WO2021223279A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2021223279A1
WO2021223279A1 PCT/CN2020/094091 CN2020094091W WO2021223279A1 WO 2021223279 A1 WO2021223279 A1 WO 2021223279A1 CN 2020094091 W CN2020094091 W CN 2020094091W WO 2021223279 A1 WO2021223279 A1 WO 2021223279A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display panel
support
pixel
area
Prior art date
Application number
PCT/CN2020/094091
Other languages
English (en)
French (fr)
Inventor
郭旺回
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/963,514 priority Critical patent/US11515365B2/en
Publication of WO2021223279A1 publication Critical patent/WO2021223279A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features

Definitions

  • the present application relates to the technical field of display panels, and in particular to a display panel and a display device.
  • the structural design of placing an optical sensor (such as a camera) below the display panel has become the mainstream direction; among them, one solution is to use the film of the sensor lighting area of the display panel. The layer is removed, that is, the sensor lighting area is not displayed. Another solution is to retain the film layer of the sensor lighting area of the display panel and use it for display. Because the second solution has a larger screen display area, it has become a competitive goal in the industry; however, because the sensor lighting area of the display panel has more layers and low light transmittance, the optical sensor has a poor lighting effect. , Affecting the normal use of the optical sensor function. Therefore, the current main research direction is to improve the light transmittance of the sensor lighting area on the basis of ensuring that the sensor lighting area of the display panel is used for display.
  • the present application provides a display panel and a display device. By reducing the distribution density and area of the support pillars of the sensor lighting area of the display panel, while reducing the thickness of the organic film layer in the display panel, the light transmission of the sensor lighting area can be improved. Overrate.
  • the present application provides a display panel including an array substrate, and a support layer and a light-emitting function layer sequentially disposed on the array substrate;
  • the display panel has a display area and a sensor lighting area arranged in the display area; the light-emitting function layer is located in the display area and the sensor lighting area; the support layer includes a display area and spaced apart from each other A plurality of first support columns, and a plurality of second support columns that are located in the lighting area of the sensor and are spaced apart from each other;
  • the distribution density of the plurality of second support pillars is smaller than the distribution density of the plurality of first support pillars.
  • the projected area of each second support column in a direction perpendicular to the array substrate is smaller than a projection area of each first support column in a direction perpendicular to the array substrate area.
  • the material of the support layer includes an organic photoresist material.
  • the array substrate includes a thin film transistor array and an organic flat layer covering the thin film transistor array; the support layer is located on a side of the organic flat layer away from the thin film transistor array. side;
  • the thickness of the organic flat layer ranges from 1 micrometer to 1.3 micrometers.
  • the display panel further includes a pixel definition layer located between the organic flat layer and the support layer; the pixel definition layer is provided with a plurality of pixel openings, and the light emitting The functional layer is also arranged in the plurality of pixel openings;
  • the thickness of the pixel definition layer ranges from 1 micrometer to 1.3 micrometers.
  • the plurality of pixel openings include a plurality of first pixel openings located in the display area and a plurality of second pixel openings located in the lighting area of the sensor;
  • the distribution density of the plurality of second pixel openings is smaller than the distribution density of the plurality of first pixel openings.
  • the pixel definition layer and the support layer are made of the same material.
  • a plurality of anodes are further provided between the pixel definition layer and the organic flat layer, and the plurality of anodes are arranged in a one-to-one correspondence with the plurality of pixel openings;
  • the light-emitting functional layer includes a hole injection layer located on each of the anodes, and a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and a cathode layer sequentially disposed on the hole injection layer;
  • the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer, and the cathode layer all extend onto the pixel definition layer and the support layer.
  • the display panel further includes a base substrate located on the side of the array substrate away from the support layer, and a package located on the side of the light emitting function layer away from the support layer in turn Layer, polarizer and protective cover.
  • the display panel further includes a touch layer located between the encapsulation layer and the polarizer.
  • the present application also provides a display device, including a display panel, and an optical sensor arranged on the back of the display panel;
  • the display panel includes an array substrate, and a support layer and a light-emitting function layer sequentially arranged on the array substrate;
  • the display panel has a display area and a sensor lighting area arranged in the display area; the light-emitting function layer is located in the display area and the sensor lighting area; the support layer includes a display area and spaced apart from each other A plurality of first support pillars are provided, and a plurality of second support pillars are located in the lighting area of the sensor and are spaced apart from each other; the distribution density of the plurality of second support pillars is smaller than the distribution of the plurality of first support pillars density;
  • the optical sensor is arranged corresponding to the lighting area of the sensor.
  • the optical sensor includes any one of a camera, a fingerprint recognition sensor, and a face recognition sensor.
  • the projection area of each of the second support columns in the direction perpendicular to the array substrate is smaller than the projection area of each of the first support columns in the direction perpendicular to the array substrate area.
  • the material of the support layer includes an organic photoresist material.
  • the array substrate includes a thin film transistor array and an organic flat layer covering the thin film transistor array; the support layer is located on a side of the organic flat layer away from the thin film transistor array. side;
  • the thickness of the organic flat layer ranges from 1 micrometer to 1.3 micrometers.
  • the display panel further includes a pixel definition layer located between the organic flat layer and the support layer; the pixel definition layer is provided with a plurality of pixel openings, and the light emitting The functional layer is also arranged in the plurality of pixel openings;
  • the thickness of the pixel definition layer ranges from 1 micrometer to 1.3 micrometers.
  • the plurality of pixel openings include a plurality of first pixel openings located in the display area and a plurality of second pixel openings located in the sensor lighting area;
  • the distribution density of the plurality of second pixel openings is smaller than the distribution density of the plurality of first pixel openings.
  • the pixel definition layer and the support layer are made of the same material.
  • a plurality of anodes are further provided between the pixel definition layer and the organic flat layer, and the plurality of anodes are arranged in a one-to-one correspondence with the plurality of pixel openings;
  • the light-emitting functional layer includes a hole injection layer located on each of the anodes, and a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and a cathode layer sequentially disposed on the hole injection layer;
  • the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer, and the cathode layer all extend onto the pixel definition layer and the support layer.
  • the display panel further includes a base substrate located on the side of the array substrate away from the support layer, and a package located in turn on the side of the light-emitting function layer away from the support layer Layer, polarizer and protective cover.
