CN108447946B - 一种柔性硒化锑薄膜太阳能电池及其制备方法 - Google Patents

一种柔性硒化锑薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN108447946B
CN108447946B CN201810360066.XA CN201810360066A CN108447946B CN 108447946 B CN108447946 B CN 108447946B CN 201810360066 A CN201810360066 A CN 201810360066A CN 108447946 B CN108447946 B CN 108447946B
Authority
CN
China
Prior art keywords
film
antimony selenide
flexible
solar cell
flexible substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810360066.XA
Other languages
English (en)
Other versions
CN108447946A (zh
Inventor
唐江
李康华
牛广达
李夫
丁瑞卿
王斯羽
屠国力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201810360066.XA priority Critical patent/CN108447946B/zh
Publication of CN108447946A publication Critical patent/CN108447946A/zh
Application granted granted Critical
Publication of CN108447946B publication Critical patent/CN108447946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种柔性硒化锑(Sb2Se3)薄膜太阳能电池及其制备方法,该方法的具体步骤包括:1)在聚酰亚胺(PI)柔性基底(玻璃作为支撑)上沉积ITO导电基底;2)在柔性导电基底上沉积硫化镉(CdS)薄膜;3)在CdS薄膜上蒸发沉积Sb2Se3薄膜,再在其上沉积对电极材料,形成对电极材料,将PI柔性基底从玻璃上剥离,即可制备得到所述的柔性硒化锑薄膜太阳能电池。该制备方法简单,且首次成功制备了柔性硒化锑薄膜太阳能电池。

Description

一种柔性硒化锑薄膜太阳能电池及其制备方法
技术领域
本发明属于光电材料及薄膜太阳能电池制备领域,更具体地,涉及一种柔性硒化锑薄膜太阳能电池及其制备方法。
背景技术
硒化锑(Sb2Se3)是一种简单的二元化合物,且化学组成元素锑和硒均为高储量低毒元素,由于其禁带宽度合适(~1.2eV),吸光系数高(短波吸光系数>105cm-1),近些年硒化锑作为一种薄膜光伏吸收层材料,备受关注。硒化锑薄膜太阳能电池的发展也是十分迅猛,短短五年时间,已经取得了认证6.5%的能量转换效率。
硒化锑作为一种一维链状材料,有着和高分子化合物类似的机械性能,这样的机械性能允许硒化锑的柔韧性。薄膜太阳能电池的优势在于:(1)制作材料使用少;(2)具有一定的柔韧性,能够与建材等整合使用。相比于传统的薄膜太阳能电池,一维的硒化锑太阳能电池的应用于柔性器件,会有着独到的优势。
