面内の温度分布を推定することにより、
前記誘導加熱装置によって加熱中の鋼材の温度について、
鋼材表面を除く厚み方向所定位置の幅方向温度分布における最大値が鋼材の内部温度について均一加熱条件として定めた所定の目標温度の上限値以下で、
鋼材表面を除く厚み方向所定位置の幅方向温度分布における最小値が鋼材の内部温度について均一加熱条件として定めた所定の目標温度の下限値以上となり、かつ、
鋼材表面における幅方向温度分布の最大値が鋼材の表面温度について均一加熱条件として定めた所定の目標温度の上限値以下
に加熱するための電力を前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
[2]鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、鋼材断面各位置の発熱量の比を定めて、供給される電力から鋼材の断面内の温度分布を推定することにより、
前記誘導加熱装置によって加熱中の鋼材の温度について、
鋼材表面を除く厚み方向所定位置の幅方向温度分布における最大値が鋼材の内部温度について均一加熱条件として定めた所定の目標温度の上限値以下で、
鋼材表面を除く厚み方向所定位置の幅方向温度分布における最小値が鋼材の内部温度について均一加熱条件として定めた所定の目標温度の下限値以上となり、かつ、
鋼材表面における幅方向温度分布の最大値が鋼材の表面温度について均一加熱条件として定めた所定の目標温度の上限値以下で、
鋼材表面における幅方向温度分布の最小値が鋼材の表面温度について均一加熱条件として定めた所定の目標温度の下限値以上
に加熱するための電力を前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
[3]鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、鋼材断面各位置の発熱量の比を定めて、供給される電力から鋼材の断面内の温度分布を推定することにより、
前記誘導加熱装置によって加熱中の鋼材の温度について、
鋼材表面における幅方向温度分布の最小値が鋼材の表面温度について表層加熱条件として定めた所定の目標温度の下限値以上で、
鋼材表面における幅方向温度分布の最大値が鋼材の表面温度について表層加熱条件として定めた所定の目標温度の上限値以下となり、かつ、
鋼材表面を除く厚み方向所定位置の幅方向温度分布における最大値が鋼材の内部温度について表層加熱条件として定めた所定の目標温度の上限値以下
に加熱するための電力を前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
[4]鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、鋼材断面各位置の発熱量の比を定めて、供給される電力から鋼材の断面内の温度分布を推定することにより、
前記誘導加熱装置によって加熱中の鋼材の温度について、
鋼材表面における幅方向温度分布の最小値が鋼材の表面温度について表層加熱条件として定めた所定の目標温度の下限値以上となり、かつ、
鋼材表面を除く厚み方向所定位置の幅方向温度分布における最大値が鋼材の内部温度について表層加熱条件として定めた所定の目標温度の上限値以下
に加熱するための電力を前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
[5]鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、鋼材断面各位置の発熱量の比を定めて、供給される電力から鋼材の断面内の温度分布を推定することにより、
前記誘導加熱装置によって加熱中及び加熱終了時の鋼材の温度について、
断面内の任意の位置の温度とその位置の目標温度との差を所定範囲内に加熱するための電力を前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
]前記[1]〜[]のいずれかに記載の鋼材の熱処理装置を用いて熱処理を行うことによって鋼材を製造することを特徴とする鋼材の製造方法。
本発明によれば、鋼材の表面温度、内部温度が所定の制約条件を満たす加熱を行い、鋼材が目的の性質をもつような熱処理を行うことができる。
本発明の一実施形態を以下に示す。
一般に、鋼材は加熱炉内で加熱されて、1200℃前後にまで昇温する。その後、鋼材は、通常複数台の圧延機により所定の厚さ・幅に圧延される。圧延後、まだ800℃〜1000℃にある鋼材は、水により強制冷却され、または大気により自然冷却される。この処理によって、鋼材は焼入れされる。特に圧延後に加速冷却装置による急速冷却を行うことにより、鋼材の強度や靭性を強化できることがわかっている。
この後、必要に応じて、再びガス炉で焼き戻し、焼き鈍し等の熱処理が行われる。熱処理が行われた鋼材は、裁断され出荷される。
図1は、本発明の一実施形態が適用される鋼材の製造ラインの概略構成を示す側面図である。この鋼材製造ラインは、鋼材1を加熱する加熱炉2と、粗圧延機3と、仕上圧延機4と、加速冷却装置5と、矯正装置6と、熱処理装置7と、鋼材1の温度を測定する温度検出器8とを備えている。
この鋼材製造ラインでは、加熱炉2で加熱された鋼材1を、粗圧延機3と仕上圧延機4により圧延した後、加速冷却装置5により急速冷却し、矯正装置5を用いて鋼材1の反りや曲がりを矯正した後、ライン上に設置した熱処理装置7によって焼き戻し処理を行う。
そして、この実施形態においては、熱処理装置7が、1台又は複数台の誘導加熱装置11(ここでは3台)と、誘導加熱装置11に供給する供給予定電力を演算する演算装置12と、前記演算装置により演算された供給予定電力を誘導加熱装置11に供給する電源装置13とで構成されている。
この鋼材製造ラインでは、圧延過程と冷却過程の後に、矯正装置6を用いて鋼材1の反りや曲がりを矯正した後、ライン上に設置された誘導加熱装置11で焼き戻し処理を行う。
この鋼材製造ラインでは、ガス炉による熱処理の代わりに誘導加熱装置11を用いて熱処理する。従って、圧延ライン上で焼き入れ処理後に焼き戻し処理を行うことができるため、能率を飛躍的に向上させることができる。また、誘導加熱装置11を使用することにより、ガス炉を使用した場合に比べて加熱温度の精度を上げることができる。従って、厚み方向の温度分布をも精度良く制御することが可能となる。
特に、圧延後に加速冷却装置5による急速冷却を行い、その直後、誘導加熱装置11による熱処理を行うことにより、強度や靭性が強化した鋼材を製造することができる。
誘導加熱装置11は、鋼材1を所定の温度に加熱できる能力を有することが必須である。誘導加熱装置11を用いて圧延ライン上で熱処理を行う場合、誘導加熱装置11の搬送速度制約により熱処理能率が圧延能率に劣り、結果的に生産性が阻害される場合が生じる。そこで、搬送速度を上げるためには誘導加熱装置11の台数を増やす必要があるが、設備が大掛かりになり、設備コストと設置スペースのコストが増えるとともに、消費電力も大きくなり、運転コストも増えて、実機への適用は困難となる。そこで,この実施形態では、誘導加熱装置11が少ない台数でも、鋼材1を複数回往復させて加熱することで、圧延能率に劣らず、生産性を阻害しないとともに、コスト抑制を実現する加熱方法を行う。この場合の誘導加熱装置の通過回数はパス回数と呼ばれる。
また、加熱方法には、対象となる鋼材によって均一加熱と表層加熱とがある。どちらの場合にも、鋼材の表面温度と内部温度をそれぞれ別の目標温度に加熱する。内部温度とは、板厚方向の平均温度(平均温度)の場合もあるし、板厚中心部の温度(中心温度)の場合、板表面から任意の深さ(たとえば、板厚1/3、1/4深さ)の温度等がある。
均一加熱の場合は、加熱過程中の表面温度が上限温度を超えないようするとともに、内部温度が所定の目標温度と所定範囲内の差になるように加熱する。このような均一加熱により、同一部材での品質ばらつきを抑えることを実現する。
表層加熱の場合は、加熱過程中の表面温度が下限温度を超えるようにするとともに、内部温度が所定の目標温度以下になるように加熱する。このような表層加熱を行うことにより、表面と内部の硬度差を少なくすることができ、パイプライン等の用途での問題を回避できる。
均一加熱を行うためには、誘導加熱装置11を複数台用意して加熱過程と冷却過程を繰り返しながら徐々に加熱をする必要がある。例えば、パス数を複数回として鋼材1を誘導加熱装置11内を通過させた後に、反対方向に搬送させて再度加熱する工程を指定パス数回分繰り返す。このとき、誘導加熱装置11内を通過している間は表面付近が表皮効果により加熱されて、誘導加熱装置11を出た後、反転するまでは冷却過程となって表面からの放熱と内部への伝熱によって、表面と内部の温度が均一になっていく。
逆に、表層加熱を行うためには、誘導加熱装置11により加熱された表面から内部への熱伝達や表面からの放熱によって表面と内部の温度が均一になる前に、表面を目標温度に加熱することが必要である。
この実施形態では、均一加熱、表層加熱ともに、鋼材内部の誘導加熱電流分布モデルと鋼材断面の温度分布を推定するモデルを用いることにより、熱処理方法の精度を向上させた。
さらに、同じ製造条件でも、加速冷却後の鋼材温度が操業条件により異なるため、誘導加熱装置11に供給する供給予定電力(加熱電力)をテーブル等であらかじめ用意しておくよりは、加速冷却後、あるいは加熱前の鋼材温度に基づいて、加熱電力や搬送速度をオンラインで求めて決定するような仕組みを構築する必要がある。
上記の点を踏まえて、誘導加熱装置11を用いて熱処理を行う際には、次の点が重要である。
(a)誘導加熱時の鋼材の内部温度を精度良く推定する。
(b)加熱温度の目標及び制限を満たすような加熱電力と搬送速度を求める。
(c)実用化にあたって、消費電力は、なるべく小さいほうが望ましい。
そこで、この実施形態に係る熱処理装置7おける演算装置12は下記の機能を備えるようにしている。
(a)誘導加熱時の鋼材断面の温度分布を精度よく推定するため、二次元の差分式を採用して、鋼材温度、透磁率と浸透深さから鋼材断面の誘導電流分布を求め、発熱量を推定する。
(b)加熱電力の設定値を求めるに際して、温度条件が複数あり、操作量(加熱電力)も複数あり、モデルが非線形であるため、非線形計画法で算出する。その結果、表面温度と内部温度は独立変数ではないが、複数台加熱により、ある程度独立と見なせ、別々に目標設定をすることが可能とした。
(c)非線形計画法の目的関数を消費電力の和(消費電力量)とし、所定の温度条件を満たす加熱電力の中で消費電力量が最小となる加熱電力を求める。
以下に、この実施形態に係る熱処理装置7おける演算装置12の具体的な演算処理内容を記載する。
最初に、加熱電力と搬送速度の求め方を示す。この実施形態では、鋼材断面の温度分布を推定する数式モデルを用いて、加熱電力設定計算と搬送速度設定計算を行う。
まず、誘導加熱による鋼材の温度分布を推定する数式モデルは以下のようなものである。
鋼材内部の電流分布は、浸透深さで表される。浸透深さは式(1)のように周波数、比透磁率で表される。
δ=5.03*SQRT(R/μ/fx)/100 ……(1)
ただし、δ:浸透深さ、R:比抵抗、μ:比透磁率、fx:周波数。
浸透深さの値が大きい場合には誘導電流が鋼材内部まで流れるが、浸透深さが小さい場合には、誘導電流が表面に集中するため加熱も表面に集中し、鋼材内部は表面からの熱伝達により加熱されることになる。従って、同じ電力を投入しても、浸透深さにより表面の加熱温度は変わってくる。そこで、比透磁率等により浸透深さを求め、浸透深さにより鋼材内部での電流分布を算出し、電流分布により鋼材内部の温度分布を求める。
鋼材の搬送方向と直交する方向の鋼材の断面を、図7のように2次元メッシュで分割し、時刻kにおける厚み方向i番目、幅方向j番目の温度をxi,j,kと定義する。そして、その部分の分割幅として、dyiを厚み方向分割幅、dzjを幅方向分割幅とする。また、x1,j,kは鋼材表面の温度を表す。なお、この断面は鋼材の搬送方向(長手方向)の任意の位置における断面である。
一般に、鋼材表面からの距離yと、誘導電流密度ψ(y)の関係は式(2)で表される。αは定数である。
ψ(y)=αexp(−y/δ) ……(2)
iを式(3)で定義すると、厚み方向i番目のブロックに流れる電流は、式(4)で表される。
Figure 0005749416
よって、消費電力の比は式(5)で表される。
Figure 0005749416
図8のように鋼材断面では、表面から同じ位置では、同じ電流が流れ、発熱量も同じであるとする。このとき、同じ電流が流れるドーナツ状の面積をs(i)(i=1,2,…,n)とすると、s(i)は下記のように表される。
Figure 0005749416
各s(i)に加わる発熱量の比をp(i)とすると、
Figure 0005749416
これらは解析的に解くことができ、
Figure 0005749416
よって、各部分の発熱量の比は以下のように表される。
Figure 0005749416