  • the display panel has a display area and a sensor lighting area, and the light-emitting function layer is located in the display area and the sensor lighting area, which can realize full-screen display; and, the display panel
  • the support layer includes a plurality of first support pillars located in the display area and spaced apart from each other, and a plurality of second support pillars located in the sensor lighting area and spaced apart from each other.
  • the distribution density of the plurality of second support pillars is less than that of the first
  • the distribution density of the supporting pillars makes the distance between the second supporting pillars in the lighting area of the sensor larger, which facilitates the transmission of light and thus facilitates the improvement of the light transmittance.
  • FIG. 1 is a schematic diagram of a top view structure of a display panel provided by an embodiment of the application.
  • FIG. 2 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the application.
  • FIG. 3 is a schematic top view of a partial pixel definition layer and a supporting layer provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a partial cross-sectional structure of a display panel provided by an embodiment of the application.
  • FIG. 5 is an enlarged schematic diagram of the thin film transistor in FIG. 4.
  • FIG. 6 is an enlarged schematic diagram of area A in FIG. 4.
  • FIG. 7 is a schematic cross-sectional structure diagram of a display device provided by an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected, or electrically connected or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two components or the interaction of two components relation.
  • an intermediate medium it can be the internal communication of two components or the interaction of two components relation.
  • the "on" or “under” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “above” and “above” of the first feature on the second feature include the first feature directly above and obliquely above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • an exemplary method is to reduce the pixel density of the sensor lighting area to increase the light transmittance. Although reducing the pixel density can reduce the area of the metal layer in the sensor's lighting area, and to a certain extent can increase the light transmittance, the light transmittance still cannot achieve a more ideal effect.
  • the organic film layer of the display panel is generally made of organic photoresist material.
  • the transmittance of blue and violet light for organic photoresist is less than 80%.
  • the light transmittance varies with the thickness of the organic photoresist. Increase and decrease. Therefore, only reducing the pixel density of the sensor lighting area of the display panel does not reduce the influence of the organic film layer on the light transmittance.
  • the organic film layer of a display panel includes a passivation layer (PLN) and a pixel define layer (Pixel define layer).
  • layer, PDL) and support layer (PS) and the flat layer, pixel definition layer and support layer are located in the display area and the sensor lighting area.
  • the thickness of the flat layer, the pixel definition layer and the support layer are all 1.5um;
  • the support layer includes a plurality of support columns arranged at intervals, the display area of the display panel and the support column in the sensor lighting area The distribution density is consistent.
  • the embodiment of the application reduces the distribution density and area of the support pillars of the sensor lighting area of the display panel, and reduces the film thickness of the organic film layer including the flat layer and the pixel defining layer, thereby improving the light transmittance of the sensor lighting area .
  • an embodiment of the present application provides a display panel 1.
  • the display panel 1 has a display area 9 and a sensor lighting area 10 arranged in the display area 9; as shown in FIG.
  • the distribution density of the plurality of second support pillars 12 is smaller than that of the plurality of The distribution density of a support column 11.
  • the material of the support layer 4 includes an organic photoresist material; the support layer 4 functions to support the upper film layer, which is beneficial to protect the array substrate 3.
  • the base substrate 2 may have a single-layer, double-layer or sandwich structure.
  • the sandwich structure is taken as an example. That is, the base substrate 2 includes a first organic layer 45, an inorganic layer 46, and a second organic layer.
  • the layer 47 is shown in FIG. 4; the material of the first organic layer 45 and the second organic layer 47 includes polyimide (PI), and the material of the inorganic layer 46 includes silicon oxide or silicon nitride.
  • PI polyimide
  • the array substrate 3 includes a water and oxygen barrier layer 13, a buffer layer 14, a thin film transistor array 15 and a thin film transistor array 15 which are sequentially disposed on the second organic layer 47 of the base substrate 2.
  • the organic flat layer 16; the support layer 4 is located on the side of the organic flat layer 16 away from the thin film transistor array 15.
  • the thin film transistor array 15 includes a plurality of thin film transistors 17 distributed in an array.
  • Each thin film transistor 17 includes a semiconductor unit 18 disposed on the buffer layer 14, covering the buffer layer 14 and The first gate insulating layer 19 on the semiconductor unit 18, the first gate 20 provided on the first gate insulating layer 19 and corresponding to the semiconductor unit 18, covering the first gate insulating layer 19 and the first gate
  • the first contact hole 26 and the second contact hole 27 of the layer 23, the second gate insulating layer 21, and the first gate insulating layer 19 are connected to both ends of the semiconductor unit 18 corresponding
  • both ends of the semiconductor unit 18 may also be provided with ohmic contact units 28, and the source 24 and the drain 25 are respectively connected to the ohmic contact units 28 at both ends of the semiconductor unit 18 through the first contact hole 26 and the second contact hole 27. .
  • the thin film transistor 17 may also have a single gate structure, and the specific structure of the thin film transistor 17 is not limited in this application.
  • the display panel 1 further includes a pixel definition layer 29 located between the organic flat layer 16 and the support layer 4; the pixel definition layer 29 is provided with a plurality of pixel openings 30, and the light-emitting function layer 5 is also provided In the plurality of pixel openings 30.
  • a plurality of anodes 31 are further provided between the pixel definition layer 29 and the organic flat layer 16, and the plurality of anodes 31 are arranged in a one-to-one correspondence with the plurality of pixel openings 30, and each anode 31 passes through
  • the via hole of the flat layer 16 is electrically connected to the drain 25 of the corresponding thin film transistor 17; as shown in FIG.
  • the light-emitting function layer 5 includes a hole injection layer 32 on each anode 31, and the hole injection layer
  • the hole injection layer 32, the hole transport layer 33, the electron transport layer 35, the electron injection layer 36, and the cathode layer 37 are formed in a whole layer laying method, so that the hole injection layer 32 , The hole transport layer 33, the electron transport layer 35, the electron injection layer 36 and the cathode layer 37 cover the support layer 4 and the pixel definition layer 29; while the light emitting layer 34 is only provided in the plurality of pixel openings 30.
  • the light-emitting layer 34 includes a red light-emitting unit (R), a green light-emitting unit (G), and a blue light-emitting unit (B); each pixel opening 30 is provided with a red light-emitting unit, a green light-emitting unit, and a blue light-emitting unit. Any kind of.