然而,即使硒化锑薄膜太阳能电池在几年内就取得了突破性的进展,现有的所有技术与器件都是针对于刚性基底(如玻璃基底),至今尚未成功地在柔性基底上制备出硒化锑薄膜太阳能电池。对于制备硒化锑薄膜及其太阳能电池器件,首选的要兼顾薄膜沉积速率,薄膜结晶性和柔性基底耐热性等因素。过快的沉积速率,难以制备高质量的薄膜,基底温度过低,薄膜的结晶性差,影响器件性能,过高的基底温度,则会对于柔性基底产生一定的破坏。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种柔性硒化锑薄膜太阳能电池及其制备方法,其充分结合柔性基底和柔性硒化锑薄膜太阳能电池的特点和制备需求,针对性对柔性硒化锑薄膜太阳能电池的制备方法进行重新设计,对关键工艺参数进行控制和调整,相应获得了一种操作简单可控、电池性能优异的柔性薄膜太阳能电池及其制备方法。
为实现上述目的,按照本发明的一个方面,提供了一种柔性硒化锑薄膜太阳能电池的制备方法,包括如下步骤:
(1)以刚性材料作为支撑,将柔性基底置于所述刚性材料上,利用磁控溅射在所述柔性基底上沉积ITO透明导电电极;
(2)在步骤(1)得到的ITO透明导电电极上沉积硫化镉薄膜,得到沉积在所述ITO透明导电电极上的硫化镉薄膜;
(3)在步骤(2)得到的所述硫化镉薄膜上采用气相转移沉积法制备硒化锑薄膜;
(4)在步骤(3)得到的硒化锑薄膜上制备金对电极;
(5)将所述刚性材料与所述柔性基底分离,得到柔性硒化锑薄膜太阳能电池。
优选地,所述刚性材料为玻璃,所述柔性基底为聚酰亚胺柔性基底。
优选地,所述柔性基底为可见光波段的平均透过率>85%,耐热温度>400℃,耐酸碱性pH范围为3~12的聚酰亚胺柔性基底。
优选地,步骤(1)所述沉积ITO透明导电电极按照如下步骤进行:利用磁控溅射法在所述的柔性基底上沉积ITO电极,该ITO电极可见光波段的平均透过率>75%,方阻为7~15Ωsq-1
优选地,步骤(2)中所述硫化镉薄膜的沉积按照如下步骤进行:以硫酸镉、氨水和硫脲为前驱体,利用化学水浴沉积方法,在步骤(1)所述ITO透明导电电极上制备CdS薄膜。
优选地,步骤(3)所述硒化锑薄膜利用气相转移沉积法制备,以硒化锑粉末作为蒸发源,控制真空度为3.0-3.4Pa,基底温度为300℃-350℃,蒸发源的温度为520℃-540℃,蒸发时间为3min-4min,制备得到硒化锑薄膜。
优选地,步骤(4)在硒化锑薄膜上利用热蒸发法蒸镀对金电极。
按照本发明的另一个方面,提供了一种柔性硒化锑薄膜太阳能电池,按照所述的制备方法制备得到。
优选地,所述的太阳能电池,其具体结构为:柔性基底/ITO透明导电电极/CdS薄膜/硒化锑薄膜/金电极,所述柔性基底为聚酰亚胺,所述ITO透明导电电极的厚度为200nm-250nm,所述CdS薄膜的厚度为60nm-70nm,所述硒化锑薄膜的厚度为800nm-1000nm,所述金电极的厚度为80nm-100nm。
优选地,所述柔性基底为可见光波段的平均透过率>85%,耐热温度>400℃,耐酸碱性pH范围为3~12的聚酰亚胺柔性基底。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
本发明通过精心选择柔性基底材料,采用气相转移沉积法沉积硒化锑薄膜,控制基底温度、蒸发温度与时间,调控气体压强,最终成功获得了一套柔性薄膜太阳能电池的制备方法,制备方法简单可控。
本发明首次成功地制备出了柔性硒化锑薄膜太阳能电池,成功展示了硒化锑薄膜太阳能电池应用于柔性器件,制备得到的硒化锑薄膜太阳能电池能量转换效率高,并表现出了优异的弯折性能。
附图说明
图1为本发明柔性硒化锑薄膜太阳能电池的结构示意图。
图2为本发明实施例1制备得到的柔性硒化锑薄膜太阳能电池在不同弯折程度的实体照片。
图3为本发明实施例1制备得到的柔性硒化锑薄膜太阳能电池不同弯折程度后器件的转化效率变化曲线。