次に、誘導加熱装置を用いた加熱過程における鋼材の温度変化を数式で表す。熱伝導方程式の差分式から、式(16)を得る。
Figure 0005749416
式(16)のQi,j,kは境界条件である大気との熱伝達と、加熱装置から供給される熱量からなる。
Figure 0005749416
なお、式(17)において、r(i、j)=dq(i、j)である。
式(16)〜(18)を用いることにより、加熱後の鋼材の温度分布(x1,j,k2,j,k … xnb-1,j,knb,j,k)を求めることができる。これのフローを図2に示す。鋼材が誘導加熱装置を抜けたところで計算終了となる。
以上が誘導加熱による鋼材の温度分布を推定する数式モデルの説明である。
次に、この温度モデルを用いた加熱電力の求め方を図3に示す。
まず、適当な初期値電力un,kを与えて、誘導加熱装置出側の加熱温度分布xi,j,kを計算する。そして、各誘導加熱装置での加熱温度と後述する温度条件を比較し、温度条件を満たしているかどうかの判定を行う。温度条件に合致していれば、その加熱電力を最終的な加熱電力として計算を終了する。合致していない場合は、新たな加熱電力を与えて温度計算のやり直しを行う。新しい加熱電力uk,jを与える方法は、線形計画法、非線形計画法など一般的な方法でかまわない。温度条件が実現可能であるならば、有限回の計算で収束する。
以下に、温度条件の例を示す。
(第1の温度条件)
均一加熱を行う場合であり、加熱中の内部温度(所定の厚み方向位置の温度xi1,j,k)が、所定の目標温度の上限値(第1の目標温度R1)と下限値(第2の目標温度R2)の間に入るようにするとともに、加熱中の表面温度x1,j,kが上限温度(第3の目標温度R3)以下になるようにする。すなわち、
Figure 0005749416
(第2の温度条件)
均一加熱を行う場合であり、上記第1の温度条件において、さらに、加熱中の表面温度x1,j,kが下限温度(第4の目標温度R4)以上になるという条件を追加したものである。すなわち、
Figure 0005749416
(第3の温度条件)
表層加熱を行う場合であり、加熱中の表面温度x1,j,kが、所定の目標温度の下限値(第5の目標温度R5)と上限値(第6の目標温度R6)の間に入るようにするとともに、加熱中の内部温度(所定の厚み方向位置の温度xi1,j,k)が上限温度(第7の目標温度R7)以下になるようにする。すなわち、
Figure 0005749416
(第4の温度条件)
表層加熱を行う場合であり、上記第3の温度条件において、加熱中の表面温度x1,j,kが、所定の目標温度の上限値(第6の目標温度R6)以下になるという条件を外したものである。すなわち、
Figure 0005749416
(第5の温度条件)
鋼材断面内の任意の位置の温度xi,j,kが、その位置の目標温度の下限値ri,jと上限値Ri,jの間に入るようにする。すなわち、
Figure 0005749416
第5の温度条件では、図7のメッシュで区切られた各々の位置全てに対して目標温度の下限値、上限値を設定しても良いし、特定の位置を選択して目標温度の下限値、上限値を設定しても良い。
さらに、上記の温度条件に加えて、目的関数として各誘導加熱装置11での消費電力量の和を与える。加熱中の鋼材の温度が上記温度条件に合致するかどうかの判定を行った後、各誘導加熱装置11での消費電力量が最少になるかどうかの判定も重ねて行う。すなわち、この処理によって求められる加熱電力が各誘導加熱装置11での消費電力量の和を最少にするようにする。この場合も、新しい加熱電力uk,jを与える方法は、線形計画法、非線形計画法など一般的な方法でかまわない。このフローを図4に示す。
次に、搬送速度の求め方を図5に示す。
搬送速度の決定には、始めにパス数を決めておき、図5に示すような収束計算を行う。適当な初期速度から始めて、電力設定計算を行う。速度によっては、電力能力の上限や、温度の条件によっては、加熱が不可能の場合がある。その場合は、速度を下げて電力の設定計算を行う。加熱可能なら、搬送速度を上げて電力の設定計算を行う。加熱可能な範囲の中で最も早い速度を求める。
そして、ここで決まった搬送速度をもとに、前項の電力設定計算を用いて加熱電力を求める。
以上がこの実施形態における加熱電力と搬送速度の求め方である。
このようにして演算装置12が求めた加熱電力と搬送速度に基づいて、電源装置13から各誘導加熱装置11に加熱電力が供給され、鋼材1が加熱される。
