WO2023168799A1 - 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用 - Google Patents

一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023168799A1
WO2023168799A1 PCT/CN2022/087827 CN2022087827W WO2023168799A1 WO 2023168799 A1 WO2023168799 A1 WO 2023168799A1 CN 2022087827 W CN2022087827 W CN 2022087827W WO 2023168799 A1 WO2023168799 A1 WO 2023168799A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon catalyst
pore structure
carbon
hierarchical pore
present
Prior art date
Application number
PCT/CN2022/087827
Other languages
English (en)
French (fr)
Inventor
吴铎
蒋管赟
吴张雄
高兴敏
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023168799A1 publication Critical patent/WO2023168799A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the technical field of catalysts, and in particular relates to a carbon catalyst with a highly open hierarchical pore structure and its preparation method and application. Specifically, it is a carbon catalyst with a highly open hierarchical pore structure and its use in the field of ozone catalytic oxidation. Applications.
  • Hierarchical porous carbon materials have great potential in energy storage and conversion, heterogeneous catalysis, adsorption, separation and life science applications. In recent years, significant progress has been made in the design and synthesis of this type of materials. Salt templates have been widely used in the synthesis of hierarchical porous carbon materials due to their low price, rich variety, and easy removal.
  • the prepared series of hierarchical porous carbon materials have lower specific surface areas and less mesopores and macropores, resulting in catalytic degradation of organic matter in water.
  • scientific researchers have conducted in-depth research on the preparation of carbon catalysts with highly open hierarchical pore structures.
  • the object of the present invention is to provide a method for preparing a carbon catalyst with a highly open hierarchical pore structure by a double-salt template method coupled with spray drying technology.
  • the hierarchical porous carbon material prepared by this method can be used in the ozone catalytic oxidation reaction. Has excellent catalytic properties.
  • the invention provides a method for preparing a carbon catalyst with a highly open hierarchical pore structure, which includes the following steps:
  • the total solid content of the precursor liquid is 6 to 14 wt%.
  • the carbon precursor is selected from one or more of glucosamine and its salts, glycine and sucrose.
  • the double salt template agent is chloride and sodium metasilicate.
  • the mass ratio of the carbon precursor, chloride and sodium metasilicate is 1:(3 ⁇ 6):(0.25 ⁇ 0.75).
  • the chloride is selected from potassium chloride and/or sodium chloride.
  • the spray drying tower top temperature is 150-200°C.
  • the temperature of the primary calcination is 600-800°C.
  • the first calcination also includes:
  • the product after primary calcination is calcined twice to obtain a calcined product
  • the temperature of the secondary calcination is 600-1000°C.
  • the invention provides a carbon catalyst with a highly open hierarchical pore structure prepared by the method described in the above technical solution. Its specific surface area is 1208 ⁇ 2611m2 /g, the pore volume is 0.94 ⁇ 1.63cm3/g, and the oxygen content is 0.94 ⁇ 1.63cm3 /g. The content is 12.39 ⁇ 25.38wt%.
  • the present invention provides an ozone oxidation catalyst, comprising:
  • the carbon catalyst with a highly open hierarchical pore structure is prepared by the method described in the above technical solution.
  • the present invention has at least the following advantages:
  • the present invention uses spray drying technology, and the transformation from atomized small droplets to dry microspheres only takes 0 to 2 seconds, and during the drying process, the limited co-assembly of the carbon precursor and the double salt template agent can be achieved within the micro droplets. This plays an important role in increasing the specific surface area and oxygen content and forming a highly open hierarchical pore structure; at the same time, the double salt template agent used in the present invention can be easily removed by washing and shaking, and can be recycled by drying the washing liquid Salt template agent realizes the recycling of salt template agent.
  • the invention provides a method for preparing a carbon catalyst with a highly open hierarchical pore structure using a double salt template method coupled with spray drying technology.
  • the method has a simple process flow, low cost, and is suitable for industrial production.
  • the hierarchical porous carbon prepared by this method The material has excellent catalytic properties in ozone oxidation reactions.
  • Figure 1 is the SEM test results of the product after spray drying in Example 1 of the present invention.
  • Figure 2 is the SEM test result of the carbon material prepared in Example 1 of the present invention.
  • Figure 3 is the SEM test result of the carbon material prepared in Comparative Example 1 of the present invention.
  • Figure 4 is the N 2 adsorption-desorption isotherm and pore size distribution diagram of the carbon materials prepared in Examples 1 to 4 and Comparative Example 1 of the present invention
  • Figure 5 shows the element content analysis results of the carbon materials prepared in Examples 1 to 3 and Comparative Example 1 of the present invention (obtained by quantitative analysis using a Thermo Fisher Scientific FlashSmart CHNS/O elemental analyzer);
  • Figure 6 shows the test results of the carbon materials prepared in Examples 1 to 4 and Comparative Example 1 of the present invention for catalyzing ozone oxidation of sodium oxalate.
