WO2021217722A1 - 一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用 - Google Patents

一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021217722A1
WO2021217722A1 PCT/CN2020/089925 CN2020089925W WO2021217722A1 WO 2021217722 A1 WO2021217722 A1 WO 2021217722A1 CN 2020089925 W CN2020089925 W CN 2020089925W WO 2021217722 A1 WO2021217722 A1 WO 2021217722A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper oxide
low temperature
catalyst
medium
oxide particle
Prior art date
Application number
PCT/CN2020/089925
Other languages
English (en)
French (fr)
Inventor
陈雄波
岑超平
王雪漫
刘莹
方平
陈定盛
陆鹏
叶绿萌
曾文豪
尹文华
Original Assignee
生态环境部华南环境科学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 生态环境部华南环境科学研究所 filed Critical 生态环境部华南环境科学研究所
Publication of WO2021217722A1 publication Critical patent/WO2021217722A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • B01J35/393
    • B01J35/394

Definitions

  • the invention belongs to the technical field of air pollution control, and particularly relates to a medium and low temperature supported nano copper oxide particle catalyst, and a preparation method and application thereof.
  • V 2 O 5 -WO 3 (MO 3 )/TiO 2 catalyst As the core component of SCR technology, denitration catalyst plays a decisive role in the development, promotion and application of SCR technology.
  • V 2 O 5 -WO 3 (MO 3 )/TiO 2 catalyst has the advantages of high activity, strong selectivity, and good sulfur resistance.
  • MO 3 metal-oxide-semiconductor
  • the reaction temperature is greatly reduced, and the low temperature denitration performance of the catalyst is more stringent.
  • vanadium-based catalysts face practical problems such as poor stability, high biological toxicity, and easy corrosion of equipment caused by sulfates. Therefore, the development of new non-vanadium-based catalysts with good mid- and low-temperature activity is significant and urgent.
  • Copper-based catalysts in the form of copper ion exchange zeolite such as Cu/SAPO-34, have higher catalytic activity at low temperature, but they mainly face the problem of higher cost of copper ion exchange zeolite. According to the report by Li Lulu et al. (Applied Catalysis B:Environmental, 2017, 207:366-375), the Cu element is selected for doping.
  • the activity of the TiO 2 /CeO 2 catalyst is It is three times the activity of the unsupported TiO 2 /CeO 2 catalyst, but it faces problems such as poor N 2 selectivity under different Cu loadings; according to the report by Weng Duan et al.
  • the NOx conversion rate of CuCeTi catalyst exceeds 100% under the low temperature condition of 200°C, and the dispersion degree of the particles on the carrier is much higher than that of the single active particle load, so the active particle on the catalyst is improved
  • the degree of dispersion is beneficial to promote the progress of the catalytic reaction under low temperature conditions, and is an important link in the catalyst preparation process.
  • the primary purpose of the present invention is to provide a method for preparing a medium and low temperature supported nano-copper oxide particle catalyst
  • Another object of the present invention is to provide a medium and low temperature supported nano copper oxide particle catalyst prepared by the above method.
  • the copper oxide particles have a higher particle dispersion and a smaller particle size on the carrier;
  • Another object of the present invention is to provide the application of the medium and low temperature supported nano copper oxide particle catalyst in the catalytic purification of NOx.
  • a preparation method of medium and low temperature supported nano copper oxide particle catalyst includes the following steps:
  • step (3) Add the ice cubes made in step (1) to the turbid liquid of step (2), and stir to completely dissolve the ice cubes;
  • step (3) After the ice cubes in step (3) are dissolved, the resulting solution is filtered, dried, and calcined, and finally a medium and low temperature supported nano-copper oxide particle catalyst is obtained.
  • the copper oxide precursor described in step (1) may be at least one of copper nitrate, copper chloride and copper sulfate;
  • the total amount of hydrogen peroxide and water in step (1) satisfies that the concentration of the copper oxide precursor in the mixed solution is 0.01-1 g/mL; preferably 0.1-0.5 g/mL.
  • the volume ratio of hydrogen peroxide and water in step (1) is 0.2 to 1; preferably 0.2 to 0.8.
  • the catalyst carrier described in step (2) may be one of titanium dioxide particles or alumina particles; preferably, the particle size of the catalyst carrier is 10-500 nm.
  • the precipitating agent in step (2) can be one of oxalic acid solution, ammonium carbonate solution or ammonia; preferably, the concentration of the precipitating agent is 1-3 mol/L.
  • the ratio of the catalyst carrier to the precipitation agent in step (2) is 0.01-1 g/mL; preferably 0.1-0.5 g/mL.
  • step (3) The amount of ice cubes and turbid liquid described in step (3) meets the requirement that the mass fraction of copper oxide in the product after roasting in step (4) is 1%-15%, and the rest are catalyst carriers;
  • the stirring temperature in step (3) refers to stirring and dissolving at -5 to 25°C, and the stirring speed is preferably 500 to 1000 r/min;
  • step (4) refers to drying at 80 to 120°C, and the baking refers to baking at 300 to 500°C for 3 to 5 hours;
  • the principle of the successful preparation of the medium and low temperature supported nano copper oxide particle catalyst provided by the present invention is: in the process of forming the copper oxide precursor solution, the mixed solution formed by hydrogen peroxide and water is used as the solvent, and under certain oxidation, The refinement of the catalyst pore size and the expansion of the specific surface area provide conditions; under low temperature conditions, the ice cubes made from the copper oxide precursor solution slowly dissolve in the turbid liquid formed by the solution formed by the precipitation agent and the catalyst carrier, thereby controlling the liquid The reaction rate of phase synthesis; during the slow release of the copper oxide precursor, the copper oxalate precipitate formed by reacting with the oxalic acid solution is uniformly dispersed on the surface of the carrier, avoiding the agglomeration and growth of particles; during the roasting process, the copper oxalate is decomposed to form Nano-copper oxide particles interact with the carrier, which has a positive effect on the catalyst's medium and low temperature activity, N 2 selectivity, anti-sulfur, anti-water
  • the medium and low temperature supported nano copper oxide particle catalyst provided by the present invention has excellent medium and low temperature denitration activity, high N 2 selectivity, sulfur resistance, water resistance and alkali metal poisoning characteristics.