  • the encapsulation layer 6 is a thin-film encapsulation layer; the thin-film encapsulation layer includes a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer that are sequentially arranged on the light-emitting function layer 5.
  • the protective cover 8 includes Cover Glass (CG).
  • CG Cover Glass
  • the display panel 1 further includes a touch layer 44 located between the packaging layer 6 and the polarizer 7.
  • the display panel 1 further has a bending area 38, which is located on one side of the display area 9; the base substrate 2, the water and oxygen barrier layer 13, the buffer layer 14, and the second A gate insulating layer 19, a second gate insulating layer 21, and an interlayer insulating layer 23 all extend from the display area 9 to the bending area 38, and before the first contact hole 26 and the second contact hole 27 are formed, the bending The folded region 38 forms a through hole (such as the first through hole 39 hereinafter) that penetrates at least the water and oxygen barrier layer 13, the buffer layer 14, the first gate insulating layer 19, the second gate insulating layer 21, and the interlayer insulating layer 23.
  • a through hole such as the first through hole 39 hereinafter
  • the second through hole 40 fill the through hole with an organic buffer material 41. Since the water and oxygen barrier layer 13, the buffer layer 14, the first gate insulating layer 19, the second gate insulating layer 21 and the interlayer insulating layer 23 are all inorganic materials, it occurs during the bending process of the bending area 38 The risk of breakage is relatively high, and the partial filling of the organic buffer material 41 in the bending area 38 can play a buffering effect, and prevent the film layer from breaking when the bending area 38 is bent.
  • the through hole extends to the first organic layer 45 of the base substrate 2; and, the through hole includes a first through hole 39 that penetrates the water and oxygen barrier layer 13 and extends to the first organic layer 45 of the base substrate 2, and
  • the second through hole 40 is located on the first through hole 39 and penetrates the buffer layer 14, the first gate insulating layer 19, the second gate insulating layer 21 and the interlayer insulating layer 23; wherein, the second through hole 40 is vertical
  • the projected area in the direction of the display panel 1 is larger than the projected area of the first through hole 39 in the direction perpendicular to the display panel 1. The reason for this treatment is that the bending area 38 is bent toward the back of the base substrate 2.
  • the bending radius of the base substrate 2 and the water and oxygen barrier layer 13 is small during bending, and they are susceptible to greater bending and pressing force.
  • the buffer layer 14, the first gate insulating layer 19, the second gate insulating layer 21, and the interlayer insulating layer 23 have larger bending radii and are all inorganic materials, which are susceptible to greater bending tensile force;
  • the second through hole 40 has a larger opening radius than the first through hole 39, so that the second through hole 40 is larger and more filled with organic buffer material 41, and the first through hole 39 is smaller and more filled with organic buffer material 41. Less, it can prevent the film with a larger bending radius from breaking due to stretching, and it can also avoid the film with a smaller bending radius from breaking due to squeezing force.
  • the display panel 1 has a display area 9 and a sensor lighting area 10, and the light-emitting function layer 5 is located in the display area 9 and the sensor lighting area 10, which can achieve full-screen display; and the support layer 4 of the display panel 1 includes A plurality of first support pillars 11 arranged at intervals in the display area 9 and a plurality of second support pillars 12 arranged at intervals in the sensor lighting area 10, the distribution density of the plurality of second support pillars 12 is smaller than that of the plurality of first support pillars.
  • the distribution density of the supporting pillars 11 makes the distance between the second supporting pillars 12 of the sensor lighting area 10 larger, which is beneficial to increase the light transmission area, thereby helping to increase the light transmittance of the sensor lighting area 10 .
  • each second support column 12 in the direction perpendicular to the array substrate 3 is smaller than the projected area of each first support column 11 in the direction perpendicular to the array substrate 3. shadow area. That is to say, the cross-sectional area of each second support column 12 is smaller than the cross-sectional area of each first support column 11. It should be noted that the cross section is a cross section parallel to the display surface of the display panel 1.
  • the cross-sectional area of each second supporting pillar 12 in the sensor lighting area 10 is reduced, which can be further increased.
  • the distance between the two adjacent second support pillars 12 further increases the light transmission area, which is beneficial to further increase the light transmittance of the sensor lighting area 10.
  • the thickness of the organic flat layer 16 ranges from 1 micrometer to 1.3 micrometers.
  • the thickness of the organic flat layer 16 in this embodiment is reduced relative to the thickness of the exemplary flat layer, thereby further reducing The influence of the organic material on the light transmittance is reduced, which is beneficial to further increase the light transmittance of the lighting area 10 of the sensor.
  • the thickness of the pixel definition layer 29 ranges from 1 ⁇ m to 1.3 ⁇ m; the pixel definition layer 29 and the support layer 4 are made of the same material.
  • the pixel definition layer 29 is also an organic material, specifically an organic photoresist material; on the basis that the distribution density of the second support pillars 12 of the sensor lighting area 10 is reduced, the pixel definition layer 29 of this embodiment is Compared with the thickness of the exemplary pixel definition layer 29, the thickness of ⁇ is reduced, thereby further reducing the influence of organic materials on the light transmittance, which is beneficial to further improving the light transmittance of the sensor lighting area 10.
  • the plurality of pixel openings 30 includes a plurality of first pixel openings 42 located in the display area 9 and a plurality of second pixel openings 43 located in the sensor lighting area 10; wherein, The distribution density of the plurality of second pixel openings 43 is smaller than the distribution density of the plurality of first pixel openings 42. In other words, the pixel density of the sensor lighting area 10 is lower than the pixel density of the display area 9.
  • the pixel density of the sensor lighting area 10 is lower than the pixel density in the display area 9, which can further increase the light transmission
  • the area is thus beneficial to further increase the light transmittance of the sensor lighting area 10.
  • an embodiment of the present application also provides a display device 48, including the display panel 1 in the above-mentioned embodiment, and an optical sensor 49 arranged on the back of the display panel 1; the optical sensor 49 is arranged corresponding to the sensor lighting area 10. .
  • the optical sensor 49 includes a camera, a fingerprint recognition sensor, a face recognition sensor, or other sensors.
  • the display panel 1 has a display area 9 and a sensor lighting area 10.
