WO2020143450A1 - 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用 - Google Patents

阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用 Download PDF

Info

Publication number
WO2020143450A1
WO2020143450A1 PCT/CN2019/128257 CN2019128257W WO2020143450A1 WO 2020143450 A1 WO2020143450 A1 WO 2020143450A1 CN 2019128257 W CN2019128257 W CN 2019128257W WO 2020143450 A1 WO2020143450 A1 WO 2020143450A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ozone catalyst
active
catalyst
stage
Prior art date
Application number
PCT/CN2019/128257
Other languages
English (en)
French (fr)
Inventor
卞为林
张威
王津南
李爱民
戴建军
李妙月
程月
Original Assignee
南京大学盐城环保技术与工程研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学盐城环保技术与工程研究院 filed Critical 南京大学盐城环保技术与工程研究院
Priority to AU2019421318A priority Critical patent/AU2019421318A1/en
Publication of WO2020143450A1 publication Critical patent/WO2020143450A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone

Definitions

  • the invention belongs to the field of environmental protection materials, and more specifically, relates to a method and application for preparing an ozone catalyst by a stepwise gradient temperature-increasing calcination method.
  • Ozone has a very strong oxidizing ability, and can directly mineralize organic matter into a substance with a smaller molecular weight.
  • ozone has a strong oxidation selectivity, which results in that the organic pollutants cannot be completely mineralized into CO 2 and H 2 O, which in turn causes the ozone utilization rate to decrease, and the removal efficiency of the organic pollutants also decreases.
  • the catalyst can decompose ozone into ⁇ OH with strong catalytic ability to catalyze and oxidize organic pollutants in water quality to achieve the purpose of mineralizing organic matter.
  • Heterogeneous ozone catalysts are widely used in ozone catalysts because they are easy to separate from the liquid phase and do not cause additional active metal ion pollution.
  • the phenomenon of low catalyst activity and incomplete degradation of organic matter generally exists, which restricts the development of ozone catalysts for pesticide wastewater.
  • the prior art with the publication number CN105366846A discloses a treatment method for the pesticide wastewater of Baicao Ling, which adopts the process method of micro electrolysis + advanced ozone oxidation + biochar adsorption to treat the pesticide wastewater, and the amount of pure ozone added is large, and The high selectivity of ozone oxidation prevents the organic matter in pesticide wastewater from being completely mineralized.
  • the prior art with the publication number CN108097231A discloses an ozone catalytic oxidation catalyst and its preparation method and application.
  • a spherical shape with a particle size of 1-9 mm is prepared by mixing ⁇ -type alumina and zinc oxide active components with water The material ball; then the material ball is thermostatically treated at 60-90°C for 10-24h, and then calcined and activated at 450-550°C for 2-5h to obtain an ozone oxidation catalyst.
  • the organic matter phenol wastewater and sodium oxalate wastewater involved in its implementation cases are relatively easily degradable wastewater.
  • Ozone decomposition can also achieve a high removal efficiency of organic matter, it is difficult to fully reflect the catalytic degradation ability of the catalyst, and it is difficult to fully explain the loading of active components.
  • the method of preparing the catalyst can be applied to the wastewater of other chemical enterprises.
  • CN106345450A discloses an ozone oxidation catalyst for wastewater treatment, which is a supported ozone oxidation catalyst that uses ⁇ -alumina as a carrier and SnO 2 and TiO 2 as active components, and its preparation method It includes five processes: carrier particle pretreatment, gel solution preparation, impregnation, calcination and repeated treatment.
  • the first step is carrier particle pretreatment: first, the alumina particles are placed in a mixture of ethanol and acetone and oscillated ultrasonically to remove the surface Organic matter; then, the shock-treated alumina particles are placed in HNO 3 and boiled to remove the oxide layer on the surface; the acid-treated alumina particles are taken out and washed with ultrapure water to neutrality at 90-150°C
  • the second step is to prepare the gel solution: dissolve the tin salt in the mixed solution of hydrochloric acid and absolute ethanol, add a stabilizer, add the titanium-based compound to the above mixed solution, and slowly add the ultrapure solution under stirring Stir well with water to obtain a transparent and stable gel solution; the third step of impregnation: put the alumina particles treated in the first step into the gel solution prepared in the second step, perform shock immersion for 1-12h, and filter off After immersing the liquid, the obtained particulate material is dried at 85-100°C for 4-6h; the fourth step calcination: the particul
  • the processed supported ozone oxidation catalytic material; the fifth step is repeated processing: the supported ozone oxidation catalyst is obtained after repeating the third step and the fourth step several times for the once processed supported ozone oxidation catalytic material.
  • the supported ozone oxidation catalyst of the present invention can be used for ozone catalytic oxidation treatment of antibiotic wastewater such as chloramphenicol wastewater, penicillin wastewater, erythromycin wastewater, streptomycin wastewater, vancomycin wastewater and pipemidic acid wastewater. It has the advantages of high efficiency, high ozone utilization rate, and no need for additional chemicals.
  • the present invention provides a method and application for preparing ozone catalysts by a gradient heating calcination method.
  • a method for preparing an ozone catalyst by a step-wise gradient heating calcination method includes the following steps:
  • the active material is roasted to obtain an ozone catalyst.
  • the roasting method is a program step gradient heating calcination method.
  • step 3 the step gradient heating calcination method described in step 3 is:
  • Stage I from room temperature to the stage of discharging cold air to form a calcined precursor atmosphere
  • Stage II the temperature stage of generating alumina active crystal phase structure
  • Stage III The temperature stage of the roasting and forming of the active component
  • Stage IV cooling stage.
  • stage I is to raise the temperature from 5 to 10°C/min to 90 to 110°C and hold for 1 hour;
  • stage II is to raise the temperature from 3 to 5°C/min to 200 to 300°C and hold for 2 to 4 hours;
  • stage III is to take 3 The temperature is raised to 500 ⁇ 600°C at °C/min, heat preservation is 4 ⁇ 8h.
  • stage IV is to reduce the temperature to 200-300°C at 1-2°C/min and then to room temperature.
  • the drying temperature in step 2) is 105-120°C.
  • the aluminum-based precursor material further includes anhydrous glucose or glucose monohydrate.
  • the preparation method of the aluminum-based precursor material includes: the aluminum-containing salt in the aluminum-based precursor material and anhydrous glucose or monohydrate glucose in a material amount ratio of (1.5 to 50): 1 Proportionally mix, stir evenly at 25 ⁇ 35°C, place in oven and dry at 105 ⁇ 120°C.
