WO2021218705A1 - 丙烯酸酯、电解液原料组合物、电解液及锂离子二次电池及其制备方法 - Google Patents

丙烯酸酯、电解液原料组合物、电解液及锂离子二次电池及其制备方法 Download PDF

Info

Publication number
WO2021218705A1
WO2021218705A1 PCT/CN2021/088372 CN2021088372W WO2021218705A1 WO 2021218705 A1 WO2021218705 A1 WO 2021218705A1 CN 2021088372 W CN2021088372 W CN 2021088372W WO 2021218705 A1 WO2021218705 A1 WO 2021218705A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
lithium
lini
acrylate
present
Prior art date
Application number
PCT/CN2021/088372
Other languages
English (en)
French (fr)
Inventor
廖帅玲
陈虎
熊得军
吕家斌
廖鹏
Original Assignee
孚能科技(镇江)有限公司
孚能科技(赣州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孚能科技(镇江)有限公司, 孚能科技(赣州)股份有限公司 filed Critical 孚能科技(镇江)有限公司
Publication of WO2021218705A1 publication Critical patent/WO2021218705A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of batteries, in particular to an acrylic ester, a gel electrolyte raw material composition for lithium ion secondary batteries, a gel electrolyte for lithium ion secondary batteries, and a lithium ion secondary battery and ⁇ The method of preparation.
  • thermal runaway The safety problem of power batteries is generally called “thermal runaway", that is, after reaching a certain temperature, it becomes uncontrollable, the temperature rises linearly, and then a combustion explosion occurs.
  • the essence of new energy vehicle safety accidents is battery thermal runaway.
  • the causes of thermal runaway include mechanical and electrical inducements (battery collision extrusion, acupuncture, etc.) and electrochemical inducements (battery overcharge and overdischarge, fast charge, low-temperature charging, self-initiated internal Short circuit, etc.).
  • the adjacent cells also suffer thermal runaway after being affected, which leads to the spread of thermal runaway and ultimately leads to safety accidents.
  • Electrolytes used in lithium-ion batteries are generally divided into liquid electrolytes and gel electrolytes, but liquid electrolytes generally have problems such as poor safety and insufficient battery hardness and flexibility.
  • the gel polymer electrolyte can be easily processed into thin films of various shapes, and then prepared into ultra-thin, different shapes to adapt to the development of thinner, lighter and miniaturized electronic products. Therefore, the replacement of liquid electrolyte lithium-ion batteries with lithium-ion gel polymer electrolyte batteries is a major advancement in the development of lithium-ion batteries.
  • gel polymer electrolytes have been commercially produced, but it is still a major problem facing gel polymer electrolytes to integrate excellent mechanical properties and electrical properties.
  • the purpose of the present invention is to provide an acrylate, which can be used to prepare an electrolyte to ensure the cycle performance and rate performance of a lithium ion battery.
  • the purpose of the present invention is to provide an electrolyte that circulates as a liquid electrolyte under normal conditions to ensure the cycle performance and rate performance of lithium-ion batteries, and cause the temperature to rise under abuse and other abnormal conditions (ie, temperature> 80°C) Polymerization is then carried out to form a gel electrolyte to prevent thermal runaway, thereby improving the safety of the battery.
  • the object of the present invention is to provide a durable gel electrolyte and a lithium ion battery using the gel electrolyte.
  • the present invention provides an acrylate, the acrylate is any one or more of the following compounds represented by formula I) and formula II):
  • each of R 1 to R 2 contains carbon atoms of 0-3, preferably each is H, CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 , C 6 H 5 , CF 3 , CF 3 CH 2 , CF 2 HCH 2 , CF 3 CF 2 , CF 2 HCF 2 CH 2 , OCH 2 CF 3 , Any of them.
  • the acrylate is selected from
  • the present invention provides a gel electrolyte raw material composition for lithium ion batteries, which contains a non-aqueous organic solvent, electrolyte lithium salt, additives, inorganic acid organic ester and/or nitrile, and the aforementioned acrylate.
  • the weight ratio of non-aqueous organic solvent, electrolyte lithium salt, additive inorganic acid organic ester and/or nitrile to acrylic ester is 70-90:10-20:0.1-20:0.1-10.
  • the non-aqueous organic solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, propylene One or more of propyl acid, ethyl propionate and butyl propionate.
  • the electrolyte lithium salt is one or more of LiPF 6 , LiClO 4 , LiBOB, LiBF 4 , LiO 2 PF 2 , LiODFB, LiTFSI, LiFSI, and LiC(CF 3 SO 3 ) 3 .
  • the additive is selected from fluoroethylene carbonate, vinyl sulfate, vinyl sulfite, propylene sulfate, propylene sulfite, 1,3-propane sultone, adiponitrile, succinonitrile, One or more of vinylene carbonate and vinyl ethylene carbonate.
  • the present invention provides a gel electrolyte for lithium ion batteries, which is obtained by polymerizing the composition of the present invention and a thermal initiator after mixing.
  • the weight ratio of the composition to the thermal initiator is 90-100:0.5.
  • the thermal initiator is selected from one or two of peroxy compounds and azo compounds.
  • the polymerization conditions include a temperature of 60-100°C; and a time of 0.5-3h.
  • the concentration of the lithium salt in the electrolyte is 0.5-2 mol/L.
  • the present invention provides a lithium ion secondary battery, the battery includes a pole core and an electrolyte, the pole core and the electrolyte are sealed in a battery case, and the pole core includes a positive electrode sheet and a negative electrode. Sheet and diaphragm, the electrolyte is the electrolyte according to the present invention.
  • the positive electrode active material is selected from LiFePO 4 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.5 Co 0.2 Mn 0.3 O 2, LiNi x Mn 2-x O 4 , LiNi 0.5 Mn 1.5 O 4 , LiNi x Co y Mn 1-xy and at least one of LiNi x Co y Al 1-xy , LiNi x Co y Mn 1-xy O 2 , LiNi x Co y Al 1-xy O 2 ;
  • x is greater than 0 and less than 2;
  • x is greater than 0 and less than 1, and y is greater than 0 and less than 1;
  • x is greater than 0 and less than 1
  • y is greater than 0 and less than 1.
  • the negative electrode active material is one or more of natural graphite, artificial graphite, mesocarbon microspheres, soft carbon, hard carbon, lithium titanate, silicon, and silicon-carbon alloy.
  • the present invention provides a method for preparing the above-mentioned lithium ion secondary battery, which method includes:
  • the positive pole piece, the negative pole piece and the separator are made into a soft-packed battery cell, polymer packaged, and then vacuum-baked, injected into the premixed electrolyte, sealed and allowed to stand, and then kept at a constant temperature of 60-100°C Leave it for 0.5-3h to obtain the gel electrolyte, cool, form, and then seal the battery.
  • the conditions of vacuum baking include: a temperature of 60-120°C and a time of 12-36h;
  • the invention can ensure the cycle performance and rate performance of the lithium ion battery. Under abuse and other abnormal conditions, the temperature rises (ie temperature> 80°C) and then polymerizes to form a gel electrolyte, prevent the occurrence of thermal runaway, thereby improving The safety of the battery.
  • the present invention provides an acrylate, wherein the acrylate is any one or more of the following compounds represented by formula I) and formula II):
  • the number of carbon atoms contained in each of R1 to R2 is 0-3, preferably each is H, CH 3 , C 2 H 5 , C 3 H 7 , C 4 H 9 , C 6 H 5 , CF 3 , CF 3 CH 2 , CF 2 HCH 2 , CF 3 CF 2 , CF 2 HCF 2 CH 2 , OCH 2 CF 3 , Any of them.
  • the use of the aforementioned preferred acrylates can improve the safety and durability of the electrolyte used in lithium ion batteries.
  • the acrylate is selected from
  • the present invention provides a method for preparing acrylate, which includes the following steps:
  • the organic base is methyl lithium, trifluoromethyl lithium, sodium methoxide, sodium methoxide, sodium trifluoromethoxide, sodium phenate and the like.
  • the present invention provides a gel electrolyte raw material composition for lithium ion batteries, which contains a non-aqueous organic solvent, electrolyte lithium salt, additives, inorganic acid organic esters and/or nitriles, and the aforementioned acrylates.
  • the weight ratio of non-aqueous organic solvent, electrolyte lithium salt, additive inorganic acid organic ester and/or nitrile to acrylate is 70-90:10-20:0.1-20:0.1-10.
  • the use of the aforementioned preferred ratio can improve the safety and durability of the electrolyte used in lithium ion batteries.
  • non-aqueous organic solvent, electrolyte lithium salt, additive inorganic acid organic ester and/or nitrile and acrylate weight ratio can be 70:10:0.1:0.1, 70:10:0.1:0.5, 70:10:0.1:1, 70:10:0.1:5, 70:10:0.1:10, 70:10 :0.5:0.1, 70:10:1:0.1, 70:10:5:0.1, 70:10:10:0.1, 70:10:15:0.1, 70:10:20:0.1, 70:10:0.5 :0.5, 70:10:1:0.5, 70:10:5:0.5, 70:10:10:0.5, 70:10:15:0.5, 70:10:20:0.5, 70:10:0.5:1 , 70:10:1:1, 70:10:5:0.5, 70:10:10:15:0.5, 70:10:20:0.5, 70:10:0.5:1 , 70:10:1:1, 70:10:5:1, 70:10:10:1, 70:10:10:1, 70
  • the additive is selected from fluoroethylene carbonate, vinyl sulfate, vinyl sulfite, propylene sulfate, propylene sulfite, 1,3-propane sultone, adiponitrile , Succinonitrile, vinylene carbonate and vinyl ethylene carbonate one or more.
  • the additive is a mixture of DTD (vinyl sulfate) LiFSI (lithium bisfluorosulfonimide) and PS (propylene sulfate), more preferably the mass ratio of the three is 0.2 -2: 0.2-5: 0.5-2.
  • the mass ratio of the three (m DTD : m LiFSI : m PS ) may be 0.2:0.2:0.5, 0.5:0.8:1, 1:1:1, 2:2:1, 1:1:2, etc.
  • the optional range of the types of non-aqueous organic solvents is relatively wide, and the selection of the solvents should be reasonably matched to ensure that the viscosity of the electrolyte is small and the conductivity is relatively high.
  • Common organic solvents can be used in the present invention.
  • the non-aqueous organic solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, One or more of methyl acetate, ethyl acetate, propyl acetate, butyl acetate, propyl propionate, ethyl propionate, and butyl propionate.
  • the use of the aforementioned preferred organic solvents can improve the safety and durability of the electrolyte used in lithium ion batteries.
  • the type of electrolyte lithium salt can be selected from a wide range. Commonly used electrolyte lithium salts can be used in the present invention. According to a preferred embodiment of the present invention, the electrolyte lithium salt is LiPF 6 , LiClO 4. One or more of LiBOB, LiBF 4 , LiO 2 PF 2 , LiODFB, LiTFSI, LiFSI, and LiC(CF 3 SO 3 ) 3 .
  • the invention provides a gel electrolyte for lithium ion batteries, which is obtained by polymerizing the composition of the invention and a thermal initiator after mixing.
  • the weight ratio of the composition to the thermal initiator is 90-100:0.5.
  • the use of the aforementioned preferred ratio can improve the safety and durability of the electrolyte used in lithium ion batteries.
  • the weight ratio of the composition to the thermal initiator can be 90:0.5, 91:0.5, 92:0.5, 93:0.5, 94:0.5, 95:0.5, 96:0.5 , 97:0.5, 98:0.5, 99:0.5, 100:0.5, etc.
  • a wide range of thermal initiators can be selected.
  • the thermal initiator is selected from one or two of peroxy compounds and azo compounds. The use of the aforementioned preferred ratio can improve the safety and durability of the electrolyte used in lithium ion batteries.
  • the peroxide may be: diphenylformyl peroxide (BPO).
  • the azo compound may be: azobisisobutyronitrile (AIBN).
  • the polymerization conditions can be selected in a wide range. According to the present invention, it preferably includes a temperature of 60-100°C and a time of 0.5-3h.
  • the temperature can be 60°C, 70°C, 80°C, 90°C, 100°C, etc.
  • the time can be 0.5h, 1h, 2h, 3h, etc.
  • the concentration of the lithium salt in the electrolyte is 0.5-2 mol/L.
  • the lithium salt concentration can be 0.5 mol/L, 1 mol/L, 1.5 mol/L, 2 mol/L, and so on.
  • the electrolyte of the present invention can be used in various lithium ion batteries, and the battery of the present invention is particularly suitable for lithium ion secondary batteries.
  • the present invention provides a lithium ion secondary battery.
  • the battery includes a pole core and an electrolyte.
  • the pole core and the electrolyte are sealed in a battery casing.
  • the pole core includes a positive electrode sheet, a negative electrode sheet, and a separator. It is the electrolyte described in the present invention.
  • the positive electrode sheet, the negative electrode sheet, the separator, etc. can all adopt the conventional positive electrode sheet, the negative electrode sheet and the separator in this field.
  • the present invention has no special requirements for this and will not be described in detail here.
  • the positive electrode sheet preferably includes a positive electrode current collector, a positive electrode active material for attaching to the positive electrode current collector, a positive electrode binder, and a positive electrode conductive agent.
  • the positive electrode active material is selected from LiFePO 4 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.5 Co 0.2 Mn 0.3 O 2, LiNi x Mn 2-x O 4 , LiNi 0.5 Mn 1.5 O 4 , LiNi x Co y Mn 1-xy and at least one of LiNi x Co y Al 1-xy , LiNi x Co y Mn 1-xy O 2 , and LiNi x Co y Al 1-xy O 2 .
  • the values of x and y can be conventionally selected in the field, specifically,
  • x is greater than 0 and less than 2.
  • x is greater than 0 and less than 1
  • y is greater than 0 and less than 1.
  • x is greater than 0 and less than 1
  • y is greater than 0 and less than 1.
  • the content of the positive electrode active material is 90-98% by weight.
  • the content of the positive electrode active material may be 90% by weight, 91% by weight, 92% by weight, 93% by weight, 94% by weight, 95% by weight, 96% by weight, 97% by weight. %, 98% by weight, etc.
  • the positive electrode binder includes but is not limited to at least one of polytetrafluoroethylene, polyvinylidene fluoride, and styrene-butadiene rubber.
  • the content of the positive electrode binder is 0.01-8% by weight.
  • the content of the positive electrode binder is 0.01% by weight, 0.05% by weight, 0.1% by weight, 0.5% by weight, 1% by weight, 2% by weight, 3% by weight, 4% by weight. %, 5% by weight, 6% by weight, 7% by weight, 8% by weight, etc.
  • the positive electrode conductive agent includes but is not limited to at least one of SP, acetylene black, KS-16, and carbon nanotubes.
  • the content of the positive electrode conductive agent is 1-8% by weight.
  • the content of the positive electrode conductive agent may be 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight. %Wait.
  • the current collector of the positive electrode is aluminum foil.
  • the positive electrode sheet is prepared by dispersing the active material, the conductive agent, and the binder in the dispersant to prepare the positive electrode slurry, and then the positive electrode slurry is coated on the current collector and dried to obtain the positive electrode sheet , Then the dried positive electrode sheet is rolled, slitted, punched, and then vacuum-dried at high temperature to obtain it.
  • the dispersant used in the preparation of the positive electrode slurry in the present invention includes, but is not limited to, N-methylpyrrolidone, N,N-dimethylformamide, N,N-diethylformamide, dimethylsulfoxide, tetrahydrofuran, water And at least one of alcoholic dispersants.
  • the amount of the positive electrode dispersant is such that the solid content of the active material in the positive electrode slurry is 40-90% by weight, more preferably 50-85% by weight. Therefore, the dispersion of the positive electrode slurry can be made more uniform, and the coating performance can be better.
  • the drying conditions of the positive electrode sheet are selected according to the type of dispersant used, and the dispersant in the positive electrode slurry can be removed without affecting the performance of the electrode sheet.
  • the positive electrode active material is LiFePO 4 , LiCoO 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2, LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiNi x Co y Mn 1-xy and One or more of LiNi x Co y Al 1-xy.
  • the negative electrode sheet preferably includes a negative electrode current collector, a negative electrode active material for attaching to the negative electrode current collector, a negative electrode binder, a negative electrode conductive agent, and a thickener.
  • the negative electrode active material is selected from at least one of graphite (artificial graphite and/or natural graphite), mesocarbon microspheres, soft carbon, hard carbon, lithium titanate, silicon, and silicon carbon alloy. kind.
  • the negative active material is one or more of natural graphite, artificial graphite, soft carbon, hard carbon, lithium titanate, silicon, and silicon-carbon alloy.
  • the content of the negative electrode active material is 90-98% by weight.
  • the content of the negative electrode active material may be 90% by weight, 91% by weight, 92% by weight, 93% by weight, 94% by weight, 95% by weight, 96% by weight, 97% by weight. %, 98% by weight, etc.
  • the negative electrode binder includes but is not limited to at least one of styrene-butadiene rubber, polyvinyl alcohol, and polytetrafluoroethylene.
  • the content of the negative electrode binder is 0.1-8% by weight.
  • the content of the negative electrode binder may be 0.1% by weight, 0.5% by weight, 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6 Weight%, 7% by weight, 8% by weight, etc.
  • the negative electrode conductive agent includes but is not limited to at least one of Super P, acetylene black, KS-16, and carbon nanotubes.