  • the principle is: Compared with traditional methods, the structure In terms of optimization, under low temperature conditions, the copper oxide precursor solution slowly releases the reactants in the form of ice cubes. By controlling the reaction rate, on the one hand, the agglomeration of particles is avoided, with higher particle dispersion, and on the other hand, the particles are inhibited.
  • the growth of the pyrolysis method has obtained a smaller particle size, and the presence of hydrogen peroxide further reduces the particle size and enlarges the specific surface area; in terms of performance improvement, the ice-melting preparation process makes the catalyst surface produce more Chemical adsorption of oxygen and active sites, NOx adsorption species tends to convert bidentate nitrate species, resulting in more surface acid sites, which is effective for low-temperature denitrification activity, N 2 selectivity, sulfur, water and alkali resistance in the catalyst.
  • the improvement of metal poisoning characteristics is of great significance.
  • the present invention has the following advantages and beneficial effects:
  • the preparation method is simple and effective. On the basis of the traditional co-precipitation method, the precursor solution is slowly released into the carrier solution of the catalyst in the form of ice cubes, and the particle dispersion and size are controlled by reducing the reaction rate.
  • the copper oxide particles prepared by the present invention are highly dispersed on the surface of the carrier, and the prepared catalyst is lower than the copper oxide particle size obtained by the traditional method, and the average size is 1 to 5 nm.
  • the copper oxide particles are effectively controlled during the preparation process of the catalyst. Gather and grow;
  • the copper oxide particles prepared by the present invention are evenly distributed on the support material.
  • the catalyst produces more surface active species and chemically adsorbed oxygen.
  • the denitration performance of the copper oxide particle catalyst prepared by the present invention is better than that of the traditional preparation method, and can be maintained at a certain temperature High denitration efficiency, with excellent resistance to sulfur, water and alkali metal poisoning.
  • FIG. 1 is a crystal structure diagram of a medium and low temperature supported nano-copper oxide particle catalyst, in which CuTi-Ice is the ice melting method used in Example 1, and CuTi-Con is the co-precipitation method used in Comparative Example 1.
  • Figure 2 is the morphology distribution diagram of the medium and low temperature supported nano-copper oxide particle catalyst, in which (a) is Example 1 using the ice melting method, (b) is Comparative Example 1 using the co-precipitation method.
  • Figure 3 is the morphology distribution diagram of the medium and low temperature supported nano-copper oxide particle catalyst, where (a) and (c) are Example 1 using the ice melting method, (b) and (d) are Comparative Example 1 using the co-precipitation method .
  • reagents used in the examples can be conventionally purchased from the market unless otherwise specified.
  • a method for preparing a supported nano-copper oxide particle catalyst includes the following steps:
  • step (3) Put the ice cubes obtained in step (1) into the turbid liquid, stir and dissolve at a speed of 1000 r/min at 0°C.
  • the copper oxide particles are highly dispersed on the carrier, with an average size of 5 nm.
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the NOx conversion rate is stable at 90%; when the reaction temperature is lower than 300°C, the amount of N 2 O produced is less than 12 ppm; when the reaction temperature is 250°C in the presence of SO 2, the NOx conversion rate Stable at 85%; In the presence of 4.5vol.% H 2 O, when the reaction temperature is 250 °C, the NOx conversion rate is stable at 80%; when the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, when the reaction temperature is 250°C, the NOx conversion rate stabilizes at 75%.
  • a method for preparing a supported nano-copper oxide particle catalyst includes the following steps:
  • step (3) Put the ice cubes obtained in step (1) into the turbid liquid, stir and dissolve at a speed of 500 r/min at -5°C.
  • the copper oxide particles are highly dispersed on the carrier, with an average size of 4 nm.
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the reaction temperature is 250°C, the NOx conversion rate is stable at 95%.
  • the reaction temperature When the reaction temperature is lower than 300°C, the amount of N 2 O produced is less than 10 ppm; in the presence of SO 2 and the reaction temperature is 250° C., the NOx conversion rate Stable at 80%; In the presence of 4.5vol.% H 2 O and the reaction temperature is 250 °C, the NOx conversion rate is stable at 75%; when the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, when the reaction temperature is 250°C, the NOx conversion rate stabilizes at 75%.
  • a method for preparing a supported nano-copper oxide particle catalyst includes the following steps:
  • step (3) Put the ice cubes obtained in step (1) into the turbid liquid, stir and dissolve at a speed of 800 r/min at 20°C.
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the NOx conversion rate is stable at 100%; when the reaction temperature is lower than 300°C, the amount of N 2 O produced is less than 8ppm; when the reaction temperature is 250°C in the presence of SO 2, the NOx conversion rate Stable at 85%; In the presence of 4.5vol.% H 2 O, when the reaction temperature is 250 °C, the NOx conversion rate is stable at 83%; When the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, the NOx conversion rate stabilized at 78% when the reaction temperature was 250°C.
  • a method for preparing a supported nano-copper oxide particle catalyst includes the following steps:
  • step (3) Put the ice cubes obtained in step (1) into the turbid liquid, and stir and dissolve at a speed of 1000 r/min at 25°C.
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the NOx conversion rate is stable at 100%; when the reaction temperature is lower than 300°C, the amount of N 2 O produced is less than 14ppm; when the reaction temperature is 250°C in the presence of SO 2, the NOx conversion rate Stable at 80%; In the presence of 4.5vol.% H 2 O, the NOx conversion rate is stabilized at 88% when the reaction temperature is 250 °C; When the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, the NOx conversion rate stabilized at 80% when the reaction temperature was 250°C.
  • a method for preparing a supported nano-copper oxide particle catalyst includes the following steps:
  • step (3) Put the ice cubes obtained in step (1) into the turbid liquid, stir and dissolve at a speed of 600 r/min at 10°C.
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the NOx conversion rate When the reaction temperature is 350°C, the NOx conversion rate is stable at 100%; when the reaction temperature is lower than 300°C, the amount of N 2 O produced is less than 15 ppm; in the presence of SO 2 and the reaction temperature is 250° C., the NOx conversion rate Stable at 83%; in the presence of 4.5vol.% H 2 O, the NOx conversion rate is stabilized at 80% when the reaction temperature is 250 °C; when the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, when the reaction temperature is 250°C, the NOx conversion rate stabilizes at 75%.
  • a method for preparing a supported nano-copper oxide particle catalyst includes the following steps:
  • step (3) Put the ice cubes obtained in step (1) into the turbid liquid, stir and dissolve at a speed of 1000 r/min at 10°C.
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the NOx conversion rate is stable at 70%; when the reaction temperature is lower than 300°C, the amount of N 2 O produced is less than 10 ppm; in the presence of SO 2 and the reaction temperature is 250°C, the NOx conversion rate Stable at 88%; In the presence of 4.5vol.% H 2 O and the reaction temperature is 250 °C, the NOx conversion rate is stable at 85%;
  • the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, the NOx conversion rate stabilized at 80% when the reaction temperature was 250°C.
  • the preparation of the copper oxide particle catalyst by the co-precipitation method includes the following steps:
  • step (3) Drop the mixed solution in step (1) into the turbid liquid in step (2), and stir to dissolve at a speed of 1000 r/min at 0°C;
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the NOx conversion rate is stable at 65%; when the reaction temperature is lower than 300°C, the amount of N 2 O generated is less than 40 ppm; in the presence of SO 2 and the reaction temperature is 250°C, the NOx conversion rate Stable at 55%; In the presence of 4.5vol.% H 2 O, when the reaction temperature is 250 °C, the NOx conversion rate is stable at 45%; When the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, when the reaction temperature is 250°C, the NOx conversion rate stabilizes at 40%.
  • the preparation of the copper oxide particle catalyst by the co-precipitation method includes the following steps:
  • step (3) Drop the mixed solution in step (1) into the turbid liquid in step (2), and stir and dissolve at a speed of 500 r/min at -5°C;
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when in use), and N 2 is carrier gas.
  • the NOx conversion rate When the reaction temperature is 350°C, the NOx conversion rate is stable at 70%; when the reaction temperature is lower than 300°C, the amount of N 2 O generated is less than 60 ppm; in the presence of SO 2 and the reaction temperature is 200° C., the NOx conversion rate Stable at 60%; In the presence of 4.5vol.% H 2 O, when the reaction temperature is 250 °C, the NOx conversion rate is stable at 50%; When the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, when the reaction temperature is 250°C, the NOx conversion rate stabilizes at 40%.
  • the preparation of the copper oxide particle catalyst by the co-precipitation method includes the following steps:
  • step (3) Drop the mixed solution in step (1) into the turbid liquid in step (2), and stir to dissolve at a speed of 800 r/min at 20°C;
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the NOx conversion rate is stable at 60%; when the reaction temperature is lower than 300°C, the amount of N 2 O generated is less than 65 ppm; in the presence of SO 2 and the reaction temperature is 250°C, the NOx conversion rate Stable at 55%; In the presence of 4.5vol.% H 2 O, when the reaction temperature is 250 °C, the NOx conversion rate is stable at 45%; When the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, the NOx conversion rate stabilized at 45% when the reaction temperature was 250°C.
  • the preparation of the copper oxide particle catalyst by the co-precipitation method includes the following steps:
  • step (3) Drop the mixed solution in step (1) into the turbid liquid in step (2), and stir to dissolve at a speed of 1000 r/min at 25°C;
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the NOx conversion rate is stable at 75%; when the reaction temperature is lower than 300°C, the amount of N 2 O produced is less than 50 ppm; when the reaction temperature is 250°C in the presence of SO 2, the NOx conversion rate Stable at 60%; In the presence of 4.5vol.% H 2 O, when the reaction temperature is 250 °C, the NOx conversion rate is stable at 50%; When the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, the NOx conversion rate stabilized at 45% when the reaction temperature was 250°C.
  • the preparation of the copper oxide particle catalyst by the co-precipitation method includes the following steps:
  • step (3) Drop the mixed solution in step (1) into the turbid liquid in step (2), and stir and dissolve at a speed of 600 r/min at 10°C;
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when used), and N 2 is carrier gas.
  • the NOx conversion rate is stable at 80%; when the reaction temperature is lower than 300°C, the amount of N 2 O produced is less than 50 ppm; in the presence of SO 2 and the reaction temperature is 250° C., the NOx conversion rate Stable at 55%; In the presence of 4.5vol.% H 2 O, when the reaction temperature is 250 °C, the NOx conversion rate is stable at 40%; When the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, when the reaction temperature is 250°C, the NOx conversion rate is stable at 30%.
  • the preparation of the copper oxide particle catalyst by the co-precipitation method includes the following steps:
  • step (3) Drop the mixed solution in step (1) into the turbid liquid in step (2), and stir and dissolve at a speed of 1000 r/min at 10°C;
  • Catalyst activity and selectivity test put 0.5g of the prepared catalyst into a fixed bed reactor for activity and selectivity test.
  • the test reaction temperature is 100 ⁇ 450°C
  • the space velocity is about 50,000h -1
  • the simulated flue gas is produced by It is composed of N 2 , O 2 , NO, NH 3 and SO 2 , where NO is 700 ppm, NH 3 is 700 ppm, O 2 is 5% (volume percentage), SO 2 is 200 ppm (when in use), and N 2 is carrier gas.
  • the NOx conversion rate When the reaction temperature is 100°C, the NOx conversion rate is stable at 30%; when the reaction temperature is lower than 300°C, the amount of N 2 O produced is less than 20 ppm; in the presence of SO 2 and the reaction temperature is 250° C., the NOx conversion rate Stable at 50%; In the presence of 4.5vol.% H 2 O and the reaction temperature is 250 °C, the NOx conversion rate is stabilized at 40%; When the KNO 3 solution (0.02g/mL) is used to impregnate the above catalyst sample for alkali metal In the poisoning resistance test, when the reaction temperature is 250°C, the NOx conversion rate stabilizes at 35%.

Abstract

本发明属于大气污染控制技术领域,公开了一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用。该方法包括以下步骤:(1)将氧化铜前驱体溶于过氧化氢和水形成的混合溶液中,制成冰块;(2)将催化剂载体与沉淀剂混合,制成浑浊液;(3)将步骤(1)中制成的冰块放入到步骤(2)中的浑浊液中,低温下搅拌溶解;(4)待冰块溶解完后,过滤,将所得沉淀烘干,然后焙烧即得最终催化剂。该方法制备得到的氧化铜颗粒在载体上具有高度分散性,氧化铜平均尺寸为1~5nm,所得到的中低温负载型纳米氧化铜颗粒催化剂用于NOx净化时,具有优异的中低温活性、N 2选择性、抗硫、抗水和抗碱金属中毒特性。

Description

一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用 技术领域
本发明属于大气污染控制技术领域,特别涉及一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用。
背景技术
化石燃料作为提供世界经济动力的主要能源,在燃烧过程中不可避免的导致各种空气污染物的产生,如二氧化硫,氮氧化物(NOx),颗粒物,挥发性有机污染物等。2011年以来,从各种大气污染物的排放量来看,NOx排放总量已远远超过SO 2,成为了我国污染物控制的重点对象。选择性催化还原(SCR)脱硝技术因其技术成熟、效率高,是目前世界范围内应用最广、市场占有率最高、运行最稳定可靠的烟气脱硝技术,已成功应用于电站锅炉、玻璃窑炉、水泥窑炉等烟气治理。
脱硝催化剂作为SCR技术的核心组成部分,对SCR技术的开发、推广以及应用起着决定性的作用。V 2O 5-WO 3(MO 3)/TiO 2催化剂作为最常用的商业催化剂,具有活性高、选择性强、抗硫性能好等优点,但只有布置于除尘脱硫装置前才具有一定的经济可行性。然而,当布置于除尘脱硫装置后时,反应温度大大降低,对催化剂的低温脱硝性能要求更为严格。同时,钒基催化剂面临着稳定性差、生物毒性高、硫酸盐致设备易腐蚀等实际问题,故开发具有良好中低温活性的新型非钒基催化剂意义显著且需求迫切。
近年来,铜基催化剂的脱硝性能已有相关研究,因其具有较好的低温催化活性,成为了金属氧化物SCR催化剂的备选。以铜离子交换沸石的形式存在的铜基催化剂如Cu/SAPO-34低温催化活性较高,但主要面临着铜离子交换沸石成本较高的问题。根据李露露等人的报道(Applied Catalysis B:Environmental,2017,207:366-375),选用Cu元素进行掺杂,在150℃条件下,Cu摩尔量为 0.005时,TiO 2/CeO 2催化剂的活性是未负载的TiO 2/CeO 2催化剂活性的三倍,但不同的Cu负载量下面临着N 2选择性欠佳等问题;根据翁端等人的报道(Acs Applied Materials&Interfaces:2014,6(11):8134-8145),CuCeTi催化剂在200℃的低温条件下NOx转化率超过了100%,其粒子在载体上的分散度远远高于单一的活性粒子负载情况,故提高催化剂上活性粒子的分散度有利于促进低温条件下催化反应的进行,是催化剂制备过程中的一项重要环节。
目前国内外已有大量专利公开了各种类型的脱硝催化剂及制备工艺,但是制备具备优异中低温活性、N 2选择性和抗性的铜基脱硝催化剂的方法还鲜有报道,本发明将提供克服以上问题的途径和具体方法。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种中低温负载型纳米氧化铜颗粒催化剂的制备方法;
本发明另一目的在于提供上述方法制备的中低温负载型纳米氧化铜颗粒催化剂,该制备方法得到的催化剂中,氧化铜颗粒在载体上具有较高的颗粒分散度及较小的颗粒尺寸;
本发明的再一目的在于提供上述中低温负载型纳米氧化铜颗粒催化剂在NOx催化净化中的应用。
本发明的目的通过下述方案实现:
一种中低温负载型纳米氧化铜颗粒催化剂的制备方法,包括以下步骤:
(1)将氧化铜前驱体溶于过氧化氢和水形成的混合溶液,并制成冰块;
(2)将催化剂载体与沉淀剂混合,形成浑浊液;
(3)将步骤(1)中制成的冰块加入到步骤(2)的浑浊液中,搅拌后使冰块完全溶解;
(4)待步骤(3)冰块溶解完后,对所得溶液进行过滤、烘干、焙烧,最终得到中低温负载型纳米氧化铜颗粒催化剂。
步骤(1)中所述的氧化铜前驱体可为硝酸铜、氯化铜和硫酸铜中的至少一种;
步骤(1)中所述过氧化氢和水的总量满足混合溶液中氧化铜前驱体的浓度为0.01~1g/mL;优选为0.1~0.5g/mL。
步骤(1)中所述的过氧化氢和水的体积比为0.2~1;优选为0.2~0.8。
步骤(2)中所述的催化剂载体可为二氧化钛颗粒或氧化铝颗粒中的一种;优选的,所述催化剂载体的粒径为10~500nm。
步骤(2)中所述的沉淀剂可为草酸溶液、碳酸铵溶液或氨水中的一种;优选地,所述沉淀剂的浓度为1-3mol/L。
步骤(2)中所述催化剂载体与沉淀剂的比为0.01~1g/mL;优选为0.1~0.5g/mL。
步骤(3)中所述的冰块和浑浊液的用量满足步骤(4)中焙烧之后的产物中氧化铜的质量分数为1%~15%,其余为催化剂载体;
步骤(3)中所述的搅拌温度是指在-5~25℃下搅拌溶解,搅拌速度优选为500~1000r/min;
步骤(4)中所述的烘干是指在80~120℃烘干,焙烧是指在300~500℃焙烧3~5h;
一种由上述方法制备得到的中低温负载型纳米氧化铜颗粒催化剂,其中,氧化铜颗粒在载体上具有高度分散性,纳米氧化铜颗粒的平均粒径为1~5nm;
上述的中低温负载型纳米氧化铜颗粒催化剂在NOx催化净化中的应用。
本发明提供的中低温负载型纳米氧化铜颗粒催化剂成功制备的原理为:在形成氧化铜前驱体溶液的过程中,以过氧化氢和水形成的混合溶液作为溶剂,一定的氧化作用下,为催化剂孔径的细化和比表面积的扩增提供条件;在低温条件下,以氧化铜前驱体溶液制成的冰块在沉淀剂形成的溶液与催化剂载体形成的浑浊液中缓慢溶解,控制了液相合成的反应速率;在氧化铜前驱体缓慢释放的过程中,与草酸溶液反应并生成的草酸铜沉淀均匀分散在载体表面,避免了颗粒的团聚和生长;在焙烧过程中,草酸铜分解生成纳米氧化铜颗粒,与载体之间发生相互作用,对催化剂的中低温活性、N 2选择性、抗硫、抗水和抗碱金属中毒特性具有积极的促进作用。
本发明提供的中低温负载型纳米氧化铜颗粒催化剂具有优异的中低温脱硝活性、高N 2选择性、抗硫、抗水及抗碱金属中毒特性的原理为:较传统方法而言,在结构优化方面,低温条件下,氧化铜前驱体溶液以冰块的形式缓慢释放反应物,通过控制反应速率,一方面避免了粒子的团聚,具备了更高的颗粒分散度,另一方面抑制了颗粒的生长,获得了较小的颗粒尺寸,同时过氧化氢存在条件下,进一步降低了颗粒的尺寸并扩增了比表面积;在性能提升方面,冰融法制备过程使催化剂表面产生了更多的化学吸附氧和活性位点,NOx吸附物种趋向于双齿硝酸盐物种的转换,产生更多的表面酸性位,这对催化剂中低温脱硝活性、N 2选择性、抗硫、抗水和抗碱金属中毒特性的提升有着重要的意义。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)制备方法简单有效。在传统共沉淀方法的基础上进行改进,将前驱体溶液以冰块的形式缓慢释放到催化剂的载体溶液中,通过反应速率的降低来调控颗粒分散度和大小。
(2)较高的颗粒分散度和较小的颗粒尺寸。本发明制得的氧化铜颗粒在在载体表面高度分散,制得的催化剂低于传统方法得到的氧化铜颗粒尺寸,平均尺寸为1~5nm,在催化剂制备过程中有效地控制了氧化铜颗粒的聚集和生长;
(3)优异的中低温脱硝性能、N 2选择性和抗性。与传统方法制得的催化剂相比,本发明制得的氧化铜颗粒均匀地分布在载体材料上,同时该催化剂产生了更多的表面活性物种和化学吸附氧,用于NOx催化净化时,具有优异的中低温脱硝性能和N 2选择性;在抗硫、抗水和抗碱金属中毒实验中,本发明制得的氧化铜颗粒催化剂的脱硝性能优于传统制备方法,可在一定温度下维持较高的脱硝效率,具有优异的抗硫、抗水和抗碱金属中毒特性。
附图说明
图1为中低温负载型纳米氧化铜颗粒催化剂的晶体结构图,其中CuTi-Ice为实施例1使用冰融法,CuTi-Con为对比例1使用共沉淀法。
图2为中低温负载型纳米氧化铜颗粒催化剂的形貌分布图,其中(a)为实施例1使用冰融法,(b)为对比例1使用共沉淀法。
图3为中低温负载型纳米氧化铜颗粒催化剂的形貌分布图,其中(a)和(c)为实施例1使用冰融法,(b)和(d)为对比例1使用共沉淀法。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例中所用试剂如无特殊说明均可从市场常规购得。
实施例1
一种负载型纳米氧化铜颗粒催化剂的制备方法,包括以下步骤:
(1)将3.25g六水合硝酸铜溶于2mL过氧化氢和8mL水形成的混合溶液中,然后制成冰块。
(2)取50mL浓度为1mol/L的草酸溶液,然后加入8.63g粒径为100nm的二氧化钛,搅拌制成浑浊液。
(3)将步骤(1)所得冰块放入浑浊液中,0℃下以1000r/min的速度搅拌溶解。
(4)冰块溶解完之后,过滤出沉淀。
(5)将沉淀在80℃下烘干,然后400℃焙烧3h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒在载体上高度分散,平均尺寸为5nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为200℃时,NOx转化率稳定在90%;反应温度低于300℃时,N 2O的生成量小于12ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在85%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在80%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应 温度为250℃时,NOx转化率稳定在75%。
实施例2
一种负载型纳米氧化铜颗粒催化剂的制备方法,包括以下步骤:
(1)将2.5g氯化铜溶于3mL过氧化氢和7mL水形成的混合溶液中,然后制成冰块。
(2)取50mL浓度为2mol/L的碳酸铵溶液,然后加入8.63g粒径为150nm的氧化铝颗粒,搅拌制成浑浊液。
(3)将步骤(1)所得冰块放入浑浊液中,-5℃下以500r/min的速度搅拌溶解。
(4)冰块溶解完之后,过滤出沉淀。
(5)将沉淀在120℃下烘干,然后500℃焙烧3h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒在载体上高度分散,平均尺寸为4nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为250℃时,NOx转化率稳定在95%,反应温度低于300℃时,N 2O的生成量小于10ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在80%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在75%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在75%。
实施例3
一种负载型纳米氧化铜颗粒催化剂的制备方法,包括以下步骤:
(1)将2.35g三水合硝酸铜溶于4mL过氧化氢和6mL水形成的混合溶液中,然后制成冰块。
(2)取50mL浓度为2mol/L的氨水,然后加入15g粒径为100nm的 二氧化钛,搅拌制成浑浊液。
(3)将步骤(1)所得冰块放入浑浊液中,20℃下以800r/min的速度搅拌溶解。
(4)冰块溶解完之后,过滤出沉淀。
(5)将沉淀在90℃下烘干,然后450℃焙烧3h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒平均尺寸为4nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为450℃时,NOx转化率稳定在100%;反应温度低于300℃时,N 2O的生成量小于8ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在85%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在83%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在78%。
实施例4
一种负载型纳米氧化铜颗粒催化剂的制备方法,包括以下步骤:
(1)将1.44g三水合硝酸铜溶于2.5mL过氧化氢和7.5mL水形成的混合溶液中,然后制成冰块。
(2)取50mL浓度为3mol/L的草酸溶液,然后加入10g粒径为150nm的氧化铝颗粒,搅拌制成浑浊液。
(3)将步骤(1)所得冰块放入浑浊液中,25℃下以1000r/min的速度搅拌溶解。
(4)冰块溶解完之后,过滤出沉淀。
(5)将沉淀在80℃下烘干,然后400℃焙烧5h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒平均尺寸为4nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测 试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为300℃时,NOx转化率稳定在100%;反应温度低于300℃时,N 2O的生成量小于14ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在80%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在88%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在80%。
实施例5
一种负载型纳米氧化铜颗粒催化剂的制备方法,包括以下步骤:
(1)将2.18g氯化铜溶于3.5mL过氧化氢和6.5mL水形成的混合溶液中,然后制成冰块。
(2)取50mL浓度为1mol/L的氨水,然后加入10g粒径为100nm的二氧化钛颗粒,搅拌制成浑浊液。
(3)将步骤(1)所得冰块放入浑浊液中,10℃下以600r/min的速度搅拌溶解。
(4)冰块溶解完之后,过滤出沉淀。
(5)将沉淀在110℃下烘干,然后450℃焙烧4h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒平均尺寸为3nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为350℃时,NOx转化率稳定在100%;反应温度低于300℃时,N 2O的生成量小于15ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在83%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在80%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时, NOx转化率稳定在75%。
实施例6
一种负载型纳米氧化铜颗粒催化剂的制备方法,包括以下步骤:
(1)将1.5g氯化铜溶于4.5mL过氧化氢和5.5mL水形成的混合溶液中,然后制成冰块。
(2)取50mL浓度为1mol/L的碳酸铵溶液,然后加入10g粒径为100nm的二氧化钛颗粒,搅拌制成浑浊液。
(3)将步骤(1)所得冰块放入浑浊液中,10℃下以1000r/min的速度搅拌溶解。
(4)冰块溶解完之后,过滤出沉淀。
(5)将沉淀在100℃下烘干,然后300℃焙烧3h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒平均尺寸为4nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为100℃时,NOx转化率稳定在70%;反应温度低于300℃时,N 2O的生成量小于10ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在88%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在85%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在80%。
对比例1
共沉淀法制备氧化铜颗粒催化剂,包括以下步骤:
(1)将3.25g六水合硝酸铜溶于2mL过氧化氢和8mL水形成的混合溶液中;
(2)取50mL浓度为1mol/L的草酸溶液,然后加入8.63g粒径为100nm 的二氧化钛,搅拌制成浑浊液;
(3)将步骤(1)中的混合溶液滴入步骤(2)中的浑浊液中,0℃下以1000r/min的速度搅拌溶解;
(4)溶液充分混合后,过滤出沉淀;
(5)将沉淀在80℃下烘干,然后400℃焙烧3h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒平均尺寸为30nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为200℃时,NOx转化率稳定在65%;反应温度低于300℃时,N 2O的生成量小于40ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在55%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在45%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在40%。
对比例2
共沉淀法制备氧化铜颗粒催化剂,包括以下步骤:
(1)将2.5g氯化铜溶于3mL过氧化氢和7mL水形成的混合溶液中;
(2)取50mL浓度为2mol/L的碳酸铵溶液,然后加入8.63g粒径为150nm的氧化铝颗粒,搅拌制成浑浊液;
(3)将步骤(1)中的混合溶液滴入步骤(2)中的浑浊液中,-5℃下以500r/min的速度搅拌溶解;
(4)溶液充分混合后,过滤出沉淀;
(5)将沉淀在120℃下烘干,然后500℃焙烧3h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒平均尺寸为28nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、 NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为350℃时,NOx转化率稳定在70%;反应温度低于300℃时,N 2O的生成量小于60ppm;SO 2存在的条件下,反应温度为200℃时,NOx转化率稳定在60%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在50%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在40%。
对比例3
共沉淀法制备氧化铜颗粒催化剂,包括以下步骤:
(1)将2.35g三水合硝酸铜溶于4mL过氧化氢和6mL水形成的混合溶液中;
(2)取50mL浓度为2mol/L的氨水,然后加入15g粒径为100nm的二氧化钛,搅拌制成浑浊液;
(3)将步骤(1)中的混合溶液滴入步骤(2)中的浑浊液中,20℃下以800r/min的速度搅拌溶解;
(4)溶液充分混合后,过滤出沉淀;
(5)将沉淀在90℃下烘干,然后450℃焙烧3h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒平均尺寸为30nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为450℃时,NOx转化率稳定在60%;反应温度低于300℃时,N 2O的生成量小于65ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在55%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在45%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在45%。
对比例4
共沉淀法制备氧化铜颗粒催化剂,包括以下步骤:
(1)将1.44g三水合硝酸铜溶于2.5mL过氧化氢和7.5mL水形成的混合溶液中;
(2)取50mL浓度为3mol/L的草酸溶液,然后加入10g粒径为150nm的氧化铝颗粒,搅拌制成浑浊液;
(3)将步骤(1)中的混合溶液滴入步骤(2)中的浑浊液中,25℃下以1000r/min的速度搅拌溶解;
(4)溶液充分混合后,过滤出沉淀;
(5)将沉淀在80℃下烘干,然后400℃焙烧5h,最终制得催化剂样品。制得的催化剂样品中,氧化铜颗粒平均尺寸为25nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为300℃时,NOx转化率稳定在75%;反应温度低于300℃时,N 2O的生成量小于50ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在60%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在50%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在45%。
对比例5
共沉淀法制备氧化铜颗粒催化剂,包括以下步骤:
(1)将2.18g氯化铜溶于3.5mL过氧化氢和6.5mL水形成的混合溶液中;
(2)取50mL浓度为1mol/L的氨水,然后加入10g粒径为100nm的二氧化钛颗粒,搅拌制成浑浊液;
(3)将步骤(1)中的混合溶液滴入步骤(2)中的浑浊液中,10℃下以 600r/min的速度搅拌溶解;
(4)溶液充分混合后,过滤出沉淀;
(5)将沉淀在110℃下烘干,然后450℃焙烧4h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒平均尺寸为32nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为350℃时,NOx转化率稳定在80%;反应温度低于300℃时,N 2O的生成量小于50ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在55%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在40%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在30%。
对比例6
共沉淀法制备氧化铜颗粒催化剂,包括以下步骤:
(1)将1.5g氯化铜溶于4.5mL过氧化氢和5.5mL水形成的混合溶液中;
(2)取50mL浓度为1mol/L的碳酸铵溶液,然后加入10g粒径为100nm的二氧化钛颗粒,搅拌制成浑浊液;
(3)将步骤(1)中的混合溶液滴入步骤(2)中的浑浊液中,10℃下以1000r/min的速度搅拌溶解;
(4)溶液充分混合后,过滤出沉淀;
(5)将沉淀在100℃下烘干,然后300℃焙烧3h,最终制得催化剂样品。
制得的催化剂样品中,氧化铜颗粒平均尺寸为30nm。催化剂的活性及选择性测试:将0.5g制备的催化剂放入固定床反应器中进行活性和选择性测试,测试反应温度为100~450℃、空速约为50,000h -1,模拟烟气由N 2、O 2、NO、 NH 3和SO 2组成,其中NO为700ppm,NH 3为700ppm,O 2 5%(体积百分比),SO 2为200ppm(使用时),N 2为载气。当反应温度为100℃时,NOx转化率稳定在30%;反应温度低于300℃时,N 2O的生成量小于20ppm;SO 2存在的条件下,反应温度为250℃时,NOx转化率稳定在50%;4.5vol.%H 2O存在的条件下,反应温度为250℃时,NOx转化率稳定在40%;当选用KNO 3溶液(0.02g/mL)浸渍上述催化剂样品进行碱金属中毒的抗性实验时,反应温度为250℃时,NOx转化率稳定在35%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种中低温负载型纳米氧化铜颗粒催化剂的制备方法,其特征在于包括以下步骤:
    (1)将氧化铜前驱体溶于过氧化氢和水形成的混合溶液中,并制成冰块;
    (2)将催化剂载体与沉淀剂混合,形成浑浊液;
    (3)将步骤(1)中制成的冰块加入到步骤(2)的浑浊液中,搅拌后使冰块完全溶解;
    (4)待步骤(3)冰块溶解完后,对所得溶液进行过滤、烘干、焙烧,最终得到负载型纳米氧化铜颗粒催化剂。
  2. 根据权利要求1所述的中低温负载型纳米氧化铜颗粒催化剂的制备方法,其特征在于:
    步骤(1)中所述的氧化铜前驱体为氯化铜、硝酸铜和硫酸铜中的至少一种。
  3. 根据权利要求1所述的中低温负载型纳米氧化铜颗粒催化剂的制备方法,其特征在于:
    步骤(1)中所述过氧化氢和水的总量满足混合溶液中氧化铜前驱体的浓度为0.01~1g/mL;
    步骤(1)中所述的过氧化氢和水的体积比为0.2~1。
  4. 根据权利要求1所述的中低温负载型纳米氧化铜颗粒催化剂的制备方法,其特征在于:
    步骤(2)中所述的催化剂载体为二氧化钛颗粒或氧化铝颗粒中的一种;
    步骤(2)中所述的沉淀剂为草酸溶液、碳酸铵溶液或氨水中的一种。
  5. 根据权利要求1所述的中低温负载型纳米氧化铜颗粒催化剂的制备方法,其特征在于:
    步骤(2)所述催化剂载体的粒径为10~500nm;
    步骤(2)所述沉淀剂的浓度为1-3mol/L;
    步骤(2)中所述催化剂载体与沉淀剂的比为0.01~1g/mL。
  6. 根据权利要求1所述的中低温负载型纳米氧化铜颗粒催化剂的制备方法,其特征在于:
    步骤(1)中所述过氧化氢和水的总量满足混合溶液中氧化铜前驱体的浓度为0.1~0.5g/mL;
    步骤(1)中所述的过氧化氢和水的比例为0.2~0.8;
    步骤(2)中所述催化剂载体与沉淀剂的比0.1~0.5g/mL。
  7. 根据权利要求1~6任一项所述的中低温负载型纳米氧化铜颗粒催化剂的制备方法,其特征在于:
    步骤(3)中所述的冰块和浑浊液的用量满足步骤(4)中焙烧之后的产物中氧化铜的质量分数为1%~15%,其余为催化剂载体。
  8. 根据权利要求1所述的中低温负载型纳米氧化铜颗粒催化剂的制备方法,其特征在于:
    步骤(3)中所述的搅拌温度是指在-5~25℃下搅拌溶解,搅拌速度为500~1000r/min;
    步骤(4)中所述的烘干是指在80~120℃烘干,焙烧是指在300~500℃焙烧3~5h。
  9. 一种根据权利要求1~8任一项所述的方法制备得到的中低温负载型纳米氧化铜颗粒催化剂。
  10. 根据权利要求9所述的中低温负载型纳米氧化铜颗粒催化剂在NOx催化净化中的应用。
PCT/CN2020/089925 2020-04-27 2020-05-13 一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用 WO2021217722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010343516.1 2020-04-27
CN202010343516.1A CN111558372B (zh) 2020-04-27 2020-04-27 一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021217722A1 true WO2021217722A1 (zh) 2021-11-04

Family

ID=72073124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089925 WO2021217722A1 (zh) 2020-04-27 2020-05-13 一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111558372B (zh)
WO (1) WO2021217722A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116511516A (zh) * 2023-06-26 2023-08-01 中国农业大学 一种新型铜基纳米材料及其在抗氧化和抑菌方面的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124532A1 (en) * 2008-11-17 2010-05-20 National Taiwan University Method For Preparing Copper Oxide Nano-Particles
CN103537284A (zh) * 2013-11-01 2014-01-29 长沙理工大学 一种用于降解有机染料废水的纳米氧化铜催化剂的制备方法
CN107376913A (zh) * 2017-09-18 2017-11-24 王兴利 一种可用于NO高效催化净化的γ‑氧化铝基氧化铜纳米材料及其制备方法
CN108993471A (zh) * 2018-07-26 2018-12-14 环境保护部华南环境科学研究所 一种负载型纳米氧化铈颗粒催化剂及其制备方法和应用
US20190060877A1 (en) * 2016-03-09 2019-02-28 Qatar University Method of making a copper oxide-titanium vdioxide nanocatalyst

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411094A (en) * 1977-06-28 1979-01-26 Sakai Chem Ind Co Ltd Catalyst regenerating method
CN101239313B (zh) * 2008-01-29 2011-05-11 清华大学 同时脱除碳烟颗粒和氮氧化物的铜铈铝催化剂及制备方法
CN101239309A (zh) * 2008-02-22 2008-08-13 江苏金长江环保汽摩消声器有限公司 一种高比表面积铈铝基复合氧化物及其制备方法
CN101559367A (zh) * 2008-04-17 2009-10-21 宇星科技发展(深圳)有限公司 一种脱除SO2与NOx的一体化吸收剂和催化剂及其制备方法
CN102513121A (zh) * 2011-12-15 2012-06-27 西南化工研究设计院 一种scr烟气脱硝催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124532A1 (en) * 2008-11-17 2010-05-20 National Taiwan University Method For Preparing Copper Oxide Nano-Particles
CN103537284A (zh) * 2013-11-01 2014-01-29 长沙理工大学 一种用于降解有机染料废水的纳米氧化铜催化剂的制备方法
US20190060877A1 (en) * 2016-03-09 2019-02-28 Qatar University Method of making a copper oxide-titanium vdioxide nanocatalyst
CN107376913A (zh) * 2017-09-18 2017-11-24 王兴利 一种可用于NO高效催化净化的γ‑氧化铝基氧化铜纳米材料及其制备方法
CN108993471A (zh) * 2018-07-26 2018-12-14 环境保护部华南环境科学研究所 一种负载型纳米氧化铈颗粒催化剂及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116511516A (zh) * 2023-06-26 2023-08-01 中国农业大学 一种新型铜基纳米材料及其在抗氧化和抑菌方面的应用
CN116511516B (zh) * 2023-06-26 2023-09-19 中国农业大学 一种新型铜基纳米材料及其在抗氧化和抑菌方面的应用

Also Published As

Publication number Publication date
CN111558372B (zh) 2021-07-23
CN111558372A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
CN101773824B (zh) 一种去除焚烧烟气中NOx的催化剂其制备方法
CN104056658B (zh) 一种低温抗硫脱硝催化剂及其制备方法
CN103464194A (zh) 一种用于低温烟气脱硝的scr整体蜂窝催化剂及其制备方法
CN109433254B (zh) 一种限域分子筛脱硝催化剂及其制备方法
CN106268787A (zh) 一种钐掺杂MnOx低温SCR催化剂及其制备方法和应用
CN112742413B (zh) 一种低温scr脱硝催化剂及其制备方法和应用
CN108816239B (zh) 一种负载型催化剂、其制备方法和用途
CN113042066B (zh) 一种烟气脱硝催化剂及其制备方法
CN105833901A (zh) 一种PrOx-MnOx/SAPO-34低温SCR烟气脱硝催化剂及其制备方法与应用
CN108926911A (zh) 一种脱硝脱汞整体式滤料的制备方法
CN105879879A (zh) 一种高抗硫超低温scr脱硝催化剂及其制备方法
CN113877638B (zh) 分步沉淀法制备脱硝脱二噁英脱VOCs一体化催化剂的制备方法、制得的催化剂
WO2021217722A1 (zh) 一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用
CN110773224A (zh) 一种抗碱金属脱硝催化剂的制备方法
CN113262780A (zh) 高活性和高稳定性的锰基碳烟催化剂及其制备方法和应用
CN107185555B (zh) 一种铜掺杂的硫化铈基纳米晶脱硝催化剂的制备方法
CN112221488A (zh) 一种协同脱硝脱汞的新型核壳结构催化剂及制备方法
CN115318303B (zh) 一种低温去除柴油车碳烟颗粒的催化剂及其制备方法
CN106362744A (zh) 一种以镁铝水滑石为载体的脱硫脱硝催化剂及其制备方法和应用
CN115672310A (zh) 具有抗硫毒化性能的低温scr脱硝催化剂及其制备方法
CN109772346B (zh) 一种复合材料催化剂的制备方法及其在低温下脱氮的应用
CN108993471B (zh) 一种负载型纳米氧化铈颗粒催化剂及其制备方法和应用
CN112316934A (zh) 一种烧绿石复合氧化物碳烟消除催化剂及制备方法和应用
CN110465283A (zh) 一种低温脱硝催化剂及其制备方法
CN109647502A (zh) 一种新型低温脱硝催化剂的制备及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20934173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20934173

Country of ref document: EP

Kind code of ref document: A1