图4为本发明实施例2制备得到的柔性硒化锑薄膜太阳能电池的电流-电压曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提出了一种柔性硒化锑(Sb2Se3)薄膜太阳能电池及其制备方法。本发明制备硒化锑薄膜太阳能电池过程中,多个步骤涉及到高温操作,包括在基底上溅射沉积ITO透明导电电极,以及硒化锑的气相转移沉积,尤其是采用气相转移沉积法沉积硒化锑时,一定程度的高温有利于硒化锑的结晶性能,进而决定薄膜太阳能电池的性能,然而几百度的高温对于柔性基底是一个挑战。在高温环境下,柔性基底很容易发生卷曲、开裂等一定程度的破坏,导致沉积在其表面的材料微观形态相应受到影响。另一方面,采用气相转移沉积法制备硒化锑薄膜时,温度也不能过低,否则硒化锑薄膜的结晶性能受到影响,同样影响电池性能。对于制备柔性硒化锑薄膜及其太阳能电池器件,不仅要考虑柔性基底的耐热性因素,同时也要兼顾薄膜的沉积速率和薄膜结晶性等因素。采用气相转移沉积法沉积硒化锑,受该沉积方法工作原理的影响,其中蒸发源的温度选择至关重要,当蒸发源与基底的距离确定以后,其直接决定了柔性基底的温度和蒸发速率,进而决定了硒化锑的沉积速率,蒸发源温度过高,则硒化锑沉积速率过快,难以制备高质量的薄膜;同时蒸发源温度过高,也会导致基底被破坏,然而,蒸发源温度太低,基底温度则相应过低,薄膜的结晶性差,影响器件性能。
正是由于以上问题,采用高温沉积方法制备柔性基底的薄膜太阳能电池本身难度很大,按照传统的热蒸发法基本不可能实现。如何选择基底材料、如何设置蒸发源等其他高温操作步骤的制备工艺条件,是本发明能否成功制备柔性硒化锑薄膜太阳能电池的关键。
本发明通过精心选择柔性基底材料,控制基底温度、蒸发温度与时间,调控气体压强,特别采用气相转移沉积法沉积硒化锑薄膜,最终成功获得了一套柔性薄膜太阳能电池的制备方法。气相转移沉积法利用气流将蒸发源蒸发的硒化锑蒸汽转移至基底表面进行沉积制得硒化锑薄膜,蒸发源和基底之间的距离可控性强,适宜制备本发明的柔性硒化锑薄膜太阳能电池。
本发明制备得到的柔性薄膜太阳能电池,结构示意图如图1所示,其具体结构为柔性基底/ITO透明导电电极/CdS薄膜/Sb2Se3薄膜/Au电极,所述柔性基底为聚酰亚胺,所述ITO透明导电电极的厚度为200nm-250nm,所述CdS薄膜的厚度为60nm-70nm,所述硒化锑薄膜的厚度为800nm-1000nm,所述金电极的厚度为80nm-100nm。该薄膜太阳能电池的制备方法包括如下步骤:
(1)以刚性材料作为支撑,将柔性基底聚酰亚胺(PI)置于刚性材料玻璃上,利用磁控溅射在所述柔性基底上沉积ITO透明导电电极。聚酰亚胺(PI)柔性基底,具有高透明度,高耐热性以及高耐酸碱性的特点。具体为可见光波段的平均透过率>85%,耐热温度>400℃,耐酸碱性pH范围为3~12的聚酰亚胺(PI)柔性基底。利用磁控溅射法在所述的柔性基底上沉积厚度为200nm-250nm的ITO电极,可见光波段的平均透过率>75%,方阻为7~15Ωsq-1
(2)在步骤(1)得到的ITO透明导电电极上沉积硫化镉薄膜,得到沉积在所述ITO透明导电电极上的硫化镉薄膜;以硫酸镉、氨水和硫脲为前驱体,此前躯体溶液为碱性,pH值在11~12,利用化学水浴沉积方法,在步骤(1)所述ITO透明导电电极上制备CdS薄膜,其厚度为60nm-70nm。
(3)在步骤(2)得到的所述硫化镉薄膜上采用气相转移沉积法制备硒化锑薄膜;以硒化锑粉末作为蒸发源,控制真空度为3.0-3.4Pa,基底温度为300℃-350℃,蒸发源的温度为520℃-540℃,蒸发时间为3min-4min;制备得到所述硒化锑薄膜的厚度为800nm-1000nm。
(4)在步骤(3)得到的硒化锑薄膜上利用热蒸发蒸镀厚度为80nm-100nm的金对电极;
(5)将所述刚性材料与所述柔性基底分离,得到柔性硒化锑薄膜太阳能电池。
以下为实施例:
实施例1
(1)用去离子水,丙酮,异丙醇,乙醇和去离子水依次清洗玻璃支撑的PI柔性基底各10分钟,再用氮气枪吹干;
(2)利用磁控溅射在PI基底上溅射ITO透明导电电极,厚度分别是200nm,其透过率78%,方块电阻为15Ωsq-1
(3)利用化学水浴沉积方法,前驱体为硫酸镉,氨水和硫脲,在ITO导电基底上制备CdS薄膜,其厚度为60nm;
