US20170194517A1 - System and method for tin plating metal electrodes - Google Patents

System and method for tin plating metal electrodes Download PDF

Info

Publication number
US20170194517A1
US20170194517A1 US15/346,573 US201615346573A US2017194517A1 US 20170194517 A1 US20170194517 A1 US 20170194517A1 US 201615346573 A US201615346573 A US 201615346573A US 2017194517 A1 US2017194517 A1 US 2017194517A1
Authority
US
United States
Prior art keywords
layer
protective layer
tin
reflow
core layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/346,573
Inventor
Christoph G. Erben
Zhi-Wen Sun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarCity Corp
Original Assignee
SolarCity Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SolarCity Corp filed Critical SolarCity Corp
Priority to US15/346,573 priority Critical patent/US20170194517A1/en
Publication of US20170194517A1 publication Critical patent/US20170194517A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • Solar cell or “cell” is a photovoltaic structure capable of converting light into electricity.
  • a cell may have any size and any shape, and may be created from a variety of materials.
  • a solar cell may be a photovoltaic structure fabricated on a silicon wafer or one or more thin films on a substrate material (e.g., glass, plastic, or any other material capable of supporting the photovoltaic structure), or a combination thereof.
  • a “photovoltaic structure” can refer to a solar cell, a segment, or a solar cell strip.
  • a photovoltaic structure is not limited to a device fabricated by a particular method.
  • a photovoltaic structure can be a crystalline silicon-based solar cell, a thin film solar cell, an amorphous silicon-based solar cell, a poly-crystalline silicon-based solar cell, or a strip thereof.
  • Finger lines refer to elongated, electrically conductive (e.g., metallic) electrodes of a photovoltaic structure for collecting carriers.
  • a “busbar,” “bus line,” or “bus electrode” refers to an elongated, electrically conductive (e.g., metallic) electrode of a photovoltaic structure for aggregating current collected by two or more finger lines.
  • a busbar is usually wider than a finger line, and can be deposited or otherwise positioned anywhere on or within the photovoltaic structure.
  • a single photovoltaic structure may have one or more busbars.
  • a solar cell converts light into electricity using the photovoltaic effect.
  • Most solar cells include one or more p-n junctions, which can include heterojunctions or homojunctions.
  • light is absorbed near the p-n junction and generates carriers.
  • the carriers diffuse into the p-n junction and are separated by the built-in electric field, thus producing an electrical current across the device and external circuitry.
  • An important metric in determining a solar cell's quality is its energy-conversion efficiency, which is defined as the ratio between power converted (from absorbed light to electrical energy) and power collected when the solar cell is connected to an electrical circuit.
  • High efficiency solar cells are essential in reducing the cost to produce solar energy.
  • Electroplated Cu grids based on electroplated Cu have significantly lower resistivity than conventional screen-printed Ag grids.
  • electroplated Cu grids also cost less than the Ag grids.
  • Cu can be susceptible to oxidation and corrosion. When exposed to moisture, Cu grids may oxidize, resulting in increased resistivity and decreased strength. Therefore, Cu grids of solar cells are often coated with a corrosion-resistive protection layer. Conventional approaches for coating Cu grids with such a corrosion-resistive protection layer can generate hazardous waste.
  • One embodiment of the invention can provide a system for fabricating a photovoltaic structure.
  • the system can form a multilayer body of the photovoltaic structure and a first grid on a first surface of the multilayer body. While forming the first grid, the system can form a patterned mask on the first surface of the multilayer body, with openings of the patterned mask corresponding to grid line locations of the first grid.
  • the system can further deposit, using a plating technique, a core layer of the first grid in the openings of the patterned mask; deposit, using a plating technique, a protective layer on an exposed surface of the core layer while the patterned mask covering sidewalls of the core layer; remove the patterned mask to expose the sidewalls of the core layer; and apply heat to the protective layer such that the protective layer reflows to cover both the exposed surface and sidewalls of the core layer.
  • the patterned mask can include a photoresist mask or a SiO 2 mask.
  • the core layer can be a metallic layer that includes Cu.
  • the thickness of the core layer can be between 10 and 100 microns, for example.
  • the protective layer can be a metallic layer that includes one or more of: tin, tin-lead alloy, tin-zinc alloy, tin-bismuth alloy, tin-indium alloy, tin-silver-copper alloy, tin-lead-zinc alloy, and tin-lead-copper alloy.
  • the protective layer can be a metallic layer that includes one or more of: tin and tin-lead alloy.
  • the thickness of the protective layer, before the protective layer reflows can be between 1 and 10 microns, for example.
  • the thickness of the protective layer, after the protective layer reflows, can be between 0.1 and 2 microns, for example.
  • the multilayer body can include, for example, at least a base layer, an emitter layer positioned on a first side of the base layer, and a surface field layer positioned on a second side of the base layer.
  • the multilayer body can further include at least one of: a passivation layer positioned between the base layer and the emitter layer, a second passivation layer positioned between the base layer and the surface field layer, a transparent conductive oxide layer positioned on the emitter layer, and a second transparent conductive oxide layer positioned on the surface field layer.
  • system can further form a second grid on a second surface of the multilayer body, which may be formed simultaneously with the first grid.
  • FIG. 1A shows an exemplary high-efficiency photovoltaic structure.
  • FIG. 1B shows an amplified view of a metal line on a surface of a photovoltaic structure.
  • FIGS. 2A-2O show exemplary intermediate photovoltaic structures after certain fabrication steps, according to an embodiment of the present invention.
  • FIGS. 3A-3G show exemplary intermediate photovoltaic structures after certain fabrication steps, according to an embodiment of the present invention.
  • FIG. 4 shows an exemplary fabrication system, according to an embodiment of the present invention.
  • a photovoltaic structure can use electroplated Cu grids as electrodes on one or both surfaces. Because Cu is susceptible to oxidation and corrosion, it can be desirable to coat the Cu grid, including both its top surface and sidewalls, with a protective layer. Tin, due to its anti-corrosion property and low melting point, is often used to provide corrosion protection and solderbility (if needed) to electroplated Cu grids. In some embodiments, depositing a tin layer over a Cu grid can be achieved via a tin plating process followed by the thermal reflow of the tin layer.
  • a thick tin-containing metallic layer can be plated onto the top surface of an electroplated Cu grid while the sidewalls of the Cu grid are still covered by the plating mask (e.g., a photoresist or SiO 2 mask). Subsequently, the plating mask can be removed to expose the sidewalls of the Cu grid, and the tin-containing metallic layer can then be heated, causing the tin-containing metal to reflow. As a result, the sidewalls of the Cu grid can now be covered by a tin-containing metallic layer.
  • this novel fabrication process is advantageous, because it is environmental friendly and can reduce fabrication cost.
  • FIG. 1A shows an exemplary high-efficiency photovoltaic structure.
  • Photovoltaic structure 100 can include substrate 102 , surface-field layer 104 , emitter layer 106 , and electrode grids 108 and 110 .
  • substrate 102 can include a lightly doped or substantially intrinsic crystalline Si (c-Si) layer
  • surface-field layer 104 can include a heavily doped amorphous Si (a-Si) layer
  • emitter layer 106 can include a heavily doped a-Si layer.
  • Surface-field layer 104 can face the majority of incident light (as indicated by the sun), and hence can also be called the front surface-field (FSF) layer.
  • Substrate 102 can either be doped with n-type dopants (e.g., phosphorus) or p-type dopants (e.g., boron).
  • the doping types of FSF layer 104 and emitter layer 106 can be determined by the doping type of substrate 102 .
  • FSF layer 104 can be doped with n-type dopants to act as an electron collector; and emitter layer 106 can be doped with p-type dopants to act as a hole collector.
  • FSF layer 104 can be doped with p-type dopants to act as a hole collector; and emitter layer 106 can be doped with n-type dopants to act as an electron collector.
  • Electrode grids 108 and 110 are responsible for collecting current. To ensure low electrical resistivity while resisting oxidation and corrosion, electrode grids 108 and 110 can include an electroplated Cu core and a protective layer covering the top surface and sidewalls of the Cu core.
  • FIG. 1B shows an amplified view of a grid line on a surface of a photovoltaic structure.
  • Grid line 120 e.g., a finger line or a busbar
  • Grid line 120 can be positioned on surface 130 of a photovoltaic structure.
  • Grid line 120 can include core layer 122 and protective layer 124 . If the shape of the prism is substantially rectangular (as shown in FIG. 1B ), core layer 122 can have a top surface, a bottom surface, and four sidewalls.
  • the bottom surface can be in contact with surface 130 of the photovoltaic structure, and the top surface and sidewalls covered by protective layer 124 .
  • Protective layer 124 typically can contain metallic materials that can resist corrosion, such as Ag and Sn (tin), or non-metallic materials, such as certain corrosion-resisting organic materials. Tin sometimes can be preferred over Ag due to its lower cost and soldering ability.
  • thiourea is a hazardous material (e.g., it is suspected to be a carcinogen) and needs to be handled with care. Not only does the working environment need to be carefully controlled to prevent possible human exposure, the waste solution generated by the emersion-tin process also needs to be carefully treated. The treatment of the thiourea-containing waste can be an expensive process, which can then add to the fabrication cost of the solar panels.
  • embodiments of the present invention can deposit a protective layer over the electroplated Cu grid without using thiourea. Instead of using an immersion process that relies on displacement of metal ions, a plating-followed-by-thermal-reflow process can be used to form a protective layer surrounding the electroplated Cu finger lines or busbars.
  • FIGS. 2A-2O show exemplary intermediate photovoltaic structures after certain fabrication steps, according to an embodiment of the present invention.
  • FIG. 2A shows substrate 200 .
  • substrate 200 can include a solar grade Si (SG-Si) wafer, which can be epitaxially grown or prepared using a Czochralski (CZ) or Float Zone (FZ) method.
  • the thickness of substrate 200 can be between 80 and 300 microns, and typically between 110 and 180 microns.
  • the resistivity of the SG-Si wafer can range from 0.5 ohm-cm to 10 ohm-cm, for example.
  • Substrate 200 can be intrinsic or lightly doped with n- or p-type dopants.
  • substrate 200 can be doped with n-type dopants and can have a doping concentration ranging from 1 ⁇ 10 10 /cm 3 to 1 ⁇ 10 16 /cm 3 .
  • substrate 200 can have a graded doping profile.
  • the preparation operation can include typical saw damage etching that removes approximately 10 ⁇ m of silicon and, optionally, surface texturing.
  • the surface texture can have various patterns, including but not limited to: hexagonal-pyramid, inverted pyramid, cylinder, cone, ring, and other irregular shapes. In one embodiment, the surface-texturing operation can result in a random pyramid textured surface. Afterwards, substrate 200 can go through extensive surface cleaning.
  • FIG. 2B shows that a tunneling/passivation layer can be formed on both surfaces of Si substrate 200 to form tunneling/passivation layers 202 and 204 , respectively.
  • a tunneling/passivation layer can include a single layer or a multilayer structure.
  • a tunneling/passivation multilayer structure can include a tunneling layer and one or more passivation layers.
  • the tunneling layer can include a thin oxide layer, and the passivation layer(s) can include wide bandgap materials, such as intrinsic hydrogenated amorphous Si (a-Si:H).
  • oxidation techniques can be used to form the thin oxide layer, including, but not limited to: wet oxidation using oxygen or ozone bubbling at low temperatures, dry oxidation at relatively high temperatures (around or below 400° C.) (also known as thermal oxidation), low-pressure radical oxidation, atomic layer deposition (ALD) of a SiO 2 layer, plasma-enhanced chemical-vapor deposition (PECVD) of a SiO 2 layer, etc.
  • the thin oxide layer can also include native oxide.
  • the thickness of the thin oxide layer can be between 1 and 50 angstroms, preferably between 1 and 10 angstroms.
  • the tunneling layer can also function as a passivation layer, and no additional passivation layer is needed.
  • the intrinsic a-Si:H passivation layer can be formed using a chemical-vapor deposition (CVD) technique, such as PECVD.
  • CVD chemical-vapor deposition
  • the intrinsic a-Si:H passivation layer may have graded H content levels.
  • the intrinsic a-Si:H passivation layer can have a low H content level to ensure a low D it , whereas other portions of the intrinsic a-Si:H passivation layer can have a higher H content level to provide a wider bandgap, and hence better passivation effects.
  • Forming an intrinsic a-Si:H layer having graded H content levels can involve adjusting the H flow rate during the CVD process.
  • FIG. 2C shows that emitter layer 206 can be deposited on tunneling/passivation layer 202 .
  • the doping type of emitter layer 206 can be opposite to that of substrate 200 .
  • emitter layer 206 can be p-type doped.
  • Emitter layer 206 can include doped a-Si or hydrogenated a-Si (a-Si:H).
  • the thickness of emitter layer 206 can be between 2 and 50 nm, preferably between 4 and 8 nm.
  • emitter layer 206 can have a graded doping profile. The doping profile of emitter layer 206 can be optimized to ensure good ohmic contact, minimum light absorption, and a large built-in electrical field.
  • the doping concentration of emitter layer 206 can range from 1 ⁇ 10 15 /cm 3 to 5 ⁇ 10 20 /cm 3 .
  • the region within emitter layer 206 that is adjacent to tunneling/passivation layer 202 can have a lower doping concentration, and the region that is away from tunneling/passivation layer 202 can have a higher doping concentration.
  • the lower doping concentration at the interface between tunneling/passivation layer 202 and emitter layer 206 can ensure a reduced interface defect density, and the higher doping concentration on the other side can prevent emitter layer depletion.
  • the crystal structure of emitter layer 206 can either be nanocrystalline, which can enable higher carrier mobility; or protocrystalline, which can enable good absorption in the ultra-violet (UV) wavelength range and good transmission in the infrared (IR) wavelength range. Both crystalline structures need to preserve the large bandgap of the a-Si.
  • the finishing surface of emitter layer 206 (the surface away from tunneling/passivation layer 202 ) should have a nanocrystalline structure.
  • Various deposition techniques can be used to deposit emitter layer 206 , including, but not limited to: atomic layer deposition, PECVD, hot wire CVD, etc.
  • depositions of an intrinsic a-Si:H passivation layer and emitter layer 206 can be performed within the same CVD environment.
  • FIG. 2D shows that TCO layer 208 can be deposited on emitter layer 206 using a physical vapor deposition (PVD) process, such as sputtering or evaporation.
  • Materials used to form TCO layer 208 can include, but are not limited to: tungsten doped indium oxide (IWO), indium-tin-oxide (ITO), GaInO (GIO), GaInSnO (GITO), ZnInO (ZIO), ZnInSnO (ZITO), tin-oxide (SnO x ), aluminum doped zinc-oxide (ZnO:Al or AZO), gallium doped zinc-oxide (ZnO:Ga), and their combinations.
  • TCO layer 208 can have a relatively high work function (e.g., between 5 and 6 eV) to ensure that the work function of TCO layer 208 matches that of p-type doped a-Si.
  • high work function TCO can include, but are not limited to: GaInO (GIO), GaInSnO (GITO), ZnInO (ZIO), ZnInSnO (ZITO), their combinations, as well as their combination with ITO.
  • a layer stack that includes surface field layer 210 and TCO layer 212 can be formed on the surface of tunneling/passivation layer 204 .
  • Surface field layer 210 can have the same doping type as that of substrate 200 .
  • surface field layer 210 can also be n-type doped.
  • surface field layer 210 can be similar to emitter layer 206 by having similar material make up, thickness, doping profile, and crystal structure.
  • surface field layer 210 can include doped a-Si or a-Si:H, and can have a thickness between 2 and 50 nm, preferably between 4 and 8 nm.
  • surface field layer 210 can also include crystalline Si (c-Si).
  • the doping concentration of surface field layer 210 can range from 1 ⁇ 10 15 /cm 3 to 5 ⁇ 10 20 /cm 3 .
  • the doping profile of surface field layer 210 can also be similar to that of emitter layer 206 .
  • Various deposition techniques can be used to deposit surface field layer 210 , including, but not limited to: atomic layer deposition, PECVD, hot wire CVD, etc.
  • depositions of an intrinsic a-Si:H passivation layer and surface field layer 210 can be performed within the same CVD environment.
  • TCO layer 212 can be deposited on surface field layer 210 using a physical vapor deposition (PVD) process, such as sputtering or evaporation.
  • PVD physical vapor deposition
  • Materials used to form TCO layer 212 can include, but are not limited to: tungsten doped indium oxide (IWO), indium-tin-oxide (ITO), GaInO (GIO), GaInSnO (GITO), ZnInO (ZIO), ZnInSnO (ZITO), tin-oxide (SnO x ), aluminum doped zinc-oxide (ZnO:Al or AZO), gallium doped zinc-oxide (ZnO:Ga), and their combinations.
  • TCO layer 212 can have a relatively low work function (e.g., less than 4 eV).
  • low work function TCO materials include, but are not limited to: AZO, IWO, ITO, F:SnO 2 , IZO, IZWO, and their combinations.
  • FIG. 2F shows that thin metallic layers 214 and 226 can be deposited onto TCO layers 208 and 212 , respectively.
  • Thin metallic layers 214 and 226 can be deposited using a physical vapor deposition (PVD) technique, such as sputtering deposition or evaporation.
  • PVD physical vapor deposition
  • Thin metallic layers 214 and 226 can be a single layer that includes Cu, Ni, Ag, NiV, Ti, Ta, W, TiN, TaN, WN, TiW, NiCr, and their combinations.
  • thin metallic layers 214 and 226 can also be a metallic stack that includes a layer of one or more of the aforementioned metals directly deposited on the TCO layer and/or a metallic seed layer having the same material makeup (e.g., Cu) as that of the subsequently electroplated metallic grid.
  • the thickness of thin metallic layers 214 and 226 can be between 20 nm and 500 nm. Thin metallic layers 214 and 226 can improve the adhesion between TCO layer 208 and an electroplated metallic grid.
  • thin metallic layers 214 and 226 can be deposited using separate PVD processes. Alternatively, thin metallic layers 214 and 226 can be deposited using a single PVD process.
  • FIG. 2G shows that a patterned mask 216 can be formed on top of thin metallic layer 214 .
  • Windows (or openings) within mask 216 correspond to the locations of the designed metallic grid.
  • Patterned mask 216 can include a patterned photoresist layer, which can be formed using a photolithography technique. In one embodiment, patterning the photoresist can start with screen-printing photoresist on top of metallic layer 214 , covering the entire wafer surface. The photoresist can then be baked to remove solvent. An optical mask can be laid on the photoresist, and the wafer can be exposed to UV light.
  • the optical mask can removed, and the photoresist can be developed in a photoresist developer. Windows 218 and 220 can be formed after the photoresist is developed.
  • the photoresist can also be applied onto thin metallic layer 214 by spraying, dip coating, or curtain coating. Dry film resist can also be used.
  • patterned mask 216 can include a patterned layer of silicon oxide (SiO 2 ).
  • a patterned SiO 2 mask can be formed by first depositing a layer of SiO 2 using a low-temperature PECVD process.
  • a patterned SiO 2 mask can be formed by dip-coating the surface of a wafer using silica slurry, followed by screen-printing an etchant that includes hydrofluoric acid or fluorides.
  • Other materials e.g., SiN x
  • patterned mask 216 can have a thickness of tens of microns (e.g., between 20 and 100 microns), and windows 218 and 220 can have a width between 10 and 3000 microns. If a window is used to define a finger line, its width can be between 20 and 80 microns; and if a window is used to define a busbar, its width can be between 500 and 3000 microns.
  • FIG. 2H shows that metallic or non-metallic materials can be deposited into the windows of patterned mask 216 to form core layer 222 .
  • core layer 222 includes metallic materials (e.g., Cu), it can be formed using a plating technique, which can include electroplating and/or electroless plating.
  • the photovoltaic structure, including thin metallic layer 214 and patterned mask 216 can be submerged in an electrolyte solution that permits the flow of electricity.
  • thin metallic layer 214 can be coupled to the cathode of the plating power supply, and the anode of the plating power supply can include a metallic target (e.g., a Cu target).
  • mask 216 is electrically insulating and the windows within mask 216 are electrically conductive, metallic ions will be selectively deposited into the windows in mask 216 , forming a metallic grid with a designed pattern.
  • a Cu plate or a basket of copper chunks can be used as the anode, and the photovoltaic structure can be submerged in an electrolyte suitable for Cu plating (e.g., a CuSO 4 solution).
  • an electrolyte suitable for Cu plating e.g., a CuSO 4 solution
  • a layer of insulating material e.g., photoresist
  • the thickness of mask 216 is desirable to be greater than or equal to the desired thickness of metallic core layer 222 .
  • the thickness of metallic core layer 222 can between 10 and 100 microns, preferably between 30 and 50 microns. Note that, high aspect-ratios grid lines are important to obtain low-resistance electrodes while reducing shading loss.
  • FIG. 2I shows that additional materials can be deposited on top of core layer 222 to form protective layer 224 , while patterned mask 216 remains intact.
  • Materials used to form protective layer 224 can include materials that are corrosion resistive and have a relatively low melting point. It is preferable to use metallic materials with a melting point lower than 250° C. to preserve the electronic quality of the a-Si:H emitter and surface field layers. Tin, due to its low melting point (around 230° C.) and its anti-corrosion ability, can often be used to form protective layer 224 .
  • protective layer 224 can also be used to form protective layer 224 .
  • metallic protective layer 224 can be formed using a plating process similar to the one used to form metallic core layer 222 .
  • metallic ions forming metallic protective layer 224 can only attach to metallic core layer 222 , covering its top surface.
  • the thickness of the plated metallic protective layer 224 can be between 0.3 and 10 microns, preferably between 3 and 7 microns, more preferably around 5 microns. A sufficient amount of protective material needs to be deposited here in order to provide, at a later time, sufficient coverage to the sidewalls of the core layer.
  • FIG. 2J shows that patterned mask 216 can be removed. If mask 216 includes photoresist, a photoresist stripper can be used to strip off photoresist mask 216 . If mask 216 includes SiO 2 , hydrofluoric acid or buffered hydrofluoric acid can be used to etch off SiO 2 mask 216 . Note that, after mask 216 is removed, sidewalls of metallic core layer 222 are exposed.
  • FIG. 2K shows that, using metallic protective layer 224 as a mask, thin metallic layer 214 can be selectively etched to expose the underneath TCO layer 208 , making it possible for light to reach the junctions. Etching thin metallic layer 224 can be optional if thin metallic layer 214 is extremely thin to be transparent.
  • FIG. 2L shows that heat can be applied to the photovoltaic structure to cause protective layer 224 to reflow. More specifically, heat can be applied to protective layer 224 , raising its temperature to a predetermined value such that protective layer 224 reflows (i.e., it melts and starts to flow). As a result of the thermal reflow, protective layer 224 can now cover both the top surface and sidewalls of core layer 222 . Protective layer 224 can also cover sidewalls of thin metallic layer 214 , preventing thin metallic layer 214 from being exposed to the environment.
  • the heating device can include a conveyor system to allow a larger number of wafers to be processed inline.
  • a conveyor can carry wafers through a heated tunnel, and thermal reflow of protective layer 224 can occur while the wafers passing through the heated tunnel.
  • the temperature of the environment can be carefully controlled to ensure the reflow of protective layer 224 without causing damage to other layers.
  • the thermal profile e.g., the temperature rising/cooling rate
  • the thermal profile also needs to be well controlled to reduce thermal stress.
  • the temperature can be controlled to ramp up slowly to a predetermined value that is above the melting point of protective layer 224 .
  • the predetermined temperature can be 10 to 20° C. higher than the melting point.
  • protective layer 224 can wet the underneath core layer 222 , covering its sidewalls.
  • the time duration that protective layer 224 remains above its melting point can be referred to as the wetting time and can depend on the time it takes for protective layer 224 to completely wet the sidewalls of metallic core layer 222 . If the wetting time is kept too short, the sidewalls of metallic core layer 22 may not be sufficiently covered. On the other hand, excessive wetting time can result in intermetallic structures or large grain structures being formed in protective layer 224 . This can then cause protective layer 224 to become brittle and weaker.
  • the wetting time can be between 10 seconds and 2 minutes, preferably between 30 seconds and 1 minute.
  • protective layer 224 After wetting, protective layer 224 needs to cool down to below the melting point. A relatively rapid cooling down process can be needed to reduce the possibility of large grain structures being formed. In some embodiments, water-cooling or refrigerated-cooling can be included as part of the thermal reflow operation. After the thermal reflow, the thickness of protective layer 224 can be between 0.1 and 5 microns, preferably between 0.5 and 1 micron. Note that, after reflow, protective layer 224 needs to be sufficiently thick in order to provide adequate anti-corrosion protection to the underneath metallic (e.g., Cu) layer.
  • metallic e.g., Cu
  • the backside grid that comprises core layer 228 and protective layer 230 can be formed on top of thin metallic layer 226 using processes similar to the ones shown by FIGS. 2G-2J . If plating is used for depositions of core layer 228 and protective layer 230 , the front side of the photovoltaic structure needs to be protected (e.g., by using photoresist).
  • FIG. 2N shows that thin metallic layer 226 can be selectively etched using a process similar to the one shown in FIG. 2K . As a result, TCO layer 212 can be partially exposed.
  • FIG. 2O shows that heat can be applied to protective layer 230 , causing it to reflow to cover the sidewalls of core layer 228 .
  • the thermal reflow process of protective layer 230 can be similar to the one used in operation 2 L.
  • the top and bottom grids are formed one after the other, i.e., the top grid is formed, including performing the thermal reflow, before materials forming the bottom grid are plated.
  • the top grid is formed, including performing the thermal reflow, before materials forming the bottom grid are plated.
  • the fabrication throughput can be significantly improved if electrode grids on both sides of the photovoltaic structures can be formed simultaneously.
  • FIGS. 3A-3G show exemplary intermediate photovoltaic structures after certain fabrication steps, according to an embodiment of the present invention.
  • FIG. 3A shows a multilayer body of a photovoltaic structure.
  • the multilayer body can be prepared using processes similar to those shown by FIGS. 2A-2F .
  • the multilayer body can include base layer 300 , tunneling/passivation layers 302 and 304 , surface field layer 306 , emitter layer 308 , TCO layers 310 and 312 , and Cu seed layers 314 and 316 .
  • FIG. 3B shows that patterned photoresist masks 318 and 320 can be formed on Cu seed layers 314 and 316 , respectively. Forming these two patterned masks can involve depositing and exposing photoresist on each side of the photovoltaic structure in sequence, and then simultaneously developing photoresist on both sides.
  • FIG. 3C shows that the photovoltaic structure can be submerged into an electrolyte solution suitable for Cu plating (e.g., CuSO 4 ) to simultaneously form Cu core layers 322 and 324 on metallic seed layers 314 and 316 , respectively.
  • Cu plating e.g., CuSO 4
  • Cu ions can only be deposited at locations that correspond to windows of masks 318 and 320 .
  • Cu seed layers 314 and 316 both can be electrically coupled to the plating cathode.
  • FIG. 3D shows that the photovoltaic structure can be submerged into an electrolyte solution suitable for tin plating (e.g., a solution containing SnSO 4 ) to simultaneously form tin layers 326 and 328 on Cu core layers 322 and 324 , respectively.
  • an electrolyte solution suitable for tin plating e.g., a solution containing SnSO 4
  • FIG. 3E shows that photoresist masks 318 and 320 can be removed simultaneously using a photoresist stripper, exposing the sidewalls of Cu core layers 322 and 324 .
  • FIG. 3F shows that, using tin layers 326 and 328 as masks, Cu seed layers 314 and 316 can be selectively etched to expose TCO layers 310 and 312 . If wet etching is used, Cu seed layers 314 and 316 can be etched simultaneously by submerging the photovoltaic structure into the etching solution.
  • FIG. 3G shows that the photovoltaic structure can be heated to a temperature slightly above the melting point of tin (e.g., to about 240° C.), causing tin layers 326 and 328 to reflow to cover the sidewalls of Cu core layers 322 and 324 .
  • Cu seed layers 314 and 316 can also be buried by reflowed tin layers 326 and 328 , respectively.
  • the photovoltaic structure may need to be mounted onto a vertically oriented wafer carrier to ensure even heating to both surfaces. In cases where the heat is applied via radiation, heating elements may be arranged in a way such that both surfaces of the photovoltaic structures experience substantially even heating.
  • FIG. 4 shows an exemplary fabrication system, according to an embodiment of the present invention.
  • Fabrication system 400 can include wet station 402 , CVD tool 404 , PVD tool 406 , photolithography tool 408 , plating baths 410 and 412 , and thermal reflow oven 414 .
  • Wet station 402 (also known as a wet bench) can include a number of baths, each containing a particular solution, used for the various wet processes (e.g., surface cleaning and texturing, wet oxidation, wet etching, etc).
  • wet station 402 can process Si substrates in batches, with each batch including tens or hundreds of Si substrates.
  • crystalline Si wafers can first undergo a number of wet processes at wet station 402 , including surface cleaning, saw-damage removing, surface texturing, and wet oxidation.
  • the substrates emerging from wet station 402 can have a thin oxide layer formed on both surfaces, and can be sent to CVD tool 404 for material deposition.
  • CVD tool 404 can be used to deposit one or more passivation layer(s), an emitter layer, and a surface field layer.
  • CVD tool 404 can be a combined CVD system that includes both static-processing CVD modules and inline-processing CVD modules.
  • the static-processing modules can be used to deposit layers having higher surface quality requirements, and the inline-processing modules can be used to deposit layers having lower surface quality requirements.
  • photovoltaic structures may need to go through CVD tool two times to complete fabrications on both sides.
  • PVD tool 406 can be used to deposit a TCO layer and one or more thin metallic layers on each side of the photovoltaic structures.
  • PVD tool 406 can be configured to sequentially deposit a TCO layer and one or more thin metallic layers, without breaking vacuum.
  • PVD tool 406 can include a multiple-target sputtering tool (e.g., an RF magnetron sputtering tool).
  • the multiple targets inside the deposition chamber can include an ITO target and one or more metallic targets.
  • a target can be a rotary target electrically coupled to a periodically tuned capacitor to ensure uniform target depletion.
  • PVD tool 406 can also be configured to include a vertically oriented wafer carrier to enable simultaneous material deposition on both sides of the photovoltaic structures.
  • Photovoltaic structures emerging from PVD tool 406 can include a complete layer stack on both sides, and can be transported to photolithography tool 408 .
  • the photovoltaic structures can go through a rapid annealing process at a temperature greater than 200° C. to anneal both the TCO and the one or more metallic layers.
  • Photolithography tool 408 can deposit a patterned photoresist mask on one or both sides of the photovoltaic structures.
  • the mask pattern can correspond to the pattern of a subsequently formed metallic grid, with windows in the mask corresponding to locations of the metal lines.
  • Plating baths 410 and 412 each can contain an electrolyte solution suitable for electroplating a certain metallic material.
  • plating bath 410 can be used to plate the core layer of a metallic grid
  • plating bath 412 can be used to plate the protective layer of the metallic grid.
  • the core layer of the metallic grid can include metallic materials with low resistivity, such as Cu.
  • plating bath 410 can contain an electrolyte solution that includes Cu ions.
  • the protective layer of the metallic grid can include corrosion-resisting, low-melting point metallic materials, such as tin, tin-lead alloy, tin-zinc alloy, tin-bismuth alloy, tin-indium alloy, silver-lead alloy, tin-silver-copper alloy, tin-lead-zinc alloy, tin-lead-copper alloy, etc.
  • plating bath 412 can contain an electrolyte solution that includes Sn ions and other appropriated metal ions.
  • Photovoltaic structures with a patterned mask on one or both sides can be submerged into plating baths 410 and 412 sequentially, resulting in the sequential deposition of the core layer and the protective layer of an electrode grid on the one or both sides.
  • plating baths 410 and 412 can both be equipped with a cathode that can move from one end of a plating bath to the other end during plating; and photovoltaic structures can be attached to the moving cathode using custom designed jigs.
  • the custom designed jig can establish electrical connections to both surfaces of the wafers, thus allowing simultaneous plating on both sides of the photovoltaic structures. It can also be possible to use to the same moving cathode in both plating baths, thus eliminating the need to unload and load the photovoltaic structures between plating operations.
  • Photovoltaic structures emerging from the plating baths can be sent back to photolithography tool 408 for the removal of the photoresist mask to expose the sidewalls of the core layer of the metallic grids.
  • the removal of the photoresist mask can be performed at wet station 402 .
  • the photovoltaic structures can also be sent to wet station 402 for selective etching of the one or more thin metallic layers to expose the underneath TCO layer(s).
  • the photovoltaic structures can be cleaned and dried before being sent to thermal reflow oven 414 .
  • Thermal reflow oven 414 can include a conveyor system (e.g., a conveyor belt) and a number of heating/cooling zones.
  • Photovoltaic structures can be loaded onto the conveyor and move through the different heating/cooling zones.
  • the protective layer of the metallic grid When the protective layer of the metallic grid reaches its melting point, it can reflow to cover the sidewalls of the core layer.
  • the thermal profile of the protective layer can be controlled by adjusting the temperature setting in each heating/cooling zone and the speed of the conveyor.
  • the fabrication of the metallic grid can be completed once the photovoltaic structures are sufficiently cooled and the protective layer re-solidified. If metallic grids on both sides are completed, the photovoltaic structures can be sent to a packaging tool, which can divide the standard photovoltaic structures into smaller strips, cascading the smaller strips into strings, and placing the strings into a protective frame to obtain a solar panel. If only one side of the photovoltaic structures has a completed metallic grid, the photovoltaic structures can be sent back to photolithography tool 408 to continue the fabrication of a metallic grid on the other side.
  • an alternative fabrication system may have two CVD tools to allow material depositions on different sides of the photovoltaic structures to be performed in different CVD tools. This way, the photovoltaic structures do not need to go through the same CVD tool twice, thus reducing the wait time and further increasing the fabrication throughput.
  • the fabrication system can also include one or more annealing stations that can anneal the TCO layers and/or the metallic seed layers.
  • the protective layer can also be deposited using a PVD tool, which can be the same PVD tool used for the TCO and/or metallic seed layer deposition or a different PVD tool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Systems and methods for fabricating a photovoltaic structure are provided. During fabrication, a patterned mask is formed on a first surface of a multilayer body of the photovoltaic structure, with openings of the mask corresponding to grid line locations of a first grid. Subsequently, a core layer of the first grid is deposited in the openings of the patterned mask, and a protective layer is deposited on an exposed surface of the core layer. The patterned mask is then removed to expose the sidewalls of the core layer. Heat is applied to the protective layer such that the protective layer reflows to cover both the exposed surface and sidewalls of the core layer.

Description

    CROSS-REFERENCE TO OTHER APPLICATIONS
  • This application/patent is a continuation application of application Ser. No. 14/985,238, Attorney Docket Number P182-1NUS, entitled “System and Method for Tin Plating Metal Electrodes,” by inventors Christoph G. Erben and Zhi-Wen Sun, filed 30 Dec. 2015, the disclosure of which is incorporated herein by reference in their entirety for all purposes.
  • FIELD OF THE INVENTION
  • This is related to fabrication of photovoltaic structures, including fabrication of photovoltaic structures with tin-plated metallic electrodes.
  • DEFINITIONS
  • “Solar cell” or “cell” is a photovoltaic structure capable of converting light into electricity. A cell may have any size and any shape, and may be created from a variety of materials. For example, a solar cell may be a photovoltaic structure fabricated on a silicon wafer or one or more thin films on a substrate material (e.g., glass, plastic, or any other material capable of supporting the photovoltaic structure), or a combination thereof.
  • A “photovoltaic structure” can refer to a solar cell, a segment, or a solar cell strip. A photovoltaic structure is not limited to a device fabricated by a particular method. For example, a photovoltaic structure can be a crystalline silicon-based solar cell, a thin film solar cell, an amorphous silicon-based solar cell, a poly-crystalline silicon-based solar cell, or a strip thereof.
  • “Finger lines,” “finger electrodes,” and “fingers” refer to elongated, electrically conductive (e.g., metallic) electrodes of a photovoltaic structure for collecting carriers.
  • A “busbar,” “bus line,” or “bus electrode” refers to an elongated, electrically conductive (e.g., metallic) electrode of a photovoltaic structure for aggregating current collected by two or more finger lines. A busbar is usually wider than a finger line, and can be deposited or otherwise positioned anywhere on or within the photovoltaic structure. A single photovoltaic structure may have one or more busbars.
  • BACKGROUND
  • The negative environmental impact of fossil fuels and their rising cost have resulted in a need for cleaner, cheaper alternative energy sources. Among different forms of alternative energy sources, solar power has been favored for its cleanness and wide availability.
  • A solar cell converts light into electricity using the photovoltaic effect. Most solar cells include one or more p-n junctions, which can include heterojunctions or homojunctions. In a solar cell, light is absorbed near the p-n junction and generates carriers. The carriers diffuse into the p-n junction and are separated by the built-in electric field, thus producing an electrical current across the device and external circuitry. An important metric in determining a solar cell's quality is its energy-conversion efficiency, which is defined as the ratio between power converted (from absorbed light to electrical energy) and power collected when the solar cell is connected to an electrical circuit. High efficiency solar cells are essential in reducing the cost to produce solar energy.
  • One important factor affecting the energy-conversion efficiency of a solar cell is its internal resistance. Reducing resistive loss can increase the energy outputted by the solar cell, and hence the solar cell's efficiency. It has been shown that electrode grids based on electroplated Cu have significantly lower resistivity than conventional screen-printed Ag grids. In addition to having lower resistivity, electroplated Cu grids also cost less than the Ag grids. However, unlike Ag, Cu can be susceptible to oxidation and corrosion. When exposed to moisture, Cu grids may oxidize, resulting in increased resistivity and decreased strength. Therefore, Cu grids of solar cells are often coated with a corrosion-resistive protection layer. Conventional approaches for coating Cu grids with such a corrosion-resistive protection layer can generate hazardous waste.
  • SUMMARY
  • One embodiment of the invention can provide a system for fabricating a photovoltaic structure. During fabrication, the system can form a multilayer body of the photovoltaic structure and a first grid on a first surface of the multilayer body. While forming the first grid, the system can form a patterned mask on the first surface of the multilayer body, with openings of the patterned mask corresponding to grid line locations of the first grid. The system can further deposit, using a plating technique, a core layer of the first grid in the openings of the patterned mask; deposit, using a plating technique, a protective layer on an exposed surface of the core layer while the patterned mask covering sidewalls of the core layer; remove the patterned mask to expose the sidewalls of the core layer; and apply heat to the protective layer such that the protective layer reflows to cover both the exposed surface and sidewalls of the core layer.
  • In one embodiment, the patterned mask can include a photoresist mask or a SiO2 mask.
  • In one embodiment, the core layer can be a metallic layer that includes Cu.
  • The thickness of the core layer can be between 10 and 100 microns, for example.
  • The protective layer can be a metallic layer that includes one or more of: tin, tin-lead alloy, tin-zinc alloy, tin-bismuth alloy, tin-indium alloy, tin-silver-copper alloy, tin-lead-zinc alloy, and tin-lead-copper alloy.
  • In a further variation, the protective layer can be a metallic layer that includes one or more of: tin and tin-lead alloy.
  • The thickness of the protective layer, before the protective layer reflows, can be between 1 and 10 microns, for example.
  • The thickness of the protective layer, after the protective layer reflows, can be between 0.1 and 2 microns, for example.
  • The multilayer body can include, for example, at least a base layer, an emitter layer positioned on a first side of the base layer, and a surface field layer positioned on a second side of the base layer.
  • In a further variation, the multilayer body can further include at least one of: a passivation layer positioned between the base layer and the emitter layer, a second passivation layer positioned between the base layer and the surface field layer, a transparent conductive oxide layer positioned on the emitter layer, and a second transparent conductive oxide layer positioned on the surface field layer.
  • In a variation of this embodiment, the system can further form a second grid on a second surface of the multilayer body, which may be formed simultaneously with the first grid.
  • The above described embodiments and their variations can be combined in any suitable manner.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1A shows an exemplary high-efficiency photovoltaic structure.
  • FIG. 1B shows an amplified view of a metal line on a surface of a photovoltaic structure.
  • FIGS. 2A-2O show exemplary intermediate photovoltaic structures after certain fabrication steps, according to an embodiment of the present invention.
  • FIGS. 3A-3G show exemplary intermediate photovoltaic structures after certain fabrication steps, according to an embodiment of the present invention.
  • FIG. 4 shows an exemplary fabrication system, according to an embodiment of the present invention.
  • In the figures, like reference numerals refer to the same figure elements.
  • DETAILED DESCRIPTION
  • The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
  • Systems and methods for fabricating low-cost high-efficiency photovoltaic structures are provided. To ensure high-efficiency and to reduce fabrication cost, a photovoltaic structure can use electroplated Cu grids as electrodes on one or both surfaces. Because Cu is susceptible to oxidation and corrosion, it can be desirable to coat the Cu grid, including both its top surface and sidewalls, with a protective layer. Tin, due to its anti-corrosion property and low melting point, is often used to provide corrosion protection and solderbility (if needed) to electroplated Cu grids. In some embodiments, depositing a tin layer over a Cu grid can be achieved via a tin plating process followed by the thermal reflow of the tin layer. More specifically, during fabrication, a thick tin-containing metallic layer can be plated onto the top surface of an electroplated Cu grid while the sidewalls of the Cu grid are still covered by the plating mask (e.g., a photoresist or SiO2 mask). Subsequently, the plating mask can be removed to expose the sidewalls of the Cu grid, and the tin-containing metallic layer can then be heated, causing the tin-containing metal to reflow. As a result, the sidewalls of the Cu grid can now be covered by a tin-containing metallic layer. Compared to the conventional tin-immersion technique that generates toxic waste, this novel fabrication process is advantageous, because it is environmental friendly and can reduce fabrication cost.
  • Fabrication Processes
  • FIG. 1A shows an exemplary high-efficiency photovoltaic structure. Photovoltaic structure 100 can include substrate 102, surface-field layer 104, emitter layer 106, and electrode grids 108 and 110. In the example shown in FIG. 1A, substrate 102 can include a lightly doped or substantially intrinsic crystalline Si (c-Si) layer; surface-field layer 104 can include a heavily doped amorphous Si (a-Si) layer; and emitter layer 106 can include a heavily doped a-Si layer.
  • Surface-field layer 104 can face the majority of incident light (as indicated by the sun), and hence can also be called the front surface-field (FSF) layer. Substrate 102 can either be doped with n-type dopants (e.g., phosphorus) or p-type dopants (e.g., boron). The doping types of FSF layer 104 and emitter layer 106 can be determined by the doping type of substrate 102. For an n-type doped substrate, FSF layer 104 can be doped with n-type dopants to act as an electron collector; and emitter layer 106 can be doped with p-type dopants to act as a hole collector. On the other hand, for a p-type doped substrate, FSF layer 104 can be doped with p-type dopants to act as a hole collector; and emitter layer 106 can be doped with n-type dopants to act as an electron collector.
  • Electrode grids 108 and 110 are responsible for collecting current. To ensure low electrical resistivity while resisting oxidation and corrosion, electrode grids 108 and 110 can include an electroplated Cu core and a protective layer covering the top surface and sidewalls of the Cu core. FIG. 1B shows an amplified view of a grid line on a surface of a photovoltaic structure. Grid line 120 (e.g., a finger line or a busbar) can be positioned on surface 130 of a photovoltaic structure. Grid line 120 can include core layer 122 and protective layer 124. If the shape of the prism is substantially rectangular (as shown in FIG. 1B), core layer 122 can have a top surface, a bottom surface, and four sidewalls. The bottom surface can be in contact with surface 130 of the photovoltaic structure, and the top surface and sidewalls covered by protective layer 124. Protective layer 124 typically can contain metallic materials that can resist corrosion, such as Ag and Sn (tin), or non-metallic materials, such as certain corrosion-resisting organic materials. Tin sometimes can be preferred over Ag due to its lower cost and soldering ability.
  • Conventional approaches for depositing protective layer 124 often involves a metal immersion process, during which Ag or Sn ions displace Cu ions on the top surface and sidewalls of Cu core 122. During the immersion-tin process, a complexing agent, such as thiourea (SC(NH2)2) and its derivatives, is needed, because the redox potential of Cu is greater than that of Sn. More specifically, Thiourea can reduce the redox potential of Cu from +0.34 V to −0.39 V, which is lower than the redox potential of Sn (−0.14 V), making it possible for Sn ions to replace the Cu ions.
  • However, this immersion-tin approach faces a significant challenge. More specifically, thiourea is a hazardous material (e.g., it is suspected to be a carcinogen) and needs to be handled with care. Not only does the working environment need to be carefully controlled to prevent possible human exposure, the waste solution generated by the emersion-tin process also needs to be carefully treated. The treatment of the thiourea-containing waste can be an expensive process, which can then add to the fabrication cost of the solar panels.
  • To reduce fabrication cost, embodiments of the present invention can deposit a protective layer over the electroplated Cu grid without using thiourea. Instead of using an immersion process that relies on displacement of metal ions, a plating-followed-by-thermal-reflow process can be used to form a protective layer surrounding the electroplated Cu finger lines or busbars.
  • FIGS. 2A-2O show exemplary intermediate photovoltaic structures after certain fabrication steps, according to an embodiment of the present invention. FIG. 2A shows substrate 200. In some embodiments, substrate 200 can include a solar grade Si (SG-Si) wafer, which can be epitaxially grown or prepared using a Czochralski (CZ) or Float Zone (FZ) method. The thickness of substrate 200 can be between 80 and 300 microns, and typically between 110 and 180 microns. The resistivity of the SG-Si wafer can range from 0.5 ohm-cm to 10 ohm-cm, for example. Substrate 200 can be intrinsic or lightly doped with n- or p-type dopants. In some embodiments, substrate 200 can be doped with n-type dopants and can have a doping concentration ranging from 1×1010/cm3 to 1×1016/cm3. In further embodiments, substrate 200 can have a graded doping profile. The preparation operation can include typical saw damage etching that removes approximately 10 μm of silicon and, optionally, surface texturing. The surface texture can have various patterns, including but not limited to: hexagonal-pyramid, inverted pyramid, cylinder, cone, ring, and other irregular shapes. In one embodiment, the surface-texturing operation can result in a random pyramid textured surface. Afterwards, substrate 200 can go through extensive surface cleaning.
  • FIG. 2B shows that a tunneling/passivation layer can be formed on both surfaces of Si substrate 200 to form tunneling/ passivation layers 202 and 204, respectively. A tunneling/passivation layer can include a single layer or a multilayer structure. In some embodiments, a tunneling/passivation multilayer structure can include a tunneling layer and one or more passivation layers. In further embodiments, the tunneling layer can include a thin oxide layer, and the passivation layer(s) can include wide bandgap materials, such as intrinsic hydrogenated amorphous Si (a-Si:H). Various oxidation techniques can be used to form the thin oxide layer, including, but not limited to: wet oxidation using oxygen or ozone bubbling at low temperatures, dry oxidation at relatively high temperatures (around or below 400° C.) (also known as thermal oxidation), low-pressure radical oxidation, atomic layer deposition (ALD) of a SiO2 layer, plasma-enhanced chemical-vapor deposition (PECVD) of a SiO2 layer, etc. The thin oxide layer can also include native oxide. The thickness of the thin oxide layer can be between 1 and 50 angstroms, preferably between 1 and 10 angstroms. In some embodiments, the tunneling layer can also function as a passivation layer, and no additional passivation layer is needed.
  • The intrinsic a-Si:H passivation layer can be formed using a chemical-vapor deposition (CVD) technique, such as PECVD. To ensure superior passivation results and a low interface defect density (Dit), the intrinsic a-Si:H passivation layer may have graded H content levels. At the interface to the tunneling layer or substrate 200, the intrinsic a-Si:H passivation layer can have a low H content level to ensure a low Dit, whereas other portions of the intrinsic a-Si:H passivation layer can have a higher H content level to provide a wider bandgap, and hence better passivation effects. Forming an intrinsic a-Si:H layer having graded H content levels can involve adjusting the H flow rate during the CVD process.
  • FIG. 2C shows that emitter layer 206 can be deposited on tunneling/passivation layer 202. The doping type of emitter layer 206 can be opposite to that of substrate 200. For n-type doped substrate, emitter layer 206 can be p-type doped. Emitter layer 206 can include doped a-Si or hydrogenated a-Si (a-Si:H). The thickness of emitter layer 206 can be between 2 and 50 nm, preferably between 4 and 8 nm. In some embodiments, emitter layer 206 can have a graded doping profile. The doping profile of emitter layer 206 can be optimized to ensure good ohmic contact, minimum light absorption, and a large built-in electrical field. In some embodiments, the doping concentration of emitter layer 206 can range from 1×1015/cm3 to 5×1020/cm3. In further embodiments, the region within emitter layer 206 that is adjacent to tunneling/passivation layer 202 can have a lower doping concentration, and the region that is away from tunneling/passivation layer 202 can have a higher doping concentration. The lower doping concentration at the interface between tunneling/passivation layer 202 and emitter layer 206 can ensure a reduced interface defect density, and the higher doping concentration on the other side can prevent emitter layer depletion.
  • The crystal structure of emitter layer 206 can either be nanocrystalline, which can enable higher carrier mobility; or protocrystalline, which can enable good absorption in the ultra-violet (UV) wavelength range and good transmission in the infrared (IR) wavelength range. Both crystalline structures need to preserve the large bandgap of the a-Si. For higher film conductivity and better moisture barrier performance, the finishing surface of emitter layer 206 (the surface away from tunneling/passivation layer 202) should have a nanocrystalline structure. Various deposition techniques can be used to deposit emitter layer 206, including, but not limited to: atomic layer deposition, PECVD, hot wire CVD, etc. In some embodiments, depositions of an intrinsic a-Si:H passivation layer and emitter layer 206 can be performed within the same CVD environment.
  • FIG. 2D shows that TCO layer 208 can be deposited on emitter layer 206 using a physical vapor deposition (PVD) process, such as sputtering or evaporation. Materials used to form TCO layer 208 can include, but are not limited to: tungsten doped indium oxide (IWO), indium-tin-oxide (ITO), GaInO (GIO), GaInSnO (GITO), ZnInO (ZIO), ZnInSnO (ZITO), tin-oxide (SnOx), aluminum doped zinc-oxide (ZnO:Al or AZO), gallium doped zinc-oxide (ZnO:Ga), and their combinations. If emitter layer 206 is p-type doped, TCO layer 208 can have a relatively high work function (e.g., between 5 and 6 eV) to ensure that the work function of TCO layer 208 matches that of p-type doped a-Si. Examples of high work function TCO can include, but are not limited to: GaInO (GIO), GaInSnO (GITO), ZnInO (ZIO), ZnInSnO (ZITO), their combinations, as well as their combination with ITO.
  • In FIG. 2E, a layer stack that includes surface field layer 210 and TCO layer 212 can be formed on the surface of tunneling/passivation layer 204. Surface field layer 210 can have the same doping type as that of substrate 200. For an n-type doped substrate, surface field layer 210 can also be n-type doped. Other than the conductive doping type, surface field layer 210 can be similar to emitter layer 206 by having similar material make up, thickness, doping profile, and crystal structure. For example, like emitter layer 206, surface field layer 210 can include doped a-Si or a-Si:H, and can have a thickness between 2 and 50 nm, preferably between 4 and 8 nm. Alternatively, surface field layer 210 can also include crystalline Si (c-Si). In some embodiments, the doping concentration of surface field layer 210 can range from 1×1015/cm3 to 5×1020/cm3. The doping profile of surface field layer 210 can also be similar to that of emitter layer 206. Various deposition techniques can be used to deposit surface field layer 210, including, but not limited to: atomic layer deposition, PECVD, hot wire CVD, etc. In some embodiments, depositions of an intrinsic a-Si:H passivation layer and surface field layer 210 can be performed within the same CVD environment.
  • TCO layer 212 can be deposited on surface field layer 210 using a physical vapor deposition (PVD) process, such as sputtering or evaporation. Materials used to form TCO layer 212 can include, but are not limited to: tungsten doped indium oxide (IWO), indium-tin-oxide (ITO), GaInO (GIO), GaInSnO (GITO), ZnInO (ZIO), ZnInSnO (ZITO), tin-oxide (SnOx), aluminum doped zinc-oxide (ZnO:Al or AZO), gallium doped zinc-oxide (ZnO:Ga), and their combinations. If surface field layer 210 is n-type doped, TCO layer 212 can have a relatively low work function (e.g., less than 4 eV). Examples of low work function TCO materials include, but are not limited to: AZO, IWO, ITO, F:SnO2, IZO, IZWO, and their combinations.
  • FIG. 2F shows that thin metallic layers 214 and 226 can be deposited onto TCO layers 208 and 212, respectively. Thin metallic layers 214 and 226 can be deposited using a physical vapor deposition (PVD) technique, such as sputtering deposition or evaporation. Thin metallic layers 214 and 226 can be a single layer that includes Cu, Ni, Ag, NiV, Ti, Ta, W, TiN, TaN, WN, TiW, NiCr, and their combinations. In some embodiments, thin metallic layers 214 and 226 can also be a metallic stack that includes a layer of one or more of the aforementioned metals directly deposited on the TCO layer and/or a metallic seed layer having the same material makeup (e.g., Cu) as that of the subsequently electroplated metallic grid. The thickness of thin metallic layers 214 and 226 can be between 20 nm and 500 nm. Thin metallic layers 214 and 226 can improve the adhesion between TCO layer 208 and an electroplated metallic grid. In some embodiments, thin metallic layers 214 and 226 can be deposited using separate PVD processes. Alternatively, thin metallic layers 214 and 226 can be deposited using a single PVD process.
  • FIG. 2G shows that a patterned mask 216 can be formed on top of thin metallic layer 214. Windows (or openings) within mask 216 (e.g., windows 218 and 220) correspond to the locations of the designed metallic grid. Patterned mask 216 can include a patterned photoresist layer, which can be formed using a photolithography technique. In one embodiment, patterning the photoresist can start with screen-printing photoresist on top of metallic layer 214, covering the entire wafer surface. The photoresist can then be baked to remove solvent. An optical mask can be laid on the photoresist, and the wafer can be exposed to UV light. After the UV exposure, the optical mask can removed, and the photoresist can be developed in a photoresist developer. Windows 218 and 220 can be formed after the photoresist is developed. In addition to printing, the photoresist can also be applied onto thin metallic layer 214 by spraying, dip coating, or curtain coating. Dry film resist can also be used.
  • Alternatively, patterned mask 216 can include a patterned layer of silicon oxide (SiO2). In one embodiment, a patterned SiO2 mask can be formed by first depositing a layer of SiO2 using a low-temperature PECVD process. In a further embodiment, a patterned SiO2 mask can be formed by dip-coating the surface of a wafer using silica slurry, followed by screen-printing an etchant that includes hydrofluoric acid or fluorides. Other materials (e.g., SiNx) can also be possible to form patterned mask 216, as long as the masking material is electrically insulating. In some embodiments, patterned mask 216 can have a thickness of tens of microns (e.g., between 20 and 100 microns), and windows 218 and 220 can have a width between 10 and 3000 microns. If a window is used to define a finger line, its width can be between 20 and 80 microns; and if a window is used to define a busbar, its width can be between 500 and 3000 microns.
  • FIG. 2H shows that metallic or non-metallic materials can be deposited into the windows of patterned mask 216 to form core layer 222. If core layer 222 includes metallic materials (e.g., Cu), it can be formed using a plating technique, which can include electroplating and/or electroless plating. In some embodiments, the photovoltaic structure, including thin metallic layer 214 and patterned mask 216, can be submerged in an electrolyte solution that permits the flow of electricity. During plating, thin metallic layer 214 can be coupled to the cathode of the plating power supply, and the anode of the plating power supply can include a metallic target (e.g., a Cu target). Because mask 216 is electrically insulating and the windows within mask 216 are electrically conductive, metallic ions will be selectively deposited into the windows in mask 216, forming a metallic grid with a designed pattern. To deposit a Cu grid, a Cu plate or a basket of copper chunks can be used as the anode, and the photovoltaic structure can be submerged in an electrolyte suitable for Cu plating (e.g., a CuSO4 solution). To prevent plating on the other side of the photovoltaic structure, a layer of insulating material (e.g., photoresist) can be used to cover the surface of thin metallic layer 226. To ensure a well-defined aspect ratio, it is desirable to have the thickness of mask 216 to be greater than or equal to the desired thickness of metallic core layer 222. In some embodiments, the thickness of metallic core layer 222 can between 10 and 100 microns, preferably between 30 and 50 microns. Note that, high aspect-ratios grid lines are important to obtain low-resistance electrodes while reducing shading loss.
  • FIG. 2I shows that additional materials can be deposited on top of core layer 222 to form protective layer 224, while patterned mask 216 remains intact. Materials used to form protective layer 224 can include materials that are corrosion resistive and have a relatively low melting point. It is preferable to use metallic materials with a melting point lower than 250° C. to preserve the electronic quality of the a-Si:H emitter and surface field layers. Tin, due to its low melting point (around 230° C.) and its anti-corrosion ability, can often be used to form protective layer 224. Other materials, including but not limited to: tin-lead alloy, tin-zinc alloy, tin-bismuth alloy, tin-indium alloy, silver-lead alloy, tin-silver-copper alloy, tin-lead-zinc alloy, tin-lead-copper alloy, etc., can also be used to form protective layer 224. In some embodiments, metallic protective layer 224 can be formed using a plating process similar to the one used to form metallic core layer 222.
  • Because patterned mask 216 is largely electrically insulating, during plating, metallic ions forming metallic protective layer 224 can only attach to metallic core layer 222, covering its top surface. The thickness of the plated metallic protective layer 224 can be between 0.3 and 10 microns, preferably between 3 and 7 microns, more preferably around 5 microns. A sufficient amount of protective material needs to be deposited here in order to provide, at a later time, sufficient coverage to the sidewalls of the core layer.
  • FIG. 2J shows that patterned mask 216 can be removed. If mask 216 includes photoresist, a photoresist stripper can be used to strip off photoresist mask 216. If mask 216 includes SiO2, hydrofluoric acid or buffered hydrofluoric acid can be used to etch off SiO2 mask 216. Note that, after mask 216 is removed, sidewalls of metallic core layer 222 are exposed.
  • FIG. 2K shows that, using metallic protective layer 224 as a mask, thin metallic layer 214 can be selectively etched to expose the underneath TCO layer 208, making it possible for light to reach the junctions. Etching thin metallic layer 224 can be optional if thin metallic layer 214 is extremely thin to be transparent.
  • FIG. 2L shows that heat can be applied to the photovoltaic structure to cause protective layer 224 to reflow. More specifically, heat can be applied to protective layer 224, raising its temperature to a predetermined value such that protective layer 224 reflows (i.e., it melts and starts to flow). As a result of the thermal reflow, protective layer 224 can now cover both the top surface and sidewalls of core layer 222. Protective layer 224 can also cover sidewalls of thin metallic layer 214, preventing thin metallic layer 214 from being exposed to the environment.
  • Various heating techniques can be used to generate the thermal reflow, including but not limited to: placing the photovoltaic structure into an oven, placing the photovoltaic structure onto a hot plate, using an infrared lamp, blowing hot air, etc. In some embodiments, the heating device can include a conveyor system to allow a larger number of wafers to be processed inline. For example, a conveyor can carry wafers through a heated tunnel, and thermal reflow of protective layer 224 can occur while the wafers passing through the heated tunnel. The temperature of the environment can be carefully controlled to ensure the reflow of protective layer 224 without causing damage to other layers. Similarly, the thermal profile (e.g., the temperature rising/cooling rate) also needs to be well controlled to reduce thermal stress. For example, the temperature can be controlled to ramp up slowly to a predetermined value that is above the melting point of protective layer 224. The predetermined temperature can be 10 to 20° C. higher than the melting point. Once melted, due to surface tension, protective layer 224 can wet the underneath core layer 222, covering its sidewalls. The time duration that protective layer 224 remains above its melting point can be referred to as the wetting time and can depend on the time it takes for protective layer 224 to completely wet the sidewalls of metallic core layer 222. If the wetting time is kept too short, the sidewalls of metallic core layer 22 may not be sufficiently covered. On the other hand, excessive wetting time can result in intermetallic structures or large grain structures being formed in protective layer 224. This can then cause protective layer 224 to become brittle and weaker. In some embodiments, the wetting time can be between 10 seconds and 2 minutes, preferably between 30 seconds and 1 minute.
  • After wetting, protective layer 224 needs to cool down to below the melting point. A relatively rapid cooling down process can be needed to reduce the possibility of large grain structures being formed. In some embodiments, water-cooling or refrigerated-cooling can be included as part of the thermal reflow operation. After the thermal reflow, the thickness of protective layer 224 can be between 0.1 and 5 microns, preferably between 0.5 and 1 micron. Note that, after reflow, protective layer 224 needs to be sufficiently thick in order to provide adequate anti-corrosion protection to the underneath metallic (e.g., Cu) layer.
  • In FIG. 2M, the backside grid that comprises core layer 228 and protective layer 230 can be formed on top of thin metallic layer 226 using processes similar to the ones shown by FIGS. 2G-2J. If plating is used for depositions of core layer 228 and protective layer 230, the front side of the photovoltaic structure needs to be protected (e.g., by using photoresist).
  • FIG. 2N shows that thin metallic layer 226 can be selectively etched using a process similar to the one shown in FIG. 2K. As a result, TCO layer 212 can be partially exposed.
  • FIG. 2O shows that heat can be applied to protective layer 230, causing it to reflow to cover the sidewalls of core layer 228. The thermal reflow process of protective layer 230 can be similar to the one used in operation 2L.
  • In the example shown in FIGS. 2A-2O, the top and bottom grids are formed one after the other, i.e., the top grid is formed, including performing the thermal reflow, before materials forming the bottom grid are plated. In practice, it can also be possible to combine metallization processes on both sides of the photovoltaic structure. For example, it can be possible to simultaneously plating both sides of the photovoltaic structure. In addition, it can also be possible to perform thermal reflow on both sides of the photovoltaic structure. The fabrication throughput can be significantly improved if electrode grids on both sides of the photovoltaic structures can be formed simultaneously.
  • FIGS. 3A-3G show exemplary intermediate photovoltaic structures after certain fabrication steps, according to an embodiment of the present invention. FIG. 3A shows a multilayer body of a photovoltaic structure. The multilayer body can be prepared using processes similar to those shown by FIGS. 2A-2F. The multilayer body can include base layer 300, tunneling/ passivation layers 302 and 304, surface field layer 306, emitter layer 308, TCO layers 310 and 312, and Cu seed layers 314 and 316.
  • FIG. 3B shows that patterned photoresist masks 318 and 320 can be formed on Cu seed layers 314 and 316, respectively. Forming these two patterned masks can involve depositing and exposing photoresist on each side of the photovoltaic structure in sequence, and then simultaneously developing photoresist on both sides.
  • FIG. 3C shows that the photovoltaic structure can be submerged into an electrolyte solution suitable for Cu plating (e.g., CuSO4) to simultaneously form Cu core layers 322 and 324 on metallic seed layers 314 and 316, respectively. Note that, because photoresist is electrically insulating, Cu ions can only be deposited at locations that correspond to windows of masks 318 and 320. During plating, Cu seed layers 314 and 316 both can be electrically coupled to the plating cathode.
  • FIG. 3D shows that the photovoltaic structure can be submerged into an electrolyte solution suitable for tin plating (e.g., a solution containing SnSO4) to simultaneously form tin layers 326 and 328 on Cu core layers 322 and 324, respectively.
  • FIG. 3E shows that photoresist masks 318 and 320 can be removed simultaneously using a photoresist stripper, exposing the sidewalls of Cu core layers 322 and 324.
  • FIG. 3F shows that, using tin layers 326 and 328 as masks, Cu seed layers 314 and 316 can be selectively etched to expose TCO layers 310 and 312. If wet etching is used, Cu seed layers 314 and 316 can be etched simultaneously by submerging the photovoltaic structure into the etching solution.
  • FIG. 3G shows that the photovoltaic structure can be heated to a temperature slightly above the melting point of tin (e.g., to about 240° C.), causing tin layers 326 and 328 to reflow to cover the sidewalls of Cu core layers 322 and 324. Cu seed layers 314 and 316 can also be buried by reflowed tin layers 326 and 328, respectively. To allow simultaneous reflow of both tin layers 326 and 328, the photovoltaic structure may need to be mounted onto a vertically oriented wafer carrier to ensure even heating to both surfaces. In cases where the heat is applied via radiation, heating elements may be arranged in a way such that both surfaces of the photovoltaic structures experience substantially even heating.
  • Fabrication System
  • FIG. 4 shows an exemplary fabrication system, according to an embodiment of the present invention.
  • Fabrication system 400 can include wet station 402, CVD tool 404, PVD tool 406, photolithography tool 408, plating baths 410 and 412, and thermal reflow oven 414. Wet station 402 (also known as a wet bench) can include a number of baths, each containing a particular solution, used for the various wet processes (e.g., surface cleaning and texturing, wet oxidation, wet etching, etc). For large-scale fabrications, wet station 402 can process Si substrates in batches, with each batch including tens or hundreds of Si substrates. During fabrication, crystalline Si wafers can first undergo a number of wet processes at wet station 402, including surface cleaning, saw-damage removing, surface texturing, and wet oxidation.
  • The substrates emerging from wet station 402 can have a thin oxide layer formed on both surfaces, and can be sent to CVD tool 404 for material deposition. In some embodiments, CVD tool 404 can be used to deposit one or more passivation layer(s), an emitter layer, and a surface field layer. CVD tool 404 can be a combined CVD system that includes both static-processing CVD modules and inline-processing CVD modules. The static-processing modules can be used to deposit layers having higher surface quality requirements, and the inline-processing modules can be used to deposit layers having lower surface quality requirements. In some embodiments, photovoltaic structures may need to go through CVD tool two times to complete fabrications on both sides.
  • Photovoltaic structures emerging from CVD tool 404 can be transported, sometimes via an automated conveyor system, to PVD tool 406, which can be used to deposit a TCO layer and one or more thin metallic layers on each side of the photovoltaic structures. In some embodiments, PVD tool 406 can be configured to sequentially deposit a TCO layer and one or more thin metallic layers, without breaking vacuum. For example, PVD tool 406 can include a multiple-target sputtering tool (e.g., an RF magnetron sputtering tool). The multiple targets inside the deposition chamber can include an ITO target and one or more metallic targets. In some embodiments, a target can be a rotary target electrically coupled to a periodically tuned capacitor to ensure uniform target depletion. PVD tool 406 can also be configured to include a vertically oriented wafer carrier to enable simultaneous material deposition on both sides of the photovoltaic structures.
  • Photovoltaic structures emerging from PVD tool 406 can include a complete layer stack on both sides, and can be transported to photolithography tool 408. Optionally, before being sent to photolithography tool 408, the photovoltaic structures can go through a rapid annealing process at a temperature greater than 200° C. to anneal both the TCO and the one or more metallic layers. Photolithography tool 408 can deposit a patterned photoresist mask on one or both sides of the photovoltaic structures. The mask pattern can correspond to the pattern of a subsequently formed metallic grid, with windows in the mask corresponding to locations of the metal lines.
  • Plating baths 410 and 412 each can contain an electrolyte solution suitable for electroplating a certain metallic material. For example, plating bath 410 can be used to plate the core layer of a metallic grid, and plating bath 412 can be used to plate the protective layer of the metallic grid. The core layer of the metallic grid can include metallic materials with low resistivity, such as Cu. Accordingly, plating bath 410 can contain an electrolyte solution that includes Cu ions. The protective layer of the metallic grid can include corrosion-resisting, low-melting point metallic materials, such as tin, tin-lead alloy, tin-zinc alloy, tin-bismuth alloy, tin-indium alloy, silver-lead alloy, tin-silver-copper alloy, tin-lead-zinc alloy, tin-lead-copper alloy, etc. Accordingly, plating bath 412 can contain an electrolyte solution that includes Sn ions and other appropriated metal ions. Photovoltaic structures with a patterned mask on one or both sides can be submerged into plating baths 410 and 412 sequentially, resulting in the sequential deposition of the core layer and the protective layer of an electrode grid on the one or both sides. To ensure high throughput, plating baths 410 and 412 can both be equipped with a cathode that can move from one end of a plating bath to the other end during plating; and photovoltaic structures can be attached to the moving cathode using custom designed jigs. The custom designed jig can establish electrical connections to both surfaces of the wafers, thus allowing simultaneous plating on both sides of the photovoltaic structures. It can also be possible to use to the same moving cathode in both plating baths, thus eliminating the need to unload and load the photovoltaic structures between plating operations.
  • Photovoltaic structures emerging from the plating baths can be sent back to photolithography tool 408 for the removal of the photoresist mask to expose the sidewalls of the core layer of the metallic grids. Alternatively, the removal of the photoresist mask can be performed at wet station 402. Afterwards, the photovoltaic structures can also be sent to wet station 402 for selective etching of the one or more thin metallic layers to expose the underneath TCO layer(s). Subsequent to the wet etching, the photovoltaic structures can be cleaned and dried before being sent to thermal reflow oven 414. Thermal reflow oven 414 can include a conveyor system (e.g., a conveyor belt) and a number of heating/cooling zones. Photovoltaic structures can be loaded onto the conveyor and move through the different heating/cooling zones. When the protective layer of the metallic grid reaches its melting point, it can reflow to cover the sidewalls of the core layer. The thermal profile of the protective layer can be controlled by adjusting the temperature setting in each heating/cooling zone and the speed of the conveyor. The fabrication of the metallic grid can be completed once the photovoltaic structures are sufficiently cooled and the protective layer re-solidified. If metallic grids on both sides are completed, the photovoltaic structures can be sent to a packaging tool, which can divide the standard photovoltaic structures into smaller strips, cascading the smaller strips into strings, and placing the strings into a protective frame to obtain a solar panel. If only one side of the photovoltaic structures has a completed metallic grid, the photovoltaic structures can be sent back to photolithography tool 408 to continue the fabrication of a metallic grid on the other side.
  • Variations to the fabrication system shown in FIG. 4 are also possible. For example, an alternative fabrication system may have two CVD tools to allow material depositions on different sides of the photovoltaic structures to be performed in different CVD tools. This way, the photovoltaic structures do not need to go through the same CVD tool twice, thus reducing the wait time and further increasing the fabrication throughput. The fabrication system can also include one or more annealing stations that can anneal the TCO layers and/or the metallic seed layers. In addition to using a plating bath, the protective layer can also be deposited using a PVD tool, which can be the same PVD tool used for the TCO and/or metallic seed layer deposition or a different PVD tool.
  • The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the invention.

Claims (17)

1. A system for fabricating electrode grids on a photovoltaic structure, comprising:
a masking tool configured to form a patterned mask on a first surface of the photovoltaic structure, wherein openings of the patterned mask correspond to grid line locations of a first grid on the photovoltaic structure;
a first plating tool configured to deposit a first core layer of the first grid in openings of the patterned mask;
a second plating tool configured to deposit a first protective layer on an exposed surface of the first core layer while the patterned mask covers sidewalls of the first core layer;
a mask-removing tool configured to remove the patterned mask subsequent to the deposition of the first protective layer; and
a thermal reflow tool configured to apply heat to the first protective layer such that the first protective layer reflows to cover both the exposed surface and sidewalls of the first core layer.
2. The system of claim 1, wherein the first core layer comprises Cu.
3. The system of claim 1, wherein a thickness of the first core layer is between 10 and 100 microns.
4. The system of claim 1, wherein the first protective layer comprises one or more metallic materials selected from a group consisting of:
tin;
tin-lead alloy;
tin-zinc alloy;
tin-bismuth alloy;
tin-indium alloy;
tin-silver-copper alloy;
tin-lead-zinc alloy; and
tin-lead-copper alloy.
5. The system of claim 4, wherein the first protective layer comprises tin, tin-lead alloy, or both.
6. The system of claim 1, wherein the first protective layer has a melting point that is below 250° C.
7. The system of claim 1, wherein, while depositing the first protective layer, the second plating tool is configured to control a thickness of the first protective layer to be between 0.3 and 10 microns.
8. The system of claim 1, wherein the reflow oven is configured to reflow the first protective layer in a way such that a thickness of the first protective layer is between 0.1 and 5 microns after the reflow.
9. The system of claim 1, further comprising:
a third plating tool configured to deposit, over a second patterned mask on a second surface of the photovoltaic structure, a second core layer of a second grid;
a fourth plating tool configured to deposit a second protective layer on an exposed surface the second core layer while the second patterned mask is covering sidewalls of the second core layer; and
a second thermal reflow tool configured to apply heat, after the second patterned mask layer is removed, to the second protective layer such that the second protective layer reflows to cover both the exposed surface and sidewalls of the second core layer.
10. The system of claim 9,
wherein the first and second thermal reflow tools are configured to reflow both protective layers simultaneously.
11. The system of claim 9,
wherein the first and second thermal reflow tools are configured to reflow the first and second protective layers sequentially.
12. The system of claim 1, wherein while applying the heat, the first thermal reflow tool is configured to maintain the first protective layer at a predetermined temperature for a predetermined time period.
13. The system of claim 12, wherein the predetermined time period is between 10 seconds and 2 minutes.
14. The system of claim 12, wherein the predetermined temperature is 10 to 20° C. higher than the first protective layer's melting point.
15. The system of claim 1, wherein the first thermal reflow tool includes one selected from a group consisting of:
an oven;
a hot plate;
an infrared lamp;
a hot air blower; and
a heated tunnel.
16. The system of claim 1, wherein the patterned mask includes one of:
a patterned layer of photoresist;
a patterned layer of silicon oxide; and
a patterned layer of silicon nitride.
17-20. (canceled)
US15/346,573 2015-12-30 2016-11-08 System and method for tin plating metal electrodes Abandoned US20170194517A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/346,573 US20170194517A1 (en) 2015-12-30 2016-11-08 System and method for tin plating metal electrodes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/985,238 US9496429B1 (en) 2015-12-30 2015-12-30 System and method for tin plating metal electrodes
US15/346,573 US20170194517A1 (en) 2015-12-30 2016-11-08 System and method for tin plating metal electrodes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/985,238 Continuation US9496429B1 (en) 2015-12-30 2015-12-30 System and method for tin plating metal electrodes

Publications (1)

Publication Number Publication Date
US20170194517A1 true US20170194517A1 (en) 2017-07-06

Family

ID=57234875

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/985,238 Active US9496429B1 (en) 2015-12-30 2015-12-30 System and method for tin plating metal electrodes
US15/346,573 Abandoned US20170194517A1 (en) 2015-12-30 2016-11-08 System and method for tin plating metal electrodes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/985,238 Active US9496429B1 (en) 2015-12-30 2015-12-30 System and method for tin plating metal electrodes

Country Status (1)

Country Link
US (2) US9496429B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218817A1 (en) * 2020-04-26 2021-11-04 蔡永安 Solar cell metal electrode and preparation method therefor, and mask
TWI768402B (en) * 2020-07-14 2022-06-21 單伶寶 A kind of preparation method of solar cell electrode
CN114864707A (en) * 2022-05-13 2022-08-05 东方日升新能源股份有限公司 Photovoltaic cell and preparation method thereof
WO2023124614A1 (en) * 2021-12-31 2023-07-06 隆基绿能科技股份有限公司 Metal electrode of solar cell, preparation method therefor, and solar cell

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101980946B1 (en) * 2016-11-11 2019-05-21 삼성에스디아이 주식회사 Front electrode for solar cell and solar cell comprising the same
CN109148616A (en) * 2017-06-16 2019-01-04 国家电投集团科学技术研究院有限公司 Silicon heterojunction solar battery and preparation method thereof
CN107393988B (en) * 2017-06-26 2020-12-08 南通华隆微电子股份有限公司 Packaging structure with bowl-shaped sealing points
CN107437569B (en) * 2017-06-26 2021-01-19 南通华隆微电子股份有限公司 Manufacturing method of semiconductor packaging structure with sealing points
CN114203623A (en) * 2021-12-16 2022-03-18 华能新能源股份有限公司 Device manufacturing method and bearing plate

Family Cites Families (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US819360A (en) 1905-03-22 1906-05-01 Edward Newton A Electrical switch.
US2626907A (en) 1951-05-14 1953-01-27 Petrolite Corp Process for breaking petroleum emulsions
US2938938A (en) 1956-07-03 1960-05-31 Hoffman Electronics Corp Photo-voltaic semiconductor apparatus or the like
US3116171A (en) 1961-03-14 1963-12-31 Bell Telephone Labor Inc Satellite solar cell assembly
US3094439A (en) 1961-07-24 1963-06-18 Spectrolab Solar cell system
US3459597A (en) 1966-02-04 1969-08-05 Trw Inc Solar cells with flexible overlapping bifurcated connector
US3969163A (en) 1974-09-19 1976-07-13 Texas Instruments Incorporated Vapor deposition method of forming low cost semiconductor solar cells including reconstitution of the reacted gases
JPS5758075B2 (en) 1974-10-19 1982-12-08 Sony Corp
US3961997A (en) 1975-05-12 1976-06-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fabrication of polycrystalline solar cells on low-cost substrates
US4082568A (en) 1977-05-10 1978-04-04 Joseph Lindmayer Solar cell with multiple-metal contacts
US4193975A (en) 1977-11-21 1980-03-18 Union Carbide Corporation Process for the production of improved refined metallurgical silicon
US4124410A (en) 1977-11-21 1978-11-07 Union Carbide Corporation Silicon solar cells with low-cost substrates
US4342044A (en) 1978-03-08 1982-07-27 Energy Conversion Devices, Inc. Method for optimizing photoresponsive amorphous alloys and devices
US4200621A (en) 1978-07-18 1980-04-29 Motorola, Inc. Sequential purification and crystal growth
US4284490A (en) 1978-09-28 1981-08-18 Coulter Systems Corporation R.F. Sputtering apparatus including multi-network power supply
US4213798A (en) 1979-04-27 1980-07-22 Rca Corporation Tellurium schottky barrier contact for amorphous silicon solar cells
US4251285A (en) 1979-08-14 1981-02-17 Westinghouse Electric Corp. Diffusion of dopant from optical coating and single step formation of PN junction in silicon solar cell and coating thereon
DE2944185A1 (en) 1979-11-02 1981-05-07 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt SOLAR CELL
US4315096A (en) 1980-07-25 1982-02-09 Eastman Kodak Company Integrated array of photovoltaic cells having minimized shorting losses
EP0078541B1 (en) 1981-11-04 1991-01-16 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Flexible photovoltaic device
US4571448A (en) 1981-11-16 1986-02-18 University Of Delaware Thin film photovoltaic solar cell and method of making the same
US4431858A (en) 1982-05-12 1984-02-14 University Of Florida Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby
DE3308269A1 (en) 1983-03-09 1984-09-13 Licentia Patent-Verwaltungs-Gmbh SOLAR CELL
US4586988A (en) 1983-08-19 1986-05-06 Energy Conversion Devices, Inc. Method of forming an electrically conductive member
US4589191A (en) 1983-10-20 1986-05-20 Unisearch Limited Manufacture of high efficiency solar cells
US4514579A (en) 1984-01-30 1985-04-30 Energy Conversion Devices, Inc. Large area photovoltaic cell and method for producing same
DE3419137A1 (en) 1984-05-23 1985-11-28 Bayer Ag, 5090 Leverkusen METHOD AND DEVICE FOR PRODUCING SEMICONDUCTOR FILMS
US4577051A (en) 1984-09-28 1986-03-18 The Standard Oil Company Bypass diode assembly for photovoltaic modules
US4567642A (en) 1984-09-28 1986-02-04 The Standard Oil Company Method of making photovoltaic modules
US4633033A (en) 1985-02-08 1986-12-30 Energy Conversion Devices, Inc. Photovoltaic device and method
US4617421A (en) 1985-04-01 1986-10-14 Sovonics Solar Systems Photovoltaic cell having increased active area and method for producing same
US4667060A (en) 1985-05-28 1987-05-19 Spire Corporation Back junction photovoltaic solar cell
US4652693A (en) 1985-08-30 1987-03-24 The Standard Oil Company Reformed front contact current collector grid and cell interconnect for a photovoltaic cell module
FR2597662B1 (en) 1986-04-22 1988-06-17 Thomson Csf PIN PHOTODIODE MADE FROM AMORPHOUS SEMICONDUCTOR
US4694115A (en) 1986-11-04 1987-09-15 Spectrolab, Inc. Solar cell having improved front surface metallization
DE3708548A1 (en) 1987-03-17 1988-09-29 Telefunken Electronic Gmbh SOLAR CELL MODULE WITH PARALLEL AND SERIAL ARRANGED SOLAR CELLS
US4771017A (en) 1987-06-23 1988-09-13 Spire Corporation Patterning process
US5698451A (en) 1988-06-10 1997-12-16 Mobil Solar Energy Corporation Method of fabricating contacts for solar cells
US5075763A (en) 1988-09-28 1991-12-24 Kopin Corporation High temperature metallization system for contacting semiconductor materials
US4933061A (en) 1988-12-29 1990-06-12 Trifari, Krussman & Fishel, Inc. Electroplating tank
DE3901042A1 (en) 1989-01-14 1990-07-26 Nukem Gmbh METHOD AND DEVICE FOR PRODUCING A SEMICONDUCTOR LAYER SYSTEM
US5217539A (en) 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
US5118361A (en) 1990-05-21 1992-06-02 The Boeing Company Terrestrial concentrator solar cell module
US5091018A (en) 1989-04-17 1992-02-25 The Boeing Company Tandem photovoltaic solar cell with III-V diffused junction booster cell
JPH036867A (en) 1989-06-05 1991-01-14 Mitsubishi Electric Corp Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
DE4009336A1 (en) 1990-03-23 1991-09-26 Telefunken Systemtechnik SOLAR CELL
JPH05509132A (en) 1990-05-18 1993-12-16 ヒトコ カーボン コンポジッツ インコーポレイテッド Materials for chemical vapor deposition
DK170189B1 (en) 1990-05-30 1995-06-06 Yakov Safir Process for the manufacture of semiconductor components, as well as solar cells made therefrom
US5213628A (en) 1990-09-20 1993-05-25 Sanyo Electric Co., Ltd. Photovoltaic device
DE4030713A1 (en) 1990-09-28 1992-04-02 Telefunken Systemtechnik Photoelectric solar generator - has flexible intermediate connecting plate designed to prevent solar cell fracture due to temp. change stresses
US5364518A (en) 1991-05-28 1994-11-15 Leybold Aktiengesellschaft Magnetron cathode for a rotating target
WO1992022928A1 (en) 1991-06-11 1992-12-23 Mobil Solar Energy Corporation Improved solar cell and method of making same
US5178685A (en) 1991-06-11 1993-01-12 Mobil Solar Energy Corporation Method for forming solar cell contacts and interconnecting solar cells
US5181968A (en) 1991-06-24 1993-01-26 United Solar Systems Corporation Photovoltaic device having an improved collector grid
US5455430A (en) 1991-08-01 1995-10-03 Sanyo Electric Co., Ltd. Photovoltaic device having a semiconductor grade silicon layer formed on a metallurgical grade substrate
US5705828A (en) 1991-08-10 1998-01-06 Sanyo Electric Co., Ltd. Photovoltaic device
US5286306A (en) 1992-02-07 1994-02-15 Shalini Menezes Thin film photovoltaic cells from I-III-VI-VII compounds
US5808315A (en) 1992-07-21 1998-09-15 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor having transparent conductive film
JPH0794431A (en) 1993-04-23 1995-04-07 Canon Inc Substrate for amorphous semiconductor, amorphous semiconductor substrate having the same, and manufacture of amorphous semiconductor substrate
US5401331A (en) 1993-09-07 1995-03-28 Midwest Research Institute Substrate for thin silicon solar cells
DE4333407C1 (en) 1993-09-30 1994-11-17 Siemens Ag Solar cell comprising a chalcopyrite absorber layer
JPH07249788A (en) 1994-03-11 1995-09-26 Tonen Corp Solar cell
JPH07326664A (en) 1994-05-31 1995-12-12 Fuji Electric Co Ltd Filling method of dielectric isolation trench of wafer
FR2722612B1 (en) 1994-07-13 1997-01-03 Centre Nat Rech Scient METHOD FOR MANUFACTURING A PHOTOVOLTAIC MATERIAL OR DEVICE, MATERIAL OR DEVICE THUS OBTAINED AND PHOTOPILE COMPRISING SUCH A MATERIAL OR DEVICE
JP2992464B2 (en) 1994-11-04 1999-12-20 キヤノン株式会社 Covering wire for current collecting electrode, photovoltaic element using the covering wire for current collecting electrode, and method of manufacturing the same
US5627081A (en) 1994-11-29 1997-05-06 Midwest Research Institute Method for processing silicon solar cells
EP0729189A1 (en) 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof
JPH10509773A (en) 1995-04-25 1998-09-22 ザ ビーオーシー グループ インコーポレイテッド Sputtering apparatus and method for forming a dielectric layer on a substrate
JP3459947B2 (en) 1996-06-18 2003-10-27 シャープ株式会社 Solar cell manufacturing method
US6552414B1 (en) 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
JPH1131834A (en) 1997-07-10 1999-02-02 Showa Shell Sekiyu Kk Glass sandwich type solar cell panel
US6091019A (en) 1997-09-26 2000-07-18 Sanyo Electric Co., Ltd. Photovoltaic element and manufacturing method thereof
US6140570A (en) 1997-10-29 2000-10-31 Canon Kabushiki Kaisha Photovoltaic element having a back side transparent and electrically conductive layer with a light incident side surface region having a specific cross section and a module comprising said photovolatic element
US5903382A (en) 1997-12-19 1999-05-11 Rockwell International Corporation Electrodeposition cell with high light transmission
WO1999048136A2 (en) 1998-03-13 1999-09-23 Steffen Keller Solar cell arrangement
DE69943141D1 (en) 1998-05-20 2011-03-03 Canon Kk Photovoltaic power generation device
US20070108437A1 (en) 1998-06-08 2007-05-17 Avto Tavkhelidze Method of fabrication of high temperature superconductors based on new mechanism of electron-electron interaction
US6232545B1 (en) 1998-08-06 2001-05-15 Jx Crystals Inc. Linear circuit designs for solar photovoltaic concentrator and thermophotovoltaic applications using cell and substrate materials with matched coefficients of thermal expansion
US6303853B1 (en) 1998-08-06 2001-10-16 Jx Crystals Inc. Shingle circuits for thermophotovoltaic systems
US6488824B1 (en) 1998-11-06 2002-12-03 Raycom Technologies, Inc. Sputtering apparatus and process for high rate coatings
US8222513B2 (en) 2006-04-13 2012-07-17 Daniel Luch Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture
US7635810B2 (en) 1999-03-30 2009-12-22 Daniel Luch Substrate and collector grid structures for integrated photovoltaic arrays and process of manufacture of such arrays
US8076568B2 (en) 2006-04-13 2011-12-13 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US6034322A (en) 1999-07-01 2000-03-07 Space Systems/Loral, Inc. Solar cell assembly
JP2001148500A (en) 1999-11-22 2001-05-29 Sanyo Electric Co Ltd Solar cell module
US6538193B1 (en) 2000-04-21 2003-03-25 Jx Crystals Inc. Thermophotovoltaic generator in high temperature industrial process
US6586270B2 (en) 2000-06-01 2003-07-01 Canon Kabushiki Kaisha Process for producing a photovoltaic element
US6333457B1 (en) 2000-08-29 2001-12-25 Sunpower Corporation Edge passivated silicon solar/photo cell and method of manufacture
DE10042733A1 (en) 2000-08-31 2002-03-28 Inst Physikalische Hochtech Ev Multicrystalline laser-crystallized silicon thin-film solar cell on a transparent substrate
JP3490964B2 (en) 2000-09-05 2004-01-26 三洋電機株式会社 Photovoltaic device
US20020189939A1 (en) 2001-06-14 2002-12-19 German John R. Alternating current rotatable sputter cathode
US6620645B2 (en) 2000-11-16 2003-09-16 G.T. Equipment Technologies, Inc Making and connecting bus bars on solar cells
JP4055358B2 (en) 2000-12-12 2008-03-05 サンケン電気株式会社 Semiconductor device and manufacturing method thereof
WO2002061486A1 (en) 2000-12-19 2002-08-08 Coventor, Incorporated Bulk micromachining process for fabricating an optical mems device with integrated optical aperture
CN1291502C (en) 2001-03-19 2006-12-20 信越半导体株式会社 Solar cell and its manufacturing method
WO2002091692A1 (en) 2001-04-13 2002-11-14 Girard Gregory D Ditributed edge switching system for voice-over-packet multiservice network
US7173275B2 (en) 2001-05-21 2007-02-06 Regents Of The University Of Colorado Thin-film transistors based on tunneling structures and applications
JP2003069055A (en) 2001-06-13 2003-03-07 Sharp Corp Solar battery cell and method for manufacturing the same
US7399385B2 (en) 2001-06-14 2008-07-15 Tru Vue, Inc. Alternating current rotatable sputter cathode
US6713670B2 (en) 2001-08-17 2004-03-30 Composite Optics, Incorporated Electrostatically clean solar array
US6664589B2 (en) 2001-08-30 2003-12-16 Micron Technology, Inc. Technique to control tunneling currents in DRAM capacitors, cells, and devices
US6563040B2 (en) 2001-10-11 2003-05-13 Pinnacle West Capital Corporation Structure for supporting a photovoltaic module in a solar energy collection system
US6672018B2 (en) 2001-10-12 2004-01-06 Jefferson Shingleton Solar module mounting method and clip
US7469299B2 (en) 2001-10-25 2008-12-23 Verizon Business Global Llc Bridging user agent and a proxy server for supporting network services
US20030116185A1 (en) 2001-11-05 2003-06-26 Oswald Robert S. Sealed thin film photovoltaic modules
JP3902534B2 (en) 2001-11-29 2007-04-11 三洋電機株式会社 Photovoltaic device and manufacturing method thereof
US20030121228A1 (en) 2001-12-31 2003-07-03 Stoehr Robert P. System and method for dendritic web solar cell shingling
US6736948B2 (en) 2002-01-18 2004-05-18 Von Ardenne Anlagentechnik Gmbh Cylindrical AC/DC magnetron with compliant drive system and improved electrical and thermal isolation
US6683360B1 (en) 2002-01-24 2004-01-27 Fillfactory Multiple or graded epitaxial wafers for particle or radiation detection
US20030154667A1 (en) 2002-02-20 2003-08-21 Dinwoodie Thomas L. Shingle system
JP4070483B2 (en) 2002-03-05 2008-04-02 三洋電機株式会社 Photovoltaic device and manufacturing method thereof
US20030173217A1 (en) 2002-03-14 2003-09-18 Sputtering Components, Inc. High-power ion sputtering magnetron
DE10213049A1 (en) 2002-03-22 2003-10-02 Dieter Wurczinger Rotatable tubular cathode
US7388146B2 (en) 2002-04-24 2008-06-17 Jx Crystals Inc. Planar solar concentrator power module
US6803513B2 (en) 2002-08-20 2004-10-12 United Solar Systems Corporation Series connected photovoltaic module and method for its manufacture
EP1398837A1 (en) 2002-09-09 2004-03-17 Interuniversitair Microelektronica Centrum ( Imec) Photovoltaic device
US7126052B2 (en) 2002-10-02 2006-10-24 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
JP2004134672A (en) 2002-10-11 2004-04-30 Sony Corp Method and apparatus for manufacturing super-thin semiconductor device and super-thin backlighting type solid-state imaging device
JP2004193350A (en) 2002-12-11 2004-07-08 Sharp Corp Solar battery cell and its manufacturing method
US6870600B2 (en) 2003-01-13 2005-03-22 Nikon Corporation Vibration-attenuation devices and methods using pressurized bellows exhibiting substantially zero lateral stiffness
JP2004235274A (en) 2003-01-28 2004-08-19 Kyocera Corp Polycrystalline silicon substrate and method of roughing its surface
JP2004304167A (en) 2003-03-20 2004-10-28 Advanced Lcd Technologies Development Center Co Ltd Wiring, display device and method for forming the same
US7388147B2 (en) 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
JP4118187B2 (en) 2003-05-09 2008-07-16 信越半導体株式会社 Manufacturing method of solar cell
US20050064247A1 (en) 2003-06-25 2005-03-24 Ajit Sane Composite refractory metal carbide coating on a substrate and method for making thereof
US7560750B2 (en) 2003-06-26 2009-07-14 Kyocera Corporation Solar cell device
CN2626907Y (en) 2003-07-01 2004-07-21 何学东 False-proof cover with integrated component
US7455787B2 (en) 2003-08-01 2008-11-25 Sunpower Corporation Etching of solar cell materials
US7172184B2 (en) 2003-08-06 2007-02-06 Sunpower Corporation Substrate carrier for electroplating solar cells
JP4515208B2 (en) 2003-09-25 2010-07-28 富士フイルム株式会社 Image processing method, apparatus, and program
JP4232597B2 (en) 2003-10-10 2009-03-04 株式会社日立製作所 Silicon solar cell and manufacturing method thereof
US20050189015A1 (en) 2003-10-30 2005-09-01 Ajeet Rohatgi Silicon solar cells and methods of fabrication
JP2005142268A (en) 2003-11-05 2005-06-02 Canon Inc Photovoltaic element and its manufacturing method
JP2007513048A (en) 2003-12-04 2007-05-24 ダウ・コーニング・コーポレイション Method for removing impurities from metallurgical grade silicon to produce solar grade silicon
DE10357698A1 (en) 2003-12-09 2005-07-14 Schunk Kohlenstofftechnik Gmbh Carrier for objects to be treated and method for producing such
EP2256786A1 (en) 2004-01-15 2010-12-01 Japan Science and Technology Agency Process for producing monocrystal thin film and monocrystal thin film device
US20080283115A1 (en) 2004-01-28 2008-11-20 Yuko Fukawa Solar Battery Module and Photovoltaic Generation Device
EP1560272B1 (en) 2004-01-29 2016-04-27 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
US20060060238A1 (en) 2004-02-05 2006-03-23 Advent Solar, Inc. Process and fabrication methods for emitter wrap through back contact solar cells
US20050252544A1 (en) 2004-05-11 2005-11-17 Ajeet Rohatgi Silicon solar cells and methods of fabrication
EP1598874A1 (en) 2004-05-19 2005-11-23 Dutch Space B.V. Solar cell assembly
US7781672B2 (en) 2004-06-01 2010-08-24 Konarka Technologies, Inc. Photovoltaic module architecture
US7839022B2 (en) 2004-07-13 2010-11-23 Tigo Energy, Inc. Device for distributed maximum power tracking for solar arrays
US7087906B2 (en) 2004-09-08 2006-08-08 Nikon Corporation Bellows with spring anti-gravity device
US20060130891A1 (en) 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
US7432119B2 (en) 2005-01-11 2008-10-07 Semileds Corporation Light emitting diode with conducting metal substrate
FR2880989B1 (en) 2005-01-20 2007-03-09 Commissariat Energie Atomique SEMICONDUCTOR DEVICE WITH HETEROJUNCTIONS AND INTERDIGITAL STRUCTURE
US7723215B2 (en) 2005-02-11 2010-05-25 Sarnoff Corporation Dark current reduction in back-illuminated imaging sensors and method of fabricating same
US20080121932A1 (en) 2006-09-18 2008-05-29 Pushkar Ranade Active regions with compatible dielectric layers
ES2385720T3 (en) 2005-02-25 2012-07-30 Sanyo Electric Co., Ltd. Photovoltaic cell
DE102005013668B3 (en) 2005-03-14 2006-11-16 Universität Stuttgart solar cell
US7759158B2 (en) 2005-03-22 2010-07-20 Applied Materials, Inc. Scalable photovoltaic cell and solar panel manufacturing with improved wiring
US7494607B2 (en) 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
DE102005019225B4 (en) 2005-04-20 2009-12-31 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Heterocontact solar cell with inverted layer structure geometry
US7375378B2 (en) 2005-05-12 2008-05-20 General Electric Company Surface passivated photovoltaic devices
EP1734589B1 (en) 2005-06-16 2019-12-18 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing photovoltaic module
US20070023082A1 (en) 2005-07-28 2007-02-01 Venkatesan Manivannan Compositionally-graded back contact photovoltaic devices and methods of fabricating such devices
US20070023081A1 (en) 2005-07-28 2007-02-01 General Electric Company Compositionally-graded photovoltaic device and fabrication method, and related articles
JP5171001B2 (en) 2005-09-30 2013-03-27 三洋電機株式会社 Method for manufacturing solar cell module, solar cell and solar cell module
KR20080072834A (en) 2005-11-04 2008-08-07 다우 코닝 코포레이션 Encapsulation of photovoltaic cells
JP2009515369A (en) 2005-11-07 2009-04-09 アプライド マテリアルズ インコーポレイテッド Photocell contact and wiring formation
US20090229856A1 (en) 2005-11-18 2009-09-17 Replisaurus Technologies Ab Master Electrode and Method of Forming the Master Electrode
US20070132034A1 (en) 2005-12-14 2007-06-14 Giuseppe Curello Isolation body for semiconductor devices and method to form the same
US20070137699A1 (en) 2005-12-16 2007-06-21 General Electric Company Solar cell and method for fabricating solar cell
US8196360B2 (en) 2006-01-12 2012-06-12 Msr Innovations Inc. Photovoltaic solar roof tile assembly system
JP5025135B2 (en) 2006-01-24 2012-09-12 三洋電機株式会社 Photovoltaic module
EP1816684A2 (en) 2006-02-01 2007-08-08 Sanyo Electric Co. Ltd. Solar battery module
US7769887B1 (en) 2006-02-03 2010-08-03 Sprint Communications Company L.P. Opportunistic data transfer over heterogeneous wireless networks