  • the active precursor material further includes an active component, and the active component includes nitrate, sulfate, hydrochloride, acetate, oxalic acid containing Mn, Cu, Fe, Co, Zn components One or more of salt and persulfate.
  • the active precursor material obtained after the aluminum-based precursor material and the active component are added with water and stirred uniformly is dried, and the drying temperature is 60 to 120° C. to obtain the active material. Drying at this temperature ensures that the active component in the active precursor material, that is, the metal salt, is supported on the aluminum-based precursor material.
  • the aluminum-based precursor material includes aluminum isopropoxide, aluminum nitrate, sodium metaaluminate, aluminum nitrate nonahydrate, and alumina spherical particulate material.
  • the active component of the alumina spherical particulate material is ⁇ -alumina, the size is 2 to 4 mm, and the grinding process is 10 to 400 mesh.
  • the ozone catalyst obtained in step 3 is washed with deionized water for 3 to 5 times. To remove excess metal ions and their oxides on the surface of the catalyst particles.
  • the washed material is placed in an oven at 105-110°C for drying, and placed in a drying oven for use.
  • the active material described in step 3 is calcined twice according to a program step-wise gradient heating calcination method to obtain an ozone catalyst.
  • An application of the ozone catalyst prepared by the foregoing method is used in the field of TOC removal in pesticide wastewater.
  • the ozone catalyst prepared by the program step gradient heating method calcination method shows excellent catalytic effect in the process of degradation of pesticide wastewater, compared with the one-step heating method used in the prior art directly at a certain high temperature
  • the fired catalyst, the catalyst prepared by the method of the present invention has a significantly improved TOC removal rate under the same conditions;
  • the setting phase II is the temperature phase for generating the alumina active crystal phase structure, and the temperature is raised to 200-300°C at 3 ⁇ 5°C/min. Formation, shrinkage of crystal phase surface and collapse of pores to form a micro-porous skeleton structure, which is conducive to active component loading and improves catalyst activity. Insulation at this stage for 2 to 4 hours has the effect of maintaining the active catalyst crystal phase structure and maintaining the active component loading strength; Stage III is the temperature stage for the calcination of the active components. The active sites with active catalytic components are evenly distributed on the surface of the alumina carrier.
  • the skeleton structure formed by alumina has a certain steric hindrance effect, making the active components uniform Distribution, not easy to aggregate and sinter, improve the contact between the carrier and the active component, increase the molding efficiency and stability of the catalyst, and maintain the dispersion; increase the temperature at a rate of 3 °C/min to make the active ingredient slowly and uniformly on the surface of the alumina It forms a metal oxide layer and maintains the dispersibility of the material on the surface of the carrier to improve the active site. It can be kept at 500 to 600°C for 4 to 8 hours. It has the function of maintaining a highly active crystal image structure and maintaining a uniform distribution of active sites. Dispersed active component site distribution structure to maintain high degradation activity of the catalyst;
  • the active material is calcined twice according to the program step-wise gradient heating calcination method, and the resulting ozone catalyst has a further enhanced catalytic effect under the same conditions as the ozone catalyst calcined once. This is because the secondary calcination Once calcined, the active components that are not fully activated are further activated, increasing the dispersibility of the material and improving the active site of the material;
  • the method of the present invention prepares a catalyst.
  • the steps are simple and easy to control, which is more conducive to the mass production of an efficient ozone catalyst.
  • Example 1 is a schematic diagram of the stepped gradient temperature-calcining method used in Example 4.
  • FIG. 2 is a schematic diagram of the one-step heating method adopted in Comparative Example 4.
  • FIG. 2 is a schematic diagram of the one-step heating method adopted in Comparative Example 4.
  • the aluminum-based precursor materials used in this embodiment are: aluminum isopropoxide and anhydrous glucose.
  • the obtained catalyst is washed three times with deionized water to remove excess metal ions and their surface on the surface of the catalyst particles Oxide.
  • the washed material is placed in an oven at 105°C for drying and placed in a drying oven for use.
  • the obtained ozone catalyst is referred to as Y-Al-1.
  • Example 2 The other conditions are the same as in Example 1, except that the blank control of the material fired at a temperature of 5°C/min in one step to 550°C is obtained, and the ozone catalyst is obtained as Y-Al-0.
  • the typical representative substance in pesticide wastewater is 2,4-dichlorophenoxyacetic acid (hereinafter referred to as 2,4-D) as the tested organic pollutant, the catalyst dosage is 2.5g/L, the ozone dosage is 3g/h, and the reaction time Under 80min, the removal efficiency data is as follows:
  • the aluminum-based precursor material used in this embodiment is aluminum nitrate.
  • the obtained catalyst was washed five times with deionized water to remove excess metal ions and oxides on the surface of the catalyst particles. Put the washed material in a 110°C oven to dry it, and put it in the drying oven for use.
  • the obtained ozone catalyst is referred to as X-Al-1.
  • Example 2 The other conditions are the same as in Example 2, except that the blank control of the material fired at a temperature of 5°C/min in one step to 550°C is obtained, and the ozone catalyst is obtained as X-Al-0;
  • the material prepared by the stepped gradient heating calcination method has a removal effect of 8.3% higher than the material prepared by the one-step heating method.
  • the degradation rate of the material prepared by this method within the first 40 minutes Faster, indicating that the material prepared by this method has a better catalytic effect.
  • the aluminum-based precursor material used in this embodiment is: alumina particles; the active component is: copper nitrate trihydrate.
  • alumina particle catalyst with a particle diameter of 2 to 4 mm, grind the particles into fine particles of 30 to 60 mesh with a grinder, weigh 30 g of catalyst, add 6.42 g of copper nitrate trihydrate, stir thoroughly until uniform, and place the supported catalyst Dry in an oven at 110°C, then remove the material and place it in a ceramic crucible, place it in a muffle furnace, first heat up to 90°C at 5°C/min, hold for 1 hour, and further, heat up to 200 at 3°C/min °C, hold for 2h, further, raise the temperature to 550°C at 3°C/min, hold for 4h, and cool down to room temperature at 2°C/min.