(4)利用气相转移沉积法制备硒化锑薄膜,硒化锑粉末作为蒸发源,控制真空度为3.0Pa,基底温度为300℃,蒸发源的温度加热至520℃,蒸发时间为3min。所述硒化锑薄膜的厚度为800nm;
(5)利用热蒸发蒸在硒化锑薄膜上镀金对电极,厚度为80nm,将PI与玻璃基底剥离,则制备出柔性硒化锑薄膜太阳能电池。
所得到的柔性硒化锑薄膜太阳能电池的能量转换效率为4.62%,其中开路电压为0.36V,短路电流为25.10mA cm-1,填充因子为51.1%。对其进行不同程度地压缩,其照片如图2所示,在不同程度压缩后的器件性能如图3所示,表现出优异的弯折性能。
实施例2
(1)用去离子水,丙酮,异丙醇,乙醇和去离子水依次清洗玻璃支撑的PI柔性基底各10分钟,再用氮气枪吹干;
(2)利用磁控溅射在PI基底上溅射ITO透明导电电极,厚度分别是250nm,其透过率75%,方块电阻为10Ωsq-1
(3)利用化学水浴沉积方法,前驱体为硫酸镉,氨水和硫脲,在ITO导电基底上制备CdS薄膜,其厚度为70nm;
(4)利用气相转移沉积法制备硒化锑薄膜,硒化锑粉末作为蒸发源,控制真空度为3.4Pa,基底温度为350℃,蒸发源的温度加热至540℃,蒸发时间为4min。所述硒化锑薄膜的厚度为1000nm;
(5)利用热蒸发蒸在硒化锑薄膜上镀金对电极,厚度为100nm,将PI与玻璃基底剥离,则制备出柔性硒化锑薄膜太阳能电池。
所得到的柔性硒化锑薄膜太阳能电池的能量转换效率为4.84%,其中开路电压为0.38V,短路电流为25.01mA cm-1,填充因子为50.9%,其电流-电压曲线如图4所示。
对比例1
采用常规的透明柔性基底,具体如聚甲基丙烯酸甲酯,聚对苯二甲酸乙二醇酯,聚萘二甲酸乙二醇酯和聚醚砜,均具备高透过率(>85%)和耐酸碱性(能耐pH在3~12范围),耐热性均低于250℃。
(1)清洗后的上述柔性基底,其在溅射ITO导电层时,已发生部分弯曲,透过率>75%,方块电阻>30Ωsq-1
(2)利用化学水浴沉积方法,前驱体为硫酸镉,氨水和硫脲,在ITO导电基底上制备CdS薄膜,其厚度为70nm;
(3)利用气相转移沉积法制备硒化锑薄膜,硒化锑粉末作为蒸发源,控制真空度为3.0Pa,基底温度为300℃,蒸发源的温度加热至520℃,蒸发时间为3min。
柔性基底发生严重卷曲变形,沉积的硒化锑薄膜不连续,薄膜的微观有裂纹,无法制备太阳能电池。
对比例2
常规的聚酰亚胺(N-PI)柔性基底,耐热性可达400℃长期使用200~300℃,耐酸碱性(能耐pH在3~12范围),其透过率<70%。
(1)利用磁控溅射在N-PI基底上溅射ITO透明导电电极,厚度分别是200nm,方块电阻为15Ωsq-1
(3)利用化学水浴沉积方法,前驱体为硫酸镉,氨水和硫脲,在ITO导电基底上制备CdS薄膜,其厚度为60nm;
(4)利用气相转移沉积法制备硒化锑薄膜,硒化锑粉末作为蒸发源,控制真空度为3.0Pa,基底温度为300℃,蒸发源的温度加热至520℃,蒸发时间为3min。所述硒化锑薄膜的厚度为800nm;
(5)利用热蒸发蒸在硒化锑薄膜上镀金对电极,厚度为80nm,将PI与玻璃基底剥离,则制备出柔性硒化锑薄膜太阳能电池。
所得到的柔性硒化锑薄膜太阳能电池的能量转换效率为2.59%,其中开路电压为0.35V,短路电流为15.23mA cm-1,填充因子为48.6%。
限制器件性能的因素,主要在于低透过率的PI吸收了过多的太阳能,导致硒化锑吸收层吸光不足,导致短路电流密度严重受损。
对比例3
对于制备柔性硒化锑薄膜太阳能电池的条件需要精细控制,以下给出超出所限制范围的对比例。
(1)用去离子水,丙酮,异丙醇,乙醇和去离子水依次清洗玻璃支撑的PI柔性基底各10分钟,再用氮气枪吹干;
(2)利用磁控溅射在PI基底上溅射ITO透明导电电极,厚度分别是250nm,其透过率75%,方块电阻为10Ωsq-1
(3)利用化学水浴沉积方法,前驱体为硫酸镉,氨水和硫脲,在ITO导电基底上制备CdS薄膜,其厚度为70nm;
