WO2021218176A1 - 一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法 - Google Patents

一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法 Download PDF

Info

Publication number
WO2021218176A1
WO2021218176A1 PCT/CN2020/135911 CN2020135911W WO2021218176A1 WO 2021218176 A1 WO2021218176 A1 WO 2021218176A1 CN 2020135911 W CN2020135911 W CN 2020135911W WO 2021218176 A1 WO2021218176 A1 WO 2021218176A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
egg
noble metal
catalyst
propane dehydrogenation
Prior art date
Application number
PCT/CN2020/135911
Other languages
English (en)
French (fr)
Inventor
田俊凯
高军
杨卫东
范昌海
周轶
单寅昊
陆朝阳
亓虎
寇亮
Original Assignee
浙江卫星能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江卫星能源有限公司 filed Critical 浙江卫星能源有限公司
Publication of WO2021218176A1 publication Critical patent/WO2021218176A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8966Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/398Egg yolk like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the field of catalyst preparation, and specifically relates to an egg yolk-egg shell type SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst and a preparation method thereof.
  • Propylene is an important national strategic substance. With the increasing householdization of non-toxic polypropylene PP, the propylene market has been growing rapidly in the past five years, maintaining a growth rate of 8.7%, and the domestic gap has reached about 1,200 tons. As the high-consumption steam cracking propylene process is gradually eliminated by the market and the government, the green and environmentally friendly propane dehydrogenation technology is recognized and pursued by the market. The domestic propane investment boom will continue in the future. At present, there are mainly UOP's precious metal platinum catalysts and Lums' chromium catalysts in China. Since the precious metal platinum catalyst can be recycled repeatedly, it currently occupies the mainstream in the domestic market. At present, the domestic UOP process propane dehydrogenation unit has problems such as low catalyst strength, low single-pass yield, easy blockage of the internal and external networks of the reactor, and short operation period.
  • chromium catalyst and the preparation method disclosed in Chinese patent CN110560038A from the perspective of environmental protection, chromium is toxic, and subsequent treatment involves many environmental issues, etc., which is not mainstream for the development of propane dehydrogenation. It will be affected by environmental issues. Certain restrictions.
  • a propane dehydrogenation catalyst disclosed in Chinese Patent CN101411978A uses ⁇ -Al 2 O 3 as a carrier, has low carrier strength, a long preparation process, and contains nitrogen in the raw materials, which is not convenient for subsequent separation and is difficult to industrially produce.
  • the propane dehydrogenation catalyst of Chinese patent CN109746027A mainly relates to the preparation of a catalyst carrier. The specific surface area and porosity are better than UOP carrier, and the catalyst activity is better than UOP, but the strength of the catalyst carrier is not improved.
  • the strength of the catalyst carrier is relatively low, and it is easy to produce fine powder and crushed particles, which can block the inner and outer nets.
  • the dehydrogenation of propane to propylene is an endothermic reaction, and its reaction is limited by thermodynamic equilibrium. In order to obtain a higher conversion rate, negative pressure and high temperature are required. However, high temperature can easily cause the catalyst to deactivate due to carbon deposits, leading to catalyst selection Sexual decrease. Therefore, the development of propane dehydrogenation catalysts with high support strength and high catalyst selectivity is the current research focus and difficulty in the propane dehydrogenation industry.
  • the purpose of the present invention is to provide an egg yolk-egg shell type SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst and a preparation method thereof.
  • the obtained catalyst has a larger specific surface area, higher catalytic activity and selectivity, and a reduced product.
  • the carbon rate improves the single-pass yield; the high catalyst strength prevents the catalyst from cracking due to the formation of core coke, and effectively solves the problems such as the blockage of the inner and outer nets of the reactor due to the catalyst cracking, and the short operation period of the device.
  • An egg yolk-egg shell type SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst which is characterized in that solid SiO 2 -Al 2 O 3 is used as the egg yolk, and porous SiO 2 -Al 2 O 3 hollow spheres are used as the egg
  • the shell, the egg yolk is loaded with a hydrogenation catalytic active component, and the egg shell is loaded with a metal dehydrogenation catalytic active component.
  • the SiO 2 content in the solid SiO 2 -Al 2 O 3 microspheres is 5.5% to 18.8% by weight, preferably 12.5 to 15.5% by weight; the SiO 2 content in the porous SiO 2 -Al 2 O 3 hollow spheres It is 1.5% to 7.5 wt%, preferably 2.5 to 3.5 wt%.
  • the diameter ratio of the solid SiO 2 -Al 2 O 3 microspheres and the porous SiO 2 -Al 2 O 3 hollow spheres is 1:3-6.
  • the loading amount of the dehydrogenation catalytic active component is 0.01 to 0.3 wt%, preferably 0.05 to 0.1 wt%.
  • the loading amount of the hydrogenation catalytic active component is 0.26 to 1 wt%.
  • the dehydrogenation catalytic active component is one or more of Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, preferably a mixture of Ni-Pd.
  • the hydrogenation catalytic active component is one or more of Cr, Ni, Zn, Fe, Pt, Sn, Ca, Cu, Al, preferably a mixture of Pt-Sn-Zn.
  • the method for preparing the egg yolk-egg shell type SiO 2 -Al 2 O 3 noble metal catalyst includes the following steps:
  • the solid SiO 2 -Al 2 O 3 microspheres prepared in step 1) are immersed in a salt solution containing hydrogenation catalytically active components for 1 to 4 hours, and then dried by a vacuum rotary drying method to obtain a hydrogenation catalytically active component loaded Solid SiO 2 -Al 2 O 3 microspheres;
  • the porous SiO 2 -Al 2 O 3 suspension slurry was attached to the surface of the solid SiO 2 -Al 2 O 3 microspheres containing the hydrogenation catalytic active component prepared in step 2) by the rolling ball method, and then placed
  • the ball sizing machine performs shaping and screening, and then performs rotary atomization and drying, and roasts to obtain a catalyst carrier with solid SiO 2 -Al 2 O 3 microspheres as egg yolks and porous SiO 2 -Al 2 O 3 hollow spheres as egg shells;
  • the baking conditions are: 300 ⁇ 500°C constant temperature for 1 ⁇ 10h, 500 ⁇ 800°C constant temperature for 1 ⁇ 10h, and finally 1000°C constant temperature for 1 ⁇ 2h, and the heating rate is 5 ⁇ 50°C/h;
  • the catalyst carrier obtained in step 3) with solid SiO 2 -Al 2 O 3 microspheres as egg yolks and porous SiO 2 -Al 2 O 3 hollow spheres as egg shells contains dehydrogenation catalytically active components at a temperature of 10 to 50°C.