  • the invention provides a method for preparing a carbon catalyst with a highly open hierarchical pore structure, which includes the following steps:
  • the carbon precursor may be selected from one or more of glucosamine and its salts, glycine and sucrose.
  • the double salt template agent is chloride and sodium metasilicate.
  • the chloride may be selected from potassium chloride and/or sodium chloride.
  • the base in the alkali solution may be selected from sodium hydroxide and/or potassium hydroxide.
  • the mass concentration of the alkali solution can be 0 to 0.5 mol/L (excluding 0), 0.1 to 0.3 mol/L, or 0.2 mol/L.
  • the total solid content of the precursor liquid can be 6 to 14 wt%, 8 to 12 wt%, or 10 wt%, preferably 12 wt%.
  • the mass ratio of the carbon precursor, chloride and sodium metasilicate can be 1: (3 ⁇ 6): (0.25 ⁇ 0.75), or 1:4: (0.25 ⁇ 0.75), It can also be 1:4:0.5.
  • compressed air can be used to break the precursor liquid in the tank into uniform small droplets through the microfluidic aerosol nozzle.
  • the tower top temperature during the spray drying process can be 150-200°C, 160-190°C, or 170-180°C, preferably 170°C.
  • the pressure during the spray drying process can be 0.1 to 0.5kg/cm 2 , or 0.2 to 0.4kg/cm 2 , or 0.3kg/cm 2 ;
  • the working vibration frequency of the atomizer can be It can be 5-15kHz, or it can be 8-12kHz, preferably 10kHz;
  • the amplitude can be 10-20Vpp, or it can be 12-16Vpp, preferably 15Vpp;
  • the hot air flow rate can be 250-350L/min, or it can be 280-280L/min. 320L/min, also 300L/min.
  • the particle size of the dried microsphere powder can be controlled by changing the nozzle size and wind speed used in the spray drying process.
  • the spray drying device is very easy to operate and can feed continuously. It not only has a fast drying speed but also has a high yield, so it is suitable for Industrial mass production.
  • the primary calcination can be performed by loading the spray-dried microsphere powder into a corundum ark and performing it in a tube furnace.
  • the primary calcination can be performed in an inert atmosphere, and the inert atmosphere can be argon and/or nitrogen.
  • the temperature of the primary calcination can be 600-800°C, or 700-800°C, preferably 750°C; the time of the primary calcination can be 2-4 hours, or 3 hours.
  • the temperature rise rate can be 2-5°C/min from room temperature to the primary calcination temperature (600-800°C); the temperature rise rate can also be 3-4°C/min. .
  • the primary calcination may also include:
  • the product calcined once is calcined twice to obtain a calcined product.
  • the parameter selection range of the secondary calcination can be consistent with the parameter selection range of the primary calcination described in the above technical solution, or can be other parameter ranges; the temperature of the secondary calcination can be 600 to 1000°C.
  • water washing can be used to remove the double salt template agent to obtain a carbon catalyst with a highly open hierarchical pore structure; the water washing can be to remove the double salt template agent by water washing and shaking in a shaker.
  • the water washing method may be: soaking the calcined product in water for constant temperature oscillation, and then filtering, washing, and drying to obtain a carbon catalyst.
  • the water can be ultrapure water; the calcined product can be put into a glass container containing ultrapure water; the constant temperature oscillation can be performed in a constant temperature oscillator; the time of the constant temperature oscillation can be 2 ⁇ 4h, or it can be 3h; the filtration can be vacuum filtration; the washing can be ultrapure water washing to completely remove the salt component in the carbon material; the drying temperature can be 50-70°C, or It can be 55-65°C or 60°C; the drying method can be vacuum drying or normal pressure drying.
  • the water washing after the water washing is completed, it may also include: drying the water washing liquid to recover the double salt template agent, so as to realize the recycling of the salt template agent.
  • the drying method may be oven drying.
  • the invention provides a carbon catalyst with a highly open hierarchical pore structure prepared by the method described in the above technical solution. Its specific surface area can be 1208 ⁇ 2611m2 /g, and its pore volume can be 0.94 ⁇ 1.63cm3 /g. , the oxygen content can be 12.39 ⁇ 25.38wt%.
  • the invention provides an ozone oxidation catalyst, including:
  • the carbon catalyst with a highly open hierarchical pore structure is prepared by the method described in the above technical solution.
  • the ozone oxidation catalyst in the present invention can be used to catalyze ozone oxidation reaction, for example, it can catalyze ozone oxidation of sodium oxalate.