US8168880B2 (en) 2006-04-26 2012-05-01 Certainteed Corporation Shingle with photovoltaic element(s) and array of same laid up on a roof
US7737357B2 (en) 2006-05-04 2010-06-15 Sunpower Corporation Solar cell having doped semiconductor heterojunction contacts
US8571012B2 (en) 2006-05-12 2013-10-29 Oracle International Corporation Customized sip routing to cross firewalls
US20070283997A1 (en) 2006-06-13 2007-12-13 Miasole Photovoltaic module with integrated current collection and interconnection
US20070283996A1 (en) 2006-06-13 2007-12-13 Miasole Photovoltaic module with insulating interconnect carrier
JP4290747B2 (en) 2006-06-23 2009-07-08 シャープ株式会社 Photoelectric conversion element and photoelectric conversion element with interconnector
US20080000522A1 (en) 2006-06-30 2008-01-03 General Electric Company Photovoltaic device which includes all-back-contact configuration; and related processes
EP2070115A2 (en) 2006-08-04 2009-06-17 SoloPower, Inc. Thin film solar cell with finger pattern
US20080047602A1 (en) 2006-08-22 2008-02-28 Guardian Industries Corp. Front contact with high-function TCO for use in photovoltaic device and method of making same
US7893348B2 (en) 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
US20080053519A1 (en) 2006-08-30 2008-03-06 Miasole Laminated photovoltaic cell
DE102006042617B4 (en) 2006-09-05 2010-04-08 Q-Cells Se Method for generating local contacts
FR2906406B1 (en) 2006-09-26 2008-12-19 Commissariat Energie Atomique PROCESS FOR PRODUCING A PHOTOVOLTAIC CELL WITH REAR-SIDE HETEROJUNCTION
US20080264477A1 (en) 2006-10-09 2008-10-30 Soltaix, Inc. Methods for manufacturing three-dimensional thin-film solar cells
US20080092947A1 (en) 2006-10-24 2008-04-24 Applied Materials, Inc. Pulse plating of a low stress film on a solar cell substrate
DE102006051735A1 (en) 2006-10-30 2008-05-08 Merck Patent Gmbh Printable medium for the etching of oxidic, transparent, conductive layers
US8013474B2 (en) 2006-11-27 2011-09-06 Xslent Energy Technologies, Llc System and apparatuses with multiple power extractors coupled to different power sources
US20080121276A1 (en) 2006-11-29 2008-05-29 Applied Materials, Inc. Selective electroless deposition for solar cells
US7799182B2 (en) 2006-12-01 2010-09-21 Applied Materials, Inc. Electroplating on roll-to-roll flexible solar cell substrates
JP4429306B2 (en) 2006-12-25 2010-03-10 三洋電機株式会社 Solar cell and solar cell module
US7825329B2 (en) 2007-01-03 2010-11-02 Solopower, Inc. Thin film solar cell manufacturing and integration
CN101226968A (en) 2007-01-17 2008-07-23 易斌宣 Method for reducing series resistance value of light gathering solar battery and light gathering solar battery obtained by the method
US20080173350A1 (en) 2007-01-18 2008-07-24 Applied Materials, Inc. Multi-junction solar cells and methods and apparatuses for forming the same
EP2122691A4 (en) 2007-02-16 2011-02-16 Nanogram Corp Solar cell structures, photovoltaic modules and corresponding processes
JP2008205137A (en) 2007-02-19 2008-09-04 Sanyo Electric Co Ltd Solar cell and solar cell module
US7534632B2 (en) 2007-02-20 2009-05-19 Advanced Chip Engineering Technology Inc. Method for circuits inspection and method of the same
DE202007002897U1 (en) 2007-02-28 2008-07-10 SCHÜCO International KG Photovoltaic solar module
US7968792B2 (en) 2007-03-05 2011-06-28 Seagate Technology Llc Quantum dot sensitized wide bandgap semiconductor photovoltaic devices & methods of fabricating same
EP1973167B1 (en) 2007-03-19 2018-06-13 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic device and method of manufacturing the same
FR2914785B1 (en) 2007-04-06 2009-05-15 Saint Gobain Ct Recherches PHOTOVOLTAIC ROOF COATING
US8471141B2 (en) 2007-05-07 2013-06-25 Nanosolar, Inc Structures for low cost, reliable solar roofing
US20080308145A1 (en) 2007-06-12 2008-12-18 Guardian Industries Corp Front electrode including transparent conductive coating on etched glass substrate for use in photovoltaic device and method of making same
KR101492946B1 (en) 2007-07-26 2015-02-13 주성엔지니어링(주) Crystalline silicon solar cell and manufacturing method and system thereof
US20090056797A1 (en) 2007-08-28 2009-03-05 Blue Square Energy Incorporated Photovoltaic Thin-Film Solar Cell and Method Of Making The Same
US7709730B2 (en) 2007-09-05 2010-05-04 Skyline Solar, Inc. Dual trough concentrating solar photovoltaic module
US7749883B2 (en) 2007-09-20 2010-07-06 Fry's Metals, Inc. Electroformed stencils for solar cell front side metallization
MX2010003227A (en) 2007-09-25 2010-04-07 First Solar Inc Photovoltaic devices including an interfacial layer.
TWI371112B (en) 2007-10-02 2012-08-21 Univ Chang Gung Solar energy photoelectric conversion apparatus
CN101641800A (en) 2007-10-12 2010-02-03 系统股份公司 Photovoltaic cell that the method for photovoltaic cell, available this method of being connected in series is connected in series and the module that obtains by this method
CN101816045A (en) 2007-10-18 2010-08-25 E.I.内穆尔杜邦公司 Lead-free conductive compositions and processes for use in the manufacture of semiconductor devices: Mg-containing additive
CA2705192A1 (en) 2007-11-06 2009-05-14 Certainteed Corporation Photovoltaic roofing systems and methods for installing them
US20090139512A1 (en) 2007-11-30 2009-06-04 Lima Daniel D De Solar Line Boiler Roof
AT506129B1 (en) 2007-12-11 2009-10-15 Heic Hornbachner En Innovation Curved photovoltaic modules and methods of making same
US8021487B2 (en) 2007-12-12 2011-09-20 Veeco Instruments Inc. Wafer carrier with hub
TWI379425B (en) 2007-12-13 2012-12-11 Nexpower Technology Corp Translucent solar cell and manufacturing method thereof
US9263895B2 (en) 2007-12-21 2016-02-16 Sunpower Corporation Distributed energy conversion systems
CN100580957C (en) 2007-12-28 2010-01-13 中国科学院上海技术物理研究所 Metastable state assistant quantum dot resonance tunneling diode and working condition
US20090188561A1 (en) 2008-01-25 2009-07-30 Emcore Corporation High concentration terrestrial solar array with III-V compound semiconductor cell
US8222516B2 (en) 2008-02-20 2012-07-17 Sunpower Corporation Front contact solar cell with formed emitter
US8683994B2 (en) 2008-02-20 2014-04-01 Corning Incorporated Solar heat collection element with glass-ceramic central tube
US9054254B2 (en) 2008-02-21 2015-06-09 Sharp Kabushiki Kaisha Solar cell and method of manufacturing solar cell
US8187906B2 (en) 2008-02-28 2012-05-29 Sunlight Photonics Inc. Method for fabricating composite substances for thin film electro-optical devices
CN102037156B (en) 2008-03-05 2013-09-04 Sri国际公司 Substrates for solar cells and methods of producing the same
US20100043863A1 (en) 2008-03-20 2010-02-25 Miasole Interconnect assembly
US7833808B2 (en) 2008-03-24 2010-11-16 Palo Alto Research Center Incorporated Methods for forming multiple-layer electrode structures for silicon photovoltaic cells
US20090250108A1 (en) 2008-04-02 2009-10-08 Applied Materials, Inc. Silicon carbide for crystalline silicon solar cell surface passivation
US20090255574A1 (en) 2008-04-14 2009-10-15 Sierra Solar Power, Inc. Solar cell fabricated by silicon liquid-phase deposition
US7964499B2 (en) 2008-05-13 2011-06-21 Samsung Electronics Co., Ltd. Methods of forming semiconductor solar cells having front surface electrodes
TWI513014B (en) 2008-05-19 2015-12-11 Tatung Co High performance optoelectronic device
US20090293948A1 (en) 2008-05-28 2009-12-03 Stichting Energieonderzoek Centrum Nederland Method of manufacturing an amorphous/crystalline silicon heterojunction solar cell
KR20110036571A (en) 2008-06-12 2011-04-07 이섬 리서치 디벨러프먼트 컴파니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. Solar volumetric structure
US8338218B2 (en) 2008-06-26 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device module and manufacturing method of the photoelectric conversion device module
KR101244027B1 (en) 2008-07-08 2013-03-14 시너스 테크놀리지, 인코포레이티드 Flexible solar cell and fabricating method for the same
TWI390756B (en) 2008-07-16 2013-03-21 Applied Materials Inc Hybrid heterojunction solar cell fabrication using a doping layer mask
DE102008045522A1 (en) 2008-09-03 2010-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hetero-solar cell and process for the preparation of hetero-solar cells
US8637761B2 (en) 2008-09-16 2014-01-28 Silevo, Inc. Solar cells fabricated by using CVD epitaxial Si films on metallurgical-grade Si wafers
US8088675B2 (en) 2008-09-19 2012-01-03 Applied Materials, Inc. Methods of making an emitter having a desired dopant profile
JP2010085949A (en) 2008-10-03 2010-04-15 Hitachi Displays Ltd Liquid crystal display
US8070925B2 (en) 2008-10-17 2011-12-06 Applied Materials, Inc. Physical vapor deposition reactor with circularly symmetric RF feed and DC feed to the sputter target
US20100108134A1 (en) 2008-10-31 2010-05-06 Crystal Solar, Inc. Thin two sided single crystal solar cell and manufacturing process thereof
US8586857B2 (en) 2008-11-04 2013-11-19 Miasole Combined diode, lead assembly incorporating an expansion joint
CN102217084A (en) 2008-11-12 2011-10-12 迈德·尼古垃翰 High efficiency solar panel and system
US9150966B2 (en) 2008-11-14 2015-10-06 Palo Alto Research Center Incorporated Solar cell metallization using inline electroless plating
KR100993511B1 (en) 2008-11-19 2010-11-12 엘지전자 주식회사 Solar cell and manufacturing method of the same
US20100132774A1 (en) 2008-12-11 2010-06-03 Applied Materials, Inc. Thin Film Silicon Solar Cell Device With Amorphous Window Layer
US20100147364A1 (en) 2008-12-16 2010-06-17 Solopower, Inc. Thin film photovoltaic module manufacturing methods and structures
DE102008055028A1 (en) 2008-12-19 2010-07-01 Q-Cells Se solar cell
US7945663B2 (en) 2008-12-29 2011-05-17 Genband Inc. Systems, methods, and computer program products for adaptively adjusting a registration interval of an endpoint
WO2010075606A1 (en) 2008-12-29 2010-07-08 Shaun Joseph Cunningham Improved photo-voltaic device
US20100175743A1 (en) 2009-01-09 2010-07-15 Solopower, Inc. Reliable thin film photovoltaic module structures
US20100186802A1 (en) 2009-01-27 2010-07-29 Peter Borden Hit solar cell structure
DE102009012539A1 (en) 2009-03-10 2010-09-23 Tyco Electronics Amp Gmbh Connecting device for connection to a solar module and solar module with such a connection device
US8283557B2 (en) 2009-03-10 2012-10-09 Silevo, Inc. Heterojunction solar cell based on epitaxial crystalline-silicon thin film on metallurgical silicon substrate design
US8182662B2 (en) 2009-03-27 2012-05-22 Sputtering Components, Inc. Rotary cathode for magnetron sputtering apparatus
KR101714097B1 (en) 2009-04-21 2017-03-08 테트라썬, 아이엔씨. High-efficiency solar cell structures and methods of manufacture
US9136415B2 (en) 2009-04-30 2015-09-15 Mitsubishi Electric Corporation Solar battery cell
US20100279492A1 (en) 2009-05-02 2010-11-04 Atomic Energy Council-Institute Of Nuclear Energy Research Method of Fabricating Upgraded Metallurgical Grade Silicon by External Gettering Procedure
JP4797083B2 (en) 2009-05-15 2011-10-19 シャープ株式会社 Thin film solar cell module
DE102010016975A1 (en) 2009-05-18 2011-01-05 Solarion Ag Arrangement and interconnection, and method for interconnecting planar solar cells
US9537032B2 (en) 2009-06-02 2017-01-03 Solarcity Corporation Low-cost high-efficiency solar module using epitaxial Si thin-film absorber and double-sided heterojunction solar cell with integrated module fabrication
US20100300507A1 (en) 2009-06-02 2010-12-02 Sierra Solar Power, Inc. High efficiency low cost crystalline-si thin film solar module
WO2010151478A1 (en) 2009-06-22 2010-12-29 International Business Machines Corporation Method of making a semiconductor optical detector structure
US20110146781A1 (en) 2009-06-26 2011-06-23 E.I. Du Pont De Nemours And Company Process of forming a grid cathode on the front-side of a silicon wafer
JP2011008881A (en) 2009-06-26 2011-01-13 Toshiba Storage Device Corp Magnetic recording device and magnetic recording medium
WO2011008881A2 (en) 2009-07-14 2011-01-20 Spectrawatt, Inc. Light conversion efficiency-enhanced solar cell fabricated with downshifting nanomaterial
US8343795B2 (en) 2009-09-12 2013-01-01 Yuhao Luo Method to break and assemble solar cells
WO2011034141A1 (en) 2009-09-18 2011-03-24 三洋電機株式会社 Solar battery, solar battery module, and solar battery system
DE102009043047A1 (en) 2009-09-28 2011-04-14 Schott Solar Ag solar cell
US20110073175A1 (en) 2009-09-29 2011-03-31 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having emitter formed at light-facing and back surfaces
KR101301029B1 (en) 2009-10-30 2013-08-28 엘지전자 주식회사 Thin Film Solar Cell Module
SG181445A1 (en) 2009-12-11 2012-07-30 Kgt Graphit Technologie Gmbh Substrate support
US20130000705A1 (en) 2009-12-16 2013-01-03 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Photovoltaic device and method of its fabrication
US8759664B2 (en) 2009-12-28 2014-06-24 Hanergy Hi-Tech Power (Hk) Limited Thin film solar cell strings
TWI425597B (en) 2009-12-31 2014-02-01 Kingpak Tech Inc Image sensor package structure with black transmittance encapsulation
TWI396292B (en) 2010-01-11 2013-05-11 Tatung Co Solar cell and manufacturing method thereof
US20120031480A1 (en) 2010-01-20 2012-02-09 Tisler Anthony C Current collection system for a photovoltaic cell
EP2362430A1 (en) 2010-02-18 2011-08-31 SAVIO S.p.A. A photovoltaic module
US20110220182A1 (en) 2010-03-12 2011-09-15 Rfmarq, Inc. Solar Panel Tracking and Performance Monitoring Through Wireless Communication
US20110245957A1 (en) 2010-04-06 2011-10-06 Applied Materials, Inc. Advanced platform for processing crystalline silicon solar cells
US20130139878A1 (en) 2010-04-07 2013-06-06 Applied Materials, Inc. Use of a1 barrier layer to produce high haze zno films on glass substrates
US20120318340A1 (en) 2010-05-04 2012-12-20 Silevo, Inc. Back junction solar cell with tunnel oxide
US8686283B2 (en) 2010-05-04 2014-04-01 Silevo, Inc. Solar cell with oxide tunneling junctions
US9240513B2 (en) 2010-05-14 2016-01-19 Solarcity Corporation Dynamic support system for quartz process chamber
US20110277825A1 (en) 2010-05-14 2011-11-17 Sierra Solar Power, Inc. Solar cell with metal grid fabricated by electroplating
TW201203574A (en) 2010-07-14 2012-01-16 Solapoint Corp Solar cell device having an air-bridge type contact
US8846451B2 (en) 2010-07-30 2014-09-30 Applied Materials, Inc. Methods for depositing metal in high aspect ratio features
US8883552B2 (en) 2010-08-11 2014-11-11 Crystal Solar Inc. MWT architecture for thin SI solar cells
ES2546311T3 (en) 2010-09-07 2015-09-22 Dow Global Technologies Llc Improved assembly of photovoltaic cells
US8221600B2 (en) 2010-09-23 2012-07-17 Sunpower Corporation Sealed substrate carrier for electroplating
US9800053B2 (en) 2010-10-08 2017-10-24 Tesla, Inc. Solar panels with integrated cell-level MPPT devices
KR101275575B1 (en) 2010-10-11 2013-06-14 엘지전자 주식회사 Back contact solar cell and manufacturing method thereof
US20120125391A1 (en) 2010-11-19 2012-05-24 Solopower, Inc. Methods for interconnecting photovoltaic cells
JP5857237B2 (en) 2010-11-29 2016-02-10 パナソニックIpマネジメント株式会社 Solar cell and solar cell module
US20120152349A1 (en) 2010-12-17 2012-06-21 Solopower, Inc. Junction box attachment for photovoltaic thin film devices
WO2012135052A1 (en) 2011-03-25 2012-10-04 Kevin Michael Coakley Foil-based interconnect for rear-contact solar cells
US20120192932A1 (en) 2011-03-25 2012-08-02 Neo Solar Power Corp. Solar cell and its electrode structure
US8525191B2 (en) 2011-04-01 2013-09-03 Sabic Innovative Plastics Ip B.V. Optoelectronic devices and coatings therefore
US20130112239A1 (en) 2011-04-14 2013-05-09 Cool Earh Solar Solar energy receiver
US20120285517A1 (en) 2011-05-09 2012-11-15 International Business Machines Corporation Schottky barrier solar cells with high and low work function metal contacts
US20130130430A1 (en) 2011-05-20 2013-05-23 Solexel, Inc. Spatially selective laser annealing applications in high-efficiency solar cells
US9054256B2 (en) 2011-06-02 2015-06-09 Solarcity Corporation Tunneling-junction solar cell with copper grid for concentrated photovoltaic application
US20120318319A1 (en) 2011-06-17 2012-12-20 Solopower, Inc. Methods of interconnecting thin film solar cells
US20120325282A1 (en) 2011-06-24 2012-12-27 Solopower, Inc. Solar cells with grid wire interconnections
EP2546889B1 (en) 2011-07-12 2020-06-17 Airbus Defence and Space GmbH Solar cell assembly and method of fabrication of solar cell assembly
US20140318611A1 (en) * 2011-08-09 2014-10-30 Solexel, Inc. Multi-level solar cell metallization
US20130213469A1 (en) * 2011-08-05 2013-08-22 Solexel, Inc. High efficiency solar cell structures and manufacturing methods
US20130228221A1 (en) * 2011-08-05 2013-09-05 Solexel, Inc. Manufacturing methods and structures for large-area thin-film solar cells and other semiconductor devices
US9842949B2 (en) * 2011-08-09 2017-12-12 Ob Realty, Llc High-efficiency solar photovoltaic cells and modules using thin crystalline semiconductor absorbers
WO2013020590A1 (en) 2011-08-09 2013-02-14 Kioto Photovoltaics Gmbh Rectangular solar cell and associated solar cell arrangement
US20150171230A1 (en) * 2011-08-09 2015-06-18 Solexel, Inc. Fabrication methods for back contact solar cells
US20130096710A1 (en) 2011-10-17 2013-04-18 Solopower, Inc. Tracking system and method for solar cell manufacturing
KR101449942B1 (en) 2012-01-17 2014-10-17 주식회사 호진플라텍 Plating equipment for solar cell wafer using electroplating and light-induced plating jointly and method of the same
US20130206221A1 (en) 2012-02-13 2013-08-15 John Anthony Gannon Solar cell with metallization compensating for or preventing cracking
KR101894585B1 (en) 2012-02-13 2018-09-04 엘지전자 주식회사 Solar cell
US10741712B2 (en) 2012-02-15 2020-08-11 Alta Devices, Inc. Photovoltaic module containing shingled photovoltaic tiles and fabrication processes thereof
US9379269B2 (en) 2012-02-29 2016-06-28 Bakersun Bifacial crystalline silicon solar panel with reflector
KR101918738B1 (en) 2012-04-17 2018-11-15 엘지전자 주식회사 Solar cell
US20140000682A1 (en) 2012-06-27 2014-01-02 E I Du Pont De Nemours And Company Integrated back-sheet for back contact photovoltaic module
US9050517B2 (en) 2012-09-05 2015-06-09 Bryan P. Oliver Ski training device and method
US9947820B2 (en) 2014-05-27 2018-04-17 Sunpower Corporation Shingled solar cell panel employing hidden taps
US20140124014A1 (en) 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string
US9780253B2 (en) 2014-05-27 2017-10-03 Sunpower Corporation Shingled solar cell module
US20140124013A1 (en) 2012-11-08 2014-05-08 Cogenra Solar, Inc. High efficiency configuration for solar cell string
WO2014110520A1 (en) 2013-01-11 2014-07-17 Silevo, Inc. Module fabrication of solar cells with low resistivity electrodes
US20140345674A1 (en) 2013-05-24 2014-11-27 Silevo, Inc. Moisture ingress resistant photovoltaic module
US20150349176A1 (en) 2014-05-27 2015-12-03 Cogenra Solar, Inc. High voltage solar panel
CN104409402B (en) 2014-12-30 2018-06-19 厦门市三安光电科技有限公司 For the graphite carrier of LED epitaxial wafer processing procedures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218817A1 (en) * 2020-04-26 2021-11-04 蔡永安 Solar cell metal electrode and preparation method therefor, and mask
TWI768402B (en) * 2020-07-14 2022-06-21 單伶寶 A kind of preparation method of solar cell electrode
WO2023124614A1 (en) * 2021-12-31 2023-07-06 隆基绿能科技股份有限公司 Metal electrode of solar cell, preparation method therefor, and solar cell
CN114864707A (en) * 2022-05-13 2022-08-05 东方日升新能源股份有限公司 Photovoltaic cell and preparation method thereof

Also Published As

Publication number Publication date
US9496429B1 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
US9496429B1 (en) System and method for tin plating metal electrodes
US9722101B2 (en) Solar cell, solar cell manufacturing method, and solar cell module
US9837561B2 (en) Laser processed back contact heterojunction solar cells
US5131954A (en) Monolithic solar cell array and method for its manufacturing
US20140349441A1 (en) Solar cell with metal grid fabricated by electroplating
CN102744520B (en) A kind of laser scribe membrane stack and the method for photovoltaic device based on Cadimium telluride thin film
US20100059117A1 (en) Hybrid silicon solar cells and method of fabricating same
US9577140B2 (en) Low-cost solar cell metallization over TCO and methods of their fabrication
US20130125974A1 (en) Solar cell with metal grid fabricated by electroplating
US8257561B2 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
JP2004266023A (en) Solar battery and method of manufacturing the same
US20180062008A1 (en) Method and system for manufacturing electrical contact for photovoltaic structures
US20120227794A1 (en) Threshold adjustment implants for reducing surface recombination in solar cells
US20140179056A1 (en) Laser-absorbing seed layer for solar cell conductive contact
TW201324834A (en) Method and apparatus of removing a passivation film and improving contact resistance in rear point contact solar cells
US20140216542A1 (en) Semiconductor material surface treatment with laser
US20120222736A1 (en) Front contact solar cell manufacture using metal paste metallization
JP2012004568A (en) Forming method of electrode and manufacturing method of solar cell using the same
CN110085683A (en) Silicon/crystalline silicon heterogenous joint solar cell of non-impurity-doped and preparation method thereof
CN102312194B (en) For forming equipment and the method for conductive transparent oxide film layer
Tao et al. 20.7% efficient ion‐implanted large area n‐type front junction silicon solar cells with rear point contacts formed by laser opening and physical vapor deposition
Raval et al. Industrial silicon solar cells
Sun et al. Electroplated Al as the front electrode in crystalline-Si solar cells
EP2645427A1 (en) Extended laser ablation in solar cell manufacture
EP2402994A1 (en) Method and system for forming photovoltaic cell and a photovoltaic cell

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION