WO2023061151A1 - 一种太阳能电池的制备方法及太阳能电池 - Google Patents

一种太阳能电池的制备方法及太阳能电池 Download PDF

Info

Publication number
WO2023061151A1
WO2023061151A1 PCT/CN2022/119425 CN2022119425W WO2023061151A1 WO 2023061151 A1 WO2023061151 A1 WO 2023061151A1 CN 2022119425 W CN2022119425 W CN 2022119425W WO 2023061151 A1 WO2023061151 A1 WO 2023061151A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sacrificial layer
layer
metal electrode
preparation
Prior art date
Application number
PCT/CN2022/119425
Other languages
English (en)
French (fr)
Inventor
何秉轩
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Publication of WO2023061151A1 publication Critical patent/WO2023061151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of solar cell manufacturing, in particular to a method for preparing a solar cell and the solar cell.
  • a solar cell is a device that converts light energy into electricity. Among them, it is necessary to prepare conductive electrodes on the absorber substrate (such as silicon) to lead out the carriers and form a path, which is generally called metallization of the battery.
  • conductive electrodes on the absorber substrate such as silicon
  • the screen printing technology is to use a printing machine to coat the conductive paste on the surface of the solar cell to form a thin wire electrode, which is then dried and sintered to form a metal contact. Due to the simplicity and reliability of screen printing technology, most of the conductive electrodes of crystalline silicon solar cells in the world use screen printing technology.
  • the object of the present invention is to provide a method for preparing a solar cell and a method for preparing a solar cell, so as to avoid or reduce damage to the substrate.
  • the present invention provides a method for preparing a solar cell, the method comprising:
  • the sacrificial layer is removed, so as to remove the dielectric material layer covering the sacrificial layer together, so that the surface of the metal electrode is exposed.
  • the metal electrodes are firstly fabricated on the substrate, then the sacrificial layer is fabricated on the metal electrodes, and then a dielectric material layer is fabricated on the substrate, and the dielectric material layer covers the surfaces of the substrate and the sacrificial layer, and finally, The sacrificial layer is removed, so as to remove the dielectric material layer covering the sacrificial layer together, so that the surface of the metal electrode is exposed. Since the sacrificial layer is easy to separate, the sacrificial layer is disposed between the metal electrode and the dielectric material layer, which can facilitate the separation of the dielectric material layer on the metal electrode from the metal electrode, exposing the surface of the metal electrode.
  • the method of the present invention does not need to perform laser grooves or laser grooves on the dielectric layer above the substrate.
  • Slurry burn-through on the one hand, does not need to design the laser process for different materials, structures and thicknesses of the dielectric material layer on the substrate, which simplifies the process; on the other hand, there will be no damage to the substrate during the laser grooving process. Therefore, damage to the substrate is avoided or reduced.
  • a metal electrode is fabricated on the substrate, and a sacrificial layer is fabricated on the metal electrode; specifically, a patterned mask is fixed to the substrate; a metal film is deposited on the substrate fixed with the mask , and then make a sacrificial layer; remove the mask, so that the metal film covering the mask and the sacrificial layer are peeled off from the substrate together, leaving the sacrificial layer covering the surface of the metal film.
  • a pattern matching the shape of the metal electrode is made on the mask in advance, and then the patterned mask is fixed on the substrate, and then a metal film is deposited on the substrate with the mask fixed to form metal electrodes.
  • the mask Since the mask is pre-patterned, the patterning process does not need to be performed above the substrate, thereby avoiding damage to the substrate.
  • the mask is removed, so that the metal film covering the mask and the sacrificial layer are peeled off from the substrate together, leaving the sacrificial layer covering the surface of the metal electrode.
  • the sacrificial layer can be made on the entire surface, and it is not necessary to make the sacrificial layer only on the metal electrode, thereby simplifying the making process of the sacrificial layer.
  • the sacrificial layer is removed by one or more of water washing, light irradiation and heating.
  • an appropriate removal method can be selected, such as one or more of washing, light and heating methods.
  • a sacrificial layer is formed on the mask for depositing the metal film, specifically: coating or pasting the sacrificial layer on the mask for depositing the metal film; the thickness of the sacrificial layer is 15 nm ⁇ 10 ⁇ m.
  • the fabrication method of the sacrificial layer is selected according to actual needs.
  • the sacrificial layer is a water-soluble material; the water-soluble material is selected from NaCl, KCl; or, the sacrificial layer is an organic material; the organic material is selected from one of polyvinyl alcohol and polyvinylpyrrolidone or Various.
  • the sacrificial layer is a water-soluble material, the sacrificial layer can be dissolved by washing with water to facilitate the removal of the dielectric material layer. If the sacrificial layer is an organic material, the sacrificial layer is removed by washing with water, light or heating, so as to facilitate the removal of the dielectric material layer.
  • the metal electrode and the dielectric material layer are fabricated on the substrate by physical vapor deposition or chemical vapor deposition.
  • the material of the dielectric material layer is selected from one or more combinations of aluminum oxide, silicon oxide, silicon nitride, silicon carbide, amorphous silicon, and microcrystalline silicon.
  • the preparation process of the substrate includes: providing a silicon substrate; forming a doping layer, a passivation layer, a tunneling layer and a selective contact dielectric on at least one side surface of the silicon substrate One or more combinations of layers.
  • a silicon substrate forming a doping layer, a passivation layer, a tunneling layer and a selective contact dielectric on at least one side surface of the silicon substrate One or more combinations of layers.
  • the solar cell is a TOPCON cell.
  • the present invention also provides a solar cell, which is obtained by any one of the preparation methods described above.
  • the beneficial effect of the solar cell provided by the present invention is the same as that of the solar cell preparation method of the above-mentioned technical solution, which will not be repeated here.
  • FIG. 1 is a schematic structural view of a mask in an embodiment of the present invention
  • FIG. 2 is a schematic structural view of fixing a mask on a substrate in an embodiment of the present invention
  • FIG. 3 is a schematic structural view of forming a metal electrode by plating a metal film on a mask in an embodiment of the present invention
  • FIG. 4 is a schematic structural view of making a sacrificial layer on a mask and a metal electrode in an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of removing a mask and a sacrificial layer on the mask in an embodiment of the present invention
  • FIG. 6 is a schematic structural view of making a dielectric material layer on a substrate and a metal electrode in an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of removing a sacrificial layer and a dielectric material layer covering a metal electrode in an embodiment of the present invention
  • FIG. 8 is a schematic flow chart of a method for preparing a solar cell in an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of step S100 of a method for manufacturing a solar cell in an embodiment of the present invention.
  • FIG. 10 is a schematic flow chart of step S200 of a method for manufacturing a solar cell in an embodiment of the present invention.
  • the electrode is a key component of the solar cell, mainly an array grid structure.
  • the traditional method of preparing solar cell electrodes generally adopts the screen printing silver paste process, that is, the conductive paste is coated on the surface of the solar cell by a printing machine to form a thin wire electrode, which is then dried and sintered to form a metal contact.
  • the conductive paste enters the grid groove, it is prone to problems such as lack of material and peripheral bleeding, resulting in incomplete electrodes or burrs.
  • screen printing has limitations in the requirements for paste. In order to print firmly, it needs to be doped with other viscous materials.
  • the metal purity of the electrode is low, which affects the conductivity. Usually only silver paste, aluminum paste and other materials can be used. With the requirements of solar cells for the preparation accuracy and materials of metal electrodes, the screen printing process has been unable to meet the requirements. For this reason, more and more laser grooving processes are currently used.
  • the laser grooving process is mainly to make a dielectric layer on the substrate first, and then use laser grooving on the dielectric layer to make a dielectric layer on the dielectric layer.
  • the grid grooves that match the electrode pattern form metal electrodes on the substrate by physical plating or chemical plating. The problem with this method of preparing electrodes by laser grooving is that laser grooving requires high process requirements.
  • the embodiment of the present invention provides a solar cell preparation method, which can be applied to the preparation of various solar cells, such as crystalline silicon solar cells, perovskite cells , laminated batteries, batteries with doped layers, TCO thin films, etc., the method comprises the following steps:
  • Step S100 fabricating metal electrodes 3 on the substrate 1;
  • Step S200 making a sacrificial layer 4 on the metal electrode 3;
  • Step S300 fabricating a dielectric material layer 5 on the substrate 1, the dielectric material layer 5 covering the surfaces of the substrate 1 and the sacrificial layer 4;
  • Step S400 removing the sacrificial layer 4 , so as to remove the dielectric material layer 5 covering the sacrificial layer 4 together, so that the surface of the metal electrode 3 is exposed.
  • the metal electrode 3 is made on the substrate 1 first, the sacrificial layer 4 is made on the metal electrode 3, and then, the dielectric material layer 5 is made on the substrate 1, and the dielectric material layer 5 covers the The surface of the substrate 1 and the sacrificial layer 4 , finally, the sacrificial layer 4 is removed, so as to remove the dielectric material layer 5 covering the sacrificial layer 4 together, so that the surface of the metal electrode 3 is exposed.
  • sacrificial layer 4 is arranged between metal electrode 3 and dielectric material layer 5, and dielectric material layer 5 does not directly cover on metal electrode 3, when sacrificial layer 4 separates from metal electrode 3, there is no binding force between the dielectric material layer 5 and the metal electrode 3, which can facilitate the separation of the dielectric material layer 5 on the metal electrode 3 from the metal electrode 3, exposing the surface of the metal electrode 3.
  • the method of the present invention is because the metal electrode 3 is first made on the substrate 1, And make sacrificial layer 4 on metal electrode 3, therefore, after making dielectric material layer 5 subsequently, need not carry out the step of making grid groove to dielectric material layer 5 again, therefore, in the present invention
  • the method does not perform laser slotting or slurry burning through the dielectric layer above the substrate 1.
  • the metal electrode 3 is fabricated on the substrate 1, and the sacrificial layer 4 is fabricated on the metal electrode, which specifically includes the following steps:
  • the patterned mask 2 is fixed on the substrate 1 , that is, the gate groove 21 matching the shape of the metal electrode 3 is fabricated on the mask 2 in advance.
  • the mask 2 can be a polymer film, and its specific material can be polyethylene terephthalate (PET), polyolefin film (PO), polyimide (PI), polyvinyl chloride (PVC), Or other polymer films whose thickness meets the requirements.
  • the polymer film can be a film without adhesive properties, or a polymer film with adhesive properties, which is commonly referred to as adhesive tape. Patterning can be achieved by laser cutting.
  • the way of fixing the mask 2 on the substrate 1 can be one or more combinations of double-sided tape, glue, fixed slot, and slide table. If what mask 2 adopts is the adhesive tape with adhesive performance, then fixing method can be direct pasting.
  • a metal film is deposited on the substrate 1 on which the mask 2 is fixed, so as to form the metal electrodes 3 on the substrate 1 .
  • physical deposition method or chemical deposition method can be used, such as physical vapor deposition method (PVD), chemical vapor deposition method, electroplating, etc., wherein, PVD includes vacuum evaporation, sputtering, ion plating, etc., using PVD on the mask
  • PVD includes vacuum evaporation, sputtering, ion plating, etc., using PVD on the mask
  • the metal electrode is prepared with higher precision, and the range of metal materials that can be selected is wider, the purity of the metal material is higher, and the conductivity is improved.
  • One or more metals can be used to make metal electrodes at the same time, and the material limitations are small.
  • Step S201 as shown in FIG. 4, a sacrificial layer 4 is made on the mask 2 for depositing a metal film.
  • the sacrificial layer 4 at least covers the metal electrode 3; Arranged between two layers of objects, the sacrificial layer 4 can separate the upper layer of objects from the surface of the lower layer of objects.
  • the sacrificial layer 4 covers the entire surface of the mask 2 and the metal electrode 3 .
  • step S202 as shown in FIG. 5 , the mask is removed, and the metal film covering the mask 2 and the sacrificial layer 4 are peeled off the substrate 1 together, leaving the sacrificial layer 4 covering the surface of the metal electrode 3 . Since the function of the mask 2 is only to form the metal electrodes 3 on the substrate 1 , the mask 2 can be peeled off from the substrate 1 after the metal electrodes 3 are formed on the substrate 1 .
  • the sacrificial layer 4 When making the sacrificial layer 4, a part or all of the surface of the mask 2 is covered by the sacrificial layer 4, so when the mask 2 is peeled off from the substrate 1, the sacrificial layer 4 on the mask 2 is also peeled off together, leaving only The sacrificial layer 4 on the surface of the lower metal electrode 3 .
  • the patterning process does not need to be performed above the substrate 1 , thereby avoiding damage to the substrate 1 .
  • the mask 2 is removed, so that the metal film covering the mask 2 and the sacrificial layer 4 are peeled from the substrate 1 together, leaving the sacrificial layer covering the surface of the metal electrode 3 .
  • the sacrificial layer 4 can be made on the entire surface, and it is not necessary to make the sacrificial layer 4 only on the metal electrode 3 , thereby simplifying the manufacturing process of the sacrificial layer 4 .
  • the patterned sacrificial layer 4 there is no need to additionally prepare the patterned sacrificial layer 4, it is only necessary to prepare the sacrificial layer 4 incidentally after depositing the metal film, and then remove the mask 2, that is, to form the patterned metal electrode 3 and the patterned sacrificial layer at the same time.
  • Layer 4 After the metal electrode 3 is made on the substrate 1, the making of the dielectric material layer 5 is carried out. At this time, the dielectric material layer 5 does not need to be processed by laser grooving, and only the dielectric material covering the metal electrode 3 needs to be covered. Layer 5 can be removed.
  • the method of fabricating the metal electrode 3 on the substrate 1 can also use a metal mask to fix it on the substrate 1 , and use a deposition method to plate a metal film on the metal mask to form the metal electrode on the substrate 1 .
  • a sacrificial layer 4 can be made on the metal mask, and the sacrificial layer 4 covers the metal mask and the metal electrode 3, and then the metal mask and the metal electrode 3 are placed on the metal mask.
  • the sacrificial layer 4 on the surface is detached from the substrate 1, leaving only the sacrificial layer 4 on the surface of the metal electrode 3.
  • the sacrificial layer 4 is removed by one or more of water washing, light irradiation and heating.
  • an appropriate method is selected to remove it, and the sacrificial layer 4 will not cause damage to the metal electrode 3 and the dielectric material layer 5 on the substrate 1 during the removal process.
  • the sacrificial layer 4 can be dissolved in water or other liquids, so that there is no bonding force between the metal electrode 3 and the dielectric material layer 5 on it, so that the dielectric material layer 5 can be separated from the metal electrode. 3 on disengagement.
  • the sacrificial layer 4 When the sacrificial layer 4 is operated by light, the sacrificial layer 4 may undergo physical changes, such as melting, volatilization or viscosity reduction, so that there is no or reduced bonding force between the metal electrode 3 and the dielectric material layer 5 on it, so that The dielectric material layer 5 is easily detached from the metal electrode 3 .
  • the sacrificial layer 4 When the sacrificial layer 4 is heated, the sacrificial layer 4 undergoes physical changes, such as melting, volatilization or viscosity reduction, so that there is no or reduced bonding force between the metal electrode 3 and the dielectric material layer 5 on it, so that the dielectric The electrical material layer 5 is convenient to be detached from the metal electrode.
  • the sacrificial layer 4 is a water-soluble material or an organic material.
  • Water-soluble materials are soluble in water and, therefore, can be removed by washing with water.
  • the water-soluble material can be coated on the surface of the mask 2 and the metal electrode 3 .
  • the water-soluble material is NaCl or KCl
  • a high-concentration sodium chloride solution (NaCl) or a high-concentration potassium chloride solution (KCl) can be coated on the surface of the mask 2 and the metal electrode 3, and the sacrificial layer is formed after drying. 4.
  • the water-soluble material is NaCl or KCl, the pollution caused after cleaning can be reduced.
  • the sacrificial layer 4 of organic material can be washed with water or undergo physical changes under light or heat conditions, such as melting or volatilization or viscosity reduction, so it can be removed by light or heat.
  • the sacrificial layer 4 of the organic material can be in the form of a thin solid layer, which can be pasted to cover the surface of the mask 2 and the metal electrode 3.
  • the organic material can also be in the form of a liquid paste, which can be coated on the mask by coating.
  • the surfaces of the membrane 2 and the metal electrode 3 are dried to form a sacrificial layer 4 .
  • the sacrificial layer 4 of organic material may be polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP). These organic materials have good water solubility and can be removed by washing with water.
  • the sacrificial layer 4 is fabricated on the metal-coated mask 2 in step S201, specifically: the sacrificial layer 4 is coated or pasted on the metal-coated mask 2, and the thickness of the sacrificial layer is 15 nm. ⁇ 10 ⁇ m, preferably 50 nm to 2 ⁇ m. According to the material of the sacrificial layer 4 , an appropriate method for making the sacrificial layer 4 is selected. Of course, the sacrificial layer 4 can also be made by other methods, such as deposition, as long as it can facilitate the subsequent removal of the sacrificial layer 4 , and is not limited to the methods listed in this embodiment.
  • the metal electrode 3 and the dielectric material layer 5 are fabricated on the substrate 1 by physical vapor deposition or chemical vapor deposition.
  • Physical vapor deposition includes vacuum evaporation, sputtering, ion plating, etc.
  • PVD physical vapor deposition
  • a single PVD process or several A method of combining PVD technology When using PVD to deposit the metal electrode 3 and deposit the dielectric material layer 5 on the substrate 1 and the metal electrode 3, a single PVD process or several A method of combining PVD technology.
  • the same method as that used to make the metal electrode 3 can be used.
  • the dielectric material layer 5 is fabricated on the substrate 1 and the metal electrode 3, so that the equipment required for the process can be simplified and the operation is more consistent.
  • the chemical vapor deposition method can also form the dielectric material layer 5 on the substrate 1 and the metal electrode 3, and an appropriate method is selected according to the material of the dielectric material layer 5 and the requirements of the front and rear processes.
  • the dielectric material layer 5 can be a passivation layer and an antireflection layer, and the specific material can be selected from aluminum oxide, silicon oxide, silicon nitride, silicon carbide, amorphous silicon, and microcrystalline silicon. one or more combinations of .
  • the preparation process of the substrate 1 includes: providing a silicon substrate; forming a doping layer, a passivation layer, a tunneling layer, and a selective contact dielectric layer on at least one side surface of the silicon substrate.
  • a silicon substrate forming a doping layer, a passivation layer, a tunneling layer, and a selective contact dielectric layer on at least one side surface of the silicon substrate.
  • any one of the above thin layers can be fabricated independently, or multiple types of the above thin layers can be stacked sequentially.
  • the corresponding thin layers can be selected and fabricated.
  • These thin layers are all used in the fabrication of the metal electrode 3 Previously fabricated on silicon substrates. In this way, different substrates can be used in the present invention to fabricate the electrodes first and then fabricate the dielectric material layer, and the scope of application is wide.
  • the material of the selective contact dielectric layer can be one or more combinations of MoO3, V2O3, WO3, Ta2O5, TiO2, ZnO, In2O3;
  • the passivation layer can be aluminum oxide, silicon oxide, silicon nitride, carbon
  • One or more combinations of silicon, and the doped layer can be one or more combinations of polycrystalline silicon, amorphous silicon, and microcrystalline silicon.
  • the doped The polysilicon layer is made very thick, which affects light transmittance and production efficiency. If the existing method of making the dielectric material layer first and then the metal electrode is used, it is necessary to use a laser to open a deep groove on the dielectric material layer on the substrate, and the depth of the groove cannot be well grasped, and it is easy to wear It is also easy to burn through the doped polysilicon layer through the doped polysilicon layer, or use a fire-through paste.
  • the preparation method of the present invention by fixing the pre-patterned mask on the substrate 1 and selecting a mask 2 with a slit with a suitable width and a suitable thickness, not only can a better
  • the thinner and higher electrode morphology can also achieve precise contact between the metal electrode and the doped polysilicon layer, reduce the thickness, and ultimately improve the battery efficiency.
  • the embodiment of the present invention further provides a solar cell obtained by the preparation method described in any of the above embodiments.
  • the present invention Since the solar cell is obtained by the solar cell preparation method in the present invention, compared with the existing method of firstly making a dielectric material layer on the substrate, and then making a groove on the dielectric material layer and then making a metal electrode, the present invention
  • the metal electrode 3 is firstly produced on the substrate 1, after the subsequent production of the dielectric material layer 5, there is no need to perform laser grooving on the dielectric material layer 5 to produce grid grooves.
  • the method among the present invention can not carry out laser groove above substrate 1, on the one hand need not design laser process for the different material, structure and thickness of dielectric material layer 5 on substrate 1, has simplified process, on the other hand

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开一种太阳能电池的制备方法及太阳能电池,涉及光伏领域,解决了激光开槽容易对基板造成损伤的问题。制备方法包括:在基板上制作金属电极;在金属电极上制作牺牲层;在基板上制作介电材料层,介电材料层覆盖于基板和牺牲层的表面;去除牺牲层,将覆盖于牺牲层上的介电材料层一起去除,使金属电极的表面裸露。相较于现有的先在基板上制作介电材料层,再在介电材料层上开槽后制作金属电极,本方法不需要在基板上方进行激光开槽,不会出现激光开槽过程中对基板的损伤。本太阳能电池通过本制备方法获得,能够避免或减少对基板造成损伤。

Description

一种太阳能电池的制备方法及太阳能电池
本公开要求在2021年10月13日提交中国专利局、申请号为202111194215.8、发明名称为“一种太阳能电池的制备方法及太阳能电池”的中国专利申请的优先权,其全部内容通过引用均结合在本申请中。
技术领域
本发明涉及太阳能电池制造技术领域,尤其涉及一种太阳能电池的制备方法及太阳能电池。
背景技术
太阳能电池是一种将光能转换为电能的装置。其中,需要将在吸收层基板(例如硅)上制备导电电极将载流子导出并形成通路,这通常称为电池的金属化。电池的金属化方法主要有三种方法:物理镀(如溅射、蒸发和沉积),化学镀(如化学镀和电镀)和丝网印刷。其中,丝网印刷技术,即用印刷机械将导电浆料涂布在太阳能电池表面,形成细线电极,然后干燥烧结后形成金属接触。由于丝网印刷技术的简单性和可靠性,目前世界上绝大多数晶体硅太阳能电池的导电电极都是采用丝网印刷工艺。
但随着太阳能电池对金属电极制备精度和材料的要求,丝网印刷工艺已经无法满足要求。目前越来越多地采用激光开槽工艺,在基板的介电层激光开槽制作出与电极图案吻合的格栅槽,再通过物理镀或化学镀等方式,在基板上形成金属电极。这种激光开槽制备电极的方式存在的问题是,激光开槽时,对工艺要求高,一方面需要针对基板上用于钝化和减反等功能的介电层的不同材料、结构和厚度设计激光工艺,一旦介电层材料、结构和厚度发生改变则需要再次开发工艺,技术复杂且容忍性差,另一方面,激光开槽需要精确控制开槽深度,不容易掌握,容易导致激光穿过介电层后对基板造成损伤。另外,丝网印刷工艺还有采用烧穿型浆料;但是烧穿型浆料同样存在,浆料烧穿介电层后继续向下烧穿,对基板造成损伤。
发明内容
本发明的目的在于提供一种太阳能电池的制备方法及太阳能电池的制备方法,以避免或减少对基板造成损伤。
第一方面,本发明提供一种太阳能电池的制备方法,该方法包括:
在基板上制作金属电极;
在金属电极上制作牺牲层;
在基板上制作介电材料层,介电材料层覆盖于基板牺牲层的表面;
去除牺牲层,以将覆盖于牺牲层上的介电材料层一起去除,使金属电极的表面裸露。
采用上述技术方案时,由于先在基板上制作金属电极,再在金属电极上制作牺牲层,然后,在基板上制作介电材料层,介电材料层覆盖于基板和牺牲层的表面,最后,去除牺牲层,以将覆盖于牺牲层上的介电材料层一起去除,使金属电极的表面裸露。由于牺牲层的作用是容易分离,因此,牺牲层设置于金属电极和介电材料层之间,能够方便金属电极上的介电材料层与金属电极分离,露出金属电极的表面。相较于现有的先在基板上制作介电材料层,再在介电材料层上开槽后制作金属电极相比,本发明中的方法不需要在基板上方进行介电层激光开槽或浆料烧穿,一方面不需要针对基板上的介电材料层的不同材料、结构和厚度设计激光工艺,简化了工艺,另一方面不会出现激光开槽过程中对基板的损伤。因此,避免或减少了对基板造成损伤。
可选地,在上述的制备方法中,在基板上制作金属电极,在金属电极上制作牺牲层;具体为:将图案化的掩膜固定于基板;在固定有掩膜的基板上沉积金属膜,然后制作牺牲层;去除掩膜,以将覆盖于掩膜上的金属膜和牺牲层一起从基板上剥离,留下覆盖于金属膜的表面的牺牲层。如此,制作金属电极时,事先在掩膜上制作出与金属电极的形状相匹配的图案,再将图案化的掩膜固定在基板上,然后在固定有掩膜的基板上沉积金属膜,形成金属电极。由于掩膜预先进行了图案化,因此,图案化的处理不需要在基板上方进行,避免了对基板的损伤。去除掩膜,以将覆盖于掩膜上的金属膜和牺牲层一起从基板上剥离,留下覆盖于金属电极的表面的牺牲层。如此,在制作牺牲层时,可以在整个表面上制作牺牲层,不需要仅在金属电极上制作牺牲层,从而简化了牺牲层的制作工艺。也就是说,不用额外制备图案化的牺牲层,只需在沉积金属膜后,顺带制备牺牲层即可,然后去除掩膜,即同时形成图案化的金属电极和图案化的牺牲层。
可选地,在上述的制备方法中,通过水洗、光照和加热方式中的一种或多种方式去除牺牲层。根据牺牲层的不同材质,可选择合适的去除方式,如水洗、光照和加热方式中的一种或多种方式。
可选地,在上述的制备方法中,在沉积金属膜的掩膜上制作牺牲层,具体为:在沉积金属膜的掩膜上涂覆或粘贴牺牲层;牺牲层的厚度为15nm~10μm。如此,牺牲层的制作方式根据实际需要进行选择。
可选地,在上述的制备方法中,牺牲层为水溶性材料;水溶性材料选自NaCl、KCl;或,牺牲层为有机材料;有机材料选自聚乙烯醇和聚乙烯吡咯烷酮中的一种或多种。如此,如果牺牲层为水溶性材料,可通过水洗的方式将牺牲层溶解,方便介电材料层的去除。如果牺牲层为有机材料,则通过水洗、光照或加热的方式使牺牲层去除,方便介电材料层的去除。
可选地,在上述的制备方法中,通过物理气相沉积方法或化学气相沉积方法在基板上制作金属电极和介电材料层。
可选地,在上述的制备方法中,介电材料层的材质选自氧化铝、氧化硅、氮化硅、碳化硅、非晶硅、微晶硅中的一种或多种组合。
可选地,在上述的制备方法中,基板的制备过程包括:提供一硅衬底;在硅衬底的至少一侧表面制作掺杂层、钝化层、遂穿层和选择性接触介电层中的一种或多种组合。如此,不同的基板均可用于本发明中的先制作电极再制作介电材料层,适用范围广泛。
可选地,在上述的制备方法中,太阳能电池为TOPCON电池。
第二方面,本发明还提供一种太阳能电池,该太阳能电池通过以上任一项所描述的制备方法获得。与现有技术相比,本发明提供的太阳能电池的有益效果与上述技术方案的太阳能电池的制备方法的有益效果相同,此处不做赘述。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中的一种掩膜的结构示意图;
图2为本发明实施例中的将掩膜固定于基板上的结构示意图;
图3为本发明实施例中的在掩膜上镀金属膜形成金属电极的结构示意图;
图4为本发明实施例中的在掩膜和金属电极上制作牺牲层的结构示意图;
图5为本发明实施例中的将掩膜和掩膜上的牺牲层去除的结构示意图;
图6为本发明实施例中的在基板和金属电极上制作介电材料层的结构示意图;
图7为本发明实施例中的将覆盖于金属电极上的牺牲层和介电材料层去除的结构示意图;
图8为本发明实施例中的一种太阳能电池的制备方法的流程示意图;
图9为本发明实施例中的一种太阳能电池的制备方法的步骤S100的具体流程示意图;
图10为本发明实施例中的一种太阳能电池的制备方法的步骤S200的具体流程示意图。
附图标记:1-基板、2-掩膜、21-栅槽、3-金属电极、4-牺牲层、5-介电材料层。
具体实施例
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在光伏领域,太阳能电池能够将太阳能转化为电能,是清洁能源的重要来源。电极是太阳能电池的关键组件,主要为阵列格栅结构。传统制备太阳能电池电极的方法普遍采用丝网印刷银浆工艺,即用印刷机械将导电浆料涂布在太阳能电池表面,形成细线电极,然后干燥烧结后形成金属接触。但由于导电浆料在进入格栅槽内时,容易出现缺料、周边渗料等问题,导致形成的电极不完整或出现毛边。且丝网印刷对浆料的要求存在局限性,为了能够牢固印刷,需要掺杂其他粘稠性材料,电极的金属纯度低,影响导电率,通常只能采用银浆、铝浆等材料。随着太阳能电池对金属电极制备精度和材料的要求,丝网印刷工艺已经无法满足要求。为此,目前越来越多地采用激光开槽工艺,激光开槽工艺主要是先在基板上制作介电层,然后,再在介电层上使用激光开槽,在介电层上制作出与电极图案吻合的格栅槽,再通过物理镀或化学镀方式,在基板上形成金属电极。这种激光开槽制备电极的方式存在的问题是,激光开槽时,对工艺要求高,一方面需要针对基板上用于钝化和减反等功能的介电层的不同材料、结构和厚度设计激光工艺,一旦介电层材料、结构和厚度发生改变则需要再次开发工艺,技术复杂且容忍性差,另一方面,激光开槽需要精确控制开槽深度,不容易掌握,容易导致激光穿过介电层后对基板造成损伤。另外,丝网印刷工艺还有采用烧穿型浆料;但是烧穿型浆料同样 存在,浆料烧穿介电层后继续向下烧穿,对基板造成损伤。
鉴于此,为解决上述问题,请参阅图1-图8,本发明实施例提供了一种太阳能电池的制备方法,能够应用于各种太阳能电池的制备,例如晶硅太阳能电池、钙钛矿电池、叠层电池、具有掺杂层、TCO薄膜的电池等,该方法包括以下步骤:
步骤S100,在基板1上制作金属电极3;
步骤S200,在金属电极3上制作牺牲层4;
步骤S300,在基板1上制作介电材料层5,介电材料层5覆盖于基板1和牺牲层4的表面;
步骤S400,去除牺牲层4,以将覆盖于覆盖于牺牲层4上的介电材料层5一起去除,使金属电极3的表面裸露。
采用上述技术方案时,由于先在基板1上制作出了金属电极3,再在金属电极3上制作牺牲层4,然后,在基板1上制作介电材料层5,介电材料层5覆盖于基板1和牺牲层4的表面,最后,去除牺牲层4,以将覆盖于牺牲层4上的介电材料层5一起去除,使金属电极3的表面裸露。由于牺牲层4的作用是容易分离,因此,牺牲层4设置于金属电极3和介电材料层5之间,介电材料层5不直接覆盖于金属电极3上,当牺牲层4从金属电极3上分离时,介电材料层5与金属电极3之间不存在结合力,能够方便金属电极3上的介电材料层5与金属电极3分离,露出金属电极3的表面。相较于现有的先在基板上制作介电材料层,再在介电材料层上开槽后制作金属电极相比,本发明中的方法由于先在基板1上制作出了金属电极3,并在金属电极3上制作牺牲层4,因此,在后续制作出介电材料层5后,不需要再对介电材料层5进行激光开槽制作出格栅槽的步骤,因此,本发明中的方法不会在基板1上方进行介电层激光开槽或浆料烧穿,一方面不需要针对基板1上的介电材料层5的不同材料、结构和厚度设计激光工艺,简化了工艺,另一方面不会出现激光开槽过程中对基板1的损伤。因此,避免或减少了对基板1造成损伤。
如图1-图6、图9和图10所示,进一步地,在本实施例中,在基板1上制作金属电极3,在金属电极上制作牺牲层4,具体包括以下步骤:
步骤S101,如图1和图2所示,将图案化的掩膜2固定于基板1,即事先在掩膜2上使用制作出与金属电极3的形状相匹配的栅槽21。该掩膜2可以为高分子薄膜,其具体的材质可以为聚对苯二甲酸乙二酯(PET)、聚烯烃薄膜(PO)、聚酰亚胺(PI)、 聚氯乙烯(PVC),或者其他厚度满足要求的高分子薄膜。高分子薄膜可以是不带粘贴性能的薄膜,也可以是带粘贴性能的高分子薄膜,也即通常所说的胶带。图案化可以采用激光切割的方式实现。将掩膜2固定于基板1上的方式可以采用双面胶、胶水、固定的卡槽、载片台中的一种或多种的组合方式。如果掩模2采用的是带粘贴性能的胶带时,则固定方法可为直接粘贴。
步骤S102,如图3所示,在固定有掩膜2的基板1上沉积金属膜,以在基板1上形成金属电极3。具体地,可以采用物理沉积方法或化学沉积方法,如物理气相沉积方法(PVD)、化学气相沉积方法、电镀等,其中,PVD包括真空蒸镀、溅射、离子镀等,采用PVD在掩模上镀金属膜时,可以采用单一的PVD工艺或者几种PVD工艺结合的方法。采用沉积方法制备金属电极3,相较于传统的丝网印刷工艺,金属电极的制备精度更高,且可以选用的金属材质范围更广、金属材料纯度更高,提高了导电率,可以使用一种或多种金属同时制作金属电极,材料局限性小。
步骤S201,如图4所示,在沉积金属膜的掩膜2上制作牺牲层4,此时,牺牲层4至少覆盖金属电极3;牺牲层4具有容易从物体表面分离的特点,牺牲层4设置于两层物体之间,牺牲层4能够使得位于上层的物体从位于下层的物体表面分离。为了方便制作牺牲层4,将牺牲层4覆盖于整个掩膜2和金属电极3的表面。
步骤S202,如图5所示,去除掩膜,将覆盖于掩膜2上的金属膜和牺牲层4一起从基板1上剥离,留下覆盖于金属电极3的表面的牺牲层4。由于掩膜2的作用仅仅是为了在基板1上制作出金属电极3,因此,在基板1上形成金属电极3后,掩膜2可以从基板1上剥离。在制作牺牲层4时,掩膜2的一部分或全部表面被牺牲层4覆盖,因此,在掩膜2从基板1上剥离时,掩膜2上的牺牲层4也一起被剥离下来,只留下金属电极3表面的牺牲层4。
采用该方法,由于掩膜2预先进行了图案化,因此,图案化的处理不需要在基板1上方进行,避免了对基板1的损伤。去除掩膜2,以将覆盖于掩膜2上的金属膜和牺牲层4一起从基板1上剥离,留下覆盖于金属电极3的表面的牺牲层。如此,在制作牺牲层4时,可以在整个表面上制作牺牲层4,不需要仅在金属电极3上制作牺牲层4,从而简化了牺牲层4的制作工艺。也就是说,不用额外制备图案化的牺牲层4,只需在沉积金属膜后,顺带制备牺牲层4即可,然后去除掩膜2,即同时形成图案化的金属电极3和图案化的牺牲层4。在基板1上制作出金属电极3之后,再进行介电材料层5的制作,此时不 需要对介电材料层5进行激光开槽处理,只需要将覆盖于金属电极3上的介电材料层5去除即可。
当然,在基板1上制作金属电极3的方法还可以采用金属掩膜版固定于基板1上,利用沉积方法在金属掩膜版上镀金属膜,在基板1上形成金属电极。
对于使用金属掩膜版制作金属电极的方式,可以在金属掩膜版上制作牺牲层4,牺牲层4覆盖金属掩膜版和金属电极3,之后,将金属掩膜版和位于金属掩膜版上的牺牲层4从基板1上脱离,只留下金属电极3表面的牺牲层4。
进一步地,在本实施例中,通过水洗、光照和加热方式中的一种或多种方式去除牺牲层4。根据牺牲层4的材质选用合适的方式去除,牺牲层4在去除的过程中,不会对金属电极3和位于基板1上的介电材料层5造成损伤。例如,牺牲层4在水洗操作下,牺牲层4可以溶解于水或其它液体,使得金属电极3与其上的介电材料层5之间不存在结合力,从而使介电材料层5从金属电极3上脱离。牺牲层4在光照操作下,牺牲层4可以发生物理变化,如融化、挥发或粘性降低,使得金属电极3与其上的介电材料层5之间不存在结合力或结合力减小,从而使介电材料层5方便从金属电极3上脱离。牺牲层4在加热方式下,牺牲层4发生物理变化,如融化、挥发或粘性降低,使得金属电极3与其上的介电材料层5之间不存在结合力或结合力减小,从而使介电材料层5方便从金属电极上脱离。
在本实施例中,牺牲层4为水溶性材料或有机材料。水溶性材料能够溶于水,因此,可以通过水洗的方式去除。水溶性材料可以通过涂覆的方式覆盖于掩膜2和金属电极3的表面。例如当水溶性材料为NaCl、或KCl时,可以高浓度氯化钠溶液(NaCl)、高浓度氯化钾溶液(KCl)涂覆在掩膜2和金属电极3的表面,干燥后形成牺牲层4。当水溶性材料为NaCl、或KCl时,能够减少清理后造成的污染。
有机材料的牺牲层4可以水洗或在光照或加热条件下发生物理变化,如融化或挥发或粘性减小,因此,可以通过光照或加热的方式进行去除。有机材料的牺牲层4可以为固体薄层形式,可以通过粘贴的方式覆盖于掩膜2和金属电极3的表面,当然,有机材料也可以为液体膏状形式,通过涂覆的方式覆盖于掩膜2和金属电极3的表面,干燥后形成牺牲层4。具体地,有机材料的牺牲层4可以为聚乙烯醇(PVA)、聚乙烯吡咯烷酮(PVP),这些有机材料均具有较好的水溶性,可通过水洗去除。
在本实施例中,步骤S201中的在镀金属膜的掩膜2上制作牺牲层4,具体为:在镀 金属膜的掩膜2上涂覆或粘贴牺牲层4,牺牲层的厚度为15nm~10μm,优选为50nm~2μm。根据牺牲层4的材质,选用合适的牺牲层4的制作方法。当然,牺牲层4还可以通过其他方式制作,如沉积等方式,只要能够方便后续牺牲层4的去除即可,并不局限于本实施例所列举的方式。
在本实施例中,通过物理气相沉积方法或化学气相沉积方法在基板1上制作金属电极3和介电材料层5。物理气相沉积方法(PVD)包括真空蒸镀、溅射、离子镀等,采用PVD沉积金属电极3以及在基板1和金属电极3上沉积介电材料层5时,可以采用单一的PVD工艺或者几种PVD工艺结合的方法。当步骤S102中采用物理气相沉积方法在掩膜2上镀金属膜,以在基板1上形成金属电极3时,可以在掩膜2从基板1上剥离后,采用与制作金属电极3相同的方法在基板1和金属电极3上制作介电材料层5,如此,可以简化工艺所需要的设备,操作更加连贯。
化学气相沉积方法(CVD)同样可以在基板1和金属电极3上制作介电材料层5,根据介电材料层5的材质以及前后工艺的需求选择合适的方法。
具体地,在本实施例中,介电材料层5可以为钝化层、减反层,具体材料可以选自氧化铝、氧化硅、氮化硅、碳化硅、非晶硅、微晶硅中的一种或多种组合。
在本实施例中,基板1的制备过程包括:提供一硅衬底;在硅衬底的至少一侧表面制作掺杂层、钝化层、遂穿层和选择性接触介电层等中的一种或多种组合。即,可以单独制作以上薄层中的任一种,也可以依次层叠制作以上薄层中的多种,具体根据基板1的类型,选择制作相应的薄层,这些薄层均在制作金属电极3之前制作完成于硅衬底上。如此,不同的基板均可用于本发明中的先制作电极再制作介电材料层,适用范围广泛。其中,选择性接触介电层的材料可以为MoO3,V2O3,WO3,Ta2O5,TiO2,ZnO,In2O3中的一种或多种组合;钝化层可以为氧化铝、氧化硅、氮化硅、碳化硅中的一种或多种组合,掺杂层可以为多晶硅、非晶硅、微晶硅中的一种或多种组合。
以TOPCon结构电池为例进行说明,由于金属电极不能穿透隧穿层和掺杂多晶硅层,避免漏电流,因此,在印刷工艺中,为了避免金属电极穿透掺杂多晶硅层,往往将掺杂多晶硅层做得很厚,导致影响透光率以及生产效率。如果采用现有的先做介电材料层,再做金属电极的方式,需要使用激光器在基板上的介电材料层上开很深的槽,且无法较好的掌握开槽深度,很容易穿透掺杂多晶硅层,亦或采用烧穿型浆料,同样很容易烧穿掺杂多晶硅层。而采用本发明中的制备方法,通过将预先图案化的掩膜固定于基板 1上,选择具有合适宽度狭缝和合适厚度的掩膜2,在后续沉积制作金属电极3时,不仅能够得到更细更高的电极形貌,也可以做到金属电极和掺杂多晶硅层的精确接触,减小厚度,最终提升电池效率。
基于以上任一实施例所描述的太阳能电池的制备方法,本发明实施例还提供了一种太阳能电池,通过以上任一实施例所描述的制备方法获得。
由于太阳能电池通过本发明中的太阳能电池的制备方法获得,因此,相较于现有的先在基板上制作介电材料层,再在介电材料层上开槽后制作金属电极相比,本发明中的方法由于先在基板1上制作出了金属电极3,因此,在后续制作出介电材料层5后,不需要再对介电材料层5进行激光开槽制作出格栅槽的步骤,因此,本发明中的方法不会在基板1上方进行激光开槽,一方面不需要针对基板1上的介电材料层5的不同材料、结构和厚度设计激光工艺,简化了工艺,另一方面也不会出现激光开槽过程中对基板1的损伤。因此,避免或减少了对基板1造成损伤,提高了太阳能电池的质量和良率。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种太阳能电池的制备方法,其特征在于,该方法包括:
    在基板上制作金属电极;
    在所述金属电极上制作牺牲层;
    在所述基板上制作介电材料层,所述介电材料层覆盖于所述基板和所述牺牲层的表面;
    去除所述牺牲层,以将覆盖于所述牺牲层上的所述介电材料层一起去除,使所述金属电极的表面裸露。
  2. 根据权利要求1所述的制备方法,其特征在于,所述在基板上制作金属电极,在所述金属电极上制作牺牲层;
    具体为:
    将图案化的掩膜固定于所述基板;
    在固定有所述掩膜的基板上沉积金属膜,然后制作所述牺牲层;
    去除所述掩膜,以将覆盖于所述掩膜上的所述金属膜和所述牺牲层一起从所述基板上剥离,留下覆盖于所述金属膜的表面的所述牺牲层。
  3. 根据权利要求1所述的制备方法,其特征在于,通过水洗、光照和加热方式中的一种或多种方式去除所述牺牲层。
  4. 根据权利要求1-2任一项所述的制备方法,其特征在于,所述在沉积金属膜的所述掩膜上制作牺牲层,具体为:
    在沉积金属膜的所述掩膜上涂覆或粘贴牺牲层;所述牺牲层的厚度为15nm~10μm。
  5. 根据权利要求1-2任一项所述的制备方法,其特征在于,所述牺牲层为水溶性材料;所述水溶性材料选自NaCl、KCl;
    或,所述牺牲层为有机材料;所述有机材料选自聚乙烯醇和聚乙烯吡咯烷酮中的一种或多种。
  6. 根据权利要求1-3任一项所述的制备方法,其特征在于,通过物理气相沉积方法或化学气相沉积方法在所述基板上制作所述金属电极和所述介电材料层。
  7. 根据权利要求1-3任一项所述的制备方法,其特征在于,所述介电材料层的材质选自氧化铝、氧化硅、氮化硅、碳化硅、非晶硅、微晶硅中的一种或多种组合。
  8. 根据权利要求1-3任一项所述的制备方法,其特征在于,所述基板的制备过程包括:
    提供一硅衬底;
    在所述硅衬底的至少一侧表面制作掺杂层、钝化层、遂穿层和选择性接触介电层中的一种或多种组合。
  9. 根据权利要求1-3任一项所述的制备方法,其特征在于,所述太阳能电池为TOPCON电池。
  10. 一种太阳能电池,其特征在于,所述太阳能电池通过权利要求1-9的制备方法获得。
PCT/CN2022/119425 2021-10-13 2022-09-16 一种太阳能电池的制备方法及太阳能电池 WO2023061151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111194215.8A CN115966625A (zh) 2021-10-13 2021-10-13 一种太阳能电池的制备方法及太阳能电池
CN202111194215.8 2021-10-13

Publications (1)

Publication Number Publication Date
WO2023061151A1 true WO2023061151A1 (zh) 2023-04-20

Family

ID=85899953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119425 WO2023061151A1 (zh) 2021-10-13 2022-09-16 一种太阳能电池的制备方法及太阳能电池

Country Status (2)

Country Link
CN (1) CN115966625A (zh)
WO (1) WO2023061151A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011567A (en) * 1989-12-06 1991-04-30 Mobil Solar Energy Corporation Method of fabricating solar cells
CN102332484A (zh) * 2010-07-14 2012-01-25 雷纳有限公司 用于太阳能电池制作的金属化方法
CN105390569A (zh) * 2015-12-21 2016-03-09 浙江晶科能源有限公司 一种太阳能电池正面电极的制作方法
CN105470347A (zh) * 2015-12-22 2016-04-06 浙江晶科能源有限公司 一种perc电池的制作方法
CN106711240A (zh) * 2016-11-14 2017-05-24 华南师范大学 一种半透明太阳能电池的制备方法
CN107810560A (zh) * 2015-04-10 2018-03-16 Inl-国际伊比利亚纳米技术实验室 用于太阳能电池的材料结构体、太阳能电池、以及制造材料结构体的方法
CN112993087A (zh) * 2021-03-02 2021-06-18 苏州太阳井新能源有限公司 一种光伏电池电极的制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011567A (en) * 1989-12-06 1991-04-30 Mobil Solar Energy Corporation Method of fabricating solar cells
CN102332484A (zh) * 2010-07-14 2012-01-25 雷纳有限公司 用于太阳能电池制作的金属化方法
CN107810560A (zh) * 2015-04-10 2018-03-16 Inl-国际伊比利亚纳米技术实验室 用于太阳能电池的材料结构体、太阳能电池、以及制造材料结构体的方法
CN105390569A (zh) * 2015-12-21 2016-03-09 浙江晶科能源有限公司 一种太阳能电池正面电极的制作方法
CN105470347A (zh) * 2015-12-22 2016-04-06 浙江晶科能源有限公司 一种perc电池的制作方法
CN106711240A (zh) * 2016-11-14 2017-05-24 华南师范大学 一种半透明太阳能电池的制备方法
CN112993087A (zh) * 2021-03-02 2021-06-18 苏州太阳井新能源有限公司 一种光伏电池电极的制作方法

Also Published As

Publication number Publication date
CN115966625A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
JP7212786B2 (ja) 結晶シリコン太陽電池およびその製造方法
CN108807565B (zh) 一种钝化接触电极结构,其适用的太阳能电池及制作方法
CN105449014B (zh) 具有电镀的金属格栅的太阳能电池
US9130074B2 (en) High-efficiency solar cell structures and methods of manufacture
CN101017858A (zh) 一种背接触式太阳能电池及其制作方法
WO2023169245A1 (zh) 太阳能电池的制备方法及太阳能电池
CN101118914A (zh) 一种太阳能电池及制造方法
CN102623517A (zh) 一种背接触型晶体硅太阳能电池及其制作方法
JP2015073065A (ja) 太陽電池の製造方法
WO2024045807A1 (zh) 太阳电池及其制备工艺
CN104025308A (zh) 太阳能电池装置及其制造方法
CN115020538A (zh) 一种p型ibc单晶太阳能电池及其制备方法
CN117894856A (zh) 一种太阳能电池金属电极及其制备方法
WO2023061151A1 (zh) 一种太阳能电池的制备方法及太阳能电池
US8541680B2 (en) Photovoltaic cells including peaks and methods of manufacture
CN108735828A (zh) 一种异质结背接触太阳能电池及其制备方法
JP2014072209A (ja) 光電変換素子および光電変換素子の製造方法
JP2016195188A (ja) 太陽電池の製造方法および太陽電池モジュールの製造方法
CN116053332A (zh) 一种背接触式硅异质结太阳能电池及其制备方法
CN110767810B (zh) 一种大面积钙钛矿太阳能电池及其制备方法
CN104505435A (zh) 用于制造太阳能电池的图形化掩膜方法
CN116230784A (zh) 一种太阳能电池及其制备方法
CN114649438B (zh) 一种n型hibc太阳电池的制备方法
CN217606829U (zh) 一种太阳能电池
CN114883451B (zh) 一种全背接触晶硅异质结太阳电池结构的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880091

Country of ref document: EP

Kind code of ref document: A1