  • the light-emitting function layer 5 is located in the display area 9 and the sensor lighting area 10, which can realize a full-screen display of the display device 48; on the other hand, the display
  • the distribution density of the second support pillars 12 of the sensor lighting area 10 of the panel 1 is smaller than the distribution density of the first support pillars 11 of the display area 9, and the projection area of the second support pillars 12 in the direction perpendicular to the array substrate 3 is smaller than that of the first support
  • the projection area of the pillar 11 in the direction perpendicular to the array substrate 3 increases the spacing between the plurality of second supporting pillars 12 of the sensor lighting area 10, which is beneficial to increase the light transmission area, and the organic flat layer 16
  • the thickness of the pixel definition layer 29 and the pixel definition layer 29 are reduced, which reduces the influence of organic materials on the light transmittance. Therefore, the display panel 1 provided by the embodiments of the present application can effectively improve the light transmittance

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(1)和显示装置(48),显示面板(1)包括阵列基板(3)以及依次设置在阵列基板(3)上的支撑层(4)和发光功能层(5);显示面板(1)具有显示区(9)和传感器采光区(10);发光功能层(5)位于显示区(9)和传感器采光区(10);支撑层(4)包括位于显示区(9)的多个第一支撑柱(11),以及位于传感器采光区(10)的多个第二支撑柱(12);多个第二支撑柱(12)的分布密度小于多个第一支撑柱(11)的分布密度。

Description

显示面板和显示装置 技术领域
本申请涉及显示面板技术领域,尤其涉及一种显示面板和显示装置。
背景技术
随着科技的不断发展,显示技术领域也一直在持续更新。全面屏,作为一种全新的显示,由于极高的屏占比,给人们带来全新的视觉体验和感官冲击,成为显示厂商竞相追求的目标。
为了实现更大的屏占比,甚至实现全面屏显示,将光学传感器(例如摄像头)放置于显示面板下方的结构设计已成为主流方向;其中,一种方案是将显示面板的传感器采光区的膜层去除,即传感器采光区不显示,另一种方案是将显示面板的传感器采光区的膜层保留且用于显示。由于第二种方案的屏幕显示区域更大,已成为行业内竞相追求的目标;但是,由于显示面板的传感器采光区的膜层较多,光透过率较低,导致光学传感器采光效果较差,影响光学传感器的功能正常使用。因此,目前的主要研究方向是在保证显示面板的传感器采光区用于显示的基础上,提高传感器采光区的光透过率。
技术问题
本申请提供一种显示面板和显示装置,通过减小显示面板的传感器采光区的支撑柱的分布密度和面积,同时减小显示面板中的有机膜层的厚度,可以提高传感器采光区的光透过率。
技术解决方案
第一方面,本申请提供一种显示面板,包括阵列基板,以及依次设置在所述阵列基板上的支撑层和发光功能层;
所述显示面板具有显示区以及设置在所述显示区内的传感器采光区;所述发光功能层位于所述显示区和所述传感器采光区;所述支撑层包括位于所述显示区且相互间隔设置的多个第一支撑柱,以及位于所述传感器采光区且相互间隔设置的多个第二支撑柱;
所述多个第二支撑柱的分布密度小于所述多个第一支撑柱的分布密度。
在本申请所提供的显示面板中,每个所述第二支撑柱在垂直于所述阵列基板方向上的投影面积小于每个所述第一支撑柱在垂直于所述阵列基板方向上的投影面积。
在本申请所提供的显示面板中,所述支撑层的材料包括有机光阻材料。
在本申请所提供的显示面板中,所述阵列基板包括薄膜晶体管阵列以及覆盖在所述薄膜晶体管阵列上的有机平坦层;所述支撑层位于所述有机平坦层远离所述薄膜晶体管阵列的一侧;
所述有机平坦层的厚度范围包括1微米至1.3微米。
在本申请所提供的显示面板中,所述显示面板还包括位于所述有机平坦层和所述支撑层之间的像素定义层;所述像素定义层上设有多个像素开口,所述发光功能层还设置在所述多个像素开口中;
所述像素定义层的厚度范围包括1微米至1.3微米。
在本申请所提供的显示面板中,所述多个像素开口包括位于所述显示区的多个第一像素开口和位于所述传感器采光区的多个第二像素开口;
所述多个第二像素开口的分布密度小于所述多个第一像素开口的分布密度。
在本申请所提供的显示面板中,所述像素定义层和所述支撑层的材料相同。
在本申请所提供的显示面板中,所述像素定义层和所述有机平坦层之间还设有多个阳极,所述多个阳极与所述多个像素开口一一对应设置;
所述发光功能层包括位于每个所述阳极上的空穴注入层,以及依次设置在所述空穴注入层上的空穴传输层、发光层、电子传输层、电子注入层和阴极层;所述空穴注入层、所述空穴传输层、所述电子传输层、所述电子注入层和所述阴极层均延伸至所述像素定义层和所述支撑层上。
在本申请所提供的显示面板中,所述显示面板还包括位于所述阵列基板远离所述支撑层一侧的衬底基板,以及依次位于所述发光功能层远离所述支撑层一侧的封装层、偏光片和保护盖板。
在本申请所提供的显示面板中,所述显示面板还包括位于所述封装层和所述偏光片之间的触控层。
第二方面,本申请还提供一种显示装置,包括显示面板,以及设置在所述显示面板背部的光学传感器;
所述显示面板包括阵列基板,以及依次设置在所述阵列基板上的支撑层和发光功能层;
所述显示面板具有显示区以及设置在所述显示区内的传感器采光区;所述发光功能层位于所述显示区和所述传感器采光区;所述支撑层包括位于所述显示区且相互间隔设置的多个第一支撑柱,以及位于所述传感器采光区且相互间隔设置的多个第二支撑柱;所述多个第二支撑柱的分布密度小于所述多个第一支撑柱的分布密度;
所述光学传感器对应所述传感器采光区设置。
在本申请所提供的显示装置中,所述光学传感器包括摄像头、指纹识别传感器和人脸识别传感器中的任意一种。
在本申请所提供的显示装置中,每个所述第二支撑柱在垂直于所述阵列基板方向上的投影面积小于每个所述第一支撑柱在垂直于所述阵列基板方向上的投影面积。
在本申请所提供的显示装置中,所述支撑层的材料包括有机光阻材料。
在本申请所提供的显示装置中,所述阵列基板包括薄膜晶体管阵列以及覆盖在所述薄膜晶体管阵列上的有机平坦层;所述支撑层位于所述有机平坦层远离所述薄膜晶体管阵列的一侧;
所述有机平坦层的厚度范围包括1微米至1.3微米。
在本申请所提供的显示装置中,所述显示面板还包括位于所述有机平坦层和所述支撑层之间的像素定义层;所述像素定义层上设有多个像素开口,所述发光功能层还设置在所述多个像素开口中;
所述像素定义层的厚度范围包括1微米至1.3微米。
在本申请所提供的显示装置中,所述多个像素开口包括位于所述显示区的多个第一像素开口和位于所述传感器采光区的多个第二像素开口;
所述多个第二像素开口的分布密度小于所述多个第一像素开口的分布密度。
在本申请所提供的显示装置中,所述像素定义层和所述支撑层的材料相同。
在本申请所提供的显示装置中,所述像素定义层和所述有机平坦层之间还设有多个阳极,所述多个阳极与所述多个像素开口一一对应设置;
所述发光功能层包括位于每个所述阳极上的空穴注入层,以及依次设置在所述空穴注入层上的空穴传输层、发光层、电子传输层、电子注入层和阴极层;所述空穴注入层、所述空穴传输层、所述电子传输层、所述电子注入层和所述阴极层均延伸至所述像素定义层和所述支撑层上。
在本申请所提供的显示装置中,所述显示面板还包括位于所述阵列基板远离所述支撑层一侧的衬底基板,以及依次位于所述发光功能层远离所述支撑层一侧的封装层、偏光片和保护盖板。
有益效果
相较于现有技术,本申请提供的显示面板和显示装置中,显示面板具有显示区和传感器采光区,且发光功能层位于显示区和传感器采光区,可以实现全面屏显示;并且,显示面板的支撑层包括位于显示区且相互间隔设置的多个第一支撑柱,以及位于传感器采光区且相互间隔设置的多个第二支撑柱,多个第二支撑柱的分布密度小于多个第一支撑柱的分布密度,使得传感器采光区的多个第二支撑柱之间的间距较大,有利于光线透过,从而有利于提高光透过率。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的一种显示面板的俯视结构示意图。
图2为本申请实施例提供的一种显示面板的截面结构示意图。
图3为本申请实施例提供的部分像素定义层和支撑层的俯视结构示意图。
图4为本申请实施例提供的一种显示面板的部分截面结构示意图。
图5为图4中的薄膜晶体管的放大示意图。
图6为图4中区域A的放大示意图。
图7为本申请实施例提供的一种显示装置的截面结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
为了提高显示面板的传感器采光区的光透过率,示例性的方法是降低传感器采光区的像素密度来提高光透过率。虽然降低像素密度可以减少传感器采光区的金属层面积,在一定程度上可以提高光透过率,但是光透过率仍然达不到比较理想的效果。
目前,显示面板的有机膜层一般采用有机光阻材料制作,通过实验研究发现,对于有机光阻,蓝光和紫光的透过率低于80%,同时,光透过率随有机光阻的厚度增大而降低。因此,仅减小显示面板的传感器采光区的像素密度并没有降低有机膜层对光透过率的影响。
一般,显示面板的有机膜层包括平坦层(Passivation layer,PLN)、像素定义层(Pixel define layer,PDL)和支撑层(PS),且平坦层、像素定义层和支撑层位于显示区和传感器采光区。在一示例性的显示面板中,平坦层、像素定义层和支撑层的厚度均为1.5um;支撑层包括多个间隔设置的支撑柱,显示面板的显示区和传感器采光区中的支撑柱的分布密度一致。本申请实施例通过降低显示面板的传感器采光区的支撑柱的分布密度和面积,以及减少包括平坦层和像素定义层在内的有机膜层的膜厚,从而提高传感器采光区的光透过率。
具体的,结合图1至图6所示,本申请实施例提供了一种显示面板1。如图1所示,显示面板1具有显示区9以及设置在显示区9内的传感器采光区10;如图2所示,显示面板1包括衬底基板2以及依次设置在衬底基板2上的阵列基板3、支撑层4、发光功能层5、封装层6、偏光片7和保护盖板8;发光功能层5位于显示区9和传感器采光区10;如图3所示,支撑层4包括位于显示区9且相互间隔设置的多个第一支撑柱11,以及位于传感器采光区10且相互间隔设置的多个第二支撑柱12,多个第二支撑柱12的分布密度小于多个第一支撑柱11的分布密度。
具体的,支撑层4的材料包括有机光阻材料;支撑层4起到支撑上层膜层的作用,有利于保护阵列基板3。
具体的,衬底基板2可以为单层、双层或者三明治结构,本申请实施例中,以三明治结构为例说明,即衬底基板2包括第一有机层45、无机层46和第二有机层47,如图4所示;第一有机层45和第二有机层47的材料包括聚酰亚胺(PI),无机层46的材料包括氧化硅或者氮化硅。
具体的,如图4所示,阵列基板3包括依次设置在衬底基板2的第二有机层47上的水氧阻隔层13、缓冲层14、薄膜晶体管阵列15以及覆盖在薄膜晶体管阵列15上的有机平坦层16;支撑层4位于有机平坦层16远离薄膜晶体管阵列15的一侧。
具体的,如图4和图5所示,薄膜晶体管阵列15包括多个呈阵列分布的薄膜晶体管17,每个薄膜晶体管17包括设置在缓冲层14上的半导体单元18、覆盖在缓冲层14和半导体单元18上的第一栅极绝缘层19、设置在第一栅极绝缘层19上且对应半导体单元18设置的第一栅极20、覆盖在第一栅极绝缘层19和第一栅极20上的第二栅极绝缘层21、设置在第二栅极绝缘层21上且对应第一栅极20设置的第二栅极22、覆盖在第二栅极绝缘层21和第二栅极22上的层间绝缘层23以及设置在层间绝缘层23上且分别对应半导体单元18两端设置的源极24和漏极25;并且,源极24和漏极25分别通过贯穿层间绝缘层23、第二栅极绝缘层21和第一栅极绝缘层19的第一接触孔26和第二接触孔27与半导体单元18的两端对应连接。多个薄膜晶体管17的第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23为整层设置。
具体的,半导体单元18的两端还可以设置欧姆接触单元28,源极24和漏极25分别通过第一接触孔26和第二接触孔27与半导体单元18的两端的欧姆接触单元28对应连接。
需要说明的是,薄膜晶体管17还可以是单栅结构,本申请对薄膜晶体管17的具体结构不做限制。
具体的,如图4所示,显示面板1还包括位于有机平坦层16和支撑层4之间的像素定义层29;像素定义层29上设有多个像素开口30,发光功能层5还设置在多个像素开口30中。
具体的,如图4所示,像素定义层29和有机平坦层16之间还设有多个阳极31,多个阳极31与多个像素开口30一一对应设置,且每个阳极31通过贯穿平坦层16的过孔与对应的薄膜晶体管17的漏极25电连接;如图6所示,发光功能层5包括位于每个阳极31上的空穴注入层32,以及依次设置在空穴注入层32上的空穴传输层33、发光层34、电子传输层35、电子注入层36和阴极层37;空穴注入层32、空穴传输层33、电子传输层35、电子注入层36和阴极层37均延伸至像素定义层29和支撑层4上。
具体的,在制作发光功能层5时,空穴注入层32、空穴传输层33、电子传输层35、电子注入层36和阴极层37采用整层铺设的方式形成,使得空穴注入层32、空穴传输层33、电子传输层35、电子注入层36和阴极层37覆盖在支撑层4和像素定义层29上;而发光层34仅设置在多个像素开口30中。
具体的,发光层34包括红色发光单元(R)、绿色发光单元(G)和蓝色发光单元(B);每个像素开口30中设有红色发光单元、绿色发光单元和蓝色发光单元中的任意一种。
具体的,封装层6为薄膜封装层;薄膜封装层包括依次设置在发光功能层5上的第一无机封装层、有机封装层和第二无机封装层。
具体的,保护盖板8包括盖板玻璃(Cover Glass,CG)。
具体的,如图2所示,显示面板1还包括位于封装层6和偏光片7之间的触控层44。
具体的,如图1和图4所示,显示面板1还具有弯折区38,弯折区38位于显示区9的一侧;衬底基板2、水氧阻隔层13、缓冲层14、第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23均从显示区9延伸至弯折区38,且在第一接触孔26和第二接触孔27形成之前,在弯折区38形成至少贯穿水氧阻隔层13、缓冲层14、第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23的通孔(例如下文中的第一通孔39和第二通孔40),并在通孔中填充有机缓冲材料41。由于水氧阻隔层13、缓冲层14、第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23的材料均为无机材料,在弯折区38弯折的过程中发生断裂的风险较大,而在弯折区38中部分填充有机缓冲材料41可以起到缓冲作用,避免弯折区38在弯折时膜层发生断裂。
具体的,通孔延伸至衬底基板2的第一有机层45;并且,通孔包括贯穿水氧阻隔层13且延伸至衬底基板2的第一有机层45的第一通孔39,以及位于第一通孔39上且贯穿缓冲层14、第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23的第二通孔40;其中,第二通孔40在垂直于显示面板1方向上的投影面积大于第一通孔39在垂直于显示面板1方向上的投影面积。这样处理的原因是弯折区38朝衬底基板2的背部弯折,弯折时衬底基板2和水氧阻隔层13的弯折半径较小,易受到较大的弯折挤压力,而缓冲层14、第一栅极绝缘层19、第二栅极绝缘层21和层间绝缘层23的弯折半径较大且均为无机材料,易受到较大的弯折拉伸力;第二通孔40比第一通孔39的开孔半径较大,使得第二通孔40较大且填充的有机缓冲材料41更多,第一通孔39较小且填充的有机缓冲材料41较少,既可以避免弯折半径较大的膜层因拉伸导致断裂,也可以避免弯折半径较小的膜层因挤压力导致断裂。
本实施例中,显示面板1具有显示区9和传感器采光区10,且发光功能层5位于显示区9和传感器采光区10,可以实现全面屏显示;并且,显示面板1的支撑层4包括位于显示区9且相互间隔设置的多个第一支撑柱11,以及位于传感器采光区10且相互间隔设置的多个第二支撑柱12,多个第二支撑柱12的分布密度小于多个第一支撑柱11的分布密度,使得传感器采光区10的多个第二支撑柱12之间的间距较大,有利于增大光透过的面积,从而有利于提高传感器采光区10的光透过率。
在一实施例中,如图3和图4所示,每个第二支撑柱12在垂直于阵列基板3方向上的投影面积小于每个第一支撑柱11在垂直于阵列基板3方向上的投影面积。也就是说每个第二支撑柱12的横截面积小于每个第一支撑柱11的横截面积。需要说明的是,横截面为平行于显示面板1的显示面的截面。
本实施例中,在传感器采光区10的第二支撑柱12的分布密度减小的基础上,将传感器采光区10的每个第二支撑柱12的横截面积减小,可以进一步增大任意相邻的两个第二支撑柱12之间的间距,从而进一步增大光透过的面积,有利于进一步提高传感器采光区10的光透过率。
在一实施例中,有机平坦层16的厚度范围包括1微米至1.3微米。本实施例中,在传感器采光区10的第二支撑柱12的分布密度减小的基础上,本实施例的有机平坦层16的厚度相对示例性的平坦层的厚度减小了,从而进一步减小了有机材料对光透过率的影响,有利于进一步提高传感器采光区10的光透过率。
在一实施例中,像素定义层29的厚度范围包括1微米至1.3微米;像素定义层29和支撑层4的材料相同。本实施例中,像素定义层29也为有机材料,具体可以为有机光阻材料;在传感器采光区10的第二支撑柱12的分布密度减小的基础上,本实施例的像素定义层29的厚度相对示例性的像素定义层29的厚度减小了,从而进一步减小了有机材料对光透过率的影响,有利于进一步提高传感器采光区10的光透过率。
在一实施例中,如图3和图4所示,多个像素开口30包括位于显示区9的多个第一像素开口42和位于传感器采光区10的多个第二像素开口43;其中,多个第二像素开口43的分布密度小于多个第一像素开口42的分布密度。也就是说,传感器采光区10的像素密度较显示区9的像素密度小。
本实施例中,在传感器采光区10的第二支撑柱12的分布密度减小的基础上,传感器采光区10的像素密度较显示区9中的像素密度小,可以进一步增大光透过的面积,从而有利于进一步提高传感器采光区10的光透过率。
如图7所示,本申请实施例还提供了一种显示装置48,包括上述实施例中的显示面板1,以及设置在显示面板1背部的光学传感器49;光学传感器49对应传感器采光区10设置。
具体的,光学传感器49包括摄像头、指纹识别传感器、人脸识别传感器或其他传感器。
本实施例中,显示面板1具有显示区9和传感器采光区10,一方面,发光功能层5位于显示区9和传感器采光区10,可以实现显示装置48的全面屏显示;另一方面,显示面板1的传感器采光区10的第二支撑柱12的分布密度小于显示区9的第一支撑柱11的分布密度,第二支撑柱12在垂直于阵列基板3方向上的投影面积小于第一支撑柱11在垂直于阵列基板3方向上的投影面积,使得传感器采光区10的多个第二支撑柱12之间的间距增大了,有利于增大光透过的面积,且有机平坦层16和像素定义层29的厚度均减小了,减小了有机材料对光透过率的影响,因此,本申请实施例提供的显示面板1可以有效的提高传感器采光区10的光透过率,有利于提高光学传感器49的采光效果,从而保证光学传感器49的功能正常使用。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例所提供的一种显示面板和显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种显示面板,包括阵列基板,以及依次设置在所述阵列基板上的支撑层和发光功能层;
    所述显示面板具有显示区以及设置在所述显示区内的传感器采光区;所述发光功能层位于所述显示区和所述传感器采光区;所述支撑层包括位于所述显示区且相互间隔设置的多个第一支撑柱,以及位于所述传感器采光区且相互间隔设置的多个第二支撑柱;