  • the obtained catalyst was washed with deionized water 4 times to remove the catalyst particles Surplus metal ions and their oxides on the surface. Put the washed material in a 110°C oven to dry it, and put it in the drying oven for use. Record as K-Al-1.
  • Example 2 The other conditions are the same as in Example 2, except that the blank control of the material fired at a temperature of 5°C/min in one step to 550°C is recorded as K-Al-10;
  • 2,4-D Select 2,4-dichlorophenoxyacetic acid as a typical representative substance in pesticide wastewater as the organic pollutant under test
  • select catalyst dosage 2.5g/L select catalyst dosage 2.5g/L
  • ozone flow rate 2L/min select catalyst dosage 2.5g/L
  • ozone dosage ozone dosage Under the condition of 3g/h and reaction time of 80min
  • the aluminum-based precursor material used in this embodiment is: aluminum isopropoxide, glucose monohydrate; the active component is: cobalt nitrate heptahydrate.
  • the temperature was first increased to 90°C at 5°C/min and kept for 1h. Further, the temperature was raised to 200°C at 3°C/min and kept for 2h. Further, the temperature was raised to 550°C at 3°C/min and kept warm After 5h, the temperature was lowered to room temperature at 2°C/min, and the obtained catalyst was washed three times with deionized water to remove excess metal ions and oxides on the surface of the catalyst particles. The washed material is placed in an oven at 105°C for drying and placed in a drying oven for use.
  • the obtained ozone catalyst is referred to as Y-Al-11.
  • Example 2 The other conditions are the same as in Example 1, except that the blank control of the material fired at a step temperature of 5°C/min to 550°C is obtained, and the ozone catalyst is obtained as Y-Al-02.
  • the temperature rise process is shown in Figure 2. Show.
  • 2,4-D Select 2,4-dichlorophenoxyacetic acid as a typical representative substance in pesticide wastewater as the organic pollutant under test
  • select catalyst dosage 2.5g/L select catalyst dosage 2.5g/L
  • ozone flow rate 2L/min select catalyst dosage 2.5g/L
  • ozone dosage ozone dosage Under the condition of 3g/h and reaction time of 80min
  • the catalyst prepared by the method of the present invention exhibited better catalytic performance, and the TOC removal rate was increased by 12% compared with the one-step heating method in Comparative Example 4, and the degradation in the first 40 minutes The rate is relatively faster, which is close to twice the degradation rate of the one-step heating method, which shortens the degradation reaction time. It shows that the catalyst prepared by the method of the invention has certain superior performance.
  • the aluminum-based precursor material used in this embodiment is: alumina particles; the active component is: manganese nitrate.
  • a commercially available alumina particle catalyst with a particle diameter of 2 to 4 mm is taken, and the catalyst is ground into small particles of 10 to 20 mesh with a grinder. Weigh 30g of catalyst, add 4.53mL of 50% manganese nitrate solution, stir thoroughly until uniform, then place the supported catalyst in a 110°C oven to dry, then take the material out in a ceramic crucible and place it in a muffle furnace, first Increase the temperature to 90°C at 5°C/min and keep it for 1h. Further, heat to 200°C at 3°C/min and keep it for 2h.
  • the obtained catalyst was washed three times with deionized water to remove excess metal ions and oxides on the surface of the catalyst particles.
  • the washed material is placed in an oven at 105°C for drying and placed in a drying oven for use.
  • the obtained ozone catalyst is designated as K-Al-11.
  • Example 5 The other conditions are the same as in Example 5, except that the blank control of the material fired at a temperature of 5°C/min in one step to 550°C is obtained, and the obtained ozone catalyst is designated as K-Al-00.
  • 2,4-D Select 2,4-dichlorophenoxyacetic acid as a typical representative substance in pesticide wastewater as the organic pollutant under test
  • select catalyst dosage 2.5g/L select catalyst dosage 2.5g/L
  • ozone flow rate 2L/min select catalyst dosage 2.5g/L
  • ozone dosage ozone dosage Under the condition of 3g/h and reaction time of 80min
  • the ozone catalyst prepared by the stepwise heating method of Example 5 has a TOC removal rate increased by 4.4% compared with the comparative example 5 one-step heating method, indicating that the degree of mineralization of organic matter after the reaction is more thorough, indicating that the catalyst is more suitable for the degradation of the pesticide wastewater .
  • the calcined catalyst in Example 3 is subjected to secondary calcination according to the calcination method in Example 3, the resulting ozone catalyst is recorded as K-Al-2, and the typical representative substance in pesticide wastewater is selected as 2,4- Dichlorophenoxyacetic acid (hereinafter referred to as 2,4-D) was used as the pollutant of the tested organic substance.
  • the catalyst dosage was 2.5g/L
  • the ozone flow rate was 2L/min
  • the ozone dosage was 3g/h
  • the reaction time was 80min. Data are as follows:
  • the other conditions of this example are the same as Example 1, except that the amount of anhydrous glucose added is 8.5g, and the stepped heating method is: place the dried material in a muffle furnace, first at 10°C /min to 90°C, keep it for 1h, further, to 5°C/min to 300°C, keep it for 4h, further, to 3°C/min to 600°C, keep it for 8h, to 1.6°C/min to room temperature
  • the catalyst has the same effect as the TOC removal rate of the catalyst in Example 1 for degrading the same wastewater under the same conditions.
  • the other conditions of this example are the same as Example 1, except that the amount of anhydrous glucose added is 0.25g, and the stepwise heating method is: place the dried material in a muffle furnace, first at 8°C /min up to 90°C, holding for 1h, further, 4°C/min to 250°C, holding for 3h, further, heating at 3°C/min to 500°C, holding for 6h, cooling to 2°C/min to At room temperature, an ozone catalyst was obtained, which was equivalent to the TOC removal rate of the catalyst in Example 1 for degrading the same wastewater under the same conditions.
  • Example 3 The other conditions of this example are the same as Example 3, the difference is that: after adding copper nitrate trihydrate and stirring it evenly, the supported catalyst is placed in a 60°C oven and dried, and then the ozone catalyst is obtained by a stepwise temperature rise method.
  • Example 1 the TOC removal efficiency of the catalyst under the same conditions and degradation of the same wastewater is equivalent.
  • the stepped heating conditions of the present invention can achieve the improvement of the catalytic performance of the catalyst, and the mineralized organic matter is more thorough,
  • the catalytic status of ozone catalyst with incomplete catalytic performance has been improved, which has a certain role in promoting the promotion of ozone catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用,属于环保材料领域。它包括将铝基前体材料加水搅拌均匀,得到活性前体材料;将活性前体材料烘干,得到活性材料;将活性材料焙烧得到臭氧催化剂,所述焙烧方法为程序阶梯式梯度升温煅烧法。该制备方法能有效提高废水中臭氧催化剂去除TOC的效率,采用该方法制备催化剂,步骤简单,易于控制,更利于高效臭氧催化剂的量产。