このようにして求まる加熱電力と搬送速度は事前に計算してテーブル等に保存しておき利用することもできるし、鋼材の加速冷却が終了し、加熱開始温度が確定した時点にオンラインで計算して求めることもできる。
しかしながら、事前に計算しておいた場合は、加速冷却終了時の温度が予定と異なる場合がある。また、複雑なモデルを用いて収束計算を繰り返し行うため膨大な計算量になり、オンラインでは計算が間に合わないことも考えられる。このような場合は、以下のような修正方式が有効である。これは、加熱電力と搬送速度を事前に計算しておき、加速冷却終了後の実績温度で搬送速度を修正し、電力を再計算する方式である。
まず、図5に示す事前に搬送速度を求める計算を行った後に、加熱開始温度が変更になた場合の搬送速度の影響係数を求めておく。この手順を図6に示す。加熱開始温度をTi、加熱開始温度の変更量をΔTiとし、加熱開始温度がTi+ΔTiの場合に搬送速度をどれだけ変更すれば良いのかの係数を求める。影響係数を1から処理を始めて、加熱可能で最も処理時間が短くなるように影響係数を調整する。この値をqとすると、実際の加熱開始温度がTi+ΔTiの場合の搬送速度v’は、下式(24)で求められる。
v’(np)=(qΔTi+1)v(np) ……(24)
ただし、np:パス数、v(np):事前に求めておいた速度、v’(np):修正された搬送速度、q:影響係数。
加速冷却を終了し、実績温度が検出された時点で、このような搬送速度の修正を行う。さらに、修正された速度で図3または図4に示す電力計算を再度行う。電力計算の収束計算のみであれば、時間はさほどかからない。修正方式を利用することにより、最も効率のよい搬送速度を求めることができ、加熱電力を精度よく設定することができる。
上記のようにして、この実施形態においては、誘導加熱時の鋼材断面の温度分布を推定し、推定された表面温度と内部温度が所定の温度目標を満たすように誘導加熱装置の加熱電力と搬送速度を定めているので、鋼材の表面温度、内部温度が所定の制約条件を満たす加熱を行い、鋼材が目的の性質をもつような熱処理を行うことができる。また、そのような熱処理を行うことにより、良好な品質の鋼材を製造することができる。
なお、この実施形態では、鋼材長手方向(鋼材搬送方向)の任意の位置において説明したが、代表位置として任意の位置を選択するか、所定間隔又は所定間隔でない不規則間隔の複数の長手方向位置で算出するようにしても良い。
また、表面温度は、鋼材上面のみに限らず、下面である裏面の温度としても良い。
以下、本発明の実施形態で述べた内の第1の温度条件による加熱の実施例を示す。
これは、加熱対象材(幅3000mm)を、圧延後300℃まで冷却したものを目標温度650℃に加熱した例である。
図9は鋼材の幅方向断面の表面温度と中心温度の初期温度分布を示す。冷却後の鋼材は、幅方向端部が中央に比べ冷えやすい。このため、幅中央に比べると、幅端部の温度が若干温度が下がっている。
この材料を加熱する際に、鋼材の幅中央の温度のみを加熱条件として加熱を行った場合の例を図10と図11に示す。図は加熱直後の幅方向の表面温度と中心温度の温度分布を示している。加熱直後なので中心温度よりも表面温度が高くなっている。図10と図11のどちらも、幅方向の加熱条件を考慮していないため、幅端部の中心温度が温度条件から外れてしまっている。この場合、温度条件から外れた端部は切り落とされることになり、歩留まり悪化の原因となる。また、この部分が多くなると、鋼材1枚が製造仕様を満たさなくなるため不良品となり、本来の目的に使用できなくなる場合もある。
本発明による方法で、幅方向の温度分布を制約条件に加えて加熱を行うと、加熱後の温度分布を図12のようすることができる。加熱温度条件を外れるために幅端部の切断する部分を、最小限に抑えることができるとともに、品質のばらつきの少ない良質な鋼材を製造することができる。
本発明の一実施形態が適用される鋼材の製造ラインの概略構成を示す側面図。 加熱時の鋼材温度分布を求める温度モデルにおけるフロー図。 加熱電力を求める加熱電力設定計算のフロー図。 加熱電力の最小値を求める電力設定計算のフロー図。 搬送速度を決定する搬送速度設定計算のフロー図。 搬送速度の影響係数を決定する手順を示すフロー図。 温度モデルにおける鋼材断面の温度分布を表す記号の説明図。 鋼材断面の誘導電流の分布を示す図。 加熱前の鋼材断面の温度分布を示す図。 従来方法による加熱後の鋼材断面の温度分布の例1を示す図。 従来方法による加熱後の鋼材断面の温度分布の例2を示す図。 本発明による加熱後の鋼材断面の温度分布の例を示す図。