  • glucosamine hydrochloride 24g of potassium chloride and 3g of sodium metasilicate and add them to the 0.2mol/L sodium hydroxide aqueous solution, and stir at room temperature for 4h.
  • the total solid content of the precursor solution is 12wt%.
  • the temperature at the top of the tower is 170°C and hot air
  • the precursor liquid was spray-dried at a flow rate of 300L/min.
  • the collected dry powder was put into a corundum ark and then placed in a tube furnace for calcination. It was heated to the corresponding temperature of 750°C at a heating rate of 2°C/min in an argon atmosphere and maintained for 2 hours. After that, the calcined sample was soaked in a glass container containing ultrapure water, placed in a constant-temperature oscillator and oscillated for 3 hours, then vacuum filtered and washed with a certain amount of ultrapure water to completely remove the salt component in the carbon material, and finally After vacuum drying at 60°C overnight, a carbon catalyst with a highly open hierarchical pore structure was obtained.
  • Figure 1 shows the SEM test results of the sample after spray drying in Example 1 of the present invention. It can be seen that the surface of the dried microsphere particles exhibits diamond-shaped wrinkles, which is caused by the protrusions of some crystal edges of potassium chloride and sodium metasilicate. Presents a semi-solid structure.
  • Figure 2 shows the SEM test results of the carbon material obtained after calcination, washing, and drying in Example 1 of the present invention. It can be seen that the sample after calcination at 750°C has a three-dimensional network structure, and the pore structure is particularly developed.
  • a carbon catalyst with a highly open hierarchical pore structure was prepared according to the method of Example 1. The difference from Example 1 is that the mass of glucosamine hydrochloride is 6g, the mass of potassium chloride is 24g, and the mass of sodium metasilicate is The mass is 1.5g.
  • a carbon catalyst with a highly open hierarchical pore structure was prepared according to the method of Example 1. The difference from Example 1 is that the mass of glucosamine hydrochloride is 6g, the mass of potassium chloride is 24g, and the mass of sodium metasilicate is The mass is 4.5g.
  • a carbon catalyst with a highly open hierarchical pore structure was prepared according to the method of Example 1. The difference from Example 1 is that the obtained carbon material was subsequently calcined twice. The method was: under an argon atmosphere at 5°C/min. The heating rate is heated to 1000°C and maintained for 2 hours.
  • the carbon material was prepared according to the method of Example 1. The difference from Example 1 is that sodium metasilicate is not added.
  • Figure 3 shows the SEM test results of the carbon material obtained after calcination, water washing and drying in Comparative Example 1 of the present invention. It can be seen that the microsphere powder obtained by spray drying the precursor liquid without sodium metasilicate was calcined at 750°C. Afterwards, its spherical shape is still maintained, but the pore structure is not developed.
  • the carbon materials prepared in Examples 1 to 4 and Comparative Example 1 of the present invention were subjected to N 2 adsorption-desorption isotherm and pore size distribution detection.
  • the detection method was as follows: testing at -196°C using a Micromeritics ASAP2020 instrument.
  • test results are shown in Figure 4 and the table below.
  • the data in the table are the results calculated from the N 2 adsorption and desorption isotherms.
  • S BET refers to the specific surface area of the material calculated according to the BET model, and V total is the pore volume of the material. .
  • Figure 5 shows the element content analysis results of the carbon materials prepared in Examples 1 to 3 and Comparative Example 1. It can be seen that compared with the oxygen content of the carbon materials prepared without adding sodium metasilicate, the oxygen content of sodium metasilicate is The introduction inhibits the decomposition of oxygen-containing functional groups of the material to a certain extent, thereby increasing the oxygen content of the carbon material.
  • the carbon materials prepared in Examples 1 to 4 and Comparative Example 1 were used as catalysts to catalyze ozone oxidation of sodium oxalate.
  • the ozone oxidation and catalytic ozone oxidation processes were carried out in a two-necked flask in semi-batch mode. The specific method is as follows:
  • Ozone is prepared from dry high-purity oxygen (18 mL/min) through an ozone generator.
  • the gas phase ozone concentration is 50 ppm. , and continuously pass into the sodium oxalate solution; take a water sample within a certain period of time, pass it through the membrane immediately, and then add the quencher Na 2 S 2 O 3 to stop the oxidation-reduction reaction in the water sample (quench the remaining water in the water sample) ozone).
  • the sodium oxalate content in the water sample was determined by an ion chromatograph (ICS-600, Thermo Fisher Scientific Co., Ltd.), using Na 2 CO 3 /NaHCO 3 as the mobile phase, and the mobile phase speed was 0.8 mL/min.
  • Example 5 The ozone oxidation of sodium oxalate was catalyzed according to the method of Example 5. The difference from Example 5 is that no catalyst is added.
  • Figure 6 shows the degradation diagram of sodium oxalate catalyzed by ozone oxidation using different carbon materials. It can be seen that compared with using ozone to oxidize sodium oxalate alone (Comparative Example 2), the addition of a catalyst significantly accelerated the degradation of sodium oxalate. From ozonation to oxalic acid alone, The sodium removal rate increased from less than 10% to 100%, indicating that the catalyst prepared in the present invention has excellent catalytic activity in catalyzing the degradation of sodium oxalate by ozone oxidation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种具有高度开放多级孔结构的碳催化剂的制备方法,包括:将碳前驱体、双盐模板剂溶于碱溶液中,然后在室温下搅拌混合,得到前驱液;对前驱液进行喷雾干燥得到具有独特形态的微球粉末,喷雾干燥过程的塔顶温度为150~200℃;将微球粉末在惰性气氛中煅烧,煅烧温度为600~1000℃;通过水洗除去盐模板剂获得具有高度开放多级孔结构的碳催化剂。本发明通过双盐模板法结合喷雾干燥技术制备得到的碳催化剂,对臭氧氧化反应具有优异的催化性能。

Description

一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用
本申请要求于2022年03月10日提交中国专利局、申请号为202210229915.4、发明名称为“一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于催化剂技术领域,尤其涉及一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用,具体为一种具有高度开放多级孔结构的碳催化剂和其在臭氧催化氧化领域中的应用。
背景技术
多级孔碳材料在能源存储与转化、多相催化、吸附、分离和生命科学应用方面具有巨大的潜力。近年来,关于该类材料的设计和合成方面取得了显著进展,盐模板因其价格低廉、种类丰富、易于去除等优点,已被广泛应用于多级孔碳材料的合成中。
目前,有关使用盐模板法来制备多级孔碳材料的研究中,所制备得到的一系列多级孔碳材料其比表面积较低,介孔和大孔含量较少,导致在催化降解水体有机污染物的过程中,污染物难以扩散传质到碳材料内部的活性位点,使得碳催化剂的活性位点利用率低。为通过增强反应底物的传质扩散,来提高催化剂催化性能,科研工作者们对具有高度开放多级孔结构的碳催化剂的制备进行了深入的研究。
目前常用的方法是:1.将盐模板与硬模板或软模板相结合,以此来得到开放的多级孔结构,但制备过程中需用到有毒有害试剂,并且原料成本过高;2.使用多重盐模板,即利用不同结晶盐的晶粒尺寸相异的原理,来调控目标多级孔碳材料的孔隙率及孔径分布,但现有技术所获得的多孔碳材料的性能有待进一步的提高。
发明内容
有鉴于此,本发明的目的在于提供一种双盐模板法耦合喷雾干燥技术制备具有高度开放多级孔结构的碳催化剂的方法,经本方法制备的多级孔碳材料在臭氧催化氧化反应中具有优异的催化性能。
本发明提供了一种制备具有高度开放多级孔结构的碳催化剂的方法,包括以下步骤:
(1)将碳前驱体、双盐模板剂和碱溶液均匀混合,得到前驱液;
(2)对所述前驱液进行喷雾干燥,得到微球粉末;
(3)将所述微球粉末进行一次煅烧,得到煅烧产物;
(4)将所述煅烧产物进行水洗、干燥,得到具有高度开放多级孔结构的碳催化剂。
优选的,所述前驱液的总固含量为6~14wt%。
优选的,所述碳前驱体选自氨基葡萄糖及其盐、甘氨酸和蔗糖中的一种或几种。
优选的,所述双盐模板剂为氯化物和偏硅酸钠。
优选的,所述碳前驱体、氯化物和偏硅酸钠的质量比为1:(3~6):(0.25~0.75)。
优选的,所述氯化物选自氯化钾和/或氯化钠。
优选的,所述喷雾干燥的塔顶温度为150~200℃。
优选的,所述一次煅烧的温度为600~800℃。
优选的,所述一次煅烧后还包括:
将一次煅烧后的产物进行二次煅烧,得到煅烧产物;
所述二次煅烧的温度为600~1000℃。
本发明提供了一种上述技术方案所述的方法制备得到的具有高度开放多级孔结构的碳催化剂,其比表面积为1208~2611m 2/g,孔体积为0.94~1.63cm 3/g,氧含量为12.39~25.38wt%。
在又一方面,本发明提供了一种臭氧氧化催化剂,包括:
上述技术方案所述的方法制备得到的具有高度开放多级孔结构的碳催化剂。
虽然现有技术已经开发出了许多双盐模板剂和多盐模板剂,但是许多混合盐模板剂并不具有高熔融温度(混合盐模板剂的熔融温度一般低于单一组分的熔融温度),而本发明发现具有高熔融温度的盐模板剂,可以使得颗粒的原始形貌在煅烧过程中得以保持,这对于碳材料比表面积与含氧量的提升以及三维多级孔结构的形成具有重要作用。
借由上述技术方案,本发明至少具有以下优点:
本发明利用喷雾干燥技术,雾化小液滴到干燥微球的转变仅需要0~2s,并且在干燥过程中可以在微液滴内实现碳前驱体与双盐模板剂的限域共组装,这对于比表面积与含氧量提升、高度开放多级孔结构的形成具有重要作用;同时,本发明所使用的双盐模板剂可以通过水洗振荡轻易除去,并且通过对水洗液进行烘干可以回收盐模板剂,实现盐模板剂的循环利用。
本发明提供了一种双盐模板法耦合喷雾干燥技术制备具有高度开放多级孔结构的碳催化剂的方法,该方法工艺流程简单,成本低廉,适合工业化生产,经本方法制备的多级孔碳材料在臭氧氧化反应中具有优异的催化性能。
附图说明
图1为本发明实施例1喷雾干燥后的产品的SEM测试结果;
图2为本发明实施例1制备得到的碳材料的SEM测试结果;
图3为本发明对比例1制备得到的碳材料的SEM测试结果;
图4为本发明实施例1~4以及对比例1制备得到的碳材料的N 2吸脱附等温线及孔径分布图;
图5为本发明实施例1~3以及对比例1制备得到的碳材料的元素含量分析结果(使用Thermo Fisher Scientific FlashSmart CHNS/O元素分析仪定量分析得到);
图6为本发明实施例1~4以及对比例1制备得到的碳材料催化臭氧氧化草酸钠的测试结果。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种具有高度开放多级孔结构的碳催化剂的制备方法,包括以下步骤:
(1)将碳前驱体、双盐模板剂和碱溶液均匀混合,得到前驱液;
(2)对所述前驱液进行喷雾干燥,得到微球粉末;
(3)将所述微球粉末进行一次煅烧,得到煅烧产物;
(4)将所述煅烧产物进行水洗、干燥,得到具有高度开放多级孔结构的碳催化剂。
在本发明中,所述碳前驱体可以选自氨基葡萄糖及其盐、甘氨酸和蔗糖中的一种或几种。
在本发明中,所述双盐模板剂为氯化物和偏硅酸钠。
在本发明中,所述氯化物可以选自氯化钾和/或氯化钠。
在本发明中,所述碱溶液中的碱可以选自氢氧化钠和/或氢氧化钾。
在本发明中,所述碱溶液的质量浓度可以为0~0.5mol/L(不含有0),也可以为0.1~0.3mol/L,还可以为0.2mol/L。
在本发明中,所述前驱液的总固含量可以为6~14wt%,也可以为8~12wt%,还可以为10wt%,优选为12wt%。
在本发明中,所述碳前驱体、氯化物和偏硅酸钠的质量比可以为1:(3~6):(0.25~0.75),也可以为1:4:(0.25~0.75),还可以为1:4:0.5。
在本发明中,所述喷雾干燥过程中可以使用压缩空气将料罐中的前驱液通过微流控气溶胶喷嘴被打碎成均匀的小液滴。
在本发明中,所述喷雾干燥过程中的塔顶温度可以为150~200℃,也可以为160~190℃,还可以为170~180℃,优选为170℃。
在本发明中,所述喷雾干燥过程中的压力可以为0.1~0.5kg/cm 2,也可以为0.2~0.4kg/cm 2,还可以为0.3kg/cm 2;雾化器工作振动频率可以为5~15kHz,还可以为8~12kHz,优选为10kHz;幅值可以为10~20Vpp,还可以为12~16Vpp,优选为15Vpp;热风流速可以为250~350L/min,也可以为280~320L/min,还可以为300L/min。
在本发明中,可以通过改变喷雾干燥过程中使用的喷嘴尺寸和风速,调控干燥微球粉末的粒径。
在本发明中,只要喷雾干燥条件保持恒定,得到的干燥微球粉末的性质就保持不变,喷雾干燥装置非常容易操作,可连续进料,不仅干燥速度快,而且收率很高,因此适合工业大规模生产。
在本发明中,所述一次煅烧可以将喷雾干燥后的微球粉末装入刚玉方舟中在管式炉中进行。
在本发明中,所述一次煅烧可以在惰性气氛中进行,所述惰性气氛可以为氩气和/或氮气。
在本发明中,所述一次煅烧的温度可以为600~800℃,也可以为700~800℃,优选为750℃;所述一次煅烧的时间可以为2~4h,也可以为3h。
在本发明中,所述一次煅烧过程中可以以2~5℃/min的升温速率从室温升到一次煅烧温度(600~800℃);所述升温速率还可以为3~4℃/min。
在本发明中,所述一次煅烧后还可以包括:
将一次煅烧后的产物进行二次煅烧,得到煅烧产物。
在本发明中,所述二次煅烧的参数选择范围可以与上述技术方案所述一次煅烧的参数选择范围一致,也可以是其他参数范围;所述二次煅烧的温度可以为600~1000℃。
在本发明中,可以采用水洗除去双盐模板剂获得具有高度开放多级孔结构的碳催化剂;所述水洗可以为在摇床中通过水洗振荡除去双盐模板剂。
在本发明中,所述水洗的方法可以为:将所述煅烧产物浸泡在水中进行恒温振荡,然后过滤、洗涤、干燥,得到碳催化剂。
在本发明中,所述水可以为超纯水;可以将煅烧产物放入含有超纯水的玻璃容器中;所述恒温振荡可以在恒温振荡器中进行;所述恒温振荡的时间可以为2~4h,也可以为3h;所述过滤可以为真空抽滤;所述洗涤可以为采用超纯水洗涤以彻底去除碳材料中的盐成分;所述干燥的温度可以为50~70℃,也可以为55~65℃,还可以为60℃;所述干燥的方法可以为真空干燥,也可以为常压干燥。
在本发明中,所述水洗完成后还可以包括:通过对水洗液进行干燥回收双 盐模板剂,实现盐模板剂的循环利用。所述干燥的方法可以为烘干。
本发明提供了一种上述技术方案所述的方法制备得到的具有高度开放多级孔结构的碳催化剂,其比表面积可以为1208~2611m 2/g,孔体积可以为0.94~1.63cm 3/g,氧含量可以为12.39~25.38wt%。
本发明提供了一种臭氧氧化催化剂,包括:
上述技术方案所述的方法制备得到的具有高度开放多级孔结构的碳催化剂。
本发明中的臭氧氧化催化剂可用于催化臭氧氧化反应,如可催化臭氧氧化草酸钠。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明。下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述,以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
称取6g氨基葡萄糖盐酸盐、24g氯化钾和3g偏硅酸钠加入到0.2mol/L的氢氧化钠水溶液中,并在室温下搅拌4h,前驱液总固含量为12wt%。将上述前驱液倒入聚四氟乙烯料罐中,利用压缩空气使料罐中的前驱液通过微流控气溶胶喷嘴被打碎成均匀的小液滴,在塔顶温度为170℃、热风流速为300L/min的条件下对前驱液进行喷雾干燥。
将所收集的干燥粉末装入刚玉方舟中后放入管式炉中进行煅烧,在氩气气氛下以2℃/min的升温速率加热至相应温度750℃,并保持2h。之后,将煅烧样品浸泡在含有超纯水的玻璃容器中,放入恒温振荡器中振荡3h,再真空抽滤并用一定量的超纯水洗涤以彻底除去碳材料中的盐成分,最后将其在60℃下过夜真空干燥,得到具有高度开放多级孔结构的碳催化剂。
图1为本发明实施例1喷雾干燥后样品的SEM测试结果,可以看出,干燥微球颗粒表面呈现菱形褶皱,这是氯化钾与偏硅酸钠的一些晶体棱角突起所导致,颗粒内部呈现半实心结构。
图2为本发明实施例1经过煅烧、水洗、干燥过程后得到的碳材料的SEM测试结果,可以看出,经过750℃煅烧后样品具有三维网络结构,孔隙结构特别 发达。
实施例2
按照实施例1的方法制备得到具有高度开放多级孔结构的碳催化剂,与实施例1的区别在于,氨基葡萄糖盐酸盐的质量为6g,氯化钾的质量为24g,偏硅酸钠的质量为1.5g。
实施例3
按照实施例1的方法制备得到具有高度开放多级孔结构的碳催化剂,与实施例1的区别在于,氨基葡萄糖盐酸盐的质量为6g,氯化钾的质量为24g,偏硅酸钠的质量为4.5g。
实施例4
按照实施例1的方法制备得到具有高度开放多级孔结构的碳催化剂,与实施1的区别在于,后续对所得碳材料进行二次煅烧,方法为:在氩气气氛下以5℃/min的升温速率加热至1000℃,并保持2h。
对比例1
按照实施例1的方法制备得到碳材料,与实施例1的区别在于,不添加偏硅酸钠。
图3为本发明对比例1经过煅烧、水洗、干燥后得到的碳材料的SEM测试结果,可以看出,将不含偏硅酸钠的前驱液喷雾干燥得到的微球粉末在750℃下煅烧后其球形形态仍然保持,但孔隙结构并不发达。
性能检测
对本发明实施例1~4和对比例1制备的碳材料进行N 2吸脱附等温线和孔径分布检测,检测方法为:通过使用Micromeritics ASAP2020仪器在-196℃下测试得到。
检测结果如图4和下表所示,表中数据为对N 2吸脱附等温线计算得到的结果,S BET指的是按照BET模型计算得到的材料比表面积,V total是材料的孔体积。
  S BET(m 2/g) V total(cm 3/g)
实施例1 2035 1.09
实施例2 1819 1.47
实施例3 1944 1.12
实施例4 2611 1.63
对比例1 2000 0.94
由图4和上表可知,使用单盐模板与使用双盐模板得到的碳催化剂在孔结构上有显著差别。将实施例2与对比例1所制备碳催化剂的孔径分布曲线进行比较,会发现偏硅酸钠的引入对于大介孔的产生有很大的促进作用。
图5为实施例1~3以及对比例1制备得到的碳材料的元素含量分析结果,可以看出,相比于不添加偏硅酸钠制备得到的碳材料的氧含量,偏硅酸钠的引入一定程度上抑制了材料含氧官能团的分解,从而提高了碳材料的氧含量。
实施例5催化臭氧氧化草酸钠
将实施例1~4和对比例1所制备的碳材料作为催化剂,用于催化臭氧氧化草酸钠,臭氧氧化和催化臭氧氧化过程以半间歇模式在两口烧瓶中进行,具体方法如下:
将100mL的50ppm草酸钠溶液和20mg的催化剂加入反应器中,与此同时用磁力搅拌器搅拌,臭氧由干燥的高纯氧(18mL/min)通过臭氧发生器制备而来,气相臭氧浓度为50ppm,并且不断的通入草酸钠溶液中;在一定的时间内取水样,立即过膜,然后加入猝灭剂Na 2S 2O 3停止水样中氧化还原反应(淬灭水样中残存的臭氧)。
通过离子色谱仪(ICS-600,赛默飞世尔科技有限公司)来测定水样中的草酸钠含量,以Na 2CO 3/NaHCO 3为流动相,流动相速度为0.8mL/min。
对比例2
按照实施例5的方法催化臭氧氧化草酸钠,与实施例5的区别在于,不加入催化剂。
图6为不同碳材料催化臭氧氧化草酸钠降解图,可以看出,相比单独使用臭氧氧化草酸钠(对比例2),添加了催化剂后明显加快了对草酸钠的降解,从单独臭氧氧化草酸钠去除率不到10%增加到100%,说明本发明制备的催化剂在催化臭氧氧化草酸钠降解中具有优异的催化活性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种具有高度开放多级孔结构的碳催化剂的制备方法,包括以下步骤:
    (1)将碳前驱体、双盐模板剂和碱溶液均匀混合,得到前驱液;
    (2)对所述前驱液进行喷雾干燥,得到微球粉末;
    (3)将所述微球粉末进行一次煅烧,得到煅烧产物;
    (4)将所述煅烧产物进行水洗、干燥,得到具有高度开放多级孔结构的碳催化剂。
  2. 根据权利要求1所述的方法,其特征在于,所述前驱液的总固含量为6~14wt%。
  3. 根据权利要求1所述的方法,其特征在于,所述碳前驱体选自氨基葡萄糖及其盐、甘氨酸和蔗糖中的一种或几种。
  4. 根据权利要求1所述的方法,其特征在于,所述双盐模板剂为氯化物和偏硅酸钠。
  5. 根据权利要求4所述的方法,其特征在于,所述碳前驱体、氯化物和偏硅酸钠的质量比为1:(3~6):(0.25~0.75)。
  6. 根据权利要求4所述的方法,其特征在于,所述氯化物选自氯化钾和/或氯化钠。
  7. 根据权利要求1所述的方法,其特征在于,所述喷雾干燥的塔顶温度为150~200℃。
  8. 根据权利要求1所述的方法,其特征在于,所述一次煅烧的温度为600~800℃。
  9. 根据权利要求1所述的方法,其特征在于,所述一次煅烧后还包括:
    将一次煅烧后的产物进行二次煅烧,得到煅烧产物;
    所述二次煅烧的温度为600~1000℃。
  10. 一种权利要求1所述的方法制备得到的具有高度开放多级孔结构的碳催化剂,其比表面积为1208~2611m 2/g,孔体积为0.94~1.63cm 3/g,氧含量为12.39~25.38wt%。
  11. 一种臭氧氧化催化剂,包括:
    权利要求1所述的方法制备得到的具有高度开放多级孔结构的碳催化剂。
PCT/CN2022/087827 2022-03-10 2022-04-20 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用 WO2023168799A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210229915.4 2022-03-10
CN202210229915.4A CN114433055B (zh) 2022-03-10 2022-03-10 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023168799A1 true WO2023168799A1 (zh) 2023-09-14

Family

ID=81358837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087827 WO2023168799A1 (zh) 2022-03-10 2022-04-20 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114433055B (zh)
WO (1) WO2023168799A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116101999B (zh) * 2023-02-17 2023-11-14 之江实验室 一种非连续轻质空心碳球吸波材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087372A1 (en) * 2007-09-27 2009-04-02 Bayer Materialscience Ag Process for the preparation of a catalyst for the production of carbon nanotubes
CN105521830A (zh) * 2016-01-29 2016-04-27 常州达奥新材料科技有限公司 一种骨炭基多孔碳化硅蜂窝陶瓷催化剂载体的制备方法
WO2020143450A1 (zh) * 2019-01-11 2020-07-16 南京大学盐城环保技术与工程研究院 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用
CN111453712A (zh) * 2019-01-21 2020-07-28 金华晨阳科技有限公司 一种具有多级孔道结构的中空碳球及其制备方法
CN111606408A (zh) * 2020-06-22 2020-09-01 苏州大学 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087372A1 (en) * 2007-09-27 2009-04-02 Bayer Materialscience Ag Process for the preparation of a catalyst for the production of carbon nanotubes
CN105521830A (zh) * 2016-01-29 2016-04-27 常州达奥新材料科技有限公司 一种骨炭基多孔碳化硅蜂窝陶瓷催化剂载体的制备方法
WO2020143450A1 (zh) * 2019-01-11 2020-07-16 南京大学盐城环保技术与工程研究院 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用
CN111453712A (zh) * 2019-01-21 2020-07-28 金华晨阳科技有限公司 一种具有多级孔道结构的中空碳球及其制备方法
CN111606408A (zh) * 2020-06-22 2020-09-01 苏州大学 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 July 2019, TIANJIN UNIVERSITY, CN, article ZHU SHAN: "Synthesis of Three-Dimensional Carbon Network Materials and Their Electrochemical Energy Storage Mechanisms", pages: 1 - 137, XP009548962, DOI: 10.27356/d.cnki.gtjdu.2019.000308 *

Also Published As

Publication number Publication date
CN114433055A (zh) 2022-05-06
CN114433055B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2021258515A1 (zh) 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物
CN110575848B (zh) 一种用于催化臭氧氧化挥发性有机物的催化剂的制备方法
CN110732308B (zh) 一种MOFs基固体酸氨气吸附剂的制备方法
CN110759356B (zh) 一种煤矸石基取向型多级孔zsm-5分子筛膜材料的制备方法
CN104056616A (zh) 一种纳米氧化钛与稀土固溶体复合的硅气凝胶光催化剂的制备方法
CN108786779A (zh) 一种石墨炔/多孔二氧化钛光催化剂及其制备方法和应用
WO2023168799A1 (zh) 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用
Feng et al. Biogenic synthesis and catalysis of porous CeO2 hollow microspheres
CN108654651B (zh) 一种二氧化钛/二氟氧钛复合气相光催化剂的制备方法
CN113275034A (zh) 一种用于VOCs消除的多级孔分子筛催化剂及其制备方法
CN110980750B (zh) 一种介孔硅酸镁的制备方法及其应用
CN112337460A (zh) 一种络合酸液制备Mn基尖晶石低温脱硝催化剂的方法
CN113751080B (zh) 一种改性氧化铝载体及其制备方法和应用
CN107970877A (zh) 一种改性多孔氧化铝脱碳剂的制备方法
CN107381608A (zh) 一种高比表面氧化铝微粉的制备方法
CN110950421A (zh) 一种高比表面积的MgO微米球及其制备方法和应用
CN114133582A (zh) 三维立体结构Co-MOF-74材料的制备及其VOCs应用
CN116003262B (zh) 一种n,n-二甲基苯胺的合成方法
CN110508275B (zh) 一种介孔材料负载二氧化锰催化剂及其制备方法
CN108325543A (zh) 一种活性炭负载花瓣状磷酸银复相光催化材料的合成方法
CN114522691B (zh) 一种用于有机硫催化水解的复合金属氧化物的制备方法
CN109550521A (zh) 一种处理废胺液的催化剂、其制备方法及其应用
CN111250077A (zh) 一种复合金属氧化物催化剂及其应用
WO2023168800A1 (zh) 一种具有高氧含量的氮掺杂空心多级孔碳微球及其制备方法和应用
CN114160181B (zh) 一种用于脱除有机硫的核壳催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930428

Country of ref document: EP

Kind code of ref document: A1