Description

阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用 技术领域
本发明属于环保材料领域,更具体地说,涉及一种阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用。
背景技术
随着改革开放的发展,化工行业如雨后春笋般涌现,随之带来的一系列的环境污染问题日益严重。农药行业是精细化工行业的典型代表之一,农药类废水因具有COD总量大、有毒物质含量高、可生化性差等问题而成为化工企业亟待解决的难题。臭氧具有极强的氧化能力,可以直接将有机物矿化为分子量较小的物质。但是臭氧具有较强的氧化选择性,导致有机污染物不能完全被矿化为CO 2和H 2O,进而造成臭氧利用率下降,同时有机污染物的去除效率也降低。为了改善这一现象,通过向臭氧氧化系统中添加催化剂的形式,因催化剂能够将臭氧分解为具有较强催化能力的·OH从而催化氧化水质中的有机污染物从而达到矿化有机物的目的。
非均相臭氧催化剂因便于与液相分离、不会造成额外投入的活性金属离子的污染等优势在臭氧催化剂中普遍应用。但普遍存在催化剂活性较低、有机物降解不彻底的现象,制约了针对农药类废水臭氧催化剂的发展。
公开号为CN105366846A的现有技术公开了一种百草灵农药废水的处理方法,采用微电解+臭氧高级氧化+生物炭吸附的工艺方法,对农药废水进行处理,单纯臭氧投加量较大,且臭氧氧化的高选择性使得农药废水中有机物无法被完全矿化。
公开号为CN108097231A的现有技术公开了一种臭氧催化氧化催化剂及其制备方法和应用.8,采用将ρ型氧化铝、氧化锌活性组分与水混合,制备粒径为1-9mm的球形料球;再将料球在60-90℃下恒温处理10-24h,然后在450-550℃下煅烧活化处理2-5h,得到臭氧氧化催化剂。其实施案例中涉及到的有机物苯酚废水和草酸钠废水属于相对易降解废水,臭氧分解也可以实现较高的有机物去除效率,难以充分体现该催化剂的催化降解能力,也难以充分说明负载活性组分制备催化剂的方法能够适用于其他化工企业的废水。
公开号为CN106345450A的现有技术公开了一种用于废水治理的臭氧氧化催化剂,是以γ-氧化铝为载体,SnO 2和TiO 2为活性组分的负载型臭氧氧化催化剂,它的制备方法包括载体粒子预处理、凝胶溶液制备、浸渍、煅烧和重复处理五个过程,第一步载体粒子预处理:首先,将氧化铝粒子置于乙醇和丙酮混合液中超声震荡,以去除表面的有机物;随后,将震荡处理后的氧化铝粒子放入HNO 3中煮沸处理,以去除表面的氧化层;将经过酸处理后的氧化 铝粒子取出用超纯水洗至中性,于90-150℃下烘干;第二步凝胶溶液制备:将锡盐溶解于盐酸和无水乙醇的混合液中后加入稳定剂,将钛基化合物加入上述混合溶液中,在搅拌条件下缓慢滴加超纯水,搅拌均匀后得到透明稳定的凝胶溶液;第三步浸渍:将经第一步处理过的氧化铝粒子放入第二步制备的凝胶溶液中,进行震荡浸渍1-12h,滤去浸渍液后将得到的粒子材料在85-100℃下干燥4-6h;第四步煅烧:将第三步制备得到的粒子材料置于马弗炉中,升温速率为5℃/min;所述的恒温煅烧时间为1-8h,以恒定的升温速率升温至400-990℃,即可得到以γ-氧化铝为载体,锡、钛双金属氧化物SnO 2和TiO 2为活性组分的一次处理的负载型臭氧氧化催化材料;第五步重复处理:将一次处理的负载型臭氧氧化催化材料重复第三步、第四步数次后得到负载型臭氧氧化催化剂。其中使用本发明的负载型臭氧氧化催化剂可对氯霉素废水、青霉素废水、红霉素废水、链霉素废水、万古霉素废水和吡哌酸废水等抗生素废水进行臭氧催化氧化处理,具有去除效率高,臭氧利用率高,无需外加药剂等优点。
发明内容
1.要解决的问题
针对如何进一步提高臭氧催化剂活性的问题,本发明提供一种梯度升温煅烧法制备臭氧催化剂的方法及应用。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
一种阶梯式梯度升温煅烧法制备臭氧催化剂的方法,包括以下步骤:
1)将铝基前体材料加水搅拌均匀,得到活性前体材料;
2)将活性前体材料烘干,得到活性材料;
3)将活性材料焙烧得到臭氧催化剂,所述焙烧方法为程序阶梯式梯度升温煅烧法。
优选地,步骤3)所述的程序阶梯式梯度升温煅烧法为:
阶段Ⅰ:室温至排出冷空气形成煅烧前体氛围阶段;
阶段Ⅱ:生成氧化铝活性晶相结构温度阶段;
阶段Ⅲ:活性组分焙烧成型温度阶段;
阶段Ⅳ:降温阶段。
优选地,阶段Ⅰ为以5~10℃/min升温至90~110℃,保温1h;阶段Ⅱ为以3~5℃/min升温至200~300℃,保温2~4h;阶段Ⅲ为以3℃/min升温至500~600℃,保温4~8h。
优选地,阶段Ⅳ为以1~2℃/min降温至200~300℃,再降至室温。
优选地,步骤2)所述烘干温度为105~120℃。
优选地,所述的铝基前体材料中还包括无水葡萄糖或一水葡萄糖。
优选地,所述的铝基前体材料的制备方法包括:将铝基前体材料中的含铝盐与无水葡萄糖或一水葡萄糖以物质的量之比为(1.5~50):1的比例混合,在25~35℃下搅拌均匀后,置于烘箱中在105~120℃烘干。
优选地,所述活性前体材料还包括活性组分,所述活性组分包括含Mn、Cu、Fe、Co、Zn组分的硝酸盐、硫酸盐、盐酸盐、醋酸盐、草酸盐、过硫酸盐中的一种或几种的混合。
优选地,将铝基前体材料与活性组分加水搅拌均匀后得到的活性前体材料烘干,所述的烘干温度为60~120℃,得到活性材料。在此温度下烘干,确保活性前体材料中的活性组分即金属盐负载在铝基前体材料上。
优选地,所述的铝基前体材料包括异丙醇铝、硝酸铝、偏铝酸钠、九水合硝酸铝、氧化铝球状颗粒材料。
优选地,所述氧化铝球状颗粒材料的活性成分为γ-氧化铝,尺寸为2~4mm,研磨加工至10~400目。
优选地,将步骤3)得到的臭氧催化剂用去离子水将制备好的材料清洗3~5次。以去除催化剂颗粒表面多余的金属离子及其氧化物。
优选地,将水洗后的材料置于105~110℃烘箱中烘干,置于干燥箱中备用。
优选地,将步骤3)所述的活性材料按照程序阶梯式梯度升温煅烧法焙烧两次得到臭氧催化剂。