符号の説明
1 鋼材
2 加熱炉
3 粗圧延機
4 仕上圧延機
5 加速冷却装置
6 矯正装置
7 熱処理装置
8 温度検出器
11 誘導加熱装置
12 演算装置
13 電源装置

Claims (6)

  1. 鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
    前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、ドーナツ状の面積を設定し、鋼材断面を2次元メッシュで分割された各部分の発熱量の比を定めて、供給される電力と、鋼材断面各位置の発熱量の比と加熱前の鋼材の幅方向温度分布とから鋼材断面を2次元メッシュで分割した各部分ごとの温度分布を推定することにより、
    前記誘導加熱装置によって加熱中の鋼材の温度について、
    鋼材表面を除く厚み方向所定位置の幅方向温度分布における最大値が鋼材の内部温度について均一加熱条件として定めた所定の目標温度の上限値以下で、
    鋼材表面を除く厚み方向所定位置の幅方向温度分布における最小値が鋼材の内部温度について均一加熱条件として定めた所定の目標温度の下限値以上となり、かつ、
    鋼材表面における幅方向温度分布の最大値が鋼材の表面温度について均一加熱条件として定めた所定の目標温度の上限値以下に加熱するための各誘導加熱装置の電力を、
    前記鋼材の搬送速度がもっとも速くなるように前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
  2. 鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
    前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、ドーナツ状の面積を設定し、鋼材断面を2次元メッシュで分割された各部分の発熱量の比を定めて、供給される電力と、鋼材断面各位置の発熱量の比と加熱前の鋼材の幅方向温度分布とから鋼材断面を2次元メッシュで分割した各部分ごとの温度分布を推定することにより、
    前記誘導加熱装置によって加熱中の鋼材の温度について、
    鋼材表面を除く厚み方向所定位置の幅方向温度分布における最大値が鋼材の内部温度について均一加熱条件として定めた所定の目標温度の上限値以下で、
    鋼材表面を除く厚み方向所定位置の幅方向温度分布における最小値が鋼材の内部温度について均一加熱条件として定めた所定の目標温度の下限値以上となり、かつ、
    鋼材表面における幅方向温度分布の最大値が鋼材の表面温度について均一加熱条件として定めた所定の目標温度の上限値以下で、
    鋼材表面における幅方向温度分布の最小値が鋼材の表面温度について均一加熱条件として定めた所定の目標温度の下限値以上に加熱するための各誘導加熱装置の電力を、
    前記鋼材の搬送速度がもっとも速くなるように前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
  3. 鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
    前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、ドーナツ状の面積を設定し、鋼材断面を2次元メッシュで分割された各部分の発熱量の比を定めて、供給される電力と、鋼材断面各位置の発熱量の比と加熱前の鋼材の幅方向温度分布とから鋼材断面を2次元メッシュで分割した各部分ごとの温度分布を推定することにより、
    前記誘導加熱装置によって加熱中の鋼材の温度について、
    鋼材表面における幅方向温度分布の最小値が鋼材の表面温度について表層加熱条件として定めた所定の目標温度の下限値以上で、
    鋼材表面における幅方向温度分布の最大値が鋼材の表面温度について表層加熱条件として定めた所定の目標温度の上限値以下となり、かつ、
