WO2021218817A1 - 一种太阳能电池金属电极及其制备方法及掩模版 - Google Patents

一种太阳能电池金属电极及其制备方法及掩模版 Download PDF

Info

Publication number
WO2021218817A1
WO2021218817A1 PCT/CN2021/089331 CN2021089331W WO2021218817A1 WO 2021218817 A1 WO2021218817 A1 WO 2021218817A1 CN 2021089331 W CN2021089331 W CN 2021089331W WO 2021218817 A1 WO2021218817 A1 WO 2021218817A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
solar cell
electrode
polymer film
film
Prior art date
Application number
PCT/CN2021/089331
Other languages
English (en)
French (fr)
Inventor
侯良龚
Original Assignee
蔡永安
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔡永安 filed Critical 蔡永安
Priority to JP2022562499A priority Critical patent/JP2023521863A/ja
Priority to EP21797038.3A priority patent/EP4145538A1/en
Priority to US17/918,001 priority patent/US20230142082A1/en
Priority to AU2021262267A priority patent/AU2021262267A1/en
Priority to BR112022019815A priority patent/BR112022019815A2/pt
Publication of WO2021218817A1 publication Critical patent/WO2021218817A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a metal electrode of a solar cell, a preparation method thereof, and a mask used in the preparation method.
  • Solar cells can convert solar energy into electricity and are an important source of clean energy.
  • the electrode is a key component of the solar cell, mainly an array grid structure with a line width of less than 100 ⁇ m.
  • the preparation of solar cell electrodes generally adopts the screen printing silver paste process, and the obtained electrode line width is more than 30 ⁇ m. Since the main component of silver paste is silver, the cost is relatively high. At the same time, the conductivity of silver paste is much lower than that of metallic silver. In order to achieve a certain conductivity, relatively thick electrode grid lines are required, which requires more raw materials. Increased cost; and when the electrode is thicker, more sunlight will be blocked. Moreover, when printing thin-film solar battery electrodes, the printing area is 0.72 square meters or more, the yield is low, and the requirements for equipment and technology are high.
  • An object of the present invention is to provide a novel method for preparing electrodes.
  • Another object of the present invention is to provide a prepared metal electrode.
  • Another object of the present invention is to provide a solar cell including the metal electrode.
  • the present invention provides a method for preparing a metal electrode of a solar cell, the method comprising:
  • a mask is prepared by laser etching the polymer film
  • the reticle is fixed on the substrate, and a metal film is plated on the reticle by a physical vapor deposition (PVD) method to grow a metal electrode or electrode seed layer of a desired shape on the substrate.
  • PVD physical vapor deposition
  • the material of the polymer film is polyethylene terephthalate (PET), polyolefin film (PO), polyimide Amine (PI), polyvinyl chloride (PVC), or other polymer films with a thickness that meets the requirements.
  • PET polyethylene terephthalate
  • PO polyolefin film
  • PI polyimide Amine
  • PVC polyvinyl chloride
  • the polymer film can be a film without adhesive properties, or a polymer film with adhesive properties, which is commonly referred to as an adhesive tape.
  • the thickness of the polymer film is 1 ⁇ m-500 ⁇ m.
  • the process of preparing the reticle includes using an ultrafast laser (laser with a pulse width of ps or even fs) to prepare the required film on the polymer film. Slits in the shape of the electrodes.
  • the slit width of the laser-etched polymer film (that is, the width of the prepared electrode line) is 1 ⁇ m-1000 ⁇ m.
  • the slit width is preferably 1 ⁇ m-100 ⁇ m, and more preferably 1 ⁇ m-20 ⁇ m; when preparing a crystalline silicon solar cell main grid, the slit width is preferably 100 ⁇ m-500 ⁇ m.
  • the specific width of the slit can also be specifically determined according to the required electrode shape. The length of the slit is determined by the design of the battery electrode.
  • the substrate in the method for preparing a metal electrode of a solar cell of the present invention, may be a solar cell sheet.
  • the reticle is fixed on the solar cell, and the metal film is plated on the reticle by the PVD method to directly grow the metal electrode of the required shape on the solar cell.
  • the substrate can also be other membranes (here, the other membranes refer to another membrane that is different from the reticle).
  • the electrode can be grown on a plastic film (with a complete plane, such as a transparent PET film), and then the film with the electrode can be directly turned over and buttoned on the solar cell to achieve the same production of solar cell electrodes. Purpose.
  • the method of fixing the polymer film mask on the substrate includes the use of double-sided tape, glue, fixed card slot, and One or more combinations. If the reticle adopts adhesive tape, the fixing method can be directly pasted.