一种采用前述方法制备的臭氧催化剂的应用,用于农药类废水中TOC的去除领域。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明采用程序阶梯式梯度升温煅烧法制备的臭氧催化剂,在降解农药类废水过程中均表现出优良的催化效果,相比于现有技术中采用的一步升温法直接在一定高温下烧制的催化剂,本发明方法制备的催化剂在相同条件下TOC去除率明显提高;
(2)本发明程序阶梯式梯度升温煅烧法,设置阶段Ⅱ为生成氧化铝活性晶相结构温度阶段,以3~5℃/min升温至200~300℃,在此升温阶段氧化铝晶相不断形成、晶相表面收缩和孔道坍塌,形成微小多孔骨架结构,利于活性组分负载提高催化剂活性,在此阶段保温2~4h具有维持活性催化剂晶相结构、保持活性组分负载强度的作用;设置阶段Ⅲ为活性组分焙烧成型温度阶段,具有活性催化组分的活性位点均匀分布在氧化铝载体表面,高温条件下氧化铝形成的骨架结构具有一定的空间位阻效应,使得活性组分均匀分布,不易聚集烧结,提高载体与活性组分之间的接触,增加催化剂的成型效率和稳定性,保持分散性;以3℃/min的速率升温,使活性成分在氧化铝表面缓慢并均匀地生成金属氧化物层,并保持材料在载体表 面的分散性,提高活性位点,在500~600℃保温4~8h,具有维持高活性晶像结构,保持活性位点分布均匀的作用,保持高分散的活性组分位点分布结构,维持催化剂的高降解活性;
(3)本发明中将活性材料按照程序阶梯式梯度升温煅烧法焙烧两次,得到的臭氧催化剂相对于焙烧一次的臭氧催化剂,在相同条件下催化效果进一步提高,这是由于二次煅烧相对于一次煅烧,未被完全活化的活性组分进一步的被活化,增加了材料的分散性,提高了材料的活性位点;
(4)本发明方法制备催化剂,步骤简单,易于控制,更利于高效臭氧催化剂的量产。
附图说明
图1为实施例4采用的阶梯式梯度升温煅烧法示意图;
图2为对比例4采用的一步升温法示意图。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
实施例1
本实施例采用的铝基前体材料为:异丙醇铝,无水葡萄糖。
取异丙醇铝14.4g溶解于100mL去离子水中,再加5g的无水葡萄糖,在35℃条件下在搅拌器中以400r/min的转速进行搅拌6h,使完全搅拌均匀;将搅拌均匀的材料置于105℃烘箱中烘干至恒重,取出待用;
将烘干后的材料置于马弗炉中,在空气氛围下,先以5℃/min升温至90℃,保温1h,进一步的,以3℃/min升温至200℃,保温2h,进一步的,以3℃/min升温至550℃,保温4h,以2℃/min降温至室温,得到的催化剂用去离子水将制备好的材料清洗3次,以去除催化剂颗粒表面多余的金属离子及其氧化物。将水洗后的材料置于105℃烘箱中烘干,置于干燥箱中备用。得到臭氧催化剂记为Y-Al-1。
对比例1
其它条件均与实施例1相同,不同之处在于:直接以5℃/min一步升温至550摄氏度烧制的材料空白对照,得到臭氧催化剂记为Y-Al-0。
选取农药类废水中的典型代表物质2,4-二氯苯氧乙酸(下称2,4-D)作为受试有机物污染物,选择催化剂用量2.5g/L,臭氧用量3g/h,反应时间80min的条件下,去除效率数据如下:
表1臭氧催化剂TOC去除效率对比
Figure PCTCN2019128257-appb-000001
Figure PCTCN2019128257-appb-000002
实验数据显示,对比例1的直接升温方式制备出的臭氧催化剂,TOC去除率略低于本程序阶梯式梯度升温煅烧法制备的催化剂。反应时间为80min时,两种方法的TOC去除率分别为79.3%和89.1%,可以看出采用实施例1的阶梯式升温,制备的臭氧催化剂材料具有更好的催化效果。
实施例2
本实施例采用的铝基前体材料为:硝酸铝。
称取7.5g九水合硝酸铝置于250mL烧杯中,加入60mL去离子水溶解,350r/min室温下搅拌6h,将搅拌均匀的材料置于105℃烘箱中烘干至恒重,取出待用;
将烘干后的材料置于马弗炉中,先以5℃/min升温至90℃,保温1h,进一步的,以3℃/min升温至200℃,保温2h,进一步的,以3℃/min升温至550℃,保温4h,以2℃/min降温至室温,得到的催化剂用去离子水将制备好的材料清洗5次,以去除催化剂颗粒表面多余的金属离子及其氧化物。将水洗后的材料置于110℃烘箱中烘干,置于干燥箱中备用。得到臭氧催化剂记为X-Al-1。
对比例2
其它条件均与实施例2相同,不同之处在于:直接以5℃/min一步升温至550摄氏度烧制的材料空白对照,得到臭氧催化剂记为X-Al-0;
选取农药类废水中的典型代表物质2,4-二氯苯氧乙酸(下称2,4-D)作为受试有机物污染物,选择催化剂用量2g/L,臭氧流量2L/min,臭氧用量3g/h,反应时间80min的条件下,去除效率数据如下:
表2臭氧催化剂TOC去除效率对比
Figure PCTCN2019128257-appb-000003
从数据分析可以看出,采用阶梯式梯度升温煅烧法制备的材料较一步升温法制备的材料去除效果提高了8.3%,通过相对比对照组,采用本方法制备的材料在前40min内的降解速率更快,说明本方法制备的材料具有较好的催化效果。
实施例3
本实施例采用的铝基前体材料为:氧化铝颗粒;活性组分为:三水合硝酸铜。
取市售2~4mm粒径的氧化铝颗粒催化剂,用研磨机将颗粒研磨成30~60目的细颗粒,称量30g催化剂,加入6.42g三水合硝酸铜,充分搅拌至均匀后将负载催化剂置于110℃烘箱中烘干,然后将材料取出置于陶瓷坩埚中,放置于马弗炉中,先以5℃/min升温至90℃,保温1h,进一步的,以3℃/min升温至200℃,保温2h,进一步的,以3℃/min升温至550℃,保温4h,以2℃/min降温至室温,得到的催化剂用去离子水将制备好的材料清洗4次,以去除催化剂颗粒表面多余的金属离子及其氧化物。将水洗后的材料置于110℃烘箱中烘干,置于干燥箱中备用。记为K-Al-1。
对比例3
其它条件均与实施例2相同,不同之处在于:直接以5℃/min一步升温至550℃烧制的材料空白对照,记为K-Al-10;
选取农药类废水中的典型代表物质2,4-二氯苯氧乙酸(下称2,4-D)作为受试有机物污染物,选择催化剂用量2.5g/L,臭氧流量2L/min,臭氧用量3g/h,反应时间80min的条件下,去除效率数据如下:
表3臭氧催化剂TOC去除效率对比
Figure PCTCN2019128257-appb-000004
通过实验数据对比可以得知,通过实施例3阶梯式梯度升温煅烧法制备出的催化剂在80min的TOC去除率为87.6%,比对比例3一步法制备的材料去除率提高了5.8%,且在前40min的TOC降解速率相对更快,说明实施例3方法制备出的催化剂具有较更好的催化效果。
实施例4
本实施例采用的铝基前体材料为:异丙醇铝,一水葡萄糖;活性组分为:七水合硝酸钴。
称取14.4g异丙醇铝溶解于100mL去离子水中,加入5g一水葡萄糖,再加入4.2g的七水合硝酸钴,在25℃条件下均匀搅拌,然后置于120℃烘箱中烘干至恒重;将材料置于陶瓷坩埚中,在马弗炉中焙烧,采取的焙烧方式为程序阶梯式梯度升温焙烧法,具体步骤如下:
如图1所示,先以5℃/min升温至90℃,保温1h,进一步的,以3℃/min升温至200℃,保温2h,进一步的,以3℃/min升温至550℃,保温5h,以2℃/min降温至室温,得到的催化剂用去离子水将制备好的材料清洗3次,以去除催化剂颗粒表面多余的金属离子及其氧化物。将水洗后的材料置于105℃烘箱中烘干,置于干燥箱中备用。得到臭氧催化剂记为Y-Al-11。
对比例4
其它条件均与实施例1相同,不同之处在于:直接以5℃/min一步升温至550℃烧制的材料空白对照,得到臭氧催化剂记为Y-Al-02,其升温过程如图2所示。
选取农药类废水中的典型代表物质2,4-二氯苯氧乙酸(下称2,4-D)作为受试有机物污染物,选择催化剂用量2.5g/L,臭氧流量2L/min,臭氧用量3g/h,反应时间80min的条件下,去除效率数据如下:
表4臭氧催化剂TOC去除效率对比
Figure PCTCN2019128257-appb-000005
对比试验数据,在负载活性组分Co以后,采取本发明方法制备出的催化剂体现出了更好的催化性能,较对比例4中一步升温法TOC去除率提高了12%,且前40min的降解速率相对更快,接近一步升温法的降解速率的两倍左右,缩短了降解反应时间。说明本发明方法制备的催化剂具有一定的优越性能。
实施例5
本实施例采用的铝基前体材料为:氧化铝颗粒;活性组分为:硝酸锰。
取市售2~4mm粒径的氧化铝颗粒催化剂,用研磨机将催化剂研磨成10~20目的小颗粒。称取30g催化剂,加入4.53mL的50%硝酸锰溶液,充分搅拌至均匀后将负载催化剂置于110℃烘箱中烘干,然后将材料取出置于陶瓷坩埚中,放置于马弗炉中,先以5℃/min升温至90℃,保温1h,进一步的,以3℃/min升温至200℃,保温2h,进一步的,以3℃/min升温至550℃,保温6h,以2℃/min降温至室温,得到的催化剂用去离子水将制备好的材料清洗3次,以去除催化剂颗粒表面多余的金属离子及其氧化物。将水洗后的材料置于105℃烘箱中烘干,置于干燥箱中备用。得到臭氧催化剂记为K-Al-11。
对比例5
其它条件均与实施例5相同,不同之处在于:直接以5℃/min一步升温至550摄氏度烧制的材料空白对照,得到臭氧催化剂记为K-Al-00。
选取农药类废水中的典型代表物质2,4-二氯苯氧乙酸(下称2,4-D)作为受试有机物污染物,选择催化剂用量2.5g/L,臭氧流量2L/min,臭氧用量3g/h,反应时间80min的条件下,去除效率数据如下:
表5臭氧催化剂TOC去除效率对比
Figure PCTCN2019128257-appb-000006
采用实施例5阶段式升温方法制备的臭氧催化剂相较于对比例5一步升温法TOC去除率提高了4.4%,说明反应过后有机物矿化程度更加彻底,说明该催化剂更加适用于该农药废水的降解。
实施例6
将实施案例3中的烧制好的催化剂按照实施案例3中的焙烧方法进行二次焙烧,所得到的臭氧催化剂记为K-Al-2,选取农药类废水中的典型代表物质2,4-二氯苯氧乙酸(下称2,4-D)作为受试有机物污染物,选择催化剂用量2.5g/L,臭氧流量2L/min,臭氧用量3g/h,反应时间80min的条件下,去除效率数据如下:
表6臭氧催化剂TOC去除效率对比
Figure PCTCN2019128257-appb-000007
通过数据对比发现,本实施例过程中,对材料采用相同的二次程序阶梯式梯度升温法,对降解相同废水的TOC去除率又有所提升,说明了该方法制备的催化剂重复利用性能优良,可用作多次使用后催化剂活性降低之后的增活手段。
实施例7
本实施例其它条件均与实施例1相同,不同之处在于:无水葡萄糖的加入量为8.5g,阶梯式升温方法为:将烘干后的材料置于马弗炉中,先以10℃/min升温至90℃,保温1h,进一步的,以5℃/min升温至300℃,保温4h,进一步的,以3℃/min升温至600℃,保温8h,以1.6℃/min降温至室温,得到臭氧催化剂,该催化剂与实施例1中催化剂在相同条件下、降解相同废水的TOC去除率效果相当。
实施例8
本实施例其它条件均与实施例1相同,不同之处在于:无水葡萄糖的加入量为0.25g,阶梯式升温方法为:将烘干后的材料置于马弗炉中,先以8℃/min升温至90℃,保温1h,进一步的,以4℃/min升温至250℃,保温3h,进一步的,以3℃/min升温至500℃,保温6 h,以2℃/min降温至室温,得到臭氧催化剂,该催化剂与实施例1中催化剂在相同条件下、降解相同废水的TOC去除率效果相当。
实施例9
本实施例其它条件均与实施例3相同,不同之处在于:加入三水合硝酸铜搅拌均匀后将负载催化剂置于60℃烘箱中烘干,再经阶梯式升温方法得到臭氧催化剂,该催化剂与实施例1中催化剂在相同条件下、降解相同废水的TOC去除率效果相当。
以上详细论述了在本发明过程中,无论是不同原材料制备的催化剂还是负载不同活性组分的催化剂,采用本发明的阶梯式升温条件,均能够实现催化剂催化性能的提升,矿化有机物更加彻底,提升了臭氧催化剂催化性能不彻底的催化现状,对臭氧催化剂的推广有一定的推动作用。
需要说明的是,本技术领域的普通技术人员应当认识到,在上述具体的实施方案所描述的操作步骤,仅仅是为了说明本发明过程中的实施案例,并不局限于本发明本身,只要是在本发明实质精神范围内,对上述实施案例的变化、变型都落在本发明的权利要求范围内。

Claims (10)

  1. 一种阶梯式梯度升温煅烧法制备臭氧催化剂的方法,其特征在于,包括以下步骤:
    1)将铝基前体材料加水搅拌均匀,得到活性前体材料;
    2)将活性前体材料烘干,得到活性材料;
    3)将活性材料焙烧得到臭氧催化剂,所述焙烧方法为程序阶梯式梯度升温煅烧法。
  2. 根据权利要求1所述的阶梯式梯度升温煅烧法制备臭氧催化剂的方法,其特征在于,步骤3)所述的程序阶梯式梯度升温煅烧法为:
    阶段Ⅰ:室温至排出冷空气形成煅烧前体氛围阶段;
    阶段Ⅱ:生成氧化铝活性晶相结构温度阶段;
    阶段Ⅲ:活性组分焙烧成型温度阶段;
    阶段Ⅳ:降温阶段。
  3. 根据权利要求2所述的阶梯式梯度升温煅烧法制备臭氧催化剂的方法,其特征在于,阶段Ⅰ为以5~10℃/min升温至90~110℃,保温1h;阶段Ⅱ为以3~5℃/min升温至200~300℃,保温2~4h;阶段Ⅲ为以3℃/min升温至500~600℃,保温4~8h。
  4. 根据权利要求3所述的梯度升温煅烧法制备臭氧催化剂的方法,其特征在于,阶段Ⅳ为以1~2℃/min降温至200~300℃,再降至室温。
  5. 根据权利要求2所述的阶梯式梯度升温煅烧法制备臭氧催化剂的方法,其特征在于,所述的铝基前体材料中还包括无水葡萄糖或一水葡萄糖。
  6. 根据权利要求5所述的阶梯式梯度升温煅烧法制备臭氧催化剂的方法,其特征在于,所述的铝基前体材料的制备方法包括:将铝基前体材料中的含铝盐与无水葡萄糖或一水葡萄糖以物质的量之比为(1.5~50):1的比例混合,在25~35℃下搅拌均匀后,置于烘箱中在105~120℃烘干。
  7. 根据权利要求2或5所述的阶梯式梯度升温煅烧法制备臭氧催化剂的方法,其特征在于,所述活性前体材料还包括活性组分,所述活性组分包括含Mn、Cu、Fe、Co、Zn组分的硝酸盐、硫酸盐、盐酸盐、醋酸盐、草酸盐、过硫酸盐中的一种或几种的混合。
  8. 根据权利要求7所述的阶梯式梯度升温煅烧法制备臭氧催化剂的方法,其特征在于,将铝基前体材料与活性组分加水搅拌均匀后得到的活性前体材料烘干,所述的烘干温度为60~120℃,得到活性材料。
  9. 根据权利要求1~6或8中任意一项所述的阶梯式梯度升温煅烧法制备臭氧催化剂的方法,其特征在于,将步骤3)所述的活性材料按照程序阶梯式梯度升温煅烧法焙烧两次得到臭氧催化剂。
  10. 一种采用权利要求9所述的阶梯式梯度升温煅烧法制备臭氧催化剂的方法制备的臭 氧催化剂的应用,用于农药类废水中TOC的去除领域。
PCT/CN2019/128257 2019-01-11 2019-12-25 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用 WO2020143450A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019421318A AU2019421318A1 (en) 2019-01-11 2019-12-25 Method for preparing ozone catalyst by means of stepped gradient temperature elevation calcination method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910026459.1 2019-01-11
CN201910026459.1A CN109718749B (zh) 2019-01-11 2019-01-11 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用

Publications (1)

Publication Number Publication Date
WO2020143450A1 true WO2020143450A1 (zh) 2020-07-16

Family

ID=66299005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128257 WO2020143450A1 (zh) 2019-01-11 2019-12-25 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用

Country Status (3)

Country Link
CN (1) CN109718749B (zh)
AU (2) AU2019101810A4 (zh)
WO (1) WO2020143450A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992204A (zh) * 2020-09-17 2020-11-27 福建省晋蓝环保科技有限公司 一种臭氧氧化催化剂、制备方法及臭氧催化氧化装置
CN113171783A (zh) * 2021-04-21 2021-07-27 中化环境科技工程有限公司 一种微孔蜂窝臭氧催化剂及其制备方法和应用
CN113198462A (zh) * 2021-03-29 2021-08-03 中山大学 一种臭氧催化氧化催化剂及其制备方法和应用
CN113941316A (zh) * 2021-11-30 2022-01-18 武夷学院 一种改性城镇污水厂剩余污泥制备生物炭的方法
CN114111228A (zh) * 2021-06-16 2022-03-01 合肥国轩高科动力能源有限公司 一种锂电池快速烘干方法
CN114904506A (zh) * 2022-04-28 2022-08-16 济南市环境研究院(济南市黄河流域生态保护促进中心) 一种臭氧催化剂及其制备方法和应用
WO2023168799A1 (zh) * 2022-03-10 2023-09-14 苏州大学 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用
CN117960173A (zh) * 2024-03-28 2024-05-03 山东龙安泰环保科技有限公司 一种负载-共混型臭氧催化剂的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718749B (zh) * 2019-01-11 2019-12-13 南京大学盐城环保技术与工程研究院 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用
CN111437818B (zh) * 2020-04-28 2023-06-02 盐城师范学院 一种新型处理废水的非均相臭氧催化剂及其制备方法
CN112452338A (zh) * 2020-12-24 2021-03-09 江苏治水有数环保科技有限公司 一种深度处理巴丹农药废水的臭氧催化氧化催化剂及其制备方法
CN112827497B (zh) * 2020-12-31 2022-07-08 福建省农业科学院农业工程技术研究所 一种臭氧催化材料的制备方法
CN114433071A (zh) * 2021-12-29 2022-05-06 江苏世清环保科技有限公司 一种凹凸棒土为载体制备的脱硝催化剂及其制备方法
CN115959711A (zh) * 2022-12-21 2023-04-14 江苏宇星科技有限公司 一种高分散性氧化铁的制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895388A (zh) * 1972-03-21 1973-12-07
CN108246299A (zh) * 2016-12-28 2018-07-06 中国石油天然气股份有限公司 臭氧氧化催化剂、其制备方法及污水的深度处理方法
CN108435180A (zh) * 2018-02-05 2018-08-24 北京铭泽源环境工程有限公司 一种负载型臭氧高级氧化催化剂及其制备方法
CN108452799A (zh) * 2018-05-10 2018-08-28 北京化工大学 一种负载型银催化剂的制备方法及其催化苯甲醇无氧脱氢制苯甲醛的应用
CN108970620A (zh) * 2018-07-26 2018-12-11 大连海川博创环保科技有限公司 一种脱除水中有机物与总氮臭氧氧化催化剂的制备方法
CN109718749A (zh) * 2019-01-11 2019-05-07 南京大学盐城环保技术与工程研究院 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10332114A1 (de) * 2003-07-09 2005-01-27 Robert Bosch Gmbh Gekühlte Vorrichtung zur Dosierung von Reduktionsmittel zum Abgas eines Verbrennungsmotors
CN108097231B (zh) * 2017-12-27 2019-10-01 苏州大学 一种臭氧氧化催化剂及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895388A (zh) * 1972-03-21 1973-12-07
CN108246299A (zh) * 2016-12-28 2018-07-06 中国石油天然气股份有限公司 臭氧氧化催化剂、其制备方法及污水的深度处理方法
CN108435180A (zh) * 2018-02-05 2018-08-24 北京铭泽源环境工程有限公司 一种负载型臭氧高级氧化催化剂及其制备方法
CN108452799A (zh) * 2018-05-10 2018-08-28 北京化工大学 一种负载型银催化剂的制备方法及其催化苯甲醇无氧脱氢制苯甲醛的应用
CN108970620A (zh) * 2018-07-26 2018-12-11 大连海川博创环保科技有限公司 一种脱除水中有机物与总氮臭氧氧化催化剂的制备方法
CN109718749A (zh) * 2019-01-11 2019-05-07 南京大学盐城环保技术与工程研究院 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992204A (zh) * 2020-09-17 2020-11-27 福建省晋蓝环保科技有限公司 一种臭氧氧化催化剂、制备方法及臭氧催化氧化装置
CN111992204B (zh) * 2020-09-17 2022-07-19 福建省晋蓝环保科技有限公司 一种臭氧氧化催化剂、制备方法及臭氧催化氧化装置
CN113198462A (zh) * 2021-03-29 2021-08-03 中山大学 一种臭氧催化氧化催化剂及其制备方法和应用
CN113198462B (zh) * 2021-03-29 2022-07-19 中山大学 一种臭氧催化氧化催化剂及其制备方法和应用
CN113171783A (zh) * 2021-04-21 2021-07-27 中化环境科技工程有限公司 一种微孔蜂窝臭氧催化剂及其制备方法和应用
CN113171783B (zh) * 2021-04-21 2023-03-21 中化环境科技工程有限公司 一种微孔蜂窝臭氧催化剂及其制备方法和应用
CN114111228A (zh) * 2021-06-16 2022-03-01 合肥国轩高科动力能源有限公司 一种锂电池快速烘干方法
CN113941316A (zh) * 2021-11-30 2022-01-18 武夷学院 一种改性城镇污水厂剩余污泥制备生物炭的方法
WO2023168799A1 (zh) * 2022-03-10 2023-09-14 苏州大学 一种具有高度开放多级孔结构的碳催化剂及其制备方法和应用
CN114904506A (zh) * 2022-04-28 2022-08-16 济南市环境研究院(济南市黄河流域生态保护促进中心) 一种臭氧催化剂及其制备方法和应用
CN117960173A (zh) * 2024-03-28 2024-05-03 山东龙安泰环保科技有限公司 一种负载-共混型臭氧催化剂的制备方法
CN117960173B (zh) * 2024-03-28 2024-06-11 山东龙安泰环保科技有限公司 一种负载-共混型臭氧催化剂的制备方法

Also Published As

Publication number Publication date
CN109718749A (zh) 2019-05-07
CN109718749B (zh) 2019-12-13
AU2019101810A4 (en) 2021-08-12
AU2019421318A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2020143450A1 (zh) 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用
EP1894620B2 (en) Method to produce a porous zirconia powder
RU2306177C2 (ru) Способ получения микропористых материалов с покрытием из оксида редкоземельного металла
CN105540733B (zh) 一种TiO2-还原石墨烯复合材料及其制备方法和在人工海水体系中的应用
WO2019127632A1 (zh) 核壳型催化剂及其制备方法和在臭氧催化氧化中的应用
CN109731575A (zh) 臭氧催化氧化nbsCOD的芬顿污泥催化剂及其制备、应用方法
CN104226362A (zh) 一种非均相芬顿催化剂及其用途
CN115090319B (zh) 一种臭氧催化剂及其制备方法和应用
CN113731430B (zh) 双Z型CuO/CuBi2O4/Bi2O3复合光催化剂及其制备方法和应用
CN103447038A (zh) 介孔TiO2负载纳米铁催化剂的制备方法
CN109731574A (zh) 一种催化剂复合载体、基于该载体的催化剂及催化剂的制备方法
CN112473665A (zh) 一种负载型银锰催化剂及其制备方法和应用
CN110711579B (zh) 一种分解臭氧的银锰催化剂、其制备方法及用途
CN112844444A (zh) 一种利用载体孔道自吸附原理制备二氧化铈催化材料的方法
KR100830726B1 (ko) 시클로올레핀 제조용 촉매 및 제조 방법
CN107889471B (zh) 一种包含TiO2的光催化颗粒及其制备方法
CN114768812B (zh) 一种非均相芬顿催化剂LaFeO3/3DOMCeO2及其制备方法和应用
JP2006043683A (ja) 触媒担体及びその製造方法、並びに排ガス浄化触媒
CN110590175A (zh) 一种反蛋白石结构氧化铈及其制备方法与应用
CN110385132A (zh) 一种磁性沸石臭氧氧化催化剂及其制备方法
JP6512911B2 (ja) 排ガス浄化用貴金属担持触媒の製造方法
CN114471707A (zh) 含催化剂水凝胶球、其制备方法及其在光催化处理有机污染物方面的应用
CN109896545B (zh) 一种中空壳式二氧化钛纳米材料、银负载的中空壳式二氧化钛纳米材料及其制备方法
JP2005319451A (ja) 光触媒体及びその製造方法
CN113842926B (zh) 一种多相湿式氧化催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019421318

Country of ref document: AU

Date of ref document: 20191225

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908563

Country of ref document: EP

Kind code of ref document: A1