  • Soak in a separate solution for 3-8h evaporate excess water in a rotary evaporator to obtain an egg yolk-egg shell type SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst wet body, and then dry it at 120°C for 2-6 hours, and then Calcined to obtain an egg yolk-egg shell type SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst;
  • the calcination conditions are: 260 ⁇ 280°C for 10 ⁇ 12h, 400 ⁇ 430°C for 8 ⁇ 10h, 530 ⁇ 550°C for 8 ⁇ 10h, calcination at 650 ⁇ 700°C for 2 ⁇ 4h, heating rate 15 ⁇ 20°C/h;
  • step 4 Transfer the egg yolk-egg shell type SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst in step 4) to a reduction vessel, and reduce it in a hydrogen atmosphere at a temperature of 500 to 600°C for 0.5 to 4 hours to obtain an activated yolk-egg Shell structure SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst.
  • the water-soluble aluminum salt is selected from one or more of aluminum chloride, aluminum sulfate, aluminum nitrate, sodium aluminate and potassium aluminate.
  • the lye is potassium hydroxide solution or sodium hydroxide solution, preferably sodium hydroxide solution.
  • the adhesive is one or more of acetic acid, nitric acid, hydrochloric acid, sulfuric acid, acrylic acid, and citric acid.
  • the template is one or two of trimethylpentane and polyoxypropylene-polyoxyethylene.
  • the propane and the catalyst undergo an adsorption and desorption process.
  • a large amount of dehydrogenation or excessive dehydrogenation inside the catalyst carrier can easily form core coke, which will break the catalyst.
  • the catalyst egg yolk and egg shell layer are separately loaded and desorbed Hydrogenation and hydrogenation are effective catalytic active components, which can effectively avoid excessive dehydrogenation of the catalyst core in the process of propane dehydrogenation.
  • the catalyst adopts an egg yolk-egg shell structure
  • solid SiO 2 -Al 2 O 3 microspheres are used as egg yolks
  • porous SiO 2 -Al 2 O 3 hollow spheres are used as egg shells
  • the catalyst is loaded with hydrogenation catalytic active components.
  • the egg yolk is partially wrapped in the eggshell supporting the metal dehydrogenation catalytic active component, which can prevent the catalyst component from penetrating into the core of the carrier, and avoid the catalyst rupture due to the generation of core coke during the catalyst regeneration process; in addition, the egg yolk-egg shell type of the present invention
  • the structure can enhance the physical strength of the catalyst, prevent the catalyst from cracking, causing blockage of the internal and external networks of the device, and effectively extend the operating cycle of the device and the life of the catalyst.
  • the catalyst egg yolk and eggshell carrier are both SiO 2 -Al 2 O 3 nanomaterials, but the content of SiO 2 is different, mainly because the content of SiO 2 in the nanomaterials will make the specific surface area of the material different, and the content of SiO 2 in the nanomaterials is high. , The pore diameter will become larger, and the strength of the sphere made of the corresponding material will decrease.
  • the catalyst carrier has a higher physical strength, and the specific surface area of the catalyst is maximized. Therefore, The SiO 2 content needs special control to prepare a catalyst carrier with higher strength and larger specific surface area.
  • the specific surface area of the catalyst is increased, the average pore diameter is reduced, the strong acid center is weakened, and the dust content is reduced.
  • the ratio of egg yolk to eggshell layer diameter is set at 1:3-6, which can meet the requirements.
  • the rotary atomization drying is used to prevent the drying from being too fast and the water cannot be completely evaporated, which may cause the catalyst to break.
  • the preparation method of the invention has a short preparation cycle, reduces energy consumption in the material preparation process, and each step can be modularized, can realize large-scale production, improve preparation efficiency, and can realize industrialized continuous production.
  • the catalyst of the present invention uses solid SiO 2 -Al 2 O 3 microspheres as egg yolks and porous SiO 2 -Al 2 O 3 hollow spheres as egg shells, and the egg yolk and egg shell layers are respectively loaded with catalytic active components with different functions, which can be effective Avoid the formation of core coke, enhance the physical strength of the catalyst, avoid the blockage of the internal and external networks of the reactor caused by the catalyst breakage, and effectively extend the operating cycle of the device and the life of the catalyst.
  • the eggshell layer of the propane dehydrogenation catalyst of the present invention is porous SiO 2 -Al 2 O 3 hollow spheres, which increases the comparison area of the catalyst.
  • the dehydrogenation catalytic active components are distributed in the pores and pores of the porous SiO 2 -Al 2 O 3 hollow spheres.
  • the unit effective ratio of the dehydrogenation catalytic active component on the surface is increased, which increases the effective contact area of the material and the catalyst, thereby improving the catalyst activity and selectivity, and increasing the single-pass yield.
  • the preparation method of the invention has a simple production process, reduces energy consumption in the material preparation process, and each step of operation can be produced on a large scale, and can realize industrialized continuous operation.
  • FIG. 1 Schematic diagram of the catalyst structure of Example 1 of the present invention.
  • Figure 2 is a cross-sectional view of the catalyst carrier of Example 1 of the present invention.
  • Fig. 3 is a comparison diagram of the surface coking situation of Example 1 of the present invention and the existing DEH-16 catalyst.
  • the SiO 2 -Al 2 O 3 microspheres prepared in step 1 are immersed in a nickel salt solution for 1 hour, and then vacuum spin-dried to obtain Ni@SiO 2 -Al 2 O 3 microspheres;
  • the Ni@SiO 2 -Al 2 O 3 microspheres prepared in step 2) are used to make the porous SiO 2 -Al 2 O 3 suspension slurry adhere to the surface of the Ni@SiO 2 -Al 2 O 3 microspheres by a rolling ball method, and then put into a ball sizing machine for shaping , Screening, and then rotating and atomizing drying, then transferred to a muffle furnace at 400 °C constant temperature 4h, 600 °C constant temperature 4h, and finally 1200 °C constant temperature 1h, the heating rate is 10 °C/h, get solid SiO 2 -Al 2 O 3
  • the microspheres are egg yolks, and the porous SiO 2 -Al 2 O 3 hollow spheres are used as the catalyst carrier for the egg shells;
  • the catalyst carrier obtained in step 3) with solid SiO 2 -Al 2 O 3 microspheres as egg yolks and porous SiO 2 -Al 2 O 3 hollow spheres as egg shells was set at a temperature of 30°C with chloroplatinic acid, tin chloride and After immersing in the zinc chloride mixed solution for 4 hours, evaporate the excess water in a rotary evaporator to obtain an egg yolk-egg shell structure SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst wet body, and then dry at 120 °C for 2 hours, and then Transfer to a muffle furnace for 12h at 260°C, 8h at 400°C, 8h at 550°C, 3h at 650°C, and a heating rate of 15°C/h to obtain egg yolk-egg shell type SiO 2 -Al 2 O 3 noble metal propane removal Hydrogen catalyst
  • FIG. 1 The schematic diagram of the structure of the catalyst prepared by the present invention is shown in FIG. 1, and the cross-sectional view of the catalyst support prepared by the present invention is shown in FIG. 2.