(4)利用气相转移沉积法制备硒化锑薄膜,硒化锑粉末作为蒸发源,控制真空度为3.4Pa,基底温度为380℃,蒸发源的温度加热至560℃,蒸发时间为4min。所述硒化锑薄膜的厚度为1200nm;
(5)利用热蒸发蒸在硒化锑薄膜上镀金对电极,厚度为100nm,将PI与玻璃基底剥离,则制备出柔性硒化锑薄膜太阳能电池。
所得到的柔性硒化锑薄膜太阳能电池出现褶皱,主要是由于长时间高温导致PI发生形变,硒化锑薄膜出现裂纹,硒化锑薄膜太阳能电池的能量转换效率为2.78%,其中开路电压为0.36V,短路电流为20.12mA cm-1,填充因子为38.4%。性能相比较于实施例中所述,低了很多。
对比例4
(1)用去离子水,丙酮,异丙醇,乙醇和去离子水依次清洗玻璃支撑的PI柔性基底各10分钟,再用氮气枪吹干;
(2)利用磁控溅射在PI基底上溅射ITO透明导电电极,厚度分别是250nm,其透过率75%,方块电阻为10Ωsq-1
(3)利用化学水浴沉积方法,前驱体为硫酸镉,氨水和硫脲,在ITO导电基底上制备CdS薄膜,其厚度为70nm;
(4)利用气相转移沉积法制备硒化锑薄膜,硒化锑粉末作为蒸发源,控制真空度为3.4Pa,基底温度为250℃,蒸发源的温度加热至500℃,蒸发时间为4min。所述硒化锑薄膜的厚度为600nm;
(5)利用热蒸发蒸在硒化锑薄膜上镀金对电极,厚度为100nm,将PI与玻璃基底剥离,则制备出柔性硒化锑薄膜太阳能电池。
由于基底温度太低,所得到的柔性硒化锑薄膜呈现黑色粗糙状态,且与基底的附着力差,容易脱落,柔性硒化锑薄膜太阳能电池的能量转换效率为1.07%,其中开路电压为0.24V,短路电流为12.64mA cm-1,填充因子为35.6%。性能相比较于实施例中所述,低了很多。
本发明中所述实验方法,其中未详细说明的参数、条件等,均可参考本领域的现有技术进行设置;所述试剂和材料,如无特殊说明,均可从商业途径获取。柔性PI衬底可从武汉依麦德新材料科技有限责任公司购买。气相转移沉积法可采用管式炉(MTI,Hefei,China)。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种柔性硒化锑薄膜太阳能电池的制备方法,其特征在于,包括如下步骤:
(1)以刚性材料作为支撑,将柔性基底置于所述刚性材料上,利用磁控溅射在所述柔性基底上沉积ITO透明导电电极;所述刚性材料为玻璃,所述柔性基底为聚酰亚胺柔性基底;所述柔性基底为可见光波段的平均透过率>85%,耐热温度>400℃,耐酸碱性pH范围为3~12的聚酰亚胺柔性基底;
(2)在步骤(1)得到的ITO透明导电电极上沉积硫化镉薄膜,得到沉积在所述ITO透明导电电极上的硫化镉薄膜;
(3)在步骤(2)得到的所述硫化镉薄膜上采用气相转移沉积法制备硒化锑薄膜;以硒化锑粉末作为蒸发源,控制真空度为3.0~3.4Pa,基底温度为300℃~350℃,蒸发源的温度为520℃~540℃,蒸发时间为3min~4min,制备得到硒化锑薄膜;
(4)在步骤(3)得到的硒化锑薄膜上制备金对电极;
(5)将所述刚性材料与所述柔性基底分离,得到柔性硒化锑薄膜太阳能电池。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)所述沉积ITO透明导电电极按照如下步骤进行:利用磁控溅射法在所述的柔性基底上沉积ITO电极,该ITO电极可见光波段的平均透过率>75%,方阻为7~15Ωsq-1
3.如权利要求1所述的制备方法,其特征在于,步骤(2)中所述硫化镉薄膜的沉积按照如下步骤进行:以硫酸镉、氨水和硫脲为前驱体,利用化学水浴沉积方法,在步骤(1)所述ITO透明导电电极上制备CdS薄膜。
4.如权利要求1所述的制备方法,其特征在于,步骤(4)在硒化锑薄膜上利用热蒸发法蒸镀对金电极。
5.一种柔性硒化锑薄膜太阳能电池,其特征在于,按照如权利要求1至4任意一项所述的制备方法制备得到。