    所述多个第二支撑柱的分布密度小于所述多个第一支撑柱的分布密度。
  2. 如权利要求1所述的显示面板,其中,每个所述第二支撑柱在垂直于所述阵列基板方向上的投影面积小于每个所述第一支撑柱在垂直于所述阵列基板方向上的投影面积。
  3. 如权利要求1所述的显示面板,其中,所述支撑层的材料包括有机光阻材料。
  4. 如权利要求1所述的显示面板,其中,所述阵列基板包括薄膜晶体管阵列以及覆盖在所述薄膜晶体管阵列上的有机平坦层;所述支撑层位于所述有机平坦层远离所述薄膜晶体管阵列的一侧;
    所述有机平坦层的厚度范围包括1微米至1.3微米。
  5. 如权利要求4所述的显示面板,其中,所述显示面板还包括位于所述有机平坦层和所述支撑层之间的像素定义层;所述像素定义层上设有多个像素开口,所述发光功能层还设置在所述多个像素开口中;
    所述像素定义层的厚度范围包括1微米至1.3微米。
  6. 如权利要求5所述的显示面板,其中,所述多个像素开口包括位于所述显示区的多个第一像素开口和位于所述传感器采光区的多个第二像素开口;
    所述多个第二像素开口的分布密度小于所述多个第一像素开口的分布密度。
  7. 如权利要求5所述的显示面板,其中,所述像素定义层和所述支撑层的材料相同。
  8. 如权利要求5所述的显示面板,其中,所述像素定义层和所述有机平坦层之间还设有多个阳极,所述多个阳极与所述多个像素开口一一对应设置;
    所述发光功能层包括位于每个所述阳极上的空穴注入层,以及依次设置在所述空穴注入层上的空穴传输层、发光层、电子传输层、电子注入层和阴极层;所述空穴注入层、所述空穴传输层、所述电子传输层、所述电子注入层和所述阴极层均延伸至所述像素定义层和所述支撑层上。
  9. 如权利要求1所述的显示面板,其中,所述显示面板还包括位于所述阵列基板远离所述支撑层一侧的衬底基板,以及依次位于所述发光功能层远离所述支撑层一侧的封装层、偏光片和保护盖板。
  10. 如权利要求9所述的显示面板,其中,所述显示面板还包括位于所述封装层和所述偏光片之间的触控层。
  11. 一种显示装置,包括如权利要求1所述的显示面板,以及设置在所述显示面板背部的光学传感器;所述光学传感器对应所述传感器采光区设置。
  12. 如权利要求11所述的显示装置,其中,所述光学传感器包括摄像头、指纹识别传感器和人脸识别传感器中的任意一种。
  13. 如权利要求11所述的显示装置,其中,每个所述第二支撑柱在垂直于所述阵列基板方向上的投影面积小于每个所述第一支撑柱在垂直于所述阵列基板方向上的投影面积。
  14. 如权利要求11所述的显示装置,其中,所述支撑层的材料包括有机光阻材料。
  15. 如权利要求11所述的显示装置,其中,所述阵列基板包括薄膜晶体管阵列以及覆盖在所述薄膜晶体管阵列上的有机平坦层;所述支撑层位于所述有机平坦层远离所述薄膜晶体管阵列的一侧;
    所述有机平坦层的厚度范围包括1微米至1.3微米。
  16. 如权利要求15所述的显示装置,其中,所述显示面板还包括位于所述有机平坦层和所述支撑层之间的像素定义层;所述像素定义层上设有多个像素开口,所述发光功能层还设置在所述多个像素开口中;
    所述像素定义层的厚度范围包括1微米至1.3微米。
  17. 如权利要求16所述的显示装置,其中,所述多个像素开口包括位于所述显示区的多个第一像素开口和位于所述传感器采光区的多个第二像素开口;
    所述多个第二像素开口的分布密度小于所述多个第一像素开口的分布密度。
  18. 如权利要求16所述的显示装置,其中,所述像素定义层和所述支撑层的材料相同。
  19. 如权利要求16所述的显示装置,其中,所述像素定义层和所述有机平坦层之间还设有多个阳极,所述多个阳极与所述多个像素开口一一对应设置;
    所述发光功能层包括位于每个所述阳极上的空穴注入层,以及依次设置在所述空穴注入层上的空穴传输层、发光层、电子传输层、电子注入层和阴极层;所述空穴注入层、所述空穴传输层、所述电子传输层、所述电子注入层和所述阴极层均延伸至所述像素定义层和所述支撑层上。
  20. 如权利要求11所述的显示装置,其中,所述显示面板还包括位于所述阵列基板远离所述支撑层一侧的衬底基板,以及依次位于所述发光功能层远离所述支撑层一侧的封装层、偏光片和保护盖板。
PCT/CN2020/094091 2020-05-07 2020-06-03 显示面板和显示装置 WO2021223279A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/963,514 US11515365B2 (en) 2020-05-07 2020-06-03 Display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010376394.6A CN111583818B (zh) 2020-05-07 2020-05-07 一种显示面板和显示装置
CN202010376394.6 2020-05-07

Publications (1)

Publication Number Publication Date
WO2021223279A1 true WO2021223279A1 (zh) 2021-11-11

Family

ID=72112552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094091 WO2021223279A1 (zh) 2020-05-07 2020-06-03 显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN111583818B (zh)
WO (1) WO2021223279A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261033A (zh) * 2020-03-24 2020-06-09 昆山国显光电有限公司 显示面板以及显示装置
CN112086017B (zh) * 2020-09-30 2023-05-12 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制备方法
CN113066846B (zh) * 2021-03-25 2022-10-28 昆山国显光电有限公司 显示面板及电子设备
CN112908199A (zh) * 2021-04-13 2021-06-04 昆山国显光电有限公司 显示面板及显示装置
CN218918892U (zh) * 2022-10-28 2023-04-25 华为技术有限公司 Led显示面板、显示屏和电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140160053A1 (en) * 2009-09-02 2014-06-12 Pixart Imaging Inc. Gesture recognition method and interactive system using the same
CN109285472A (zh) * 2018-11-21 2019-01-29 Oppo广东移动通信有限公司 电子设备
CN109378316A (zh) * 2018-09-30 2019-02-22 厦门天马微电子有限公司 一种显示面板、显示装置及显示面板的制作方法
CN110047852A (zh) * 2019-04-29 2019-07-23 武汉天马微电子有限公司 显示面板和显示装置
CN110047846A (zh) * 2019-03-28 2019-07-23 武汉华星光电半导体显示技术有限公司 显示面板、显示面板的制作方法和智能设备
CN110265484A (zh) * 2019-06-26 2019-09-20 京东方科技集团股份有限公司 薄膜晶体管、阵列基板、显示装置
CN110718565A (zh) * 2019-09-05 2020-01-21 武汉华星光电技术有限公司 一种显示面板及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180020193A1 (en) * 2016-07-18 2018-01-18 PogoTec, Inc. Wearable band
CN209460748U (zh) * 2017-08-17 2019-10-01 深圳信炜科技有限公司 显示模组及电子设备
CN109119446B (zh) * 2018-08-28 2020-12-11 武汉天马微电子有限公司 一种显示面板及显示装置
CN209327746U (zh) * 2018-11-29 2019-08-30 Oppo广东移动通信有限公司 显示屏组件及电子设备
CN109817825A (zh) * 2019-01-22 2019-05-28 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制作方法、显示装置
CN110045533B (zh) * 2019-04-30 2021-09-24 厦门天马微电子有限公司 一种显示基板、显示面板和显示装置
CN110873985A (zh) * 2019-11-29 2020-03-10 维沃移动通信有限公司 显示模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140160053A1 (en) * 2009-09-02 2014-06-12 Pixart Imaging Inc. Gesture recognition method and interactive system using the same
CN109378316A (zh) * 2018-09-30 2019-02-22 厦门天马微电子有限公司 一种显示面板、显示装置及显示面板的制作方法
CN109285472A (zh) * 2018-11-21 2019-01-29 Oppo广东移动通信有限公司 电子设备
CN110047846A (zh) * 2019-03-28 2019-07-23 武汉华星光电半导体显示技术有限公司 显示面板、显示面板的制作方法和智能设备
CN110047852A (zh) * 2019-04-29 2019-07-23 武汉天马微电子有限公司 显示面板和显示装置
CN110265484A (zh) * 2019-06-26 2019-09-20 京东方科技集团股份有限公司 薄膜晶体管、阵列基板、显示装置
CN110718565A (zh) * 2019-09-05 2020-01-21 武汉华星光电技术有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN111583818A (zh) 2020-08-25
CN111583818B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021223279A1 (zh) 显示面板和显示装置
WO2019148909A1 (zh) 柔性显示面板及其制备方法、显示装置
US11217642B2 (en) Display panel, manufacturing method thereof, and display device
US11127804B2 (en) Display panel, method for manufacturing the same and display device
US9184409B2 (en) Flexible organic light emitting display and method in an in-cell structure having a touch electrode array for manufacturing the same
WO2016179875A1 (zh) Amoled背板结构及其制作方法
WO2020042235A1 (zh) 柔性oled显示面板
WO2020113794A1 (zh) 显示面板及其制造方法
US11081663B2 (en) Organic electroluminescent display panel with auxiliary electrodes, method for manufacturing the same, and display device using the same
WO2022052242A1 (zh) 一种阵列基板、显示面板
WO2016165264A1 (zh) 像素单元及其制备方法、阵列基板和显示装置
WO2020192024A1 (zh) 显示面板及显示装置
WO2021103204A1 (zh) 显示面板及其制备方法、显示装置
WO2021217840A1 (zh) 显示面板及显示面板的制作方法
WO2019029208A1 (zh) 有机发光二极管显示面板及其制作方法
WO2020037757A1 (zh) 柔性显示装置及其制造方法
US11119595B2 (en) Touch display panel and manufacturing method for reducing interference with touch signal
WO2021027081A1 (zh) 显示面板及显示装置
WO2020062410A1 (zh) 有机发光二极管显示器及其制作方法
CN113193024A (zh) 显示面板及其制备方法、显示装置
WO2022027779A1 (zh) 柔性显示面板及可卷曲显示装置
WO2021036411A1 (zh) 显示面板、显示装置及显示面板的制备方法
CN110752220B (zh) 一种显示基板及其制备方法和显示面板
US9231041B2 (en) Organic light emitting diode display device and method of manufacturing the same
JP2014026906A (ja) 表示装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934472

Country of ref document: EP

Kind code of ref document: A1