  • the SiO 2 -Al 2 O 3 microspheres prepared in step 1 are immersed in a palladium salt solution for 2 hours, and then subjected to vacuum spin drying to obtain Ni@SiO 2 -Al 2 O 3 microspheres;
  • the SiO 2 -Al 2 O 3 microspheres prepared in step 2 are used to make the porous SiO 2 -Al 2 O 3 suspension slurry adhere to the surface of the SiO 2 -Al 2 O 3 microspheres by a rolling ball method, and then put into a ball sizing machine for shaping and screening. Then carry out rotary atomization and drying, then transfer to a muffle furnace at 400°C for 4h, 650°C for 4h, and finally 1200°C for 1h with a heating rate of 10°C/h to obtain solid SiO 2 -Al 2 O 3 microspheres Is egg yolk, with porous SiO 2 -Al 2 O 3 hollow spheres as the catalyst carrier of the egg shell;
  • the yolk-egg shell structure SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst in step 4) is transferred to a reduction vessel, and reduced at a temperature of 550°C in a 99.99% hydrogen atmosphere for 0.5 h to obtain an activated yolk-egg Shell structure SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst.
  • the SiO 2 -Al 2 O 3 microspheres prepared in step 1 are immersed in a mixed solution of nickel salt and palladium salt for 3 hours, and then spin-dried in vacuum to obtain Ni-Pb@SiO 2 -Al 2 O 3 microspheres;
  • the Ni-Pb@SiO 2 -Al 2 O 3 microspheres prepared in step 2 are used to make the porous SiO 2 -Al 2 O 3 suspension slurry attached to the surface by a rolling ball method, and then put into a ball machine for processing Shaping, screening, then rotating and atomizing drying, then transferred to a muffle furnace at 400°C for 4h, 650°C for 4h, and finally 1200°C for 1h with a heating rate of 10°C/h to obtain solid SiO 2 -Al 2 O 3 microspheres are egg yolks, and porous SiO 2 -Al 2 O 3 hollow spheres are used as the catalyst carrier of the egg shells;
  • the egg yolk-egg shell structure SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst in step 4) is transferred to a reduction vessel, and reduced at a temperature of 555°C in a 99.99% hydrogen atmosphere for 0.5 h to obtain an activated yolk-egg Shell type SiO 2 -Al 2 O 3 noble metal propane dehydrogenation catalyst.
  • the resulting catalyst resulting catalyst SiO 2 -Al 2 O 3 SiO 2 content in the microspheres is 14%, the porous SiO 2 -Al 2 O 3 SiO 2 hollow spheres in an amount of 3.0%, the dehydrogenation component is a catalytically active Ni- Pb, the loading amount is 0.25%, the hydrogenation catalytic active component is Pt-Sn-Zn, wherein the loading amount of Pt is 0.38%, the loading amount of Sn is 0.28%, and the loading amount of Zn is 0.15%.
  • FIG. 3 shows that the coking situation of the catalyst prepared in Example 1 of the present invention is not obvious, which means that the coking rate of the catalyst prepared in Example 1 of the present invention is much lower than that of the DEH-16 catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

一种蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂及其制备方法,该催化剂以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳,蛋黄与蛋壳层分别负载具有不同功能的有效催化活性成分,得到的催化剂具有较大比表面积,增加了催化剂活性及选择性,降低了积碳率,并提高了单程收率;同时,催化剂具有较高强度,避免催化剂由于生成核心焦炭造成的催化剂破裂,有效解决由于催化剂破裂造成的反应器内外网堵塞,装置运行周期短等问题。

Description

[根据细则26改正29.12.2020] 一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法 技术领域
本发明属于催化剂制备领域,具体涉及一种蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂及其制备方法。
背景技术
丙烯是重要的国家战略物质,伴随着无毒化聚丙烯PP越来越多的家庭化,丙烯市场过去5年一直呈现高速的增长,保持8.7%增长速率,国内的缺口已经达到1200吨左右。伴随着高消耗蒸汽裂解制丙烯工艺逐步被市场和政府逐步淘汰,绿色环保的丙烷脱氢技术被市场认可和追逐。国内丙烷投资热未来会继续持续,目前国内主要有UOP的贵金属铂金催化剂和鲁姆斯的铬系催化剂。由于贵金属铂金催化剂可以反复回收利用,因此目前在国内市场占有主流。目前国内的UOP工艺的丙烷脱氢装置,存在催化剂强度低,单程收率低,反应器内外网容易堵塞,运行周期短等问题。
另外铬系催化剂及中国专利CN110560038A公开的制备方法,从环境保护的角度出发,铬系有毒,后续处理涉及众多环保问题等,对丙烷脱氢发展而言不是主流,必将因为环保问题,使用受到一定的限制。中国专利CN101411978A中公开的一种丙烷脱氢催化剂,以γ-Al 2O 3为载体,载体强度低,制备过程较长,且原料中含有氮气,不便于后续分离,很难工业化生产。中国专利CN109746027A的丙烷脱氢催化剂主要涉及到催化剂载体制备,比表面积和孔隙率优于UOP载体,在催化剂活性方面优于UOP,但未对催化剂载体的强度进行改进。
目前已经公开的丙烷脱氢催化剂中,催化剂载体强度都较低,容易生产细粉和碎颗粒,堵塞内外网。且,丙烷脱氢制丙烯是吸热反应,其反应受热力学平衡限制,为了获得较高的转化率,就需要负压、高温,然而高温很容易导致催化剂因为积碳而失活,导致催化剂选择性降低。因此开发 出载体强度高,催化剂选择性高的丙烷脱氢催化剂是目前丙烷脱氢工业的研究重点和难点。
发明内容
本发明目的在于提供一种蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂及其制备方法,得到的催化剂具有较大比表面积、较高催化活性和选择性,并降低了积碳率,提高了单程收率;催化剂强度高,避免催化剂由于生成核心焦炭造成的催化剂破裂,有效解决由于催化剂破裂造成反应器内外网堵塞,装置运行周期短等问题。
本发明的技术方案如下:
一种蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂,其特征在于,以实心SiO 2-Al 2O 3微为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳,所述蛋黄上负载加氢催化活性组分,蛋壳上负载金属脱氢催化活性组分。
优选的,所述实心SiO 2-Al 2O 3微球中SiO 2含量为5.5%~18.8wt%,优选12.5~15.5wt%;所述多孔SiO 2-Al 2O 3空心球中SiO 2含量为1.5%~7.5wt%,优选2.5~3.5wt%。
优选的,所述实心SiO 2-Al 2O 3微球与多孔SiO 2-Al 2O 3空心球直径比为1:3~6。
优选的,所述脱氢催化活性组分负载量为0.01~0.3wt%,优选0.05~0.1wt%。
优选的,所述加氢催化活性组分负载量为0.26~1wt%。
优选的,所述脱氢催化活性组分为Fe,Co,Ni,Ru,Rh,Pd,Os,Ir中的一种或多种,优选Ni-Pd的混合物。
优选的,所述加氢催化活性组分为Cr、Ni、Zn、Fe、Pt、Sn、Ca、Cu、Al中的一种或多种,优选Pt-Sn-Zn的混合物。
所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属催化剂的制备方法,包括如下步骤:
1)制备实心SiO 2-Al 2O 3微球
将水溶性铝盐溶于脱盐水中制成溶液,加热到40~75℃,搅拌下分若干次加入正硅酸乙酯或有机硅化合物,然后加入碱液中和至pH值为7~11,反应完成后,进行抽滤,所得滤饼用脱盐水进行洗涤,直到洗出 的溶液为中性;向获得的滤饼中加入胶黏剂,再搅拌加入氨水乙醇溶液,使最终浆料达到中性,过滤得到SiO 2-Al 2O 3滤饼,之后干燥得到SiO 2-Al 2O 3纳米材料,随后向SiO 2-Al 2O 3纳米材料中加脱盐水进行糊化,做成实心SiO 2-Al 2O 3微球并进行旋转雾化干燥,干燥后的实心SiO 2-Al 2O 3微球作为核心球体备用;
2)负载加氢催化活性组分
将步骤1)制备得到的实心SiO 2-Al 2O 3微球在含有加氢催化活性组分盐溶液中浸渍1~4h,然后利用真空旋转干燥方法干燥,得到负载加氢催化活性组分的实心SiO 2-Al 2O 3微球;
3)制备多孔SiO 2-Al 2O 3空心球
将水溶性铝盐溶于脱盐水中制成溶液,加热到40~75℃,搅拌下分若干次加入正硅酸乙酯或有机硅化合物,然后加入碱液中和至pH值为7~11,反应完成后,进行抽滤,所得滤饼用脱盐水进行洗涤,直到洗出的溶液为中性,烘干、研磨、过筛得到多孔SiO 2-Al 2O 3纳米材料;向多孔SiO 2-Al 2O 3纳米材料中加入模板剂和胶黏剂,制备成多孔SiO 2-Al 2O 3悬浮浆料;
之后用滚球的方法使多孔SiO 2-Al 2O 3悬浮浆料附着在步骤2)中制备得到的含有加氢催化活性组分的实心SiO 2-Al 2O 3微球表面,之后放入整球机进行整形、筛选,然后进行旋转雾化干燥,焙烧得到以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳的催化剂载体;其中焙烧条件为:300~500℃恒温1~10h,500~800℃恒温1~10h,最后1000℃恒温1~2h,升温速率为5~50℃/h;
4)负载脱氢催化活性组分
将步骤3)得到的以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳的催化剂载体在温度为10~50℃含有脱氢催化活性组分溶液中浸渍3~8h,于旋转蒸发仪中蒸发多余水分,得到蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂湿体,然后在120℃条件下干燥2~6h,再煅烧成型得到蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂;其中煅烧条件为:260~280℃焙烧10~12h,400~430℃焙烧8~10h,530~550℃焙烧8~10h,650~700℃焙烧2~4h,升温速率为15~20℃/h;
5)催化剂活化
把步骤4)中的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂转移到还原容器中,在温度500~600℃,氢气气氛中还原0.5~4h,得到活化的蛋黄-蛋壳结构SiO 2-Al 2O 3贵金属丙烷脱氢催化剂。
优选的,所述的水溶性铝盐选自氯化铝,硫酸铝,硝酸铝,铝酸钠和铝酸钾中的一种或一种以上。
优选的,所述的碱液为氢氧化钾溶液或氢氧化钠溶液,优选氢氧化钠溶液。
优选的,所述胶黏剂为乙酸,硝酸,盐酸,硫酸,丙烯酸,柠檬酸中一种或多种。
优选的,所述模板剂为三甲基戊烷、聚氧丙烯-聚氧乙烯中的一种或两种。
在丙烷脱氢过程中丙烷与催化剂发生吸附脱附过程,催化剂载体内部发生大量的脱氢或者过度脱氢很容易形成核心焦炭,而使催化剂破裂,本发明中催化剂蛋黄与蛋壳层分别负载脱氢与加氢有效催化活性成分,可以有效避免丙烷脱氢过程中催化剂核心过度脱氢。
本发明中,催化剂采用蛋黄-蛋壳型结构,以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳,负载加氢催化活性组分的蛋黄部分包裹在负载金属脱氢催化活性组分的蛋壳内,可以避免催化剂成分深入载体核心,避免在催化剂再生过程中由于生成核心焦炭而造成催化剂破裂;另外,本发明的蛋黄-蛋壳型结构可以增强催化剂的物理强度,避免催化剂破裂,造成装置内外网堵塞,有效延长装置的运行周期及催化剂寿命。