    鋼材表面を除く厚み方向所定位置の幅方向温度分布における最大値が鋼材の内部温度について表層加熱条件として定めた所定の目標温度の上限値以下に加熱するための各誘導加熱装置の電力を、
    前記鋼材の搬送速度がもっとも速くなるように前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
  4. 鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
    前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、ドーナツ状の面積を設定し、鋼材断面を2次元メッシュで分割された各部分の発熱量の比を定めて、供給される電力と、鋼材断面各位置の発熱量の比と加熱前の鋼材の幅方向温度分布とから鋼材断面を2次元メッシュで分割した各部分ごとの温度分布を推定することにより、
    前記誘導加熱装置によって加熱中の鋼材の温度について、
    鋼材表面における幅方向温度分布の最小値が鋼材の表面温度について表層加熱条件として定めた所定の目標温度の下限値以上となり、かつ、
    鋼材表面を除く厚み方向所定位置の幅方向温度分布における最大値が鋼材の内部温度について表層加熱条件として定めた所定の目標温度の上限値以下に加熱するための各誘導加熱装置の電力を、
    前記鋼材の搬送速度がもっとも速くなるように前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
  5. 鋼材を加熱する1台または複数台の誘導加熱装置と、前記誘導加熱装置に供給する電力を演算する演算装置を有する鋼材の熱処理装置であって、
    前記演算装置は、鋼材断面では、鋼材表面からの距離が同じ位置では、同じ電流が流れ、発熱量も同じであるとして、ドーナツ状の面積を設定し、鋼材断面を2次元メッシュで分割された各部分の発熱量の比を定めて、供給される電力と、鋼材断面各位置の発熱量の比と加熱前の鋼材の幅方向温度分布とから鋼材断面を2次元メッシュで分割した各部分ごとの温度分布を推定することにより、
    前記誘導加熱装置によって加熱中及び加熱終了時の鋼材の温度について、
    断面内の任意の位置の温度とその位置の目標温度との差を所定範囲内に加熱するための各誘導加熱装置の電力を、
    前記鋼材の搬送速度がもっとも速くなるように前記演算装置にて演算することを特徴とする鋼材の熱処理装置。
  6. 請求項1〜5のいずれかに記載の鋼材の熱処理装置を用いて熱処理を行うことによって鋼材を製造することを特徴とする鋼材の製造方法。
JP2004379515A 2004-12-28 2004-12-28 鋼材の熱処理装置及び鋼材の製造方法 Active JP5749416B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379515A JP5749416B2 (ja) 2004-12-28 2004-12-28 鋼材の熱処理装置及び鋼材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379515A JP5749416B2 (ja) 2004-12-28 2004-12-28 鋼材の熱処理装置及び鋼材の製造方法

Publications (2)

Publication Number Publication Date
JP2006183108A JP2006183108A (ja) 2006-07-13
JP5749416B2 true JP5749416B2 (ja) 2015-07-15

Family

ID=36736436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379515A Active JP5749416B2 (ja) 2004-12-28 2004-12-28 鋼材の熱処理装置及び鋼材の製造方法

Country Status (1)

Country Link
JP (1) JP5749416B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298576B2 (ja) * 2007-03-08 2013-09-25 Jfeスチール株式会社 鋼材の熱処理方法