  • the content of the negative electrode conductive agent is 0.1-8% by weight.
  • the content of the negative electrode conductive agent may be 0.1% by weight, 0.5% by weight, 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, and 6% by weight. %, 7% by weight, 8% by weight, etc.
  • the thickener is sodium carboxymethyl cellulose, and the content of the thickener is 0.1 to 5% by weight based on the total weight of the negative electrode dry material.
  • the content of the negative electrode conductive agent may be 0.1% by weight, 0.5% by weight, 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, and 6% by weight. %, 7% by weight, 8% by weight, etc.
  • the current collector of the negative electrode is preferably copper foil.
  • the negative electrode is prepared by dispersing active material, conductive agent, binder, and thickener in a dispersant to prepare negative electrode slurry, and then coating the negative electrode slurry on a current collector and proceeding
  • the negative electrode sheet is obtained by drying, and then the dried negative electrode sheet is subjected to rolling, slitting, punching, and vacuum high-temperature drying to obtain it.
  • the dispersant used in the preparation of the negative electrode slurry in the present invention includes, but is not limited to, N-methylpyrrolidone, N,N-dimethylformamide, N,N-diethylformamide, dimethylsulfoxide, tetrahydrofuran, water And at least one of alcoholic dispersants.
  • the amount of the negative electrode dispersant is such that the solid content of the active material in the negative electrode slurry is 40-90% by weight, more preferably 50-85% by weight.
  • the negative electrode slurry is more uniformly dispersed and has better coating performance.
  • the drying conditions of the negative electrode sheet are selected according to the type of dispersant used, and the dispersant in the negative electrode slurry can be removed without affecting the performance of the electrode sheet.
  • the separator is arranged between the positive electrode and the negative electrode, and the material of the separator includes but is not limited to at least one of polypropylene, polyethylene or polyethylene, and a polypropylene composite separator.
  • the use of the electrolyte of the present invention for lithium ion secondary batteries can improve the durability and safety of lithium ion batteries, and there is no special requirement for the preparation method of lithium ion secondary batteries. Examples include:
  • S2 vacuum-bakes the battery cell prepared by S1, puts it in the battery casing, injects the electrolyte of the present invention, and then seals the battery casing.
  • the present invention provides a method for preparing the aforementioned lithium ion secondary battery, which method includes:
  • the positive pole piece, the negative pole piece and the separator are made into a soft-packed battery cell, polymer packaged, and then vacuum-baked, injected into the premixed electrolyte, sealed and allowed to stand, and then kept at a constant temperature of 60-100°C Leave it for 0.5-3h to obtain the gel electrolyte, cool, form, and then seal the battery.
  • the standing time can be 0.5h, 1h, 2h, 3h, etc.
  • the conditions of vacuum baking include: a temperature of 60-120° C. and a time of 12-36 h. Using the aforementioned baking conditions can further improve the durability and safety of the battery.
  • the temperature can be 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, etc.
  • the time can be 12h, 15h, 18h, 21h, 24h, 27h, 30h, 33h, 36h, etc.
  • the sealing and standing time is 12-36h.
  • the sealing and standing time can be 12h, 15h, 18h, 21h, 24h, 27h, 30h, 33h, 36h, etc.
  • the positive electrode active material nickel cobalt manganese lithium (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ), the conductive agent super-P, and the binder PVDF are dissolved in the solvent N-methylpyrrolidone at a mass ratio of 96:2:2 and mixed uniformly to make the positive electrode.
  • the positive electrode slurry was uniformly coated on the current collector aluminum foil, the coating amount was 0.040g/cm 2 , and then it was dried at 120 °C and then cold pressed, cut, slit, and punched, and then 85 Dry for 4 hours under vacuum at °C, weld the tabs, and make the positive electrode sheet of the lithium ion battery that meets the requirements.
  • the negative active material artificial graphite, conductive agent super-P, thickener CMC, and binder SBR are dissolved in deionized water at a mass ratio of 95.5:1:1:2.5 to make a negative electrode slurry, and then the negative electrode slurry Coat evenly on the current collector copper foil with a coating amount of 0.020g/cm 2 , then dry at 85°C, then perform cold pressing, cutting, slitting, and punching, and then dry at 110°C under vacuum for 4h , Weld the tabs to make the negative plate of the lithium-ion battery that meets the requirements.
  • the electrolyte of the lithium ion battery uses 15% by weight of LiPF 6 as the lithium salt, and uses a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) as a non-aqueous solvent.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the EC content is 21.15% by weight, and the EMC content is 49.35 wt%, add 3 wt% 1.5% by weight DTD, 1.5% by weight LiFSI, and 1.5% by weight PS are stirred uniformly, and then 7% by weight azobisisobutyronitrile thermal initiator is added for polymerization.
  • the lithium ion battery electrolyte (free Acid ⁇ 20ppm, moisture ⁇ 15ppm).
  • the positive pole piece, negative pole piece and separator prepared above are laminated into soft-packed batteries, packaged in polymer, and baked in vacuum at 85°C for 24 hours, injected with the electrolyte prepared above, and sealed and allowed to stand for 24 hours. Place the battery in a thermostat at 80°C for 1 hour to polymerize the acrylate compound to form a cross-linked polymer to form a gel electrolyte. Cool to room temperature and perform chemical conversion. After chemical conversion and other processes, it is made into a capacity of 2000mAh. Lithium Ion Battery.
  • the prepared lithium-ion secondary battery was first charged and formed according to the following steps: charged with a constant current of 0.1C to 3.6V, charged with a constant current of 0.2C to 3.95V, sealed a second time, and then charged with a constant current of 0.2C to 4.25 V, after being left at room temperature for 24 hours, discharge to 3.0V at a constant current of 0.2C to obtain a 4.25V LiNi 0.5 Co 0.2 Mn 0.3 O 2 /artificial graphite lithium ion secondary battery.
  • Examples 2-14 are used to illustrate the lithium ion battery electrolyte, lithium ion battery and the preparation method thereof disclosed in the present invention, including most of the operation steps in Example 1. In addition to the parameters in Table 1 below, other parameters are the same as those in Example 1. Unanimous.
  • Example 2 The preparation method is as follows:
  • Example 3 The preparation method is as follows:
  • Example 4 The preparation method is as follows:
  • Example 5 The preparation method is as follows:
  • Example 6 The preparation method is as follows:
  • Example 7 The preparation method is as follows:
  • Example 8 The preparation method is as follows:
  • Example 9 The preparation method is as follows:
  • Example 10 The preparation method is as follows:
  • Example 11 The preparation method is as follows:
  • Example 12 The preparation method is as follows:
  • Example 13 The preparation method is as follows:
  • Example 14 The preparation method is as follows:
  • Squeeze direction apply pressure perpendicular to the direction of the electrode plate of the cell
  • Extrusion plate form a semi-cylinder with a radius of 75mm, the length of the semi-cylinder is greater than the size of the cell being extruded;
  • Table 2 shows the electrical performance and safety performance test results of the Examples and Comparative Examples.
  • the battery cells made of lithium ion battery electrolyte with acrylate added compared to the cells made without acrylate lithium ion liquid electrolyte, have basically no reduction in initial discharge capacity, and The high temperature cycle performance is almost the same, and at the same time, it can significantly improve the pass rate of the nail penetration test and the extrusion test of the lithium ion battery. Therefore, the lithium ion electrolyte of the present invention not only has excellent electrical properties and cycle performance, but also has obvious advantages in mechanical properties such as nail penetration test and extrusion, and solves the major problem of thermal runaway faced by the current liquid electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种丙烯酸酯、锂离子电池用凝胶电解液原料组合物,丙烯酸酯为式I)和式II)所示化合物中的任一种或多种:其中,式I)和式II)中R 1~R 2各自所含碳原子数为0-3。该组合物含有非水有机溶剂、电解液锂盐、添加剂无机酸有机酯和/或腈、丙烯酸酯。本发明提供一种锂离子电池用凝胶电解液,该电解液由本发明所述的组合物与热引发剂混合后进行聚合得到。本发明提供一种锂离子二次电池及其制备方法,该电池包括极芯和电解液,所述极芯和电解液密封在电池壳体内,所述极芯包括正极片、负极片及隔膜,所述电解液为本发明所述的电解液。本发明的凝胶电解液,可以大幅提高锂离子电池的安全性和耐久性。

Description

丙烯酸酯、电解液原料组合物、电解液及锂离子二次电池及其制备方法 技术领域
本发明涉及电池领域,具体涉及一种丙烯酸酯、锂离子二次电池用凝胶电解液原料组合物,和一种锂离子二次电池用凝胶电解液,以及一种锂离子二次电池及其制备方法。
背景技术
动力电池的安全性问题概况起来叫“热失控”,也就是到达一定温度后,就不可控了,温度直线上升,然后就会发生燃烧爆炸。新能源汽车安全事故的本质是电池热失控,热失控的诱因包括机械电气诱因(电池碰撞挤压、针刺等)和电化学诱因(电池过充过放、快充、低温充电、自引发内短路等)。当一个电池单体发生热失控之后,相邻单体受影响后也相继发生热失控,导致热失控蔓延,最终引发安全事故。
锂离子电池所用电解液一般分为液态电解液和凝胶电解液两种,但液态电解液普遍存在安全性较差、电池硬度不够易变性等问题。相比传统的液态电解液,凝胶型聚合物电解液易加工成各种形状的薄膜,进而制备成超薄、形状各异,以适应电子产品薄型化、轻型化和微型化的发展。因此,锂离子凝胶型聚合物电解液电池取代液态电解液锂离子电池,是锂离子蓄电池发展的一个重大进步。目前凝胶聚合物电解液已经进行商品化生产,但要集优秀的机械性能和电性能等性能于一体,仍然是目前凝胶型聚合物电解液面临的重大难题。
发明内容
本发明的目的在于提供一种丙烯酸酯,其可以用于制备电解液,以保证 锂离子电池的循环性能和倍率性能。
本发明的目的在于提供一种电解液,在正常情况下循环为液体电解液,保证锂离子电池的循环性能和倍率性能,在滥用及其他异常情况下导致温度升高(即温度>80℃)后进行聚合,形成凝胶电解液,防止热失控的发生,从而提高电池的安全性。
本发明的目的在于提供一种耐久性的凝胶电解液,以及使用该凝胶电解液的锂离子电池。
为实现上述目的,本发明提供了一种丙烯酸酯,所述丙烯酸酯为为下列式I)和式II)所示化合物中的任一种或多种:
Figure PCTCN2021088372-appb-000001
其中,式I)和式II)中R 1~R 2各自所含碳原子数为0-3,优选地各自为H、CH 3、C 2H 5、C 3H 7、C 4H 9、C 6H 5、CF 3、CF 3CH 2、CF 2HCH 2、CF 3CF 2、CF 2HCF 2CH 2、OCH 2CF 3
Figure PCTCN2021088372-appb-000002
中的任一种。
优选的,所述丙烯酸酯选自
Figure PCTCN2021088372-appb-000003
Figure PCTCN2021088372-appb-000004
Figure PCTCN2021088372-appb-000005
中的一种或两种以上。
本发明提供一种锂离子电池用凝胶电解液原料组合物,该组合物含有非水有机溶剂、电解液锂盐、添加剂无机酸有机酯和/或腈以及上述所述的丙烯酸酯。
优选地,非水有机溶剂、电解液锂盐、添加剂无机酸有机酯和/或腈与丙烯酸酯的重量比为70-90:10-20:0.1-20:0.1-10。
优选地,所述非水有机溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸丙酯、丙酸乙酯和丙酸丁酯中的一种或两种以上。
优选地,所述电解液锂盐为LiPF 6、LiClO 4、LiBOB、LiBF 4、LiO 2PF 2、LiODFB、LiTFSI、LiFSI和LiC(CF 3SO 3) 3中的一种或两种以上。
优选地,所述添加剂选自氟代碳酸乙烯酯、硫酸乙烯酯、亚硫酸乙烯酯、硫酸丙烯酯、亚硫酸丙烯酯、1,3-丙磺酸内酯、己二腈、丁二腈、碳酸亚乙烯酯和碳酸乙烯亚乙酯中的一种或两种以上。
根据本发明的第三方面,本发明提供一种锂离子电池用凝胶电解液,该电解液由本发明所述的组合物与热引发剂混合后进行聚合得到。
优选地,组合物与热引发剂的重量比为90-100:0.5。
优选地,热引发剂选自过氧化合物和偶氮化合物中的一种或两种。
优选地,聚合的条件包括温度为60-100℃;时间为0.5-3h。
优选地,电解液中,锂盐浓度为0.5-2mol/L。
根据本发明的第四方面,本发明提供一种锂离子二次电池,该电池包括极芯和电解液,所述极芯和电解液密封在电池壳体内,所述极芯包括正极片、负极片及隔膜,所述电解液为本发明所述的电解液。
优选地,所述正极活性材料选自LiFePO 4、LiCoO 2、LiMn 2O 4、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi xMn 2-xO 4、LiNi 0.5Mn 1.5O 4、LiNi xCo yMn 1-x-y和LiNi xCo yAl 1-x-y、LiNi xCo yMn 1-x-yO 2、LiNi xCo yAl 1-x-yO 2中的至少一种;
在LiNi xMn 2-xO 4中,x大于0且小于2;
在LiNi xCo yMn 1-x-yO 2中,x大于0且小于1,y大于0且小于1;
在LiNi xCo yAl 1-x-yO 2中,x大于0且小于1,y大于0且小于1。
优选地,所述负极活性材料为天然石墨、人造石墨、中间相碳微球、软碳、硬碳、钛酸锂、硅和硅碳合金中的一种或两种以上。
根据本发明第五方面,本发明提供一种上述所述的锂离子二次电池的制备方法,该制备方法包括:
(1)将电解液锂盐、非水有机溶剂、添加剂无机酸有机酯和/或腈和丙烯酸酯混合后加入热引发剂得到预混电解液;
(2)将正极极片、负极极片和隔膜制成软包电芯,聚合物包装,然后进行真空烘烤,注入所述预混电解液,封口静置,然后在60-100℃恒温静置0.5-3h得到凝胶电解质,冷却、化成,然后对电池进行封口。
优选地,真空烘烤的条件包括:温度为60-120℃,时间为12-36h;
封口静置时间为12-36h。
本发明能够保证锂离子电池的循环性能和倍率性能,在滥用及其他异常情况下导致温度升高(即温度>80℃)后进行聚合,形成凝胶电解液,防止热失控的发生,从而提高电池的安全性。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
为实现上述目的,本发明提供一种丙烯酸酯,其中,所述丙烯酯为下列式I)和式II)所示化合物中的任一种或多种:
Figure PCTCN2021088372-appb-000006
其中,式I)和式II)中R1~R2各自所含碳原子数为0-3,优选地各自为H、CH 3、C 2H 5、C 3H 7、C 4H 9、C 6H 5、CF 3、CF 3CH 2、CF 2HCH 2、CF 3CF 2、CF 2HCF 2CH 2、OCH 2CF 3
Figure PCTCN2021088372-appb-000007
中的任一种。采用前述优选丙烯酸酯能够提高电解液用于锂离子电池的安全性和耐久性。
根据本发明的一种优选实施方式,所述丙烯酸酯选自
Figure PCTCN2021088372-appb-000008
Figure PCTCN2021088372-appb-000009
Figure PCTCN2021088372-appb-000010
中的一种或两种以上。
本发明提供了一种制备丙烯酸酯的方法,其包括下述步骤:
将三氯化磷和醇盐或者将三氯化磷和有机碱发生反应,然后将所得到的产物与CH2=CHCOONa进行反应得到的。
优选的,所述有机碱为甲基锂、三氟甲基锂、甲醇钠、甲醇钠、三氟甲醇钠、苯酚钠等。
本发明提供了一种锂离子电池用凝胶电解液原料组合物,该组合物含有非水有机溶剂、电解液锂盐、添加剂无机酸有机酯和/或腈以及上述所述的丙烯酸酯。
根据本发明的一种优选实施方式,非水有机溶剂、电解液锂盐、添加剂无机酸有机酯和/或腈与丙烯酸酯的重量比(m 非水有机溶剂:m 电解液锂盐:m 添加剂无机酸 有机酯和/或腈:m 丙烯酸酯)为70-90:10-20:0.1-20:0.1-10。采用前述优选比例能够提高电解液用于锂离子电池的安全性和耐久性。
例如,非水有机溶剂、电解液锂盐、添加剂无机酸有机酯和/或腈与丙烯酸酯的重量比(m 非水有机溶剂:m 电解液锂盐:m 添加剂无机酸有机酯和/或腈:m 丙烯酸酯)可以为70:10:0.1:0.1、70:10:0.1:0.5、70:10:0.1:1、70:10:0.1:5、70:10:0.1:10、70:10:0.5:0.1、70:10:1:0.1、70:10:5:0.1、70:10:10:0.1、70:10:15:0.1、70:10:20:0.1、70:10:0.5:0.5、70:10:1:0.5、70:10:5:0.5、70:10:10:0.5、70:10:15:0.5、70:10:20:0.5、70:10:0.5:1、70:10:1:1、70:10:5:1、70:10:10:1、70:10:15:1、70:10:20:1、80:15:10:4 等。
根据本发明的优选实施方式,所述添加剂选自氟代碳酸乙烯酯、硫酸乙烯酯、亚硫酸乙烯酯、硫酸丙烯酯、亚硫酸丙烯酯、1,3-丙磺酸内酯、己二腈、丁二腈、碳酸亚乙烯酯和碳酸乙烯亚乙酯中的一种或多种。
根据本发明的一种优选的实施方式,所述添加剂为DTD(硫酸乙烯酯)LiFSI(双氟磺酰亚胺锂)、PS(硫酸丙烯酯)的混合物,更优选三者的质量比为0.2-2:0.2-5:0.5-2。
例如,三者的质量比(m DTD:m LiFSI:m PS)可以为0.2:0.2:0.5、0.5:0.8:1、1:1:1、2:2:1、1:1:2等。
本发明中,非水有机溶剂的种类的可选范围较宽,所述溶剂的选择应合理搭配,保证电解液的粘度较小,并且有相对高的电导率。常用有机溶剂均可以用于本发明,根据本发明的一种优选实施方式,所述非水有机溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸丙酯、丙酸乙酯和丙酸丁酯中的一种或多种。采用前述优选有机溶剂能够提高电解液用于锂离子电池的安全性和耐久性。
本发明中,所述电解液锂盐的种类的可选范围较宽,常用电解液锂盐均可以用于本发明,根据本发明的优选实施方式,所述电解液锂盐为LiPF 6、LiClO 4、LiBOB、LiBF 4、LiO 2PF 2、LiODFB、LiTFSI、LiFSI和LiC(CF 3SO 3) 3中的一种或多种。
本发明提供一种锂离子电池用凝胶电解液,该电解液由本发明所述的组合物与热引发剂混合后进行聚合得到。
根据本发明的优选实施方式,组合物与热引发剂的重量比为90-100:0.5。采用前述优选比例可以提高电解液用于锂离子电池的安全性和耐久性。
例如,组合物与热引发剂的重量比(m 组合物:m 热引发剂)可以为90:0.5、91:0.5、 92:0.5、93:0.5、94:0.5、95:0.5、96:0.5、97:0.5、98:0.5、99:0.5、100:0.5等。本发明中,热引发剂种类可选范围较宽,根据本发明的优选实施方式,热引发剂选自过氧化合物和偶氮化合物中的一种或两种。采用前述优选比例可以提高电解液用于锂离子电池的安全性和耐久性。
例如,所述过氧化物可以为:过氧化二笨甲酰(BPO)。
所述偶氮化合物可以为:偶氮二异丁腈(AIBN)。
本发明中,聚合的条件可选范围较宽,根据本发明,优选包括温度为60-100℃;时间为0.5-3h。
例如,温度可以为60℃、70℃、80℃、90℃、100℃等,时间可以为0.5h、1h、2h、3h等。
根据本发明的优选实施方式,优选电解液中锂盐浓度为0.5-2mol/L。
例如,锂盐浓度可以为0.5mol/L、1mol/L、1.5mol/L、2mol/L等。
采用本发明的电解液可以用于各种锂离子电池,本发明的电池特别适用于锂离子二次电池。
本发明提供一种锂离子二次电池,该电池包括极芯和电解液,所述极芯和电解液密封在电池壳体内,所述极芯包括正极片、负极片及隔膜,所述电解液为本发明所述的电解液。