催化剂蛋黄与蛋壳载体均为SiO 2-Al 2O 3纳米材料,但是其中SiO 2含量不同,主要是因为纳米材料中SiO 2含量不同会使材料的比表面积不同,纳米材料中SiO 2含量高,微孔孔径会变大,相应的材料做成的球体的强度会降低,通过控制纳米材料中SiO 2含量,使催化剂载体具有较高物理强度的基础上,使催化剂比表面积最大化,因此,SiO 2含量需要特别的控制,才会制备得到具有较高强度和较大比表面积的催化剂载体,催化剂比表面积增加,平均孔径减小,弱化了强性酸中心,降低粉尘含量。
催化剂载体中,若蛋黄与蛋壳层直径比例太小,蛋壳层不足以负载足量的脱氢催化活性组分,催化剂的催化活性不高,比例太大的话,制备得 到的整体催化剂强度不足,本发明将蛋黄与蛋壳层直径比例设定在1:3~6,可以满足要求。
本发明中,脱氢催化活性组分负载在蛋壳层表面及微孔内,微孔结构有利于脱氢催化活性组分均匀分散,单位有效比表面上负载量增加,优化了脱氢催化活性组分的分布,增加了物料与脱氢催化活性组分的有效接触面积,增强催化剂活性及选择性,解决传统催化剂单程收率低的问题。
在催化剂的制备过程中采用旋转雾化干燥,是因为防止干燥过快,水分不能完全蒸发出来而导致催化剂破碎。
本发明制备方法制备周期较短,降低材料制备过程中的能耗,且每一步都可以模块化,可以实现规模化生产,提高了制备效率,可以实现工业化连续生产。
本发明的有益效果在于:
本发明催化剂以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳,并且蛋黄与蛋壳层分别负载具有不同功能的催化活性成分,可以有效避免核心焦炭的生成,增强催化剂的物理强度,避免催化剂破裂造成反应器内外网堵塞,有效延长装置的运行周期及催化剂寿命。
本发明丙烷脱氢催化剂蛋壳层为多孔SiO 2-Al 2O 3空心球,增大了催化剂比较面积,脱氢催化活性组分分布在多孔SiO 2-Al 2O 3空心球的细孔及表面,单位有效比表面上脱氢催化活性组分负载量增加,提高了物料与催化剂的有效接触面积,从而提高催化剂活性及选择性,提高单程收率。
本发明制备方法制作过程简单,降低材料制备过程中的能耗,且每一步操作可以规模化生产,可以实现工业化连续运行。
附图说明
图1本发明实施例1的催化剂结构示意图。
图2本发明实施例1的催化剂载体剖面图。
图3本发明实施例1与现有DEH-16催化剂表面结焦情况对比图。
具体实施方式
下面通过具体实施例对本发明做进一步的说明,但实施例并不限制本发 明的保护范围。
实施例1:
1)制备SiO 2-Al 2O 3纳米球
将酸性硫酸铝和碱性铝酸钾按照摩尔比7:3进行混合,然后加脱盐水制备成溶液,加热到55℃,在搅拌的条件下分三次加入正硅酸乙酯,其中正硅酸乙酯与酸性硫酸铝摩尔比为1:3;然后加入氢氧化钠,将溶液PH调到11,反应完全之后,抽滤,所得滤饼用脱盐水进行洗涤,洗涤多余的钠离子,钾离子和硫酸根,直到洗出的溶液显示PH为7。向滤饼加入乙酸,搅拌加入氨水乙醇溶液,使最终浆料达到中性,过滤得到SiO 2-Al 2O 3滤饼,之后干燥得到SiO 2-Al 2O 3纳米材料,随后向SiO 2-Al 2O 3纳米材料中加入少量脱盐水进行糊化,做成SiO 2-Al 2O 3微球并干燥,干燥后的SiO 2-Al 2O 3微球作为核心球体备用;
2)负载加氢催化活性组分
将步骤1制备得到的SiO 2-Al 2O 3微球在镍盐溶液中浸渍1h,然后进行真空旋转干燥,得到Ni@SiO 2-Al 2O 3微球;
3)制备多孔SiO 2-Al 2O 3空心球
将酸性硫酸铝和碱性铝酸钾按照摩尔比7:3进行混合,然后加脱盐水制备成溶液,加热到55℃,搅拌下加入正硅酸乙酯,其中正硅酸乙酯与酸性硫酸铝摩尔比为1:14,然后加入碱液中和至pH值为9,反应完成后,进行抽滤,所得滤饼用脱盐水进行洗涤,直到洗出的溶液为中性;干燥、研磨、过筛后备用;向多孔SiO 2-Al 2O 3纳米材料中加入模板剂和胶黏剂,制备成多孔SiO 2-Al 2O 3悬浮浆料;
之后将步骤2)中制备得到的Ni@SiO 2-Al 2O 3微球用滚球的方法使多孔SiO 2-Al 2O 3悬浮浆料附着在其表面,之后放入整球机进行整形、筛选,然后进行旋转雾化干燥,之后转入马弗炉中400℃恒温4h,600℃恒温4h,最后1200℃恒温1h,升温速率为10℃/h,得到以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳的催化剂载体;
4)负载脱氢催化活性组分
将步骤3)得到的以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3 空心球为蛋壳的催化剂载体在温度为30℃氯铂酸、氯化锡和氯化锌混合溶液中浸渍4h后,于旋转蒸发仪中蒸发多余水分,得到蛋黄-蛋壳结构SiO 2-Al 2O 3贵金属丙烷脱氢催化剂湿体,然后在120℃条件下干燥2h,再转到马弗炉中260℃焙烧12h,400℃焙烧8h,550℃焙烧8h,650℃焙烧3h,升温速率为15℃/h,得到蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂;
5)催化剂活化
把步骤4)中的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂转移到还原容器中,在温度550℃,在99.99%氢气气氛中还原3h,得到活化的蛋黄-蛋壳结构SiO 2-Al 2O 3贵金属丙烷脱氢催化剂。
所得催化剂中SiO 2-Al 2O 3微球中SiO 2含量为12.5%,多孔SiO 2-Al 2O 3空心球中SiO 2含量为2.5%,脱氢催化活性组分为Ni,负载量为0.1%,加氢催化活性组分为Pt-Sn-Zn,其中Pt的负载量为0.30%,Sn的负载量为0.2%,Zn的负载量为0.1%。
本发明制备得到的催化剂结构示意图如图1所示,本发明制备的催化剂载体剖视图如图2所示。
实施例2:
1)制备SiO 2-Al 2O 3微球
将酸性硫酸铝和碱性铝酸钾按照摩尔比7:3进行混合,然后加脱盐水制备成溶液,加热到60℃,在搅拌的条件下分三次加入正硅酸乙酯,其中正硅酸乙酯与酸性硫酸铝摩尔比为1:2;然后加入氢氧化钠,将溶液PH调到10,反应完全之后,抽滤,所得滤饼用脱盐水进行洗涤,洗涤多余的钠离子,钾离子和硫酸根,直到洗出的溶液显示PH为7。向滤饼加入乙酸,搅拌加入氨水乙醇溶液,使最终浆料达到中性,过滤得到SiO 2-Al 2O 3滤饼,之后干燥得到SiO 2-Al 2O 3纳米材料,随后向SiO 2-Al 2O 3纳米材料中加入少量脱盐水进行糊化,做成直径为0.5mm的微球并干燥,干燥后的SiO 2-Al 2O 3微球作为核心球体备用;
2)负载加氢催化活性组分
将步骤1制备得到的SiO 2-Al 2O 3微球在钯盐溶液中浸渍2h,然后进行真空旋转干燥,得到Ni@SiO 2-Al 2O 3微球;
3)制备多孔SiO 2-Al 2O 3空心球
将酸性硫酸铝和碱性铝酸钾按照摩尔比7:3进行混合,然后加脱盐水制备成溶液,加热到60℃,搅拌下加入正硅酸乙酯,其中正硅酸乙酯与酸性硫酸铝摩尔比为1:10,然后加入碱液中和至pH值为10,反应完成后,进行抽滤,所得滤饼用脱盐水进行洗涤,直到洗出的溶液为中性,干燥、研磨、过筛后备用;向多孔SiO 2-Al 2O 3纳米材料中加入模板剂和胶黏剂,制备成多孔SiO 2-Al 2O 3悬浮浆料;
之后将步骤2中制备得到的SiO 2-Al 2O 3微球用滚球的方法使多孔SiO 2-Al 2O 3悬浮浆料附着在其表面,之后放入整球机进行整形、筛选,然后进行旋转雾化干燥,之后转入马弗炉中400℃恒温4h,650℃恒温4h,最后1200℃恒温1h,升温速率为10℃/h,得到以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳的催化剂载体;