CN113924173B (zh) * 2020-05-11 2023-11-28 东芝三菱电机产业系统株式会社 感应加热方法及感应加热系统
JP7348138B2 (ja) * 2020-06-16 2023-09-20 株式会社神戸製鋼所 誘導加熱方法および誘導加熱制御装置
CN117311415B (zh) * 2023-11-28 2024-04-19 南通进宝机械制造有限公司 一种钢件加工用温度监测系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288393A (ja) * 1985-06-17 1986-12-18 新日本製鐵株式会社 スラブの誘導加熱方法
JPH0759722B2 (ja) * 1985-07-09 1995-06-28 川崎製鉄株式会社 先にガス加熱されたスラブの後続の誘導加熱時の誘導加熱制御方法
JP3925149B2 (ja) * 2001-10-18 2007-06-06 Jfeスチール株式会社 厚鋼板の連続加熱処理装置。
JP4178976B2 (ja) * 2002-02-07 2008-11-12 Jfeスチール株式会社 鋼材の熱処理方法及びそのプログラム
JP4631247B2 (ja) * 2002-02-07 2011-02-16 Jfeスチール株式会社 鋼材の熱処理方法及びそのプログラム
JP4169624B2 (ja) * 2003-03-31 2008-10-22 三菱電機株式会社 トランスバース型誘導加熱装置

Also Published As

Publication number Publication date
JP2006183108A (ja) 2006-07-13

Similar Documents

Publication Publication Date Title
TWI224144B (en) Heat treating device, heat treating method, recording medium recording heat treating program and steel product
CN104209340B (zh) 一种热轧马氏体不锈钢带钢双边浪控制方法
US10697034B2 (en) System and method for producing a hardened and tempered structural member
KR101516476B1 (ko) 설정치 계산 장치, 설정치 계산 방법, 및 설정치 계산 프로그램이 기억된 기억 매체
JP5749416B2 (ja) 鋼材の熱処理装置及び鋼材の製造方法
JP4396237B2 (ja) 鋼材の熱処理装置及び鋼材の製造方法
KR102075245B1 (ko) 전기 강판의 철손 저감 예측 장치
JP4923390B2 (ja) 熱処理装置及び鋼材の製造方法
JP4066652B2 (ja) 鋼材の熱処理方法およびその装置
JP4333282B2 (ja) 高強度鋼板の製造方法
JP4561810B2 (ja) 鋼材の熱処理方法及び製造方法並びに製造設備
JP4631247B2 (ja) 鋼材の熱処理方法及びそのプログラム
JP4178976B2 (ja) 鋼材の熱処理方法及びそのプログラム
JP4655684B2 (ja) 鋼板の熱処理方法
JP4333283B2 (ja) 高強度鋼板の製造方法
JP5552885B2 (ja) 厚鋼板の誘導加熱方法
JP2005089785A (ja) 高張力鋼板の製造方法
JP4089607B2 (ja) 鋼板の熱処理方法
JP4062183B2 (ja) 鋼材の熱処理方法及び製造方法並びに製造設備
JP4561809B2 (ja) 鋼材の熱処理方法及び製造方法並びに製造設備
JP4089606B2 (ja) 鋼板の熱処理方法
JP2003013134A (ja) 鋼板の製造方法およびその設備
Dossett et al. Control of Distortion in Tool Steels
JP2005133158A (ja) 脱炭層深さ予測方法、脱炭層深さ制御方法及び鋼材の圧延方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131007

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250