  • the solar cell sheet includes one or more PN junctions that have been prepared and can generate photovoltaic effects.
  • the PVD method in the method for preparing the metal electrode of the solar cell of the present invention, when the metal film is plated on the mask by the physical vapor deposition method, the PVD method includes a single PVD process or a combination of several PVD processes.
  • the metal used in the method for preparing the metal electrode of the solar cell of the present invention, includes a single metal, or an alloy, or a superposition of multiple metals, or a superposition of a metal and an alloy, or a superposition of an alloy and an alloy. .
  • a non-metallic film in the method for preparing the metal electrode of the solar cell of the present invention, can be deposited in advance before the metal is deposited by PVD as a buffer layer, or the buffer layer may not be added.
  • a non-metallic film can be deposited in advance before the metal is deposited by PVD as a buffer layer, or the buffer layer may not be added.
  • the metal electrode of the desired shape ie, the thin line substantially consistent with the shape of the reticle slit
  • the metal electrode of the desired shape can be grown on the solar cell sheet, and then removed. Reticle.
  • the preparation method of the present invention can directly prepare electrodes that meet the conductivity requirements for use, or prepare electrodes that have not yet reached the conductivity requirements as the electrode seed layer, and then continue to prepare complete electrodes through non-vacuum processes such as electroplating, that is, a cheaper process. .
  • the present invention also provides a metal electrode prepared according to the above method.
  • the electrode prepared by the invention can be used directly or as an electrode seed layer.
  • the present invention also provides a solar cell, which includes the metal electrode prepared according to the above method.
  • the present invention also provides a method for preparing a solar cell, which includes the process of preparing a metal electrode according to the method for preparing a metal electrode for a solar cell of the present invention.
  • the present invention also provides a mask, which is prepared by laser etching the polymer film according to the required electrode shape.
  • the invention uses a cheap polymer film as a mask, and laser scribing can be used to prepare a mask with finer (for example, 1-20 ⁇ m arbitrary width) and accurately controllable slits for preparing electrodes.
  • the present invention provides a mask, which is a slit with an electrode shape on a polymer film. That is, the reticle of the present invention is a polymer film in which electrode-shaped slits are hollowed out.
  • the polymer film in the reticle of the present invention, may have one or more of the following characteristics:
  • the material of the polymer film is one or more of polyethylene terephthalate (PET), polyolefin film (PO), polyimide (PI), and polyvinyl chloride (PVC); and / or
  • the polymer film used as the reticle has adhesive properties, and the adhesive properties can be the properties of the polymer film itself, or an adhesive layer added to the surface of the polymer film.
  • the surface of the polymer film tape can be used to stick and fix the polymer film mask on the substrate.
  • the slit width is 1 ⁇ m-1000 ⁇ m.
  • the slit width is 1 ⁇ m-100 ⁇ m, preferably 1 ⁇ m-20 ⁇ m; the mask is used to prepare auxiliary grids or common grid lines of crystalline silicon solar cells.
  • the slit width is 100 ⁇ m-500 ⁇ m, and the reticle is used to prepare the main grid of a crystalline silicon solar cell.
  • the thickness of the reticle of the present invention is the thickness of the polymer film, which may be 1 ⁇ m to 500 ⁇ m.
  • the present invention provides a method for preparing a metal electrode of a solar cell, which has the following characteristics:
  • the prepared electrode has high conductivity: the conductivity of the metal used is higher than that of silver paste;
  • the slits prepared by laser can be as thin as 1-20 ⁇ m or even 1-10 ⁇ m, which is thinner than the existing printing process (30 ⁇ m-80 ⁇ m), with smaller shading, higher efficiency, and precise controllable.
  • Figure 1 is a schematic diagram of the polymer film mask of Example 1.
  • Fig. 2 is a schematic diagram of fixing the reticle on the solar cell sheet in Example 1.
  • FIG. 3 is a schematic diagram of the polymer film mask of Example 2.
  • FIG. 4 is a schematic diagram of fixing the reticle on the solar cell sheet in Example 2.
  • FIG. 4 is a schematic diagram of fixing the reticle on the solar cell sheet in Example 2.
  • FIG. 5 is a schematic diagram of the polymer film mask of Example 3.
  • FIG. 5 is a schematic diagram of the polymer film mask of Example 3.
  • FIG. 6 is a schematic diagram of fixing the reticle on the solar cell sheet in Example 3.