4)负载脱氢催化活性组分
将步骤3)得到的以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳的催化剂载体在温度为20℃氯铂酸和氯化锡混合溶液中浸渍6h后,于旋转蒸发仪中蒸发多余水分,得到蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂湿体,然后在120℃条件下干燥2h,再转到马弗炉中260℃焙烧12h,400℃焙烧8h,550℃焙烧8h,650℃焙烧3h,升温速率为15℃/h,得到蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂;
5)催化剂活化
把步骤4)中的蛋黄-蛋壳结构SiO 2-Al 2O 3贵金属丙烷脱氢催化剂转移到还原容器中,在温度550℃,在99.99%氢气气氛中还原0.5h,得到活化的蛋黄-蛋壳结构SiO 2-Al 2O 3贵金属丙烷脱氢催化剂。
所得催化剂中SiO 2-Al 2O 3微球中SiO 2含量为15.5%,多孔SiO 2-Al 2O 3空心球中SiO 2含量为3.5%,脱氢催化活性组分为Pb,负载量为0.2%,加氢催化活性组分为Pt-Sn-Zn,其中Pt的负载量为0.42%,Sn的负载量为0.3%,Zn的负载量为0.2%。
实施例3:
1)制备SiO 2-Al 2O 3微球
将酸性硫酸铝和碱性铝酸钾按照摩尔比7:3进行混合,然后加脱盐水制备成溶液,加热到58℃,在搅拌的条件下分三次加入,其中正硅酸乙酯与酸性硫酸铝摩尔比为1:2.6;然后加入氢氧化钠,将溶液PH调到10,反应完全之后,抽滤,所得滤饼用脱盐水进行洗涤,洗涤多余的钠离子,钾离子和硫酸根,直到洗出的溶液显示PH为7。向滤饼加入乙酸,搅拌的条件下再加入氨水乙醇混合液,使最终浆料达到中性,过滤得到SiO 2-Al 2O 3滤饼,之后干燥得到SiO 2-Al 2O 3纳米材料,随后向SiO 2-Al 2O 3纳米材料中加入少量脱盐水进行糊化,做成直径为0.5mm的微球并干燥,干燥后的SiO 2-Al 2O 3微球作为核心球体备用;
2)负载加氢催化活性组分
将步骤1制备得到的SiO 2-Al 2O 3微球在镍盐和钯盐的混合溶液中浸渍3h,然后进行真空旋转干燥,得到Ni-Pb@SiO 2-Al 2O 3微球;
3)制备多孔SiO 2-Al 2O 3空心球
将酸性硫酸铝和碱性铝酸钾按照摩尔比7:3进行混合,然后加脱盐水制备成溶液,加热到60℃,搅拌下加入正硅酸乙酯,其中正硅酸乙酯与酸性硫酸铝摩尔比为1:12,然后加入碱液中和至pH值为7,反应完成后,进行抽滤,所得滤饼用脱盐水进行洗涤,直到洗出的溶液为中性,干燥、研磨、过筛后备用;向多孔SiO 2-Al 2O 3纳米材料中加入模板剂和胶黏剂,制备成多孔SiO 2-Al 2O 3悬浮浆料;
之后将步骤2中制备得到的Ni-Pb@SiO 2-Al 2O 3微球用滚球的方法使多孔SiO 2-Al 2O 3悬浮浆料附着在其表面,之后放入整球机进行整形、筛选,然后进行旋转雾化干燥,之后转入马弗炉中400℃恒温4h,650℃恒温4h,最后1200℃恒温1h,升温速率为10℃/h,得到以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳的催化剂载体;
4)负载脱氢催化活性组分
将步骤3)得到的以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳的催化剂载体在温度为25℃氯铂酸和氯化锡混合溶液中浸渍5h后,于旋转蒸发仪中蒸发多余水分,得到蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂湿体,然后在120℃条件下干燥2h,再转到马弗炉中260℃焙烧12h,400℃焙烧8h,550℃焙烧8h,650℃焙烧3h,升温速率为15℃ /h,得到蛋黄-蛋壳结构SiO 2-Al 2O 3贵金属丙烷脱氢催化剂;
5)催化剂活化
把步骤4)中的蛋黄-蛋壳结构SiO 2-Al 2O 3贵金属丙烷脱氢催化剂转移到还原容器中,在温度555℃,在99.99%氢气气氛中还原0.5h,得到活化的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂。
所得催化剂中所得催化剂中SiO 2-Al 2O 3微球中SiO 2含量为14%,多孔SiO 2-Al 2O 3空心球中SiO 2含量为3.0%,脱氢催化活性组分为Ni-Pb,负载量为0.25%,加氢催化活性组分为Pt-Sn-Zn,其中Pt的负载量为0.38%,Sn的负载量为0.28%,Zn的负载量为0.15%。
现有脱氢催化剂与本发明制备得到的催化剂的性能测试数据对比如下:
实验条件:温度620℃,H/HC=0.5,H 2S=55ppm,液时空速3.0,时间20-30min;利用气相色谱对催化剂进行分析,具体结果见表1:
表1
Figure PCTCN2020135911-appb-000001
从表1我们可以看出,本发明制备得到的催化剂强度明显高于现有丙烷脱氢催化剂强度,强度提升20%以上,且在经过再生50个周期后,本发明制备得到的催化剂强度依然高于现有丙烷脱氢催化剂没有再生前催化剂强度。
本发明制备得到的催化剂比表面及单程转化率都有明显提高,催化剂积碳率也明显降低。
本发明实施例1与对比例DEH-16在相同处理条件下催化剂表面结焦情况对比参见图3,左侧为DEH-16催化剂使用前与使用后的结焦情况,右侧为本发明实施例1催化剂使用前与使用后的结焦情况,由图3可知,本发明实施例1制备得到的催化剂的结焦情况不明显,也就是说本发明实施例1制备的催化剂结焦速率远远小于DEH-16催化剂。

Claims (12)

  1. 一种蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂,其特征在于,以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳,所述蛋黄上负载加氢催化活性组分,蛋壳上负载脱氢催化活性组分。
  2. 如权利要求1所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂,其特征在于,所述实心SiO 2-Al 2O 3微球中SiO 2含量为5.5%~18.8wt%,优选12.5~15.5wt%;所述多孔SiO 2-Al 2O 3空心球中SiO 2含量为1.5%~7.5wt%,优选2.5~3.5wt%。
  3. 如权利要求1所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂,其特征在于,所述实心SiO 2-Al 2O 3微球与多孔SiO 2-Al 2O 3空心球直径比为1:3~6。
  4. 如权利要求1所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂,其特征在于,所述脱氢催化活性组分的负载量为0.01~0.3wt%,优选0.05~0.1wt%。
  5. 如权利要求1所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂,其特征在于,所述加氢催化活性组分负载量为0.26~1wt%。
  6. 如权利要求1或4所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂,其特征在于,所述脱氢催化活性组分为Fe、Co、Ni、Ru、Rh、Pd、Os、Ir中的一种或多种,优选Ni-Pd的混合物。