本发明中,正极片、负极片、隔膜等均可以采用本领域的常规正极片、负极片和隔膜,本发明对此无特殊要求,在此不进行详细描述。
本发明中,所述正极片优选包括正极集流体以及用于附着在所述正极集流体上的正极活性物质、正极粘结剂和正极导电剂。
优选地,本发明中,所述正极活性物质选自LiFePO 4、LiCoO 2、LiMn 2O 4、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi xMn 2-xO 4、LiNi 0.5Mn 1.5O 4、LiNi xCo yMn 1-x-y和LiNi xCo yAl 1-x-y、LiNi xCo yMn 1-x-yO 2、LiNi xCo yAl 1-x-yO 2中的至少一种。其中,x、y值可以为本领域的常规选择,具体地,
在LiNi xMn 2-xO 4中,x大于0且小于2。
在LiNi xCo yMn 1-x-yO 2中,x大于0且小于1,y大于0且小于1。
在LiNi xCo yAl 1-x-yO 2中,x大于0且小于1,y大于0且小于1。
优选地,以正极干料总重量为基准,所述正极活性物质的含量为90-98重量%。
例如,以正极干料总重量为基准,所述正极活性物质的含量可以为90重量%、91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%等。
本发明中,所述正极粘结剂包括但不限于聚四氟乙烯、聚偏二氟乙烯、丁苯橡胶中的至少一种。
优选地,以正极干料总重量为基准,所述正极粘结剂的含量为0.01-8重量%。
例如,以正极干料总重量为基准,所述正极粘结剂的含量为0.01重量%、0.05重量%、0.1重量%、0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%等。
优选地,本发明中,所述正极导电剂包括但不限于SP、乙炔黑、KS-16、碳纳米管中的至少一种。
优选地,以正极干料总重量为基准,所述正极导电剂的含量为1-8重量%。
例如,以正极干料总重量为基准,所述正极导电剂的含量可以为1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%等。
优选地,本发明中,所述正极的集流体为铝箔。
优选地,本发明中,所述正极片通过将活性物质、导电剂、粘结剂分散在分散剂中制成正极浆料,然后将正极浆料涂覆在集流体上并进行干燥得到正极片,接着将干燥后的正极片经过辊压、分条、冲片后真空高温干燥而得到。
本发明中配制正极浆料采用的分散剂包括但不限于N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、二甲基亚砜、四氢呋喃、水和醇类分散剂中的至少一种。
优选地,在所述正极浆料中,所述正极分散剂的用量以使得正极浆料中活性物质的固含量为40-90重量%,更优选为50-85重量%为准。由此能够使得正极浆料分散更加均匀,具有更好涂覆性能。
所述正极片的干燥条件根据采用的分散剂的种类进行选择,以不影响极片性能的前提下能将正极浆料中的分散剂脱除为准。
根据本发明的优选实施方式,所述正极活性材料为LiFePO 4、LiCoO 2、LiNi 0.5Co 0.2Mn 0.3O 2、LiMn 2O 4、LiNi 0.5Mn 1.5O 4、LiNi xCo yMn 1-x-y和LiNi xCo yAl 1-x-y中的一种或多种。
本发明中,所述负极片优选包括负极集流体以及用于附着在所述负极集流体上的负极活性物质、负极粘结剂、负极导电剂和增稠剂。
优选地,本发明中,所述负极活性物质选自石墨(人造石墨和/或天然石墨)、中间相碳微球、软碳、硬碳、钛酸锂、硅、硅碳合金中的至少一种。
根据本发明的优选实施方式,所述负极活性材料为天然石墨、人造石墨、软碳、硬碳、钛酸锂、硅和硅碳合金中的一种或多种。
根据本发明的优选实施方式,以负极干料总重量为基准,所述负极活性物质的含量为90-98重量%。
例如,以负极干料总重量为基准,所述负极活性物质的含量可以为90重量%、91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%等。
本发明中,所述负极粘结剂包括但不限于丁苯橡胶、聚乙烯醇、聚四氟乙烯中的至少一种。
根据本发明的优选实施方式,以负极干料总重量为基准,所述负极粘结 剂的含量为0.1-8重量%。
例如,以负极干料总重量为基准,所述负极粘结剂的含量可以为0.1重量%、0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%等。
本发明中,所述负极导电剂包括但不限于Super P、乙炔黑、KS-16、碳纳米管中的至少一种。
优选地,以负极干料总重量为基准,所述负极导电剂的含量为0.1-8重量%。
例如,以负极干料总重量为基准,所述负极导电剂的含量可以为0.1重量%、0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%等。
优选地,本发明中,所述增稠剂为羧甲基纤维素钠,以负极干料总重量为基准,所述增稠剂的含量为0.1-5重量%。
例如,以负极干料总重量为基准,所述负极导电剂的含量可以为0.1重量%、0.5重量%、1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%等。
本发明中,所述负极的集流体优选为铜箔。
优选地,本发明中,所述负极是通过将活性物质、导电剂、粘结剂、增稠剂分散在分散剂中制成负极浆料,然后将负极浆料涂覆在集流体上并进行干燥得到负极片,接着将干燥后的负极片经过辊压、分条、冲片后真空高温干燥而得到。
本发明中配制负极浆料采用的分散剂包括但不限于N-甲基吡咯烷酮、N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、二甲基亚砜、四氢呋喃、水和醇类分散剂中的至少一种。
优选地,在所述负极浆料中,所述负极分散剂的用量以使得负极浆料中 活性物质的固含量为40-90重量%,更优选为50-85重量%为准。由此,使得负极浆料分散更加均匀,具有更好的涂覆性能。
所述负极片的干燥条件根据采用的分散剂的种类进行选择,以不影响极片性能的前提下能将负极浆料中的分散剂脱除为准。
本发明中,所述隔膜设置于正极和负极之间,所述隔膜的材质包括但不限于聚丙烯、聚乙烯或聚乙烯、聚丙烯复合隔膜中的至少一种。
采用本发明的电解液用于锂离子二次电池均可以提高锂离子电池的耐久性和安全性,对锂离子二次电池的制备方法无特殊要求。例如包括:
S1将上述锂离子电池正极片、负极片和隔膜以叠片方式制成电芯;
S2将S1制备的电芯进行真空烘烤后,置于电池壳体中,注入本发明的电解液,然后将电池壳体密封。
根据本发明的一种优选的实施方式,本发明提供一种上述所述的锂离子二次电池的制备方法,该制备方法包括:
(1)将电解液锂盐、非水有机溶剂、添加剂无机酸有机酯和/或腈和丙烯酸酯混合后加入热引发剂得到预混电解液;
(2)将正极极片、负极极片和隔膜制成软包电芯,聚合物包装,然后进行真空烘烤,注入所述预混电解液,封口静置,然后在60-100℃恒温静置0.5-3h得到凝胶电解质,冷却、化成,然后对电池进行封口。
例如,在60℃、70℃、80℃、90℃、100℃等恒温静置,静置时间可以为0.5h、1h、2h、3h等。
根据本发明的一种优选的实施方式,真空烘烤的条件包括:温度为60-120℃,时间为12-36h。采用前述烘烤条件可以进一步提高电池的耐久性和安全性。
例如,温度可以为60℃、70℃、80℃、90℃、100℃、110℃、120℃等;时间为12h、15h、18h、21h、24h、27h、30h、33h、36h等。
根据本发明的一种优选的实施方式,封口静置时间为12-36h。
例如,封口静置时间可以为12h、15h、18h、21h、24h、27h、30h、33h、36h等。
下面结合具体实施方式、具体实施例、对比例及测试结果对本发明进一步阐述。
实施例1
(1)锂离子电池正极片的制备
将正极活性材料镍钴锰锂(LiNi 0.5Co 0.2Mn 0.3O 2)、导电剂super-P、粘结剂PVDF按质量比96:2:2溶于溶剂N-甲基吡咯烷酮中混合均匀制程正极浆料,之后将正极浆料均匀涂布在集流体铝箔上,涂布量0.040g/cm 2,随后在120℃下烘干后进行冷压、裁片、分条、冲片,之后在85℃真空条件下干燥4h,焊接极耳,制成满足要求的锂离子电池的正极片。
(2)锂离子电池负极片的制备
将负极活性材料人造石墨、导电剂super-P,增稠剂CMC、粘结剂SBR按质量比95.5:1:1:2.5溶于去离子水中混合均匀制成负极浆料,之后将负极浆料均匀涂布在集流体铜箔上,涂布量为0.020g/cm 2,随后在85℃下烘干后进行冷压、裁片、分条、冲片,之后在110℃真空条件下干燥4h,焊接极耳,制成满足要求的锂离子电池的负极片。
(3)锂离子电池电解液的制备
锂离子电池的电解液以15重量%的LiPF 6为锂盐,以碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)的混合物为非水溶剂,其中EC含量为21.15重量%,EMC含量为49.35重量%,加入3重量%
Figure PCTCN2021088372-appb-000011
1.5重量%DTD、1.5重量%LiFSI、1.5重量%PS搅拌均匀后加入7重量%偶氮二异丁氰热引发 剂进行聚合,在温度为60℃下聚合2h得到的锂离子电池电解液(游离酸<20ppm,水分<15ppm)。
(4)锂离子电池的制备
将上述制备的正极极片、负极极片和隔膜以叠片方式制成软包电芯,采用聚合物包装,在85℃下真空烘烤24h,注入上述制备的电解液,封口静置24h。将该电池置于80℃的恒温箱中放置1小时,使丙烯酸酯化合物聚合,生成交联的聚合物形成凝胶电解质,冷却至室温,进行化成,经化成等工艺后制成容量为2000mAh的锂离子电池。
其中,
Figure PCTCN2021088372-appb-000012
的制备方法如下:
Figure PCTCN2021088372-appb-000013
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含4.4g甲基锂的二氯甲烷溶液,搅拌反应1h后,继续加入CH 2=CHCOONa固体9.4g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物6.2g,收率为46.6%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.47(2H),6.21(1H),0.95(6H)
按以下步骤对制备的锂离子二次电池进行首次充电化成:用0.1C的恒定电流充电至3.6V,0.2C恒定电流充电至3.95V,二次真空封口,然后以0.2C恒定电流充电至4.25V,常温搁置24h后,以0.2C恒定电流放电至3.0V,得到一种4.25V的LiNi 0.5Co 0.2Mn 0.3O 2/人造石墨锂离子二次电池。
实施例2-14
实施例2~14用于说明本发明公开的锂离子电池电解液、锂离子电池及其制备方法,包括实施例1中大部分的操作步骤,除下表1参数外,其他参数与实施例1一致。
其中,实施例2中的
Figure PCTCN2021088372-appb-000014
制备方法如下:
Figure PCTCN2021088372-appb-000015
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含15.2g三氟甲基锂的二氯甲烷溶液,搅拌反应1h后,继续加入CH 2=CHCOONa固体9.4g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物10.8g,收率为44.1%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.54(2H),6.32(1H)
实施例3中的
Figure PCTCN2021088372-appb-000016
制备方法如下:
Figure PCTCN2021088372-appb-000017
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含10.8g甲醇钠的二氯甲烷溶液,搅拌反应1h后,继续加入CH 2=CHCOONa固体9.4g,充分搅拌反应2h 后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物9.4g,收率为60.3%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.41(2H),6.18(1H),3.34(6H)
实施例4中的
Figure PCTCN2021088372-appb-000018
制备方法如下:
Figure PCTCN2021088372-appb-000019
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含21.4g三氟甲醇钠的二氯甲烷溶液,搅拌反应1h后,继续加入CH 2=CHCOONa固体9.4g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物13.6g,收率为48.9%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.44(2H),6.27(1H)
实施例5中的
Figure PCTCN2021088372-appb-000020
制备方法如下:
Figure PCTCN2021088372-appb-000021
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含15.2g三氟甲基锂的二氯甲烷溶液,搅拌反应1h后,继续加入甲基丙烯酸钠固体10.8g,充分搅拌反应 2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物11.3g,收率为43.5%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.56(2H),2.03(3H)
实施例6中的
Figure PCTCN2021088372-appb-000022
制备方法如下:
Figure PCTCN2021088372-appb-000023
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含4.4g甲基锂的二氯甲烷溶液,搅拌反应1h后,继续加入甲基丙烯酸钠固体10.8g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物7.1g,收率为46.7%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.17(2H),2.02(3H),0.95(6H)
实施例7中的
Figure PCTCN2021088372-appb-000024
制备方法如下:
Figure PCTCN2021088372-appb-000025
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含10.8g甲醇钠的二氯甲烷溶液,搅拌反应1h后,继续加入甲基丙烯酸钠固体10.8g,充分搅拌反应2h 后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物8.9g,收率为52.7%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.41(2H),3.56(6H),1.98(3H)
实施例8中的
Figure PCTCN2021088372-appb-000026
制备方法如下:
Figure PCTCN2021088372-appb-000027
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含21.4g三氟甲醇钠的二氯甲烷溶液,搅拌反应1h后,继续加入甲基丙烯酸钠固体10.8g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物14.1g,收率为50.2%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.24(2H),2.03(3H)
实施例9中的
Figure PCTCN2021088372-appb-000028
制备方法如下:
Figure PCTCN2021088372-appb-000029
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含2.2g甲基锂的二氯甲烷溶液,搅拌反应1h后,继续加入丙烯酸钠固体18.8g,充分搅拌反应2h后,得到 黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物7.6g,收率为46.6%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.38(4H),6.10(2H),1.09(3H)
实施例10中的
Figure PCTCN2021088372-appb-000030
制备方法如下:
Figure PCTCN2021088372-appb-000031
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含7.8g三氟甲基锂的二氯甲烷溶液,搅拌反应1h后,继续加入丙烯酸钠固体18.8g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物11.2g,收率为51.6%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.46(4H),6.13(2H)
实施例11中的
Figure PCTCN2021088372-appb-000032
制备方法如下:
Figure PCTCN2021088372-appb-000033
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含5.4g甲醇钠的二氯甲烷溶液,搅拌反应1h后,继续加入丙烯酸钠固体18.8g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色 液体产物7.4g,收率为41.3%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.14(4H),3.46(3H),2.01(6H)
实施例12中的
Figure PCTCN2021088372-appb-000034
制备方法如下:
Figure PCTCN2021088372-appb-000035
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含10.7g三氟甲醇钠的二氯甲烷溶液,搅拌反应1h后,继续加入丙烯酸钠固体18.8g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物11.5g,收率为49.6%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:(CDCl 3,400MHz)δ=6.24(4H),2.07(6H)
实施例13中的
Figure PCTCN2021088372-appb-000036
制备方法如下:
Figure PCTCN2021088372-appb-000037
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含23.2g苯酚钠的二氯甲烷溶 液,搅拌反应1h后,继续加入丙烯酸钠固体9.4g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物13.8g,收率为47.9%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:
(CDCl 3,400MHz)δ=7.24(4H),6.97(2H),6.82(4H),6.21(2H),1.97(3H)
实施例14中的
Figure PCTCN2021088372-appb-000038
制备方法如下:
Figure PCTCN2021088372-appb-000039
在装有回流冷凝管的三口烧瓶中加入100ml二氯甲烷,13.8g三氯化磷固体,常温下搅拌,通过恒压加料漏斗中加入含11.6g苯酚钠的二氯甲烷溶液,搅拌反应1h后,继续加入丙烯酸钠固体18.8g,充分搅拌反应2h后,得到黄色混合溶液。将黄色混合溶液过滤后得到黄色液体,减压蒸馏,得到黄色液体产物12.1g,收率为45.5%。
对所得到的化合物进行核磁分析,数据如下:
1H-NMR:
(CDCl 3,400MHz)δ=7.24(2H),6.97(1H),6.83(2H),6.23(4H),1.99(6H)
表1
Figure PCTCN2021088372-appb-000040
Figure PCTCN2021088372-appb-000041
容量测试
室温下,0.5C恒流充电至4.2V,恒压充电,至充电终止电流降至0.05C时停止充电,搁置60min;以0.5C电流放电至3.0V,搁置60min,得到放电容量,其结果如表2所示。
内阻测试
在室温环境中,对电芯充电至3.6V,之后用电化学工作站测试电芯的交流阻抗,扫描频率为1000Hz时,记录内阻测试结果,其结果如表2所示。
针刺实验
室温下,0.5C恒流充电至4.2V,转恒压充电,至充电终止电路降至0.05C时停止,搁置60min。用Φ5mm~Φ8mm的耐高温钢针(针尖的圆锥角度为45°~60°,针的表面光洁、无锈蚀、氧化层及油污),以(25±5)mm/s的速度,从垂直于电芯极板的方向贯穿,贯穿位置宜靠近所刺面的几何中心,钢针留在电芯中,其结果如表2所示。
挤压测试(不爆炸,不起火)
室温下,0.5C恒流充电至4.2V,转恒压充电,至充电终止电路降至0.05C时停止,搁置60min。按下述条件进行试验
挤压方向:垂直于电芯极板方向施压;
挤压板形式:半径75mm半圆柱体,半圆柱体的长度大于被挤压电芯的尺寸;
挤压速度:51mm/s;
挤压程度:电压达到0V或变形量达到30%或挤压力达到100KN后停止,观察60min,其结果如表2所示。
表2为实施例和对比例的电性能和安全性能测试结果。
表2
Figure PCTCN2021088372-appb-000042
Figure PCTCN2021088372-appb-000043
从表2可以看出,加入丙烯酸酯的锂离子电池电解液锂离子所制作的电芯,相对不加丙烯酸酯锂离子液体电解液所制作的电芯,在初始放电容量方面基本不降低,并且高温循环性能相差无几,同时能够明显提升锂离子电芯的穿钉测试和挤压测试通过率。因此,本发明的锂离子电解液既具有优异的电性能及循环性能,同时在穿钉测试、挤压等机械性能方面具有明显的优势,解决了目前液体电解液面临的热失控重大难题。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (17)

  1. 一种丙烯酸酯,其中,所述丙烯酯为下列式I)和式II)所示化合物中的任一种或多种:
    Figure PCTCN2021088372-appb-100001
    其中,式I)和式II)中R 1~R 2各自所含碳原子数为0-3,优选地各自为H、CH 3、C 2H 5、C 3H 7、C 4H 9、C 6H 5、CF 3、CF 3CH 2、CF 2HCH 2、CF 3CF 2、CF 2HCF 2CH 2、OCH 2CF 3
    Figure PCTCN2021088372-appb-100002
    中的任一种。
  2. 根据权利要求1所述的丙烯酸酯,其中,所述丙烯酸酯选自
    Figure PCTCN2021088372-appb-100003
    Figure PCTCN2021088372-appb-100004
    中的一种或两种以上。
  3. 一种锂离子电池用凝胶电解液原料组合物,该组合物含有非水有机溶剂、电解液锂盐、添加剂无机酸有机酯和/或腈以及权利要求1或2所述的丙烯酸酯。
  4. 根据权利要求3所述的组合物,其中,所述添加剂选自氟代碳酸乙烯酯、硫酸乙烯酯、亚硫酸乙烯酯、硫酸丙烯酯、亚硫酸丙烯酯、1,3-丙磺酸内酯、己二腈、丁二腈、碳酸亚乙烯酯和碳酸乙烯亚乙酯中的一种或两种以上;优选所述添加剂为硫酸乙烯酯、双氟磺酰亚胺锂、硫酸丙烯酯的混合物,更优选三者的质量比为0.2-2:0.2-5:0.5-2。
  5. 根据权利要求3或4所述的组合物,其中,
    非水有机溶剂、电解液锂盐、添加剂无机酸有机酯和/或腈与丙烯酸酯的重量比为70-90:10-20:0.1-20:0.1-10。
  6. 根据权利要求3或4所述的组合物,其中,所述非水有机溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸丙酯、丙酸乙酯和丙酸丁酯中的一种或两种以上。
  7. 根据权利要求3或4所述的组合物,其中,所述电解液锂盐为LiPF 6、LiClO 4、LiBOB、LiBF 4、LiO 2PF 2、LiODFB、LiTFSI、LiFSI和LiC(CF 3SO 3) 3中的一种或两种以上。
  8. 一种锂离子二次电池用凝胶电解液,该电解液由权利要求3-7中任意一项所述的组合物与热引发剂混合后进行聚合得到。
  9. 根据权利要求8所述的电解液,其中,组合物与热引发剂的重量比为90-100:0.5。
  10. 根据权利要求8所述的电解液,其中,热引发剂选自过氧化合物和偶氮化合物中的一种或两种。
  11. 根据权利要求8所述的电解液,其中,聚合的条件包括温度为60-100℃;时间为0.5-3h。
  12. 根据权利要求8所述的电解液,其中,电解液中,锂盐浓度为0.5-2mol/L。
  13. 一种锂离子二次电池,该电池包括极芯和电解液,所述极芯和电解液密封在电池壳体内,所述极芯包括正极片、负极片及隔膜,所述电解液为权利要求8-12中任意一项所述的电解液。
  14. 根据权利要求13所述的电池,其中,所述正极活性材料选自LiFePO 4、LiCoO 2、LiMn 2O 4、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi xMn 2-xO 4、LiNi 0.5Mn 1.5O 4、LiNi xCo yMn 1-x-y和LiNi xCo yAl 1-x-y、LiNi xCo yMn 1-x-yO 2、LiNi xCo yAl 1-x-yO 2中的至少一种;
    在LiNi xMn 2-xO 4中,x大于0且小于2;
    在LiNi xCo yMn 1-x-yO 2中,x大于0且小于1,y大于0且小于1;
    在LiNi xCo yAl 1-x-yO 2中,x大于0且小于1,y大于0且小于1。
  15. 根据权利要求13所述的电池,其中,所述负极活性材料为天然石墨、人造石墨、中间相碳微球、软碳、硬碳、钛酸锂、硅和硅碳合金中的一 种或两种以上。
  16. 一种权利要求13-15中任一项所述锂离子二次电池的制备方法,其特征在于,该制备方法包括:
    (1)将电解液锂盐、非水有机溶剂、添加剂无机酸有机酯和/或腈和丙烯酸酯混合后加入热引发剂得到预混电解液;
    (2)将正极极片、负极极片和隔膜制成软包电芯,聚合物包装,然后进行真空烘烤,注入所述预混电解液,封口静置,然后在60-100℃恒温静置0.5-3h得到凝胶电解质,冷却、化成,然后对电池进行封口。
  17. 根据权利要求16所述的制备方法,其中,
    真空烘烤的条件包括:温度为60-120℃,时间为12-36h;
    封口静置时间为12-36h。
PCT/CN2021/088372 2020-04-28 2021-04-20 丙烯酸酯、电解液原料组合物、电解液及锂离子二次电池及其制备方法 WO2021218705A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010349730.8A CN111430780B (zh) 2020-04-28 2020-04-28 电解液原料组合物,电解液及锂离子二次电池及其制备方法
CN202010349730.8 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021218705A1 true WO2021218705A1 (zh) 2021-11-04

Family

ID=71554730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088372 WO2021218705A1 (zh) 2020-04-28 2021-04-20 丙烯酸酯、电解液原料组合物、电解液及锂离子二次电池及其制备方法

Country Status (2)

Country Link
CN (1) CN111430780B (zh)
WO (1) WO2021218705A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221033A (zh) * 2021-11-19 2022-03-22 湖南钠方新能源科技有限责任公司 一种钠离子电池用电解液及含该电解液的钠离子电池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111430779B (zh) * 2020-04-28 2022-11-01 孚能科技(赣州)股份有限公司 电解液原料组合物,电解液及锂离子二次电池及其制备方法
CN111430780B (zh) * 2020-04-28 2023-03-28 孚能科技(赣州)股份有限公司 电解液原料组合物,电解液及锂离子二次电池及其制备方法
CN112133961B (zh) * 2020-09-18 2022-04-26 蜂巢能源科技有限公司 一种凝胶电解质前驱体及其应用
CN115466284A (zh) * 2021-06-10 2022-12-13 恒大新能源技术(深圳)有限公司 含支链卤代亚磷酸酯及其制备方法和应用
CN114300737A (zh) * 2021-12-29 2022-04-08 惠州亿纬锂能股份有限公司 一种原位固化电池的制备方法和锂离子电池
CN115395095B (zh) * 2022-08-25 2024-07-02 浙江吉利控股集团有限公司 防止金属刺穿引发电池热失控的复合电解液、电池和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295075A (zh) * 1995-01-30 2001-05-16 北美埃尔夫爱托化学股份有限公司 金属有机化合物和由它制成的聚合物
JP2011165553A (ja) * 2010-02-12 2011-08-25 Nec Energy Devices Ltd ポリマー電解質及びそれを用いた二次電池
CN103772607A (zh) * 2014-01-26 2014-05-07 郑州大学 含磷交联凝胶聚合物电解质及其现场热聚合制备方法、应用
CN104919638A (zh) * 2013-10-31 2015-09-16 株式会社Lg化学 凝胶聚合物电解质和包含其的电化学元件
CN111430779A (zh) * 2020-04-28 2020-07-17 孚能科技(赣州)股份有限公司 电解液原料组合物,电解液及锂离子二次电池及其制备方法
CN111430780A (zh) * 2020-04-28 2020-07-17 孚能科技(赣州)股份有限公司 电解液原料组合物,电解液及锂离子二次电池及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE623926A (zh) * 1961-10-24 1900-01-01
JP3900507B2 (ja) * 1998-11-30 2007-04-04 ソニー株式会社 非水電解質電池
KR100572705B1 (ko) * 2003-05-19 2006-04-24 주식회사 코캄 리튬 2차 전지의 겔화 전해질 조성물 및 이를 이용하여제조된 리튬 2차 전지와 그 제조방법
CN102324467A (zh) * 2011-09-13 2012-01-18 山东同大新能源有限公司 金属外壳胶体锂离子电池的原位聚合制备方法
KR101368870B1 (ko) * 2012-05-07 2014-03-06 한국화학연구원 다분지형 아크릴계 가교제 및 포스페이트계 가소제를 함유하는 semi―IPN 타입의 고체 고분자 전해질 조성물
KR101641763B1 (ko) * 2013-01-28 2016-07-21 주식회사 엘지화학 고전압 리튬 이차 전지
CN104638296A (zh) * 2015-01-23 2015-05-20 清华大学深圳研究生院 一种制备固态聚合物电解质锂离子电池的方法
KR101990617B1 (ko) * 2016-09-30 2019-06-18 주식회사 엘지화학 리튬 이차전지
CN107819150B (zh) * 2017-08-07 2020-02-14 天津金牛电源材料有限责任公司 一种锂离子电池凝胶电解液及其制备方法
PL3660971T3 (pl) * 2017-11-30 2022-10-31 Lg Energy Solution, Ltd. Kompozycja żelowego elektrolitu polimerowego, wytworzony z niej żelowy elektrolit polimerowy i zawierający go akumulator litowy
CN109935887B (zh) * 2017-12-18 2021-06-25 孚能科技(赣州)股份有限公司 电解液和锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295075A (zh) * 1995-01-30 2001-05-16 北美埃尔夫爱托化学股份有限公司 金属有机化合物和由它制成的聚合物
JP2011165553A (ja) * 2010-02-12 2011-08-25 Nec Energy Devices Ltd ポリマー電解質及びそれを用いた二次電池
CN104919638A (zh) * 2013-10-31 2015-09-16 株式会社Lg化学 凝胶聚合物电解质和包含其的电化学元件
CN103772607A (zh) * 2014-01-26 2014-05-07 郑州大学 含磷交联凝胶聚合物电解质及其现场热聚合制备方法、应用
CN111430779A (zh) * 2020-04-28 2020-07-17 孚能科技(赣州)股份有限公司 电解液原料组合物,电解液及锂离子二次电池及其制备方法
CN111430780A (zh) * 2020-04-28 2020-07-17 孚能科技(赣州)股份有限公司 电解液原料组合物,电解液及锂离子二次电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221033A (zh) * 2021-11-19 2022-03-22 湖南钠方新能源科技有限责任公司 一种钠离子电池用电解液及含该电解液的钠离子电池

Also Published As

Publication number Publication date
CN111430780A (zh) 2020-07-17
CN111430780B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2021218705A1 (zh) 丙烯酸酯、电解液原料组合物、电解液及锂离子二次电池及其制备方法
CN110212235A (zh) 一种降低电池阻抗的锂二次电池电解液及其锂二次电池
US7968220B2 (en) Non-aqueous electrolytic solution and lithium secondary battery
CN112768772B (zh) 一种含四氰基的腈醚类电解液添加剂和电解液及锂离子电池
CN111600074B (zh) 一种高电压锂离子电池电解液及高电压锂离子电池
CN111430793B (zh) 电解液及使用其的电化学装置和电子装置
CN102110817B (zh) 非水电解质二次电池的电极用组合物、电极和二次电池
JP4110131B2 (ja) 有機電解液及びそれを用いたリチウム電池
CN114342143B (zh) 一种硅氰基磺酸内酯化合物、锂离子电池电解液和锂离子二次电池
WO2021218704A1 (zh) 丙烯酸酯、含丙烯酸酯电解液原料组合物、电解液及其应用
KR102267784B1 (ko) 이차전지용 바인더, 이차전지용 바인더 수지 조성물, 이차전지용 전극, 및 이차전지
US20240030444A1 (en) Binder, electrochemical apparatus using said binder, and electronic device
KR20200020169A (ko) 리튬 이차 전지용 전해질
KR20200020234A (ko) 리튬 이차 전지용 전해질
JP5493516B2 (ja) 電極及びそれを有する電池
CN106207049B (zh) 一种陶瓷隔膜及在锂离子电池中的应用
JP2017037748A (ja) リチウムイオン二次電池用負極及びそれを用いたリチウムイオン二次電池
CN109309249A (zh) 电解液及电化学储能装置
EP3951936A1 (en) Production method for lithium-ion battery member
CN111740162A (zh) 电解液和包括电解液的电化学装置及电子装置
CN113871708A (zh) 一种固态电解质及其应用
CN113871619A (zh) 一种正极片及其应用
CN102856588A (zh) 锂离子电池用非水电解液与锂离子电池
CN109309254B (zh) 电解液及电化学储能装置
KR20110119054A (ko) 리튬 폴리머 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21797537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21797537

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21797537

Country of ref document: EP

Kind code of ref document: A1