  • FIG. 6 is a schematic diagram of fixing the reticle on the solar cell sheet in Example 3.
  • FIG. 7 is a schematic diagram of Example 3 integrating the electrode prepared by the present invention with the solar cell.
  • FIG. 8 is a schematic diagram of the polymer film mask of Example 4.
  • FIG. 8 is a schematic diagram of the polymer film mask of Example 4.
  • FIG. 9 is a schematic diagram of fixing the reticle on the solar cell sheet in Example 4.
  • FIG. 9 is a schematic diagram of fixing the reticle on the solar cell sheet in Example 4.
  • FIG. 10 is a schematic diagram of Example 4 integrating the electrode prepared by the present invention with the solar cell.
  • This embodiment provides a method for preparing an auxiliary grid electrode of a HIT solar cell, which includes:
  • step (2) Fix the reticle 10 with double-sided tape on the HIT solar cell sheet 20 where the transparent conductive film has been prepared.
  • the double-sided tape must avoid the slit described in step (1), as shown in FIG. 2.
  • PVD physical vapor deposition
  • Electrode grid lines with a pitch of 2 mm, a line width of 20 ⁇ m, and a height of 8 ⁇ m.
  • the electrode cost of this embodiment is significantly lower than that of the screen printing silver paste process.
  • the 20 ⁇ m grid line is narrower than the prior art grid line, which can reduce solar shading and improve the conversion efficiency of solar cells.
  • the amount of auxiliary grid silver paste is 92-125 mg
  • the unit price of silver paste is 4800-5500 yuan/kg
  • the cost is about 0.5 yuan/piece
  • the auxiliary grid is 20 ⁇ m
  • the spacing is 2.0 mm
  • the shading rate is 1.0%.
  • the present invention can reduce the shading by 57% compared with the prior art, and at the same time, reduce the cost by 60%.
  • This embodiment provides a method for preparing a HIT solar cell electrode, which includes:
  • PVD physical vapor deposition
  • auxiliary grid lines with a pitch of 2 mm, a line width of 20 ⁇ m, and a height of 8 ⁇ m can be obtained, as well as a main grid line with a width of 300 um and a height of 8 um for every 33 mm.
  • the electrode cost of this embodiment is significantly lower than the screen printing silver paste process.
  • the 20 ⁇ m auxiliary grid line and the 300 ⁇ m main grid line are narrower than the prior art grid lines, which can reduce solar shading and improve the conversion of solar cells. efficient.
  • the amount of silver paste for the auxiliary grid is 165-180 mg
  • the unit price of silver paste is 4800-5500 yuan/kg
  • the cost is about 0.85 yuan/piece
  • the technology of the present invention 35 ⁇ m thick PO film cost: 0.18 yuan/piece, Al consumption (including loss) 2.8 grams, 1.7 yuan/kg, 0.05 yuan/piece, laser 0.01 yuan/piece, totaling 0.26 yuan/piece.
  • the prior art process (5BB): the auxiliary grid is 40 ⁇ m, the pitch is 1.7 mm, the main grid is 0.7 mm, and the pitch is 33 mm. Shading rate of 4.5%;
  • the shading rate is 1.9%.
  • the present invention can reduce the shading by 58% compared with the prior art, and at the same time, reduce the cost by 70%.
  • This embodiment provides a method for preparing an electrode of a thin film solar cell (cadmium telluride solar cell, copper indium gallium selenium solar cell, perovskite solar cell) electrode, which includes:
  • PVD physical vapor deposition
  • the electrode 70 grown on the PET film 60 obtained in step (4) is attached to the thin-film solar cell 80 coated with the transparent conductive film layer, with the electrode 70 facing the solar cell.
  • the electrode preparation is completed. As shown in Figure 7. After subsequent lamination and other processes, the electrode will be attached to the surface of the battery.
  • the cost is lower than the screen printing silver paste process.
  • Example 4 First, make the electrode seed layer, and then use the non-vacuum process to complete the electrode preparation
  • This embodiment provides a method for forming an electrode seed layer first, and then using a non-vacuum process to complete the electrode preparation, which includes:
  • PVD physical vapor deposition
  • an electrode seed layer with a pitch of 2 mm, a line width of 30 ⁇ m, and a height of 200 nm on the PO film can be obtained.
  • step (4) Continue to coat the electrode seed layer obtained in step (4) to a height of 3 ⁇ m by electroplating.
  • the electrode 110 grown on the PO film 100 obtained in step (5) is attached to the thin-film solar cell or HIT cell 120 coated with the transparent conductive film, with the electrode 110 facing the solar cell.
  • the electrode preparation is completed. As shown in Figure 10. After subsequent lamination and other processes, the electrode will be attached to the surface of the battery.
  • Non-vacuum electroplating process is a low-temperature process, which can quickly complete electrode growth
  • the cost is lower than the screen printing silver paste process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