  7. 如权利要求1或5所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂,其特征在于,所述加氢催化活性组分为Cr、Ni、Zn、Fe、Pt、Sn、Ca、Cu、Al中的一种或多种,优选Pt-Sn-Zn的混合物。
  8. 如权利要求1所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂的制备方法,其包括如下步骤:
    1)制备实心SiO 2-Al 2O 3微球
    将水溶性铝盐溶于脱盐水中制成溶液,加热到40~75℃,搅拌下分若干次加入正硅酸乙酯或有机硅化合物,然后加入碱液中和至pH值为7~11,反应完成后,进行抽滤,所得滤饼用脱盐水进行洗涤,直到洗出的溶液为中性;向获得的滤饼中加入胶黏剂,再搅拌加入氨水乙醇溶液,使最终浆料达到中性,过滤得到SiO 2-Al 2O 3滤饼,之后干燥得到 SiO 2-Al 2O 3纳米材料,随后向SiO 2-Al 2O 3纳米材料中加脱盐水进行糊化,做成实心SiO 2-Al 2O 3微球并进行旋转雾化干燥,干燥后的实心SiO 2-Al 2O 3微球作为核心球体备用;
    2)负载加氢催化活性组分
    将步骤1)制备得到的实心SiO 2-Al 2O 3微球在含有加氢催化活性组分盐溶液中浸渍1~4h,然后进行真空旋转干燥,得到负载加氢催化活性组分的实心SiO 2-Al 2O 3微球;
    3)制备多孔SiO 2-Al 2O 3空心球
    将水溶性铝盐溶于脱盐水中制成溶液,加热到40~75℃,搅拌下分若干次加入正硅酸乙酯或有机硅化合物,然后加入碱液中和至pH值为7~11,反应完成后,进行抽滤,所得滤饼用脱盐水进行洗涤,直到洗出的溶液为中性,烘干、研磨、过筛得到多孔SiO 2-Al 2O 3纳米材料;向多孔SiO 2-Al 2O 3纳米材料中加入模板剂和胶黏剂,制备成多孔SiO 2-Al 2O 3悬浮浆料;
    之后用滚球的方法使多孔SiO 2-Al 2O 3悬浮浆料附着在步骤2)中制备得到的含有加氢催化活性组分的实心SiO 2-Al 2O 3微球表面,之后放入整球机进行整形、筛选,然后进行旋转雾化干燥,焙烧得到以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳的催化剂载体;其中焙烧条件为:300~500℃恒温1~10h,500~800℃恒温1~10h,最后1000℃恒温1~2h,升温速率为5~50℃/h;
    4)负载脱氢催化活性组分
    将步骤3)得到的以实心SiO 2-Al 2O 3微球为蛋黄,以多孔SiO 2-Al 2O 3空心球为蛋壳的催化剂载体在温度为10~50℃含有脱氢催化活性组分的溶液中浸渍3~8h,于旋转蒸发仪中蒸发多余水分,得到蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂湿体,然后在120℃条件下干燥2~6h,再煅烧成型得到蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂;其中煅烧条件为:260~280℃焙烧10~12h,400~430℃焙烧8~10h,530~550℃焙烧8~10h,650~700℃焙烧2~4h,升温速率为15~20℃/h;
    5)催化剂活化
    把步骤4)中的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂转移 到还原容器中,在温度500~600℃,氢气气氛中还原0.5~4h,得到活化的蛋黄-蛋壳结构SiO 2-Al 2O 3贵金属丙烷脱氢催化剂。
  9. 根据权利要求8所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂的制备方法,其特征在于,所述的水溶性铝盐选自氯化铝,硫酸铝,硝酸铝,铝酸钠和铝酸钾中的一种或多种。
  10. 根据权利要求8所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂的制备方法,其特征在于,所述的碱液为氢氧化钾溶液或氢氧化钠溶液,优选氢氧化钠溶液。
  11. 根据权利要求8所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂的制备方法,其特征在于,所述胶黏剂为乙酸,硝酸,盐酸,硫酸,丙烯酸,柠檬酸中一种或多种。
  12. 根据权利要求8所述的蛋黄-蛋壳型SiO 2-Al 2O 3贵金属丙烷脱氢催化剂的制备方法,其特征在于,所述模板剂为三甲基戊烷、聚氧丙烯-聚氧乙烯中的一种或两种。
PCT/CN2020/135911 2020-04-28 2020-12-11 一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法 WO2021218176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010348244.4 2020-04-28
CN202010348244.4A CN111437830B (zh) 2020-04-28 2020-04-28 一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2021218176A1 true WO2021218176A1 (zh) 2021-11-04

Family

ID=71656291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135911 WO2021218176A1 (zh) 2020-04-28 2020-12-11 一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN111437830B (zh)
WO (1) WO2021218176A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437830B (zh) * 2020-04-28 2021-07-13 浙江卫星能源有限公司 一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法
CN113426478A (zh) * 2021-06-25 2021-09-24 润和催化材料(浙江)有限公司 一种脱氢催化剂及其制备方法
CN114682266B (zh) * 2022-04-14 2023-05-23 厦门大学 一种介孔二氧化硅包覆纳米氧化铝负载的镍钼催化剂及其制备方法与应用
CN118267997B (zh) * 2024-05-27 2024-08-06 吉林大学 一种应用于丙烷脱氢的催化剂及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120238442A1 (en) * 2008-08-27 2012-09-20 Korea University Research And Business Foundation Nanoparticles including metal oxide having catalytic activity
CN103920491A (zh) * 2014-03-05 2014-07-16 上海师范大学 一种具有蛋黄-蛋壳结构的催化剂及其制备方法和用途
CN105709743A (zh) * 2014-12-01 2016-06-29 抚顺环科石油化工技术开发有限公司 一种催化湿式氧化催化剂及其制法
CN105772073A (zh) * 2016-03-29 2016-07-20 中国石油大学(华东) 一种耦合型抗硫柴油加氢脱硫催化剂的制备方法