6.如权利要求5所述的太阳能电池,其特征在于,其具体结构为:柔性基底/ITO透明导电电极/CdS薄膜/硒化锑薄膜/金电极,所述柔性基底为聚酰亚胺,所述ITO透明导电电极的厚度为200nm~250nm,所述CdS薄膜的厚度为60nm~70nm,所述硒化锑薄膜的厚度为800nm~1000nm,所述金电极的厚度为80nm~100nm。
CN201810360066.XA 2018-04-20 2018-04-20 一种柔性硒化锑薄膜太阳能电池及其制备方法 Active CN108447946B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810360066.XA CN108447946B (zh) 2018-04-20 2018-04-20 一种柔性硒化锑薄膜太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810360066.XA CN108447946B (zh) 2018-04-20 2018-04-20 一种柔性硒化锑薄膜太阳能电池及其制备方法

Publications (2)

Publication Number Publication Date
CN108447946A CN108447946A (zh) 2018-08-24
CN108447946B true CN108447946B (zh) 2020-05-19

Family

ID=63201140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810360066.XA Active CN108447946B (zh) 2018-04-20 2018-04-20 一种柔性硒化锑薄膜太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN108447946B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473552B (zh) * 2018-10-30 2020-11-24 深圳大学 一种基于溶液法的太阳能电池及其制备方法
CN109473551B (zh) * 2018-10-30 2020-06-23 深圳大学 一种基于双源蒸镀的太阳能电池及其制备方法
CN110416356B (zh) * 2019-07-10 2021-03-02 西安交通大学 一种硒化锑薄膜太阳能电池的制备方法
CN112201725A (zh) * 2020-09-22 2021-01-08 西北工业大学深圳研究院 一种硒化锑薄膜太阳能电池的制备方法
CN112259620A (zh) * 2020-10-26 2021-01-22 山东警察学院 一种Sb2Se3薄膜太阳能电池及其制备方法
CN112968068A (zh) * 2021-02-25 2021-06-15 电子科技大学 一种基于多级原位热处理的无机太阳能电池及其制备方法
CN113488596B (zh) * 2021-06-30 2022-05-20 华中科技大学 一种Ce3+基卤化物电致发光器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208561A (zh) * 2013-03-22 2013-07-17 上海中科高等研究院 一种柔性薄膜太阳能电池及其制备方法
CN103582956A (zh) * 2011-06-07 2014-02-12 王家雄 一种通过卷对卷过程制备半导体膜的化学浴沉积设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195698B (zh) * 2017-06-01 2018-07-31 华中科技大学 一种硒化锑薄膜太阳能电池背表面的钝化处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582956A (zh) * 2011-06-07 2014-02-12 王家雄 一种通过卷对卷过程制备半导体膜的化学浴沉积设备