提供了一种太阳能电池金属电极及其制备方法及掩模版。本发明的太阳能电池金属电极的制备方法包括:依据所需电极形状采用激光刻蚀高分子薄膜制备掩模版;将掩模版固定在基板上,采用物理气相沉积方法在掩模版上镀金属膜,以在基板上生长出所需形状的金属电极或者电极种子层。本发明的方法制作成本低,制备的电极导电率高、同时遮光面积小、光电转化率高。

Description

一种太阳能电池金属电极及其制备方法及掩模版 技术领域
本发明是关于一种太阳能电池金属电极及其制备方法,以及所述制备方法中所用到的掩模版。
背景技术
太阳能电池能够将太阳能转化为电能,是清洁能源的重要来源。电极是太阳能电池的关键组件,主要为线宽100μm以下的阵列格栅结构。
目前太阳能电池电极的制备普遍采用丝网印刷银浆工艺,得到的电极线宽在30μm以上。由于银浆主要成分是银,成本较高,与此同时,银浆导电率比金属银低很多,为了实现一定的导电率,需要相对比较粗的电极栅线,从而需要较多的原材料,进一步增加了成本;而且电极较粗时,会导致更多的太阳光被遮挡。而且,在印刷薄膜太阳电池电极时,印刷面积0.72平方米或以上,良率低,对设备、工艺的要求高。
发明内容
本发明的一个目的在于提供一种新颖的制备电极的方法。
本发明的另一目的在于提供一种所制备得到的金属电极。
本发明的另一目的在于提供包含所述金属电极的太阳能电池。
一方面,本发明提供了一种太阳能电池金属电极的制备方法,该方法包括:
依据所需电极形状采用激光刻蚀高分子薄膜制备掩模版;
将掩模版固定在基板上,采用物理气相沉积(PVD)方法在掩模版上镀金属膜,以在基板上生长出所需形状的金属电极或者电极种子层。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,所述高分子薄膜的材质为聚对苯二甲酸乙二酯(PET)、聚烯烃薄膜(PO)、聚酰亚胺(PI)、聚氯乙烯(PVC),或者其他厚度满足要求的高分子薄膜。高分子薄膜可以是不带粘贴性能的薄膜,也可以是带粘贴性能的高分子薄膜,也即通常所说的胶带。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,所述高分子薄膜的厚度为1μm-500μm。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,制备掩模版的过程包括采用超快激光(脉冲宽度在ps甚至fs量级的激光)在高分子薄膜上制备出需要的电极形状的狭缝。采用本发明的方法,能够制作加工精细的高分子薄膜掩模版。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,激光刻蚀高分子薄膜的狭缝宽度(即所制备出的电极线的宽度)1μm-1000μm。具体地,制备晶硅太阳能电池辅栅或者普通栅线时,狭缝宽度优选为1μm-100μm,进一步优选为1μm-20μm;制备晶硅太阳能电池主栅时,狭缝宽度优选为100μm-500μm。狭缝具体宽度也可具体根据需要的电极形状而定。狭缝长度根据电池电极设计决定。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,所述基板可以是太阳能电池片。将掩模版固定在太阳能电池片上,采用PVD方法在掩模版上镀金属膜,以直接在太阳能电池片上生长出所需形状的金属电极。所述基板也可以是其他膜板(这里的其他膜板是指不同于掩模版的另一块膜板),在基板上镀金属电极后,将其转移到太阳能电池中作为太阳能电极。例如,可以是在一个塑料薄膜(具有完整平面即可,例如透明的PET薄膜)上生长出来电极,然后将带有电极的薄膜直接翻过来扣在太阳电池上,同样实现制作出太阳能电池电极的目的。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,将高分子薄膜掩模版固定在基板上的方法,包括采用双面胶、胶水、固定的卡槽、载片台中的一种或多种的组合方式。如果掩模版采用的是带粘贴性能的胶带时,则固定方法可为直接粘贴。
本发明中,所述太阳能电池片包括已经制备完一个或多个PN结并能产生光生伏特效应的器件统称。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,采用物理气相沉积方法在掩模版上镀金属膜时,PVD方法包括单一的PVD工艺或者几种PVD工艺结合的方法。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,所采用的金属包括单一金属、或者合金、或者多种金属的叠加、或金属与合金叠加、或者合金与合金的叠加。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,可选 择性地,可在PVD沉积金属前,预先沉积一层非金属膜,做为缓冲层,亦可不加该缓冲层。
根据本发明的具体实施方案,本发明的太阳能电池金属电极的制备方法中,可在太阳能电池片上生长出所需形状(即与掩模版狭缝形状基本一致的细线)的金属电极后,去除掩模版。
本发明的制备方法,可直接制备满足导电要求的电极使用,也可制备尚未达到导电要求的电极作为电极种子层,后续通过电镀等非真空工艺,也即更加便宜的工艺,继续制备完整的电极。
另一方面,本发明还提供了按照上述方法所制备得到的金属电极。本发明所制备的电极,可直接使用,也可作为电极种子层。
另一方面,本发明还提供了一种太阳能电池,其包括按照上述方法制备的金属电极。
另一方面,本发明还提供了一种太阳能电池的制备方法,其包括按照本发明所述太阳能电池金属电极的制备方法制备金属电极的过程。
另一方面,本发明还提供了一种掩模版,其是依据所需电极形状采用激光刻蚀高分子薄膜制备得到的。
本发明采用便宜的高分子薄膜做掩模版,用激光划线可以制得具有较细(例如1-20μm任意宽度)且精确可控的狭缝的掩模版用于制备电极。
根据本发明的一些具体实施方案,本发明提供了一种掩模版,其为高分子薄膜上具有电极形状的狭缝。即,本发明的掩模版是一种镂空出电极形状的狭缝的高分子薄膜。
在本发明的一些实施方案中,本发明的掩模版中,所述高分子薄膜可以具有以下特征中的一种或多种:
(1)高分子薄膜的材质为聚对苯二甲酸乙二酯(PET)、聚烯烃薄膜(PO)、聚酰亚胺(PI)、聚氯乙烯(PVC)中的一种或多种;和/或
(2)高分子薄膜带粘贴性能。
在本发明的一些实施方案中,作为掩模版的高分子薄膜是带粘贴性能的,其粘贴性能可以是高分子薄膜本身的性能,也可以是在高分子薄膜的表面附加粘贴层。高分子薄膜带粘贴性能的表面可用于将高分子薄膜掩模版粘贴固定在基板上。
在本发明的一些实施方案中,本发明的掩模版中,所述狭缝宽度为1μm-1000μm。
在本发明的一些实施方案中,本发明的掩模版中,所述狭缝宽度为1μm-100μm,优选为1μm-20μm;该掩模版是用于制备晶硅太阳能电池辅栅或者普通栅线。
在本发明的一些实施方案中,本发明的掩模版中,所述狭缝宽度为100μm-500μm,该掩模版是用于制备晶硅太阳能电池主栅。
在本发明的一些实施方案中,本发明的掩模版,其厚度即为高分子薄膜的厚度,可以为1μm-500μm。
综上所述,本发明提供了一种太阳能电池金属电极的制备方法,其具有以下特点:
1、制作成本低:本发明所用的掩模版、激光制备工艺以及PVD工艺成本均较低;
2、制备得到的电极导电率高:所用金属的导电率高于银浆;
3、遮光面积更小:激光制备的狭缝可以细至1-20μm甚至1-10μm,比现有印刷工艺(30μm-80μm)更细,遮光更小,效率更高,且精确可控。
附图说明
图1为实施例1高分子薄膜掩模版示意图。
图2为实施例1将掩模版固定在太阳能电池片上的示意图。
图3为实施例2高分子薄膜掩模版示意图。
图4为实施例2将掩模版固定在太阳能电池片上的示意图。
图5为实施例3高分子薄膜掩模版示意图。
图6为实施例3将掩模版固定在太阳能电池片上的示意图。
图7为实施例3将本发明制备的电极与太阳能电池集成示意图。
图8为实施例4高分子薄膜掩模版示意图。
图9为实施例4将掩模版固定在太阳能电池片上的示意图。
图10为实施例4将本发明制备的电极与太阳能电池集成示意图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1、HIT太阳能电池电极辅栅的制备
本实施例提供了一种HIT太阳能电池辅栅电极的制备方法,其包括:
(1)用激光制备高分子薄膜掩模版:用激光在30μm厚的PET或PI塑料薄膜上切割出间隔2mm、宽度为20μm的狭缝,得到PET或PI薄膜掩模版10,如图1所示。狭缝形状根据需要决定。
(2)将掩模版10用双面胶固定在已制备完透明导电膜的HIT太阳能电池片20上方,双面胶须避开步骤(1)中所述的狭缝,如图2所示。
(3)采用物理气相沉积(PVD)的方法镀膜,制备金属电极:先用磁控溅射的方法镀20nm厚的镍,然后用蒸发的方法镀8μm厚的铝。
(4)剥离PET或PI薄膜即可得到间距2mm、线宽20μm、高度8μm的电极栅线。
(5)在电池片另一面重复步骤(1)-(4),即得到另一面的电极栅线。
此实施例的电极成本明显低于丝网印刷银浆工艺,与此同时,20μm的栅线比现有技术栅线窄,可以减少太阳光遮挡从而提高太阳电池转化效率。
以166mm硅片为例,对比现有技术电极工艺与本发明所制备的电极如下:
(1)成本对比:
现有技术工艺:辅栅银浆用量92-125毫克,银浆单价4800-5500元/千克,成本约为0.5元/片;
本发明技术:30μm厚PET膜成本:0.1元/片(30μm厚PI膜成本:0.12元/片,注:PI耐高温,形变小,可重复使用,按5次计算),Al用量(含损耗)2.8克,1.7元/千克,0.05元/片,胶水、激光合计0.03元/片,总合计0.18元/片(或者用PI膜0.20元/片)。
(2)遮光面积对比:
现有技术工艺:辅栅40μm,间距1.7mm,遮光率2.35%;
本发明技术:辅栅20μm,间距2.0mm,遮光率1.0%。
由上述比较可知,本发明可以实现比现有技术遮光减少57%,同时,成本减少60%。
实施例2、HIT太阳能电池电极(辅栅+主栅)的制备
本实施例提供了一种HIT太阳能电池电极的制备方法,其包括:
(1)用激光制备高分子薄膜掩模版:用激光在35μm厚自带粘性的PO塑料薄膜上切割出电极所需要的狭缝,图案见图3,得到PO薄膜掩模版30,如图3所示。
(2)将掩模版30粘贴在已制备完透明导电膜的HIT太阳能电池片40上,如图4所示。
(3)采用物理气相沉积(PVD)的方法镀膜,制备金属电极:先用磁控溅射的方法镀20nm厚的镍,然后用蒸发的方法镀8μm厚的铝。
(4)剥离PO薄膜即可得到间距2mm、线宽20μm、高度8μm的辅栅线,以及,每33mm一条宽300um、高8um的主栅线。
(5)在电池片另一面重复步骤(1)-(4),即得到另一面的电极栅线。
此实施例的电极成本明显低于丝网印刷银浆工艺,与此同时,20μm的辅栅线、300μm的主栅线均比现有技术栅线窄,可以减少太阳光遮挡从而提高太阳电池转化效率。
以166mm硅片为例,对比现有技术电极工艺与本发明所制备的电极如下:
(1)成本对比:
现有技术工艺:辅栅银浆用量165-180毫克,银浆单价4800-5500元/千克,成本约为0.85元/片;
本发明技术:35μm厚PO膜成本:0.18元/片,Al用量(含损耗)2.8克,1.7元/千克,0.05元/片,激光0.01元/片,总合计0.26元/片。
(2)遮光面积对比:
现有技术工艺(5BB):辅栅40μm,间距1.7mm,主栅0.7mm,间距33mm。遮光率4.5%;
本发明技术:辅栅20μm,间距2.0mm,主栅0.3mm,间距33mm。遮光率1.9%。
由上述比较可知,本发明可以实现比现有技术遮光减少58%,同时,成本减少70%。
实施例3、薄膜太阳能电池电极的制备
本实施例提供了一种薄膜太阳能电池(碲化镉太阳能电池,铜铟镓硒太阳能电池,钙钛矿太阳能电池)电极的制备方法,其包括:
(1)用激光制备高分子薄膜掩模版:用激光在65μm厚自带粘性的PVC塑料薄膜上切割出间隔4mm、宽度为80μm狭缝,狭缝图案见图5,得到PVC薄膜掩模版 50,如图5所示。
(2)将掩模版50粘贴在100μm厚的PET薄膜60上,如图6所示。
(3)采用物理气相沉积(PVD)的方法镀膜,制备金属电极:先用用磁控溅射的方法镀20nm厚的镍,然后用蒸发的方法镀2μm厚的铜,然后再用磁控溅射的方法镀20nm厚的镍。
(4)剥离PVC薄膜即可得到长在PET膜上的间距4mm、线宽80μm、高度2μm的电极。
(5)将第(4)步得到的生长在PET薄膜60上的电极70贴在镀完透明导电膜层的薄膜太阳能电池80上,电极70一侧面向太阳能电池。即完成电极制备。如图7所示。经过后续层压等工艺,电极会贴在电池表面。
此实施例的电极有如下优势:
a.将电极生长在PET薄膜,然后倒贴于电池表面,可减少因电极工艺不良导致的整个组件的报废,尤其适用于薄膜太阳电池的电极的制备。相比晶硅太阳电池长宽均为166mm的尺寸,薄膜太阳电池需要在尺寸为600mm宽1200mm或者更大的衬底上制备电极,尺寸越大,制备的良率越低。
b.成本低于丝网印刷银浆工艺。
实施例4、先做电极种子层,后用非真空工艺完成电极制备
本实施例提供了一种先做电极种子层,后用非真空工艺完成电极制备的方法,其包括:
(1)用激光制备高分子薄膜掩模版:用激光在65μm厚自带粘性的PVC塑料薄膜上切割出间隔2mm、宽度为30μm狭缝,狭缝图案见图8,得到PVC薄膜掩模版90,如图8所示。
(2)将掩模版90粘贴在100μm厚的PO薄膜100上,如图9所示。
(3)采用物理气相沉积(PVD)的方法镀膜,制备金属电极种子层:用磁控溅射的方法镀200nm厚的铜。
(4)剥离PVC薄膜即可得到长在PO膜上的间距2mm、线宽30μm、高度200nm的电极种子层。
(5)用电镀工艺将第(4)步得到的电极种子层上继续镀膜至3μm高度。
(6)将第(5)步得到的生长在PO薄膜100上的电极110贴在镀完透明导电膜 层的薄膜太阳能电池或者HIT电池120上,电极110一侧面向太阳能电池。即完成电极制备。如图10所示。经过后续层压等工艺,电极会贴在电池表面。
此实施例的电极有如下优势:
a.非真空电镀工艺是低温工艺,可以快速完成电极生长;
b.成本低于丝网印刷银浆工艺。
以上所述仅为本发明的较佳实施例而已,亦可用于其它类型太阳电池,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种太阳能电池金属电极的制备方法,该方法包括:
    依据所需电极形状采用激光刻蚀高分子薄膜制备掩模版;
    将掩模版固定在基板上,采用物理气相沉积方法在掩模版上镀金属膜,以在基板上生长出所需形状的金属电极或者电极种子层。
  2. 根据权利要求1所述的制备方法,其中,所述高分子薄膜的厚度为1μm-500μm。
  3. 根据权利要求1所述的制备方法,其中,制备掩模版的过程包括采用超快激光在高分子薄膜上制备出需要的电极形状的狭缝。
  4. 根据权利要求3所述的制备方法,其中,所述狭缝宽度为1μm-1000μm;
    具体地,制备晶硅太阳能电池辅栅或者普通栅线时,狭缝宽度优选为1μm-100μm,进一步优选为1μm-20μm;制备晶硅太阳能电池主栅时,狭缝宽度优选为100μm-500μm。
  5. 根据权利要求1所述的制备方法,其中,所述基板为太阳能电池片或其他膜板。
  6. 根据权利要求1所述的制备方法,其中,将掩模版固定在基板上的方法,包括采用双面胶、胶水、固定的卡槽、载片台中的一种或多种的组合方式。
  7. 根据权利要求1所述的制备方法,其中,所采用的金属包括单一金属、或者合金、或者多种金属的叠加、或金属与合金叠加、或者合金与合金的叠加;
    可选择性地,在物理气相沉积方法沉积金属前,还包括预先沉积一层非金属膜,作为缓冲层。
  8. 根据权利要求1所述的制备方法,该方法还包括在太阳能电池片上生长出所需形状的金属电极后,去除掩模版。
  9. 一种太阳能电池的制备方法,其包括按照权利要求1-8任一项所述制备方法制备金属电极的过程。
  10. 一种掩模版,其是依据所需电极形状采用激光刻蚀高分子薄膜制备得到的。
  11. 一种掩模版,其为高分子薄膜上具有电极形状的狭缝,所述高分子薄膜具有以下特征中的一种或多种:
    (1)高分子薄膜的材质为聚对苯二甲酸乙二酯(PET)、聚烯烃薄膜(PO)、聚酰亚胺(PI)、聚氯乙烯(PVC)中的一种或多种;和/或
    (2)高分子薄膜带粘贴性能。
  12. 根据权利要求11所述的掩模版,其中,所述狭缝宽度为1μm-1000μm。
  13. 根据权利要求12所述的掩模版,其中,所述狭缝宽度为1μm-100μm,优选为1μm-20μm;该掩模版是用于制备晶硅太阳能电池辅栅或者普通栅线。
  14. 根据权利要求12所述的掩模版,其中,所述狭缝宽度为100μm-500μm,该掩模版是用于制备晶硅太阳能电池主栅。
  15. 根据权利要求10或11所述的掩模版,其中,所述高分子薄膜的厚度为1μm-500μm。
PCT/CN2021/089331 2020-04-26 2021-04-23 一种太阳能电池金属电极及其制备方法及掩模版 WO2021218817A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022562499A JP2023521863A (ja) 2020-04-26 2021-04-23 太陽電池用金属電極、その製造方法及びマスク
EP21797038.3A EP4145538A1 (en) 2020-04-26 2021-04-23 Solar cell metal electrode and preparation method therefor, and mask
US17/918,001 US20230142082A1 (en) 2020-04-26 2021-04-23 Solar cell metal electrode and preparation method therefor, and mask
AU2021262267A AU2021262267A1 (en) 2020-04-26 2021-04-23 Solar cell metal electrode and preparation method therefor, and mask
BR112022019815A BR112022019815A2 (pt) 2020-04-26 2021-04-23 Eletrodo metálico de célula solar e método de preparação para tal e máscara

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010337111.7 2020-04-26
CN202010337111.7A CN113555452B (zh) 2020-04-26 2020-04-26 一种太阳能电池金属电极及其制备方法

Publications (1)

Publication Number Publication Date
WO2021218817A1 true WO2021218817A1 (zh) 2021-11-04

Family

ID=78101483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089331 WO2021218817A1 (zh) 2020-04-26 2021-04-23 一种太阳能电池金属电极及其制备方法及掩模版

Country Status (7)

Country Link
US (1) US20230142082A1 (zh)
EP (1) EP4145538A1 (zh)
JP (1) JP2023521863A (zh)
CN (2) CN117894856A (zh)
AU (1) AU2021262267A1 (zh)
BR (1) BR112022019815A2 (zh)
WO (1) WO2021218817A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116356250A (zh) * 2021-12-27 2023-06-30 隆基绿能科技股份有限公司 一种掩膜版及太阳能电池
CN116417529A (zh) * 2021-12-31 2023-07-11 隆基绿能科技股份有限公司 一种太阳能电池金属电极及其制备方法与太阳能电池
CN115985997A (zh) * 2022-01-27 2023-04-18 隆基绿能科技股份有限公司 太阳能电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569506A (zh) * 2011-12-29 2012-07-11 广东爱康太阳能科技有限公司 一种采用硅烷掩膜制备太阳能电池金属电极的方法
CN103137791A (zh) * 2013-03-13 2013-06-05 中国科学院上海微系统与信息技术研究所 湿法沉积和低温热处理相结合制备异质结太阳电池方法
CN104269464A (zh) * 2014-09-29 2015-01-07 天威新能源控股有限公司 一种新型太阳电池超细电极的制备方法
CN105390569A (zh) * 2015-12-21 2016-03-09 浙江晶科能源有限公司 一种太阳能电池正面电极的制作方法
US20170194517A1 (en) * 2015-12-30 2017-07-06 Solarcity Corporation System and method for tin plating metal electrodes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102738300B (zh) * 2012-06-07 2015-01-07 北京大学 一种太阳能电池栅电极的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569506A (zh) * 2011-12-29 2012-07-11 广东爱康太阳能科技有限公司 一种采用硅烷掩膜制备太阳能电池金属电极的方法
CN103137791A (zh) * 2013-03-13 2013-06-05 中国科学院上海微系统与信息技术研究所 湿法沉积和低温热处理相结合制备异质结太阳电池方法
CN104269464A (zh) * 2014-09-29 2015-01-07 天威新能源控股有限公司 一种新型太阳电池超细电极的制备方法
CN105390569A (zh) * 2015-12-21 2016-03-09 浙江晶科能源有限公司 一种太阳能电池正面电极的制作方法
US20170194517A1 (en) * 2015-12-30 2017-07-06 Solarcity Corporation System and method for tin plating metal electrodes

Also Published As

Publication number Publication date
EP4145538A1 (en) 2023-03-08
CN117894856A (zh) 2024-04-16
US20230142082A1 (en) 2023-05-11
CN113555452A (zh) 2021-10-26
JP2023521863A (ja) 2023-05-25
CN113555452B (zh) 2024-03-15
AU2021262267A1 (en) 2022-11-10
BR112022019815A2 (pt) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2021218817A1 (zh) 一种太阳能电池金属电极及其制备方法及掩模版
JP4304638B2 (ja) Cis系太陽電池及びその製造方法
CN103474485B (zh) 一种柔性薄膜太阳能电池及其制备方法
CN108447946B (zh) 一种柔性硒化锑薄膜太阳能电池及其制备方法
CN104025308B (zh) 太阳能电池装置及其制造方法
CN114005889A (zh) 一种制备太阳能电池金属栅线的方法
CN204189776U (zh) 一种用于pvd溅射的载板
CN110676163B (zh) 一种异质结叠瓦太阳能电池的切片方法
CN210711711U (zh) 用于制作透明导电氧化物薄膜的镀膜设备
US20140261668A1 (en) Growth of cigs thin films on flexible glass substrates
CN103339741A (zh) 太阳能电池设备及其制造方法
CN101707219B (zh) 本征隔离结构太阳能电池及其制造方法
WO2023124614A1 (zh) 一种太阳能电池金属电极及其制备方法与太阳能电池
KR20120059361A (ko) 태양 전지 제조 방법 및 이에 의해 제조된 태양 전지
US9966485B2 (en) Solar cell and method of fabricating the same
JP2006080371A (ja) 太陽電池及びその製造方法
JP2016072367A (ja) 半導体層およびその製造方法ならびにその半導体層を有する化合物太陽電池
US20190198687A1 (en) Thin film solar cell and method for making the same
WO2022253281A1 (zh) 一种太阳能电池金属电极及其制备方法
KR20130059228A (ko) 태양전지 및 이의 제조방법
JP5710368B2 (ja) 光電変換素子および太陽電池
WO2023061151A1 (zh) 一种太阳能电池的制备方法及太阳能电池
CN111261747A (zh) 一种柔性太阳能电池材料
EP3528293A1 (en) Thin-film solar cell and fabrication method therefor
CN203503679U (zh) 一种hit太阳能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797038

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022019815

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022562499

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021262267

Country of ref document: AU

Date of ref document: 20210423

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022019815

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220930

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021797038

Country of ref document: EP

Effective date: 20221128