WO2017062226A1 (en) * 2015-10-06 2017-04-13 Sabic Global Technologies B.V. Core-shell and yolk-shell catalysts and making thereof
CN108479782A (zh) * 2018-04-09 2018-09-04 北京化工大学 对硝基苯酚加氢负载型蛋黄-蛋壳纳米结构催化剂及制法
CN109833901A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种高分散负载型浆态床加氢颗粒催化剂及其制备方法
CN110405200A (zh) * 2019-06-18 2019-11-05 华南农业大学 一种蛋黄-蛋壳结构贵金属@空心碳纳米球复合材料及其制备方法和应用
CN110479369A (zh) * 2019-08-20 2019-11-22 青岛科技大学 Yolk-shell型催化剂及其合成方法、以及其催化乙酰丙酸制备γ-戊内酯的方法
CN111036198A (zh) * 2018-10-12 2020-04-21 中国石油化工股份有限公司 双壳核壳结构金属催化剂及其制备方法
CN111437830A (zh) * 2020-04-28 2020-07-24 浙江卫星能源有限公司 一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8202647A (nl) * 1982-07-01 1984-02-01 Shell Int Research Werkwijze voor de bereiding van een katalysator.
CN108722403B (zh) * 2017-04-20 2019-09-27 中国石油化工股份有限公司 一种丙烷脱氢催化剂及其制备方法和丙烷脱氢制丙烯的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120238442A1 (en) * 2008-08-27 2012-09-20 Korea University Research And Business Foundation Nanoparticles including metal oxide having catalytic activity
CN103920491A (zh) * 2014-03-05 2014-07-16 上海师范大学 一种具有蛋黄-蛋壳结构的催化剂及其制备方法和用途
CN105709743A (zh) * 2014-12-01 2016-06-29 抚顺环科石油化工技术开发有限公司 一种催化湿式氧化催化剂及其制法
WO2017062226A1 (en) * 2015-10-06 2017-04-13 Sabic Global Technologies B.V. Core-shell and yolk-shell catalysts and making thereof
CN105772073A (zh) * 2016-03-29 2016-07-20 中国石油大学(华东) 一种耦合型抗硫柴油加氢脱硫催化剂的制备方法
CN109833901A (zh) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 一种高分散负载型浆态床加氢颗粒催化剂及其制备方法
CN108479782A (zh) * 2018-04-09 2018-09-04 北京化工大学 对硝基苯酚加氢负载型蛋黄-蛋壳纳米结构催化剂及制法
CN111036198A (zh) * 2018-10-12 2020-04-21 中国石油化工股份有限公司 双壳核壳结构金属催化剂及其制备方法
CN110405200A (zh) * 2019-06-18 2019-11-05 华南农业大学 一种蛋黄-蛋壳结构贵金属@空心碳纳米球复合材料及其制备方法和应用
CN110479369A (zh) * 2019-08-20 2019-11-22 青岛科技大学 Yolk-shell型催化剂及其合成方法、以及其催化乙酰丙酸制备γ-戊内酯的方法
CN111437830A (zh) * 2020-04-28 2020-07-24 浙江卫星能源有限公司 一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法

Also Published As

Publication number Publication date
CN111437830A (zh) 2020-07-24
CN111437830B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2021218176A1 (zh) 一种蛋黄-蛋壳型SiO2-Al2O3贵金属丙烷脱氢催化剂及其制备方法
WO2019109831A1 (zh) 一种钴酸铜镍纳米线的制备方法及其在催化氨硼烷水解产氢上的应用
CN107199047B (zh) 一种分散于sba-15孔道内的镍基甲烷化催化剂及其制备和应用
CN110124729B (zh) 一种用于浆态床费托合成的包覆型催化剂及其制备方法
WO2017197980A1 (zh) 整体式铁钴双金属费托合成催化剂及其制备方法
CN113578359B (zh) 空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用
WO2021129042A1 (zh) 一种碳酸钙改性的炭材料负载纳米钯合金催化剂及其制备方法和应用
WO2019010811A1 (zh) 一种用于烟气中二氧化硫还原制硫的钴系催化剂及其制备方法和用途
CN110449174A (zh) 一种负载型氮氧共掺杂多孔碳原子级活性位点催化剂的制备方法
CN109331810A (zh) 一种用于丙烷脱氢制丙烯的催化剂及其制备方法
CN113751080B (zh) 一种改性氧化铝载体及其制备方法和应用
CN101342498A (zh) 一种具有宏观形状的二氧化钛纳米管载体及其制备方法
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
CN113842918A (zh) 一种高活性、抗烧结甲烷水蒸气重整催化剂及其制备方法与应用
CN112237916B (zh) 一种高活性甲醇合成催化剂的制备方法
WO2023168799A1 (zh) 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用
CN109675588A (zh) 一种硫碳球负载贵金属催化剂及其制备方法与应用
CN113750980A (zh) 一种烷烃脱氢催化剂及其制备方法和应用
CN113941326A (zh) 一种抗积碳负载型Pt催化剂及其制备方法和在催化制氢中的应用
CN112473669B (zh) 用于煤基1,4-丁炔二醇低温低压直接加氢催化剂及其制备方法
CN104001524A (zh) 一种用于乙炔氢氯化反应的非汞催化剂
CN113145102A (zh) 一种负载型催化剂及其制备与应用
CN112742373B (zh) 低温耐硫甲烷化催化剂及其制备方法和应用
CN112495375A (zh) 贵金属负载催化剂及其制备方法和应用
CN112774691B (zh) 一种除醛催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934028

Country of ref document: EP

Kind code of ref document: A1