CN103208561A (zh) * 2013-03-22 2013-07-17 上海中科高等研究院 一种柔性薄膜太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《新型硒化碲材料及其光伏器件研究进展》;薛丁江等;《物理学报》;20150228;第64卷(第3期);正文第2页 *
《硒化碲薄膜太阳能电池的器件物理研究》;罗苗;《中国优秀硕士学位论文全文数据库工程科技II辑》;20170615(第6期);正文第37页至42页 *

Also Published As

Publication number Publication date
CN108447946A (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
CN108447946B (zh) 一种柔性硒化锑薄膜太阳能电池及其制备方法
US8617642B2 (en) Preparation of thin film for solar cell using paste
JP5185171B2 (ja) 薄膜太陽電池の光吸収層の形成方法
KR101389832B1 (ko) 구리인듐셀레늄(cigs) 또는 구리아연주석황(czts)계 박막형 태양전지 및 그의 제조방법
CN103390674B (zh) Czts柔性太阳电池及其制备方法
TW201138133A (en) Thin film photovoltaic cell
CN114203848B (zh) 一种柔性硒化锑太阳电池及其制备方法
JP2011109052A (ja) 薄膜型光吸収層製造方法、これを用いた薄膜太陽電池製造方法、および薄膜太陽電池
CN103354252B (zh) Czts太阳电池的pn结及czts太阳电池器件的制备方法
CN105390373B (zh) 一种铜锑硫太阳能电池光吸收层薄膜的制备方法
KR101441942B1 (ko) 플렉시블 박막형 태양전지 및 그 제조방법
WO2014125900A1 (ja) Cigs膜の製法およびそれを用いるcigs太陽電池の製法
CN112259620A (zh) 一种Sb2Se3薄膜太阳能电池及其制备方法
CN104051577B (zh) 提高太阳电池吸收层铜锌锡硫薄膜结晶性能的制备方法
KR101293047B1 (ko) 태양전지의 광흡수층용 금속 전구체 및 그 제조 방법, 그것을 포함하는 광흡수층 및 태양전지
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
CN102157611B (zh) 铜铟镓硒薄膜的制造方法
CN112331729A (zh) Cigs薄膜太阳能电池的光吸收层及其形成方法
CN105590973A (zh) 一种具有高结合力吸收层的柔性薄膜太阳电池
CN105679877A (zh) 一种柔性衬底上制备高结合力吸收层的方法
CN104278238A (zh) 一种高质量铜锌锡硫半导体薄膜的制备方法
CN105679881A (zh) 一种铜铟硫基薄膜太阳能电池的制备方法
CN104425650A (zh) 三步法吸收层前掺钠柔性太阳电池的制备方法
CN104425655A (zh) 三步法吸收层后掺钠柔性太阳电池的制备方法
KR20200097118A (ko) Cigs 박막 태양전지 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant