WO2021215100A1 - 溶融亜鉛めっき鋼板及びその製造方法 - Google Patents

溶融亜鉛めっき鋼板及びその製造方法 Download PDF

Info

Publication number
WO2021215100A1
WO2021215100A1 PCT/JP2021/006481 JP2021006481W WO2021215100A1 WO 2021215100 A1 WO2021215100 A1 WO 2021215100A1 JP 2021006481 W JP2021006481 W JP 2021006481W WO 2021215100 A1 WO2021215100 A1 WO 2021215100A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
hot
dip galvanized
layer
Prior art date
Application number
PCT/JP2021/006481
Other languages
English (en)
French (fr)
Inventor
友輔 奥村
麻衣 青山
正貴 木庭
俊佑 山本
洋一 牧水
叡 奥村
克弥 星野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180029889.4A priority Critical patent/CN115485416A/zh
Priority to MX2022013299A priority patent/MX2022013299A/es
Publication of WO2021215100A1 publication Critical patent/WO2021215100A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel

Definitions

  • the present invention relates to a hot-dip galvanized steel sheet suitable as a member used in an industrial field such as an automobile and a method for manufacturing the same.
  • High-strength galvanized steel sheets are generally manufactured by continuous hot-dip galvanizing line (CGL).
  • CGL continuous hot-dip galvanizing line
  • Si and Mn added to increase the strength of the steel sheet form an oxide on the surface of the steel sheet during annealing, and this oxide deteriorates the wettability between the hot-dip zinc and the steel sheet, resulting in non-plating.
  • Si causes non-plating, lowers the alloying rate when the zinc-plated layer is heat-alloyed, and deteriorates press formability when the ⁇ phase remains. If alloying is performed at a high temperature in order to improve press formability, it becomes difficult to control the Fe concentration in the Fe—Zn alloy phase, the plating adhesion is lowered, and the steel sheet structure is tempered to obtain the desired strength.
  • Patent Document 1 states that " a zinc-iron alloy coating characterized by subjecting a high-strength steel sheet to iron electroplating of 0.50 g / m 2 or more, hot-dip galvanizing, and then alloying heat treatment. A method for manufacturing a high-strength steel plate "is described.
  • an object of the present invention is to provide a hot-dip galvanized steel sheet having excellent plating appearance and corrosion resistance, and a suitable manufacturing method thereof.
  • Electro-Fe plating is generally performed using a sulfuric acid bath from the viewpoint of cost and productivity. After Fe-plating the steel sheet to obtain an Fe-plated steel sheet, the Fe-plated steel sheet is washed with water and subsequently subjected to roll drawing to clean and remove the plating solution on the Fe-plated steel sheet. After that, the Fe-plated steel sheet is dried and subjected to annealing by CGL and hot-dip galvanizing in the next step to obtain a hot-dip galvanized steel sheet.
  • the plating solution on the Fe-plated steel sheet cannot be sufficiently removed by washing with water and roll drawing, and the sulfuric acid compound may remain on the surface of the Fe-plated steel sheet or the sulfuric acid compound may be incorporated into the Fe-plated layer. do.
  • a sulfuric acid compound is incorporated into the galvanized layer, which causes deterioration of the corrosion resistance of the hot-dip galvanized steel sheet.
  • the present inventors have obtained the idea that the plating solution on the Fe-plated steel sheet is sufficiently removed by pickling the Fe-plated steel sheet before annealing. As a result, it is possible to sufficiently suppress the residual sulfuric acid compound on the surface of the Fe-plated steel sheet and the incorporation of the sulfuric acid compound into the Fe-plated layer. Therefore, it is possible to sufficiently suppress the incorporation of the sulfuric acid compound into the galvanized layer, and as a result, the corrosion resistance of the hot-dip galvanized steel sheet is improved.
  • the cold-rolled steel sheet before electro-Fe plating may be pickled, or the cold-rolled steel sheet before annealing may be pickled when the electro-Fe plating is not performed. .. However, all of these are performed for the purpose of removing the natural oxide film on the surface of the steel sheet.
  • the Fe-plated steel sheet is pickled for the purpose of not leaving the sulfuric acid compound on the Fe-plated steel sheet.
  • the gist structure of the present invention is as follows. [1] A cold-rolled steel sheet containing Si and Mn is subjected to electro-Fe plating in a sulfuric acid bath containing 20 g / L or more and 200 g / L or less of sulfate ions, and the amount of adhesion to at least one side of the cold-rolled steel sheet is 1.
  • the cold-rolled steel sheet has a component composition containing Si: 0.05% or more and 2.5% or less and Mn: 1.0% or more and 3.5% or less in mass%.
  • the method for producing a hot-dip galvanized steel sheet according to any one of the items.
  • the cold-rolled steel sheet is in mass%. C: 0.8% or less, Si: 0.05% or more and 2.5% or less, Mn: 1.0% or more and 3.5% or less, P: 0.1% or less, and S: 0.03% or less, including The method for producing a hot-dip galvanized steel sheet according to any one of the above [1] to [4], wherein the balance has a component composition consisting of Fe and unavoidable impurities.
  • composition of the components is further increased by mass%.
  • a base steel sheet which is a cold-rolled steel sheet containing Si and Mn, A zinc-plated layer formed on at least one side of the base steel sheet and An Fe plating layer arbitrarily present between the base steel plate and the zinc plating layer, Have, Wherein the adhesion amount XFe per surface of the Fe plating layer (g / m 2), is not less than 0.9 the sum of the YFe (g / m 2) obtained by the following equation, A hot-dip galvanized steel sheet having an S content of 200 mass ppm or less in the galvanized layer.
  • YFe WZn ⁇ ⁇ (fFe / 100)-(fMn / CMn) ⁇
  • WZn Adhesion amount per side of the galvanized layer (g / m 2 )
  • fFe Fe concentration (%) in the galvanized layer
  • fMn Mn concentration (%) in the galvanized layer
  • CMn Mn concentration (%) in the base steel sheet
  • the base steel plate is based on mass%. C: 0.8% or less, Si: 0.05% or more and 2.5% or less, Mn: 1.0% or more and 3.5% or less, P: 0.1% or less, and S: 0.03% or less, including The hot-dip galvanized steel sheet according to any one of the above [12] to [15], wherein the balance has a component composition consisting of Fe and unavoidable impurities.
  • the component composition is further increased by mass%.
  • the Fe plating layer is a total of at least one element selected from the group consisting of B, C, P, N, O, Ni, Mo, Zn, W, Pb, Sn, Cr, V, and Co.
  • the zinc-plated layer contains at least one element selected from the group consisting of B, C, P, N, O, Ni, Mo, Zn, W, Pb, Sn, Cr, V, and Co.
  • the hot-dip galvanized steel sheet according to the above [20] which contains 1% by mass or less and has a component composition in which the balance is Zn, Al, Fe, Mn and unavoidable impurities.
  • a hot-dip galvanized steel sheet having excellent plating appearance and corrosion resistance can be manufactured.
  • the hot-dip galvanized steel sheet of the present invention is excellent in plating appearance and corrosion resistance.
  • the method for producing a hot-dip galvanized steel sheet includes a step of electrically Fe-plating a cold-rolled steel sheet containing Si and Mn to obtain an Fe-plated steel sheet, and then pickling the Fe-plated steel sheet. It includes a step, a step of annealing the Fe-plated steel sheet in a reducing atmosphere, and a step of subjecting the Fe-plated steel sheet to hot-dip galvanized steel to obtain a hot-dip galvanized steel sheet having a galvanized layer.
  • a hot-dip galvanized steel sheet (GI) in which the galvanized layer is not alloyed can be obtained.
  • an alloyed hot-dip galvanized steel sheet (GA) in which the galvanized layer is alloyed can be obtained. That is, in the present specification, the “hot-dip galvanized steel sheet” includes both an unalloyed hot-dip galvanized steel sheet (GI) and an alloyed hot-dip galvanized steel sheet (GA).
  • the step of obtaining the cold-rolled steel sheet is not particularly limited, and known or arbitrary steps and conditions can be adopted.
  • a slab having a desired composition is hot-rolled to obtain a hot-rolled steel sheet, which is degreased and subsequently pickled, and then the hot-rolled steel sheet is cold-rolled to be cold.
  • Rolled steel sheets can be obtained.
  • C 0.8% or less C is an element effective for ensuring mechanical properties and strength by forming martensite or the like as a steel structure. From this viewpoint, the amount of C is preferably 0.03% or more, and more preferably 0.05% or more. On the other hand, from the viewpoint of obtaining good weldability, the amount of C is preferably 0.8% or less, and more preferably 0.3% or less.
  • Si 0.05% or more and 2.5% or less Si is an element effective for increasing the strength of steel. If the amount of Si is less than 0.05%, an expensive alloying element is required to obtain high strength, which is economically unfavorable. Therefore, the amount of Si is 0.05% or more, preferably 0.1% or more, more preferably 0.2% or more, and further preferably 0.4% or more. On the other hand, when the amount of Si exceeds 2.5%, the effect of increasing the strength is saturated and the weldability is lowered. Therefore, the amount of Si is 2.5% or less, preferably 2.0% or less, and more preferably 1.6% or less.
  • Mn 1.0% or more and 3.5% or less Mn is an element effective for increasing the strength of steel.
  • the amount of Mn is set to 1.0% or more in order to secure mechanical properties and strength.
  • the amount of Mn is 3.5% or less from the viewpoint of ensuring the balance between weldability, plating adhesion, and strength and ductility.
  • the amount of P 0.1% or less By suppressing the amount of P, deterioration of weldability can be prevented. Further, it is possible to prevent P from segregating at the grain boundaries and prevent deterioration of ductility, bendability, and toughness. Further, when a large amount of P is added, the ferrite transformation is promoted and the crystal grain size is also increased. Therefore, the amount of P is preferably 0.1% or less.
  • the lower limit of P is not particularly limited, and the amount of P can be more than 0% and 0.001% or more due to restrictions in production technology.
  • the amount of S is preferably 0.03% or less, and more preferably 0.02% or less.
  • the amount of S it is possible to prevent a decrease in weldability, prevent a decrease in ductility during hot weather, suppress hot cracking, and significantly improve surface properties. Further, by suppressing the amount of S, it is possible to avoid forming coarse sulfide as an impurity element and prevent deterioration of ductility, bendability and stretch flangeability of the steel sheet.
  • the lower limit of S is not particularly limited, and the amount of S can be more than 0% and 0.0001% or more due to restrictions in production technology.
  • the rest other than the above components are Fe and unavoidable impurities. However, it may optionally contain at least one element selected from the following.
  • Al 0.1% or less Al is thermodynamically most easily oxidized, so it oxidizes before Si and Mn, suppresses the oxidation of Si and Mn on the outermost surface of the steel sheet, and oxidizes Si and Mn inside the steel sheet. Has the effect of promoting. This effect can be obtained when the amount of Al is 0.01% or more. On the other hand, if the amount of Al exceeds 0.1%, the cost will increase. Therefore, when Al is added, the amount of Al is preferably 0.1% or less.
  • the lower limit of Al is not particularly limited, and the amount of Al can be more than 0% and 0.001% or more.
  • B 0.005% or less
  • B is an element effective for improving the hardenability of steel.
  • the amount of B is preferably 0.0003% or more, and more preferably 0.0005% or more.
  • the amount of B is preferably 0.005% or less. This is because by setting the amount of B to 0.005% or less, oxidation of Si on the outermost surface of the steel sheet can be suppressed and good plating adhesion can be obtained.
  • the amount of Ti is preferably 0.2% or less, more preferably 0.05% or less. This is because good plating adhesion can be obtained by setting the Ti amount to 0.2% or less.
  • the lower limit of the Ti amount is not particularly limited, but in order to obtain the effect of strength adjustment, the Ti amount is preferably 0.005% or more.
  • N 0.010% or less N forms coarse nitrides with Ti, Nb and V at high temperature and does not contribute much to the strength. Therefore, the effect of increasing the strength by adding Ti, Nb and V is reduced. Not only will it end up, but it will also reduce toughness. Further, when the amount of N is excessive, slab cracking may occur during hot rolling and surface defects may occur. Therefore, the amount of N is preferably 0.010% or less. The amount of N is preferably 0.005% or less, more preferably 0.003% or less, still more preferably 0.002% or less. The lower limit of the N amount is not particularly limited, and the N amount can be more than 0% and 0.0005% or more due to restrictions in production technology.
  • the amount of Cr is preferably 0.005% or more. By setting the amount of Cr to 0.005% or more, the hardenability can be improved and the balance between strength and ductility can be improved. When Cr is added, the amount of Cr is preferably 1.0% or less from the viewpoint of preventing cost increase.
  • the amount of Cu is preferably 0.005% or more. By setting the amount of Cu to 0.005% or more, the formation of the residual ⁇ phase can be promoted, and the plating adhesion can be improved when the composite is added with Ni and Mo.
  • the amount of Cu is preferably 1.0% or less from the viewpoint of preventing cost increase.
  • Ni 1.0% or less
  • the amount of Ni is preferably 0.005% or more.
  • the amount of Ni is preferably 1.0% or less from the viewpoint of preventing cost increase.
  • the amount of Mo is preferably 0.005% or more. By setting the amount of Mo to 0.005% or more, the effect of adjusting the strength can be obtained, and the plating adhesion can be improved at the time of compound addition with Nb, Ni, and Cu.
  • the amount of Mo is more preferably 0.05% or more. When Mo is added, the amount of Mo is preferably 1.0% or less from the viewpoint of preventing cost increase.
  • Nb 0.20% or less From the viewpoint of obtaining the effect of improving the strength, the amount of Nb is preferably 0.005% or more. When Nb is contained, the amount of Nb is preferably 0.20% or less from the viewpoint of preventing cost increase.
  • V 0.5% or less From the viewpoint of obtaining the effect of improving the strength, the amount of V is preferably 0.005% or more. When V is contained, the amount of V is preferably 0.5% or less from the viewpoint of preventing cost increase.
  • Sb 0.200% or less
  • Sb can be contained from the viewpoint of suppressing decarburization of the steel sheet surface in a region of several tens of microns caused by nitriding, oxidation, or oxidation of the steel sheet surface.
  • Sb suppresses nitriding and oxidation of the surface of the steel sheet, thereby preventing the amount of martensite produced on the surface of the steel sheet from decreasing, and improving the fatigue characteristics and surface quality of the steel sheet.
  • the amount of Sb is preferably 0.001% or more.
  • the amount of Sb is preferably 0.200% or less.
  • the amount of Ta is preferably 0.001% or more, and more preferably 0.005% or more.
  • the amount of Ta is preferably 0.1% or less from the viewpoint of preventing cost increase.
  • the W amount is preferably 0.005% or more.
  • the amount of W is preferably 0.5% or less from the viewpoint of preventing cost increase.
  • the amount of Zr is preferably 0.0005% or more.
  • the amount of Zr is preferably 0.1% or less from the viewpoint of preventing cost increase.
  • Sn 0.20% or less
  • Sn is an element that suppresses denitrification, deboronization, etc., and is effective in suppressing a decrease in steel strength.
  • the Sn amount is preferably 0.002% or more.
  • the Sn amount is preferably 0.20% or less.
  • the amount of Ca is preferably 0.005% or less when Ca is contained.
  • Mg 0.005% or less
  • the amount of Mg is preferably 0.005% or less from the viewpoint of preventing cost increase.
  • the amount of REM is preferably 0.005% or less when REM is contained.
  • the cold-rolled steel sheet is preferably a high-strength steel sheet having a tensile strength of 780 MPa or more.
  • the base steel sheet is a high-strength steel sheet
  • the deterioration of corrosion resistance becomes remarkable when the present invention is not applied. That is, when the base steel plate is a high-strength steel plate, the effect of the present invention can be remarkably obtained.
  • the cold-rolled steel sheet is first degreased and subsequently pickled.
  • a pretreatment for the electro-Fe plating treatment it is preferable to perform degreasing and water washing to clean the steel sheet surface, and then pickling and water washing to activate the steel sheet surface.
  • Solventing and washing with water are not particularly limited, and known or arbitrary methods and conditions can be adopted.
  • various acids such as sulfuric acid, hydrochloric acid, nitric acid, and mixtures thereof can be used. Above all, sulfuric acid, hydrochloric acid and a mixture thereof are desirable.
  • the concentration of the acid is not particularly specified, but it is preferably about 1 to 20% by mass in consideration of the ability to remove the oxide film and the prevention of rough skin due to overpickling.
  • the pickling liquid may contain an antifoaming agent, a pickling accelerator, a pickling inhibitor and the like.
  • the cold-rolled steel sheet is subjected to electric Fe-plating to obtain an Fe-plated steel sheet in which a predetermined amount of Fe-plated layer is formed on at least one surface of the cold-rolled steel sheet.
  • a good plated appearance can be obtained in the hot-dip galvanized steel sheet.
  • a sulfuric acid bath containing 20 g / L or more and 200 g / L or less of sulfate ions is used.
  • the sulfuric acid bath is lower in cost than the chloride bath, fluoride bath, etc., and has excellent conductivity. When the sulfate ion concentration is less than 20 g / L, the conductivity is poor and the current efficiency is lowered.
  • the sulfate ion concentration exceeds 200 g / L, the sulfuric acid compound tends to remain on the surface of the Fe-plated steel sheet, or the sulfate compound tends to be incorporated into the Fe-plated layer, so that even if subsequent pickling is performed, the sulfuric acid compound melts. Corrosion resistance of galvanized steel sheet becomes insufficient.
  • the sulfuric acid bath can contain at least one element selected from the group consisting of B, C, P, N, O, Ni, Mo, Zn, W, Pb, Sn, Cr, V, and Co. ..
  • the total content of these elements in the sulfuric acid bath is such that the total content of these elements in the Fe plating layer is 10% by mass or less in the case of GI and when the Fe plating layer remains in GA. In the case of GA, it is preferable that the total content of these elements in the galvanized layer is 1% by mass or less.
  • the metal element may be contained as a metal ion, and the non-metal element can be contained as a part of boric acid, phosphoric acid, nitric acid, organic acid and the like.
  • the sulfuric acid bath may contain a conductivity aid such as sodium sulfate and potassium sulfate, a chelating agent, and a pH buffering agent.
  • Adhesion amount per side of Fe plating layer 1.0 g / m 2 or more If the adhesion amount of Fe plating layer per side is less than 1.0 g / m 2 , the adhesion amount of Fe plating layer is not sufficient and molten zinc. It is not possible to obtain a good plated appearance on a plated steel sheet. This is because Fe is dissolved in the subsequent pickling step, and Si and Mn in the base steel sheet are diffused in the Fe plating layer to form an oxide on the surface layer of the Fe plating layer in the subsequent annealing step. This is because the wettability of zinc is lowered and non-plating defects occur.
  • the amount of adhesion of the Fe plating layer per side is 1.0 g / m 2 or more, preferably 3.0 g / m 2 or more.
  • the amount of adhesion of the Fe plating layer per side exceeds 10.0 g / m 2, the effect of suppressing the diffusion of Si and Mn is saturated, and the cost increases. Therefore, the amount of adhesion of the Fe plating layer per side is preferably 10.0 g / m 2 or less, and more preferably 8.0 g / m 2 or less.
  • the cross section of the steel sheet immediately after Fe plating was observed by SEM, and the thickness of the Fe plating layer was measured. It can be obtained by converting the measured thickness into the amount of adhesion based on the density of Fe.
  • the concentration of Fe ions in the sulfuric acid bath is preferably 5 g / L or more and 100 g / L or less as Fe 2+.
  • the temperature of the plating solution is preferably 30 ° C. or higher and 85 ° C. or lower in consideration of constant temperature retention.
  • the pH of the plating solution is not particularly limited, but is preferably 1.0 or more from the viewpoint of preventing a decrease in current efficiency due to hydrogen generation, and preferably 3.0 or less from the viewpoint of ensuring conductivity.
  • the current density is preferably 10 A / dm 2 or more from the viewpoint of productivity, and is preferably 150 A / dm 2 or less from the viewpoint of facilitating the control of the adhesion amount of the Fe plating layer.
  • the plate passing speed is preferably 5 mpm or more from the viewpoint of productivity, and is preferably 150 mpm or less from the viewpoint of stably controlling the adhesion amount.
  • the plating solution on the Fe-plated steel sheet can be sufficiently removed, and the sulfuric acid compound remains on the surface of the Fe-plated steel sheet and the sulfuric acid compound is sufficiently suppressed from being incorporated into the Fe plating layer. be able to. Therefore, it is possible to sufficiently suppress the incorporation of the sulfuric acid compound into the galvanized layer, and as a result, the corrosion resistance of the hot-dip galvanized steel sheet is improved.
  • the pickling of the Fe-plated steel sheet is preferably performed in a pickling solution containing hydrochloric acid.
  • hydrochloric acid the sulfuric acid compound remaining on the surface or surface layer of the Fe plating layer can be sufficiently removed in a short time.
  • Inhibitors may be included in the pickling solution to prevent the Fe plating layer from being excessively dissolved.
  • the acid concentration can be 1 to 20% by mass.
  • the temperature of the pickling solution is preferably 20 to 85 ° C. When the temperature is 20 ° C. or higher, the sulfuric acid compound can be removed more reliably, and when the temperature is 85 ° C. or lower, the Fe plating layer can be prevented from being excessively dissolved.
  • the Fe-plated steel sheet it is preferable to pickle the Fe-plated steel sheet for 1.0 seconds or more and 20 seconds or less.
  • the pickling time is 1.0 second or more, the sulfuric acid compound can be removed more reliably, and the corrosion resistance of the hot-dip galvanized steel sheet is further improved.
  • the pickling time is 20 seconds or less, it is possible to prevent the Fe plating layer from being excessively dissolved.
  • the above-mentioned electric Fe plating and this pickling step may be performed in a continuous hot dip galvanizing facility (CGL) or in a separate facility from the CGL.
  • CGL continuous hot dip galvanizing facility
  • an Fe plating facility and a pickling bath are incorporated upstream of the annealing furnace in the plate passing direction, Fe plating, pickling, annealing, hot dip galvanizing, and arbitrary heat alloying can be continuously performed.
  • a pickling bath may be incorporated downstream in the plate passing direction of the electric Fe plating equipment to perform the pickling process, or the plate is passed through the plate rather than the annealing furnace of the CGL.
  • the pickling step may be performed by incorporating a pickling bath upstream in the direction.
  • the Fe-plated steel sheet After pickling, it is preferable to wash the Fe-plated steel sheet with water and then apply a roll drawing to surely clean and remove the plating solution on the Fe-plated steel sheet. After that, the Fe-plated steel sheet is dried and subjected to annealing by CGL and hot-dip galvanizing in the next step.
  • the drying may be natural drying or heat drying.
  • the Fe-plated steel sheet is annealed (recrystallized and annealed) in a reducing atmosphere in a CGL annealing furnace.
  • Conditions of the annealing is not specified in particular, usually the dew point is the -45 ⁇ -20 ° C., containing 3-25% by volume of hydrogen, the balance may be carried out in an atmosphere consisting of N 2 and unavoidable impurities. If the dew point is within this range, the cost of equipment for dehumidifying or humidifying the inside of the furnace can be suppressed.
  • the annealing temperature may generally be 700 to 900 ° C. If the temperature is 700 ° C. or higher, recrystallization is sufficient and the workability of the steel sheet is not impaired. If the temperature is 900 ° C. or lower, no special heating device or furnace body is required, and the cost can be suppressed.
  • the plating bath is composed of Al, Zn and unavoidable impurities, and the components thereof are not particularly specified, but it is generally preferable that the Al concentration in the bath is 0.05% by mass or more and 0.25% by mass or less.
  • the Al concentration in the bath is less than 0.05% by mass, the occurrence of bottom dross increases, and the dross easily adheres to the steel sheet and becomes a defect.
  • the Al concentration in the bath exceeds 0.25% by mass, the top dross increases, and the dross also easily adheres to the steel sheet to cause defects, and the addition of Al leads to an increase in cost.
  • the plating bath temperature is usually in the range of 440 to 500 ° C., and the steel sheet is immersed in the plating bath at a plate temperature of 440 to 550 ° C.
  • the amount of adhesion of the galvanized layer per side is preferably controlled to 25 to 80 g / m 2. If the adhesion amount is 25 g / m 2 or more, sufficient corrosion resistance can be ensured, and if it is 80 g / m 2 or less, the plating adhesion is not inferior.
  • the method of adjusting the amount of plating adhesion after plating is not particularly limited, but gas wiping is generally used, and it is adjusted by the gas pressure of gas wiping, the distance between the wiping nozzle and the steel plate, and the like.
  • the galvanized layer may be heat-alloyed to produce an alloyed hot-dip galvanized steel sheet (GA).
  • the method for performing the alloying treatment is not particularly limited, but it can be performed using an IH, a gas furnace, or the like, and the maximum reaching plate temperature at the time of alloying is preferably 460 to 600 ° C. If the temperature is 460 ° C. or higher, alloying is sufficiently performed, and if the temperature is 600 ° C. or lower, the alloying does not become excessive and the plating adhesion is not impaired.
  • the degree of alloying after the alloying treatment is not particularly limited, but is preferably 7 to 15% by mass. If it is 7% by mass or more, deterioration of press moldability due to the residual ⁇ phase can be suppressed, and if it is 15% by mass or less, the plating adhesion is not impaired.
  • the hot-dip galvanized steel sheet according to one embodiment of the present invention is suitably manufactured by the above-mentioned manufacturing method, and is formed on at least one surface of a base steel sheet which is a cold-rolled steel sheet containing Si and Mn and the base steel sheet. It has a zinc-plated layer and an Fe-plated layer arbitrarily present between the base steel plate and the zinc-plated layer.
  • One embodiment of the present invention may be a hot-dip galvanized steel sheet (GI) in which the galvanized layer is not alloyed.
  • the GI of the present embodiment includes the base steel plate, an Fe plating layer formed on at least one surface of the base steel plate, and a zinc plating layer formed on the Fe plating layer.
  • Another embodiment of the present invention may be an alloyed hot-dip galvanized steel sheet (GA) in which the galvanized layer is alloyed.
  • GA alloyed hot-dip galvanized steel sheet
  • the zinc-plated layer is heat-alloyed, a part or all of the Fe-plated layer is alloyed with zinc in the zinc-plated layer and incorporated into the zinc-plated layer.
  • the GA of the present embodiment has an embodiment of the base steel plate, an Fe plating layer remaining on at least one surface of the base steel plate, and a zinc plating layer formed on the Fe plating layer, and the base steel plate.
  • the deposition amount XFe per surface of the Fe plating layer (g / m 2), it is necessary not less than 0.9 plus the YFe obtained by the following formula (g / m 2).
  • YFe WZn ⁇ ⁇ (fFe / 100)-(fMn / CMn) ⁇
  • WZn Adhesion amount per side of the galvanized layer (g / m 2 )
  • fFe Fe concentration (%) in the galvanized layer
  • fMn Mn concentration (%) in the galvanized layer
  • CMn Mn concentration (%) in the base steel sheet
  • XFe means the amount of adhesion of the Fe plating layer per side
  • GA means the amount of adhesion of the Fe plating layer remaining without alloying with the zinc plating layer per side. Therefore, in GA in which the entire Fe plating layer is alloyed with the zinc plating layer, XFe becomes zero.
  • XFe can be obtained by observing the cross section of the hot-dip galvanized steel sheet with SEM, measuring the thickness of the Fe plating layer, and converting the measured thickness into the amount of adhesion based on the density of Fe.
  • YFe is a parameter corresponding to the amount of the Fe plating layer alloyed with the zinc plating layer. Since Mn is not contained in the Fe plating layer, Mn contained in the zinc plating layer is derived from the base steel sheet. Therefore, the difference YFe between the Fe amount WZn ⁇ (fFe / 100) in the zinc plating layer and the Fe amount WZn ⁇ fMn / CMn derived from the base steel plate in the zinc plating layer is set to “Fe alloyed with the zinc plating layer”. Set as a parameter corresponding to "plating layer”.
  • the "adhesion amount WZn per one side of the galvanized layer" can be obtained from the change in the weight of the steel sheet before and after the zinc-plated layer is dissolved in hydrochloric acid containing an inhibitor and the surface area of the steel sheet.
  • Fe concentration fFe in the galvanized layer is the Fe concentration contained in the galvanized layer (per one side).
  • fFe can be obtained by dissolving the zinc-plated layer with hydrochloric acid containing an inhibitor and analyzing the solution by ICP. At this time, the Fe plating layer remaining without alloying with the zinc plating layer is not dissolved in hydrochloric acid.
  • GI since there is no heat alloying step, the amount of Fe in the Fe plating layer incorporated into the zinc plating layer is sufficiently small, and when measured by the same method as GA, fFe is 1% or less. "fFe” is regarded as zero and substituted into the above equation.
  • Mn concentration fMn in the galvanized layer is the Mn concentration contained in the galvanized layer (per one side).
  • fmn can be determined by dissolving the zinc plating layer with hydrochloric acid containing an inhibitor and analyzing the solution by ICP. At this time, the Fe plating layer remaining without alloying with the zinc plating layer is not dissolved in hydrochloric acid.
  • GI since there is no heat alloying step, the amount of Mn in the base steel sheet incorporated into the galvanized layer is sufficiently small, and "fmn" is regarded as zero and substituted into the above formula.
  • Mn concentration CMn in the base steel plate the Mn concentration obtained as the base steel plate component is adopted.
  • YFe becomes zero in GI. This appropriately reflects that the amount of the Fe plating layer to be alloyed with the zinc plating layer is sufficiently small because there is no heat alloying step in GI.
  • XFe + YFe 0.9 or more XFe + YFe can be considered as a parameter related to the estimated adhesion amount of the Fe plating layer after pickling and before hot dip galvanizing.
  • it is essential to form an Fe plating layer having an adhesion amount of 1.0 g / m 2 or more per side by electric Fe plating, but the Fe plating layer is slightly reduced by pickling. ..
  • it is essential that XFe + YFe is 0.9 g / m 2 or more.
  • XFe + YFe is 0.9 g / m 2 or more, preferably 1.9 g / m 2 or more.
  • XFe + YFe exceeds 9.9 g / m 2
  • XFe + YFe is preferably 9.9 g / m 2 or less, and more preferably 7.9 g / m 2 or less.
  • the Fe plating layer is B, C, P, N, O, Ni, Mo, Zn, W, Pb, Sn, Cr, V, and It is preferable that at least one element selected from the group consisting of Co is contained in a total of 10% by mass or less, and the balance has a component composition consisting of Fe and unavoidable impurities.
  • the adhesion amount WZn per one side of the galvanized layer is preferably controlled so that the zinc-equivalent adhesion amount WZn ⁇ (1-fFe / 100) is within the range of 25 to 80 g / m 2. If the zinc-equivalent adhesion amount is 25 g / m 2 or more, sufficient corrosion resistance can be ensured, and if it is 80 g / m 2 or less, the plating adhesion is not inferior.
  • the calculation method of WZn and fFe is as described above.
  • the galvanized layer is a total of at least one element selected from the group consisting of B, C, P, N, O, Ni, Mo, Zn, W, Pb, Sn, Cr, V, and Co. It is preferable to have a component composition containing 1% by mass or less and the balance being Zn, Al, Fe, Mn and unavoidable impurities.
  • the galvanized layer has a component composition consisting of Zn, Al, Fe and unavoidable impurities.
  • S contained in the galvanized layer is derived from the sulfuric acid compound remaining on the surface and surface layer of the Fe-plated steel sheet, and lowers the corrosion resistance. Therefore, in the present embodiment, it is important that the S content in the galvanized layer is 200 mass ppm or less, preferably 100 mass ppm or less.
  • the lower limit of the S content is not particularly specified, but in the case of electric Fe plating using a sulfuric acid bath, S is inevitably contained in the plating solution, and this is also contained in the zinc plating layer. Therefore, in the present embodiment, the S content in the zinc-plated layer is usually 15 ppm or more.
  • the "S content in the zinc plating layer" can be determined by dissolving the zinc plating layer with hydrochloric acid containing an inhibitor and performing ICP analysis on the dissolved solution.
  • a slab obtained by melting steel having the component composition shown in Table 1 (the balance is Fe and unavoidable impurities) is hot-rolled to obtain a hot-rolled steel sheet, and the hot-rolled steel sheet is degreased and pickled. After that, the hot-rolled steel sheet was cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 1.2 mm.
  • Table 1 shows the tensile strength TS of the cold-rolled steel sheet.
  • the Fe-plated steel sheet was pickled under the conditions shown in Table 2. After pickling, the Fe-plated steel sheet was washed with water, followed by roll drawing, and then the Fe-plated steel sheet was dried.
  • the steel sheet was annealed by heating.
  • the holding time at the annealing temperature was 100 seconds.
  • the hot-dip galvanized steel sheet (GI) in which the galvanized layer is not alloyed by hot-dip galvanizing the Fe-plated steel sheet by immersing the annealed and cooled Fe-plated steel sheet in a hot-dip galvanized bath of CGL.
  • the Al concentration in the bath was 0.20% by mass
  • the bath temperature was 465 ° C
  • the plate temperature was 470 ° C.
  • the amount of adhesion per side of the galvanized layer was controlled by gas wiping.
  • a step of heat-alloying the zinc-plated layer at the alloying temperature shown in Table 2 was further performed to produce an alloyed hot-dip galvanized steel sheet (GA).
  • S content in the zinc-plated layer was determined by the above-mentioned ICP analysis and is shown in Table 2.
  • the hot-dip galvanized steel sheets (GI and GA) obtained above were evaluated as follows, and the results are shown in Table 2.
  • plating appearance The appearance of the plating was visually observed, and those without non-plating defects were marked with ⁇ , those with slight defects but generally good were marked with ⁇ , and those with defects were marked with x.
  • a hot-dip galvanized steel sheet having excellent plating appearance and corrosion resistance can be manufactured.
  • the hot-dip galvanized steel sheet produced by the present invention to, for example, an automobile structural member, it is possible to improve fuel efficiency by reducing the weight of the vehicle body, and the industrial utility value is very large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

めっき外観及び耐食性に優れる溶融亜鉛めっき鋼板の製造方法を提供する。本発明の溶融亜鉛めっき鋼板の製造方法は、Si及びMnを含有する冷延鋼板に、硫酸イオンを20g/L以上200g/L以下含む硫酸浴中で電気Feめっきを施して、前記冷延鋼板の少なくとも片面に付着量が1.0g/m以上のFeめっき層が形成されたFeめっき鋼板を得る工程と、その後、前記Feめっき鋼板に酸洗を施す工程と、その後、前記Feめっき鋼板を還元性雰囲気中で焼鈍する工程と、その後、前記Feめっき鋼板に溶融亜鉛めっきを施して、溶融亜鉛めっき鋼板を得る工程と、を有する。

Description

溶融亜鉛めっき鋼板及びその製造方法
 本発明は、自動車等の産業分野で使用される部材として好適な溶融亜鉛めっき鋼板及びその製造方法に関する。
 近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。このため、自動車部材の素材となる鋼板を高強度化し、薄くすることで、自動車車体を軽量化しようとする動きが活発となってきている。しかしながら、鋼板の高強度化は成形性の低下を招くことから、高強度と高成形性を併せ持つ鋼板の開発が望まれている。また、車体防錆性能の観点から、高強度亜鉛めっき鋼板が求められている。
 鋼板の成形性を向上させるためには、鋼板中にSi、Mn等の固溶元素を添加することが効果的である。一方で、これらの固溶元素は溶融亜鉛めっき鋼板の表面性状を劣化させる。高強度亜鉛めっき鋼板は、連続溶融亜鉛めっき設備(Continuous hot-dip Galvanizing Line:CGL)で製造されるのが一般的である。CGLの焼鈍炉にて還元性雰囲気中で鋼板を焼鈍することにより、鋼板の圧延組織が再結晶し、鋼板表面が活性化される。その後、鋼板は冷却された後にCGLの溶融亜鉛浴に浸漬されて、表面に溶融亜鉛めっきが施される。ここで、鋼板の高強度化のために添加されるSi及びMnは、焼鈍中に鋼板表面で酸化物を形成し、この酸化物が溶融亜鉛と鋼板との濡れ性を劣化させ、不めっきを生じさせる。中でもSiは、不めっきを生じさせることに加え、亜鉛めっき層を加熱合金化する場合には合金化速度を低下させ、η相が残存する場合にプレス成形性が劣化する。プレス成形性を上げるために高温で合金化すると、Fe-Zn合金相中のFe濃度制御が困難となり、めっき密着性が低下したり、鋼板組織が焼き戻されて所望の強度を得られない。
 このような問題に対して、還元性雰囲気での鋼板の焼鈍の前に鋼板表面にFe系めっきを施して、めっき濡れ性を改善する技術がある。例えば、特許文献1には、「高張力鋼板に0.50g/m以上の鉄電気メッキを施した後溶融亜鉛メッキし、続いて合金化熱処理することを特徴とする亜鉛-鉄系合金被覆高張力鋼板の製造方法」が記載されている。
特開昭57-79160公報
 しかしながら、従来の方法で、鋼板に電気Feめっきを施した後、還元性雰囲気中での焼鈍と、溶融亜鉛めっきを経て得られた溶融亜鉛めっき鋼板においては、不めっき欠陥のない美麗なめっき外観を得られるものの、耐食性が不十分であった。
 そこで本発明は、上記課題に鑑み、めっき外観及び耐食性に優れる溶融亜鉛めっき鋼板と、その好適な製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するべく、電気Feめっき処理した溶融亜鉛めっき鋼板の耐食性が不十分となる原因について鋭意検討し、以下の知見を得た。電気Feめっきは、コスト及び生産性の観点から、硫酸浴を用いて行われるのが一般的である。鋼板にFeめっきを施してFeめっき鋼板を得た後、Feめっき鋼板に水洗と、これに続くロール絞りを施して、Feめっき鋼板上のめっき液を洗浄・除去する。その後、Feめっき鋼板は、乾燥されて、次工程でCGLによる焼鈍及び溶融亜鉛めっきに供され、溶融亜鉛めっき鋼板となる。この際、水洗及びロール絞りでは、Feめっき鋼板上のめっき液を十分に除去することができず、Feめっき鋼板の表面に硫酸化合物が残存したり、Feめっき層中に硫酸化合物が取り込まれたりする。その後、焼鈍及び溶融亜鉛めっきを行うと、亜鉛めっき層中に硫酸化合物が取り込まれ、これが溶融亜鉛めっき鋼板の耐食性を劣化させる原因となっている。
 特に、高強度鋼板は硬質であるため、冷間圧延後にコイルエッジの形状が悪い。そのため、高強度鋼板を電気Feめっき、水洗、及びロール絞りのために通板させる際、その幅方向両端部が波打った形状になる傾向がある。そのため、下地鋼板が高強度鋼板の場合、特にFeめっき鋼板上のめっき液を十分に除去しにくくなり、耐食性の劣化が顕著となる。
 そこで、本発明者らは、焼鈍前のFeめっき鋼板に対して酸洗を施すことによって、Feめっき鋼板上のめっき液を十分に除去するとの着想を得た。これにより、Feめっき鋼板の表面に硫酸化合物が残存したり、Feめっき層中に硫酸化合物が取り込まれたりすることを十分に抑制することができる。そのため、亜鉛めっき層中に硫酸化合物が取り込まれることを十分に抑制することができ、その結果、溶融亜鉛めっき鋼板の耐食性が向上する。なお、電気Feめっき前の冷延鋼板に対して酸洗を施したり、電気Feめっきを施さない場合に焼鈍前の冷延鋼板に対して酸洗を施したりすることは、行われる場合もある。しかし、これらはいずれも、鋼板表面の自然酸化膜を除去する目的で行われるものである。これに対して、本発明では、Feめっき鋼板上に硫酸化合物を残存させないとの目的で、Feめっき鋼板に対して酸洗を施すものである。
 すなわち、本発明の要旨構成は以下のとおりである。
 [1]Si及びMnを含有する冷延鋼板に、硫酸イオンを20g/L以上200g/L以下含む硫酸浴中で電気Feめっきを施して、前記冷延鋼板の少なくとも片面に付着量が1.0g/m以上のFeめっき層が形成されたFeめっき鋼板を得る工程と、
 その後、前記Feめっき鋼板に酸洗を施す工程と、
 その後、前記Feめっき鋼板を還元性雰囲気中で焼鈍する工程と、
 その後、前記Feめっき鋼板に溶融亜鉛めっきを施して、亜鉛めっき層を有する溶融亜鉛めっき鋼板を得る工程と、
を有する溶融亜鉛めっき鋼板の製造方法。
 [2]前記Feめっき鋼板に対する酸洗を、塩酸を含む酸洗液中にて行う、上記[1]に記載の溶融亜鉛めっき鋼板の製造方法。
 [3]前記Feめっき鋼板に対する酸洗を1.0秒以上20秒以下行う、上記[1]又は[2]に記載の溶融亜鉛めっき鋼板の製造方法。
 [4]前記冷延鋼板が、780MPa以上の引張強さを有する高強度鋼板である、上記[1]~[3]のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 [5]前記冷延鋼板が、質量%で、Si:0.05%以上2.5%以下、及び、Mn:1.0%以上3.5%以下を含む成分組成を有する、上記[1]~[4]のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 [6]前記冷延鋼板が、質量%で、
  C :0.8%以下、
  Si:0.05%以上2.5%以下、
  Mn:1.0%以上3.5%以下、
  P :0.1%以下、及び
  S :0.03%以下を含み、
  残部がFe及び不可避的不純物からなる成分組成を有する、上記[1]~[4]のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 [7]前記成分組成が、さらに、質量%で、
  Al:0.1%以下、
  B :0.005%以下、
  Ti:0.2%以下、
  N :0.010%以下、
  Cr:1.0%以下、
  Cu:1.0%以下、
  Ni:1.0%以下、
  Mo:1.0%以下、
  Nb:0.20%以下、
  V :0.5%以下、
  Sb:0.200%以下、
  Ta:0.1%以下、
  W :0.5%以下、
  Zr:0.1%以下、
  Sn:0.20%以下、
  Ca:0.005%以下、
  Mg:0.005%以下、及び
  REM:0.005%以下
からなる群から選ばれる少なくとも一種の元素を含有する、上記[6]に記載の溶融亜鉛めっき鋼板の製造方法。
 [8]前記亜鉛めっき層を加熱合金化する工程を行わない、上記[1]~[7]のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 [9]前記亜鉛めっき層を加熱合金化する工程をさらに有する、上記[1]~[7]のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 [10]前記硫酸浴中に、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を、前記Feめっき層中でこれらの元素の合計含有量が10質量%以下となるように含有する、上記[1]~[9]のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 [11]前記硫酸浴中に、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を、前記亜鉛めっき層中でこれらの元素の合計含有量が1質量%以下となるように含有する、上記[9]に記載の溶融亜鉛めっき鋼板の製造方法。
 [12]Si及びMnを含有する冷延鋼板である下地鋼板と、
 前記下地鋼板の少なくとも片面に形成された亜鉛めっき層と、
 前記下地鋼板と前記亜鉛めっき層との間に任意に存在するFeめっき層と、
を有し、
 前記Feめっき層の片面当たりの付着量XFe(g/m)と、以下の式で求められるYFe(g/m)との和が0.9以上であり、
 前記亜鉛めっき層中のS含有量が200質量ppm以下である、溶融亜鉛めっき鋼板。
 YFe=WZn×{(fFe/100)-(fMn/CMn)}
 ただし、
 WZn:亜鉛めっき層の片面当たりの付着量(g/m
 fFe:亜鉛めっき層中のFe濃度(%)
 fMn:亜鉛めっき層中のMn濃度(%)
 CMn:下地鋼板中のMn濃度(%)
 [13]前記亜鉛めっき層中のS含有量が100質量ppm以下である、上記[12]に記載の溶融亜鉛めっき鋼板。
 [14]前記亜鉛めっき層中のS含有量が15質量ppm以上である、上記[12]又は[13]に記載の溶融亜鉛めっき鋼板。
 [15]前記下地鋼板が、780MPa以上の引張強さを有する高強度鋼板である、上記[12]~[14]のいずれか一項に記載の溶融亜鉛めっき鋼板。
 [16]前記下地鋼板が、質量%で、Si:0.05%以上2.5%以下、及び、Mn:1.0%以上3.5%以下を含む成分組成を有する、上記[12]~[15]のいずれか一項に記載の溶融亜鉛めっき鋼板。
 [17]前記下地鋼板が、質量%で、
  C :0.8%以下、
  Si:0.05%以上2.5%以下、
  Mn:1.0%以上3.5%以下、
  P :0.1%以下、及び
  S :0.03%以下を含み、
  残部がFe及び不可避的不純物からなる成分組成を有する、上記[12]~[15]のいずれか一項に記載の溶融亜鉛めっき鋼板。
 [18]前記成分組成が、さらに、質量%で、
  Al:0.1%以下、
  B :0.005%以下、
  Ti:0.2%以下、
  N :0.010%以下、
  Cr:1.0%以下、
  Cu:1.0%以下、
  Ni:1.0%以下、
  Mo:1.0%以下、
  Nb:0.20%以下、
  V :0.5%以下、
  Sb:0.200%以下、
  Ta:0.1%以下、
  W :0.5%以下、
  Zr:0.1%以下、
  Sn:0.20%以下、
  Ca:0.005%以下、
  Mg:0.005%以下、及び
  REM:0.005%以下
からなる群から選ばれる少なくとも一種の元素を含有する、上記[17]に記載の溶融亜鉛めっき鋼板。
 [19]前記亜鉛めっき層が合金化されていない、上記[12]~[18]のいずれか一項に記載の溶融亜鉛めっき鋼板。
 [20]前記亜鉛めっき層が合金化されている、上記[12]~[18]のいずれか一項に記載の溶融亜鉛めっき鋼板。
 [21]前記Feめっき層が、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を合計で10質量%以下含み、残部がFe及び不可避的不純物からなる成分組成を有する、上記[12]~[20]のいずれか一項に記載の溶融亜鉛めっき鋼板。
 [22]前記亜鉛めっき層が、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を合計で1質量%以下含み、残部がZn、Al、Fe、Mn及び不可避的不純物からなる成分組成を有する、上記[20]に記載の溶融亜鉛めっき鋼板。
 本発明の溶融亜鉛めっき鋼板の製造方法によれば、めっき外観及び耐食性に優れる溶融亜鉛めっき鋼板を製造することができる。本発明の溶融亜鉛めっき鋼板は、めっき外観及び耐食性に優れる。
 (溶融亜鉛めっき鋼板の製造方法)
 本発明の一実施形態による溶融亜鉛めっき鋼板の製造方法は、Si及びMnを含有する冷延鋼板に電気Feめっきを施してFeめっき鋼板を得る工程と、その後、Feめっき鋼板に酸洗を施す工程と、その後、Feめっき鋼板を還元性雰囲気中で焼鈍する工程と、その後、Feめっき鋼板に溶融亜鉛めっきを施して、亜鉛めっき層を有する溶融亜鉛めっき鋼板を得る工程と、を有する。
 その後、亜鉛めっき層を加熱合金化する工程を行わない場合には、亜鉛めっき層が合金化されていない溶融亜鉛めっき鋼板(GI)を得ることができる。他方で、その後、亜鉛めっき層を加熱合金化する工程をさらに行う場合には、亜鉛めっき層が合金化されている合金化溶融亜鉛めっき鋼板(GA)を得ることができる。すなわち、本明細書において「溶融亜鉛めっき鋼板」は、合金化されていない溶融亜鉛めっき鋼板(GI)及び合金化溶融亜鉛めっき鋼板(GA)の両方を包含する。
 [冷延鋼板を得る工程]
 冷延鋼板を得る工程は特に限定されず、公知の又は任意の工程及び条件を採用することができる。例えば、所望の成分組成を有するスラブを熱間圧延して熱延鋼板を得て、この熱延鋼板に脱脂と、これに続く酸洗を施し、その後、熱延鋼板を冷間圧延して冷延鋼板を得ることができる。
 [冷延鋼板の成分組成]
 冷延鋼板の成分組成について説明する。以下、「質量%」は単に「%」と記す。
 C:0.8%以下
 Cは、鋼組織としてマルテンサイトなどを形成させることで機械特性や強度を確保するのに有効な元素である。この観点から、C量は0.03%以上とすることが好ましく、0.05%以上とすることがより好ましい。一方、良好な溶接性を得る観点から、C量は0.8%以下とすることが好ましく、0.3%以下とすることがより好ましい。
 Si:0.05%以上2.5%以下
 Siは、鋼の高強度化に有効な元素である。Si量が0.05%未満では、高強度を得るために高価な合金元素が必要になり、経済的に好ましくない。よって、Si量は0.05%以上とし、好ましくは0.1%以上とし、より好ましくは0.2%以上とし、さらに好ましくは0.4%以上とする。一方、Si量が2.5%を超えると、高強度化の効果が飽和するとともに、溶接性が低下する。したがって、Si量は2.5%以下とし、好ましくは2.0%以下とし、より好ましくは1.6%以下とする。
 Mn:1.0%以上3.5%以下
 Mnは、鋼の高強度化に有効な元素である。機械特性や強度を確保するために、Mn量は1.0%以上とする。一方、溶接性、めっき密着性、及び強度と延性とのバランスの確保の観点から、Mn量は3.5%以下とする。
 P:0.1%以下
 P量を抑制することで、溶接性の低下を防ぐことができる。さらに、Pが粒界に偏析することを防いで、延性、曲げ性、及び靭性が劣化することを防ぐことができる。また、Pを多量に添加すると、フェライト変態を促進することで結晶粒径も大きくなってしまう。そのため、P量は0.1%以下とすることが好ましい。Pの下限は特に限定されず、生産技術上の制約から、P量は0%超であり得、0.001%以上であり得る。
 S:0.03%以下
 S量は0.03%以下とすることが好ましく、0.02%以下とすることがより好ましい。S量を抑制することで、溶接性の低下を防ぐとともに、熱間時の延性の低下を防いで、熱間割れを抑制し、表面性状を著しく向上することができる。さらに、S量を抑制することで、不純物元素として粗大な硫化物を形成することを回避し、鋼板の延性、曲げ性、伸びフランジ性の低下を防ぐことができる。Sの下限は特に限定されず、生産技術上の制約から、S量は0%超であり得、0.0001%以上であり得る。
 上記成分以外の残部は、Feおよび不可避的不純物である。ただし、任意で以下から選ばれる少なくとも1種の元素を含んでもよい。
 Al:0.1%以下
 Alは熱力学的に最も酸化しやすいため、Si及びMnに先だって酸化し、Si及びMnの鋼板最表面での酸化を抑制し、Si及びMnの鋼板内部での酸化を促進する効果がある。この効果はAl量が0.01%以上で得られる。一方、Al量が0.1%を超えるとコストアップになる。したがって、Alを添加する場合、Al量は0.1%以下とすることが好ましい。Alの下限は特に限定されず、Al量は0%超であり得、0.001%以上であり得る。
 B:0.005%以下
 Bは鋼の焼入れ性を向上させるのに有効な元素である。焼入れ性を向上するためには、B量は0.0003%以上とすることが好ましく、0.0005%以上とすることがより好ましい。また、B量は0.005%以下とすることが好ましい。B量を0.005%以下とすることで、Siの鋼板最表面における酸化を抑制して、良好なめっき密着性を得ることができるためである。
 Ti:0.2%以下
 Tiを添加する場合、Ti量は0.2%以下とすることが好ましく、0.05%以下とすることがより好ましい。Ti量を0.2%以下とすることで、良好なめっき密着性を得ることができるためである。Ti量の下限は特に限定されないが、強度調整の効果を得るためには、Ti量は0.005%以上とすることが好ましい。
 N:0.010%以下
 Nは、Ti、Nb及びVと高温で粗大な窒化物を形成し、強度にあまり寄与しないことから、Ti、Nb及びV添加による高強度化の効果を小さくしてしまうだけでなく、靭性の低下も招いてしまう。さらに、N量が過多の場合、熱間圧延中にスラブ割れを伴い、表面疵が発生する可能性がある。したがって、N量は0.010%以下とすることが好ましい。N量は、好ましくは0.005%以下であり、より好ましくは0.003%以下であり、さらに好ましくは0.002%以下である。N量の下限は特に限定されず、生産技術上の制約から、N量は0%超であり得、0.0005%以上であり得る。
 Cr:1.0%以下
 Cr量は0.005%以上とすることが好ましい。Cr量を0.005%以上とすることで、焼き入れ性を向上し、強度と延性とのバランスを向上することができる。Crを添加する場合、コストアップを防ぐ観点から、Cr量は1.0%以下とすることが好ましい。
 Cu:1.0%以下
 Cu量は0.005%以上とすることが好ましい。Cu量を0.005%以上とすることで、残留γ相の形成を促進することができ、また、Ni及びMoとの複合添加時においてめっき密着性を改善することができる。Cuを添加する場合、コストアップを防ぐ観点から、Cu量は1.0%以下とすることが好ましい。
 Ni:1.0%以下
 Ni量は0.005%以上とすることが好ましい。Ni量を0.005%以上とすることで、残留γ相の形成を促進することができ、また、Cu及びMoとの複合添加時においてめっき密着性を改善することができる。Niを添加する場合、コストアップを防ぐ観点から、Ni量は1.0%以下とすることが好ましい。
 Mo:1.0%以下
 Mo量は0.005%以上とすることが好ましい。Mo量を0.005%以上とすることで、強度調整の効果を得ることができ、また、Nb、Ni、Cuとの複合添加時においてめっき密着性を改善することができる。Mo量は、より好ましくは0.05%以上である。Moを添加する場合、コストアップを防ぐ観点から、Mo量は1.0%以下が好ましい。
 Nb:0.20%以下
 強度向上の効果が得る観点から、Nb量は0.005%以上とすることが好ましい。Nbを含有する場合、コストアップを防ぐ観点から、Nb量は0.20%以下とすることが好ましい。
 V:0.5%以下
 強度向上の効果が得る観点から、V量は0.005%以上とすることが好ましい。Vを含有する場合、コストアップを防ぐ観点から、V量は0.5%以下とすることが好ましい。
 Sb:0.200%以下
 Sbは鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から含有することができる。Sbは、鋼板表面の窒化及び酸化を抑制することで、鋼板表面においてマルテンサイトの生成量が減少するのを防止し、鋼板の疲労特性及び表面品質を改善する。このような効果を得るために、Sb量は0.001%以上とすることが好ましい。一方、良好な靭性を得るためには、Sb量は0.200%以下とすることが好ましい。
 Ta:0.1%以下
 強度向上の効果が得る観点から、Ta量は0.001%以上とすることが好ましく、0.005%以上とすることがより好ましい。Taを含有する場合、コストアップを防ぐ観点から、Ta量は0.1%以下とすることが好ましい。
 W:0.5%以下
 強度向上の効果が得る観点から、W量は0.005%以上とすることが好ましい。Wを含有する場合、コストアップを防ぐ観点から、W量は0.5%以下とすることが好ましい。
 Zr:0.1%以下
 強度向上の効果が得る観点から、Zr量は0.0005%以上とすることが好ましい。Zrを含有する場合、コストアップを防ぐ観点から、Zr量は0.1%以下とすることが好ましい。
 Sn:0.20%以下
 Snは脱窒、脱硼等を抑制して、鋼の強度低下抑制に有効な元素である。こうした効果を得るには、Sn量は0.002%以上とすることが好ましい。一方、Sn量が0.20%を超えると耐衝撃性が劣化するおそれがある。したがって、Snを含有する場合、Sn量は0.20%以下とすることが好ましい。
 Ca:0.005%以下
 Ca量を0.0005%以上とすることで、硫化物の形態を制御し、延性及び靭性を向上させることができる。しかし、Caの多量の添加により逆に延性が損なわれるおそれがあることから、Caを含有する場合、Ca量は0.005%以下とすることが好ましい。
 Mg:0.005%以下
 Mg量を0.0005%以上とすることで、硫化物の形態を制御し、延性及び靭性を向上させることができる。Mgを含有する場合、コストアップを防ぐ観点から、Mg量は0.005%以下とすることが好ましい。
 REM:0.005%以下
 REM量を0.0005%以上とすることで、硫化物の形態を制御し、延性及び靭性を向上させることができる。しかし、REMの多量の添加により逆に延性が損なわれるおそれがあることから、REMを含有する場合、REM量は0.005%以下とすることが好ましい。
 [冷延鋼板の引張強さ]
 本実施形態において、冷延鋼板は、780MPa以上の引張強さを有する高強度鋼板であることが好ましい。既述のとおり、下地鋼板が高強度鋼板の場合、本発明を適用しない場合に耐食性の劣化が顕著となる。すなわち、下地鋼板が高強度鋼板の場合、本発明の効果を顕著に得ることができる。
 [脱脂・酸洗]
 本実施形態においては、まず、冷延鋼板に、脱脂と、これに続く酸洗を施すことが好ましい。具体的には、電気Feめっき処理の前処理として、鋼板表面を清浄化するために脱脂及び水洗を行い、続いて、鋼板表面を活性化するために酸洗及び水洗を施すことが好ましい。脱脂及び水洗は特に限定されず、公知又は任意の方法及び条件を採用することができる。酸洗処理においては、硫酸、塩酸、硝酸、及びこれらの混合物等各種の酸が使用できる。中でも、硫酸、塩酸及びこれらの混合が望ましい。酸の濃度は特に規定しないが、酸化皮膜の除去能力、過酸洗による肌荒れ防止等を考慮すると、1~20質量%程度が望ましい。また、酸洗液には、消泡剤、酸洗促進剤、酸洗抑制剤等を含有してもよい。
 [電気Feめっき]
 続いて、冷延鋼板に電気Feめっきを施して、冷延鋼板の少なくとも片面に所定付着量のFeめっき層が形成されたFeめっき鋼板を得る。これにより、溶融亜鉛めっき鋼板において良好なめっき外観を得ることができる。本実施形態では、硫酸イオンを20g/L以上200g/L以下含む硫酸浴を用いる。硫酸浴は、塩化物浴、フッ化物浴等より低コストで、かつ、導電性に優れる。硫酸イオン濃度が20g/L未満の場合、導電性に劣り電流効率が低下する結果、十分なFeめっき層の付着量を得ることができず、溶融亜鉛めっき鋼板のめっき外観が不良となる。硫酸イオン濃度が200g/Lを超える場合、Feめっき鋼板表面に硫酸化合物が残りやすくなったり、Feめっき層中に硫酸化合物を取り込みやすくなったりして、後続の酸洗を行ったとしても、溶融亜鉛めっき鋼板の耐食性が不十分となる。
 硫酸浴中には、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を含有することができる。硫酸浴中でのこれらの元素の合計含有量は、GIの場合、及び、GAでFeめっき層が残存する場合、Feめっき層中でこれらの元素の合計含有量が10質量%以下となるようにすることが好ましく、GAの場合、亜鉛めっき層中でこれらの元素の合計含有量が1質量%以下となるようにすることが好ましい。なお、金属元素は金属イオンとして含有すればよく、非金属元素はホウ酸、リン酸、硝酸、有機酸等の一部として含有することができる。また、硫酸浴中には、硫酸ナトリウム、硫酸カリウム等の伝導度補助剤や、キレート剤や、pH緩衝剤が含まれていてもよい。
 Feめっき層の片面当たりの付着量:1.0g/m以上
 Feめっき層の片面当たりの付着量が1.0g/m未満の場合、Feめっき層の付着量が十分でなく、溶融亜鉛めっき鋼板において良好なめっき外観を得ることができない。これは、続く酸洗工程でFeが溶解し、さらに続く焼鈍工程で下地鋼板中のSi及びMnがFeめっき層中を拡散してFeめっき層の表層部で酸化物を形成することで、溶融亜鉛の濡れ性が低下して不めっき欠陥が発生するからである。よって、Feめっき層の片面当たりの付着量は1.0g/m以上とし、好ましくは3.0g/m以上とする。一方、Feめっき層の片面当たりの付着量が10.0g/m超えの場合、Si及びMnの拡散を抑制する効果が飽和し、コストが増加する。よって、Feめっき層の片面当たりの付着量は10.0g/m以下とすることが好ましく、8.0g/m以下とすることがより好ましい。なお、Feめっき直後(後述の酸洗の前)の「Feめっき層の片面当たりの付着量」は、Feめっき直後の鋼板の断面をSEMで観察し、Feめっき層の厚さを測定し、Feの密度に基づいて、測定した厚さを付着量に換算することによって、求めることができる。
 電気Feめっきに関する他の条件については、特に限定しない。硫酸浴中のFeイオンの濃度は、Fe2+として5g/L以上100g/L以下が望ましい。めっき液の温度は、定温保持性を考えると、30℃以上85℃以下が望ましい。めっき液のpHは特に限定されないが、水素発生による電流効率の低下を防ぐ観点から1.0以上とすることが好ましく、電導度を確保する観点から3.0以下とすることが好ましい。電流密度は、生産性の観点から10A/dm以上とすることが好ましく、Feめっき層の付着量制御を容易にする観点から150A/dm以下とすることが好ましい。通板速度は、生産性の観点から5mpm以上とすることが好ましく、付着量を安定的に制御する観点から150mpm以下とすることが好ましい。
 [酸洗]
 続いて、本実施形態では、Feめっき鋼板に酸洗を施すことが肝要である。これにより、Feめっき鋼板上のめっき液を十分に除去することができ、Feめっき鋼板の表面に硫酸化合物が残存したり、Feめっき層中に硫酸化合物が取り込まれたりすることを十分に抑制することができる。そのため、亜鉛めっき層中に硫酸化合物が取り込まれることを十分に抑制することができ、その結果、溶融亜鉛めっき鋼板の耐食性が向上する。
 Feめっき鋼板に対する酸洗は、塩酸を含む酸洗液中にて行うことが好ましい。塩酸によれば、Feめっき層の表面や表層部に残存する硫酸化合物を短時間で十分に除去できる。Feめっき層が過度に溶解するのを防ぐため、酸洗液中にインヒビターを含んでもよい。酸の濃度は1~20質量%とすることができる。酸洗液の温度は20~85℃とすることが好ましい。20℃以上とすることにより、硫酸化合物の除去をより確実に行うことができ、85℃以下とすることにより、Feめっき層が過度に溶解するのを防ぐことができる。
 Feめっき鋼板に対する酸洗は1.0秒以上20秒以下行うことが好ましい。酸洗時間が1.0秒以上であれば、硫酸化合物の除去をより確実に行うことができ、溶融亜鉛めっき鋼板の耐食性がより向上する。酸洗時間が20秒以下であれば、Feめっき層が過度に溶解するのを防ぐことができる。
 なお、前述の電気Feめっきと、この酸洗工程は、連続溶融亜鉛めっき設備(CGL)内で行っても、CGLと別設備で行ってもよい。例えば、CGLにおいて焼鈍炉よりも通板方向上流にFeめっき設備と酸洗浴を組み込めば、Feめっき、酸洗、焼鈍、溶融亜鉛めっき、及び任意の加熱合金化を連続的に行うことができる。また、CGLとは分離して電気Feめっき設備を配置した場合、電気Feめっき設備の通板方向下流に酸洗浴を組み込んで酸洗工程を行ってもよいし、CGLの焼鈍炉よりも通板方向上流に酸洗浴を組み込んで酸洗工程を行ってもよい。
 酸洗後、Feめっき鋼板に水洗と、これに続くロール絞りを施して、Feめっき鋼板上のめっき液を確実に洗浄・除去することが好ましい。その後、Feめっき鋼板は、乾燥されて、次工程でCGLによる焼鈍及び溶融亜鉛めっきに供される。乾燥は、自然乾燥でも加熱乾燥でもよい。
 [焼鈍]
 続いて、CGLの焼鈍炉にて、Feめっき鋼板を還元性雰囲気中で焼鈍(再結晶焼鈍)する。焼鈍の条件は特に規定しないが、通常、露点が-45~-20℃であり、水素を3~25体積%含み、残部がN及び不可避的不純物からなる雰囲気中で行えばよい。露点がこの範囲であれば、炉内を除湿したり加湿したりする設備のコストを抑えられる。水素濃度が3%以上であれば、Feめっき層表面の自然酸化膜の還元が不十分となることがなく、水素濃度が25%以下であれば、コストを抑えられる。焼鈍温度は一般的に700~900℃であればよい。700℃以上であれば、再結晶が十分となり鋼板の加工性を損ねることがなく、900℃以下であれば、特殊な加熱装置や炉体は不要であり、コストが抑えられる。
 [溶融亜鉛めっき]
 続いて、焼鈍され冷却されたFeめっき鋼板をCGLの溶融亜鉛めっき浴に浸漬させることにより、Feめっき鋼板に溶融亜鉛めっきを施して、亜鉛めっき層を有する溶融亜鉛めっき鋼板を得る。
 めっき浴はAl、Zn及び不可避的不純物からなり、その成分は特に規定しないが、一般的に浴中Al濃度を0.05質量%以上0.25質量%以下とすることが好ましい。浴中Al濃度が0.05質量%未満の場合には、ボトムドロスの発生が増加し、ドロスが鋼板に付着して欠陥になりやすい。浴中Al濃度が0.25質量%を超えると、トップドロスが増加し、やはりドロスが鋼板に付着して欠陥になりやすいとともに、Alの添加によるコストアップにつながる。
 めっき浴温度は通常の440~500℃の範囲で、板温440~550℃で鋼板をめっき浴中に浸漬させて行う。
 亜鉛めっき層の片面あたりの付着量は25~80g/mに制御することが好ましい。付着量が25g/m以上でれば、耐食性を十分に確保することができ、80g/m以下であれば、めっき密着性に劣ることがない。めっき後のめっき付着量を調整する方法は特に限定されないが、一般的にガスワイピングが使用され、ガスワイピングのガス圧、ワイピングノズル/鋼板間距離等により調整される。
 [加熱合金化]
 続いて、亜鉛めっき層を加熱合金化して、合金化溶融亜鉛めっき鋼板(GA)を製造してもよい。合金化処理を行う方法は特に限定されないが、IH、ガス炉等を使用して行うことができ、合金化時の最高到達板温は460~600℃であることが好ましい。460℃以上であれば、合金化が十分に行われ、600℃以下でれば、合金化が過度になることなく、めっき密着性を損ねない。
 合金化処理後の合金化度は特に制限されないが、7~15質量%が好ましい。7質量%以上であれば、η相の残存によるプレス成形性の劣化を抑制することができ、15質量%以下であれば、めっき密着性を損ねない。
 (溶融亜鉛めっき鋼板)
 本発明の一実施形態による溶融亜鉛めっき鋼板は、上記製造方法によって好適に製造されるものであり、Si及びMnを含有する冷延鋼板である下地鋼板と、前記下地鋼板の少なくとも片面に形成された亜鉛めっき層と、前記下地鋼板と前記亜鉛めっき層との間に任意に存在するFeめっき層と、を有する。
 本発明の一実施形態は、亜鉛めっき層が合金化されていない溶融亜鉛めっき鋼板(GI)であり得る。この場合、本実施形態のGIは、前記下地鋼板と、前記下地鋼板の少なくとも片面に形成されたFeめっき層と、前記Feめっき層上に形成された亜鉛めっき層と、を有する。
 本発明の他の実施形態は、亜鉛めっき層が合金化されている合金化溶融亜鉛めっき鋼板(GA)であり得る。亜鉛めっき層を加熱合金化すると、Feめっき層の一部又は全部は、亜鉛めっき層中の亜鉛と合金化して、亜鉛めっき層に取り込まれる。すなわち、本実施形態のGAは、前記下地鋼板と、前記下地鋼板の少なくとも片面に残存したFeめっき層と、前記Feめっき層上に形成された亜鉛めっき層と、を有する態様と、前記下地鋼板と、前記下地鋼板の少なくとも片面に直接形成された亜鉛めっき層と、を有する態様との両方を包含する。
 [下地鋼板]
 下地鋼板の成分組成及び強度に関しては、上記の冷延鋼板の成分組成及び強度の記載を援用する。
 [Feめっき層の付着量に関するパラメータ]
 本実施形態では、Feめっき層の片面当たりの付着量XFe(g/m)と、以下の式で求められるYFe(g/m)との和が0.9以上である必要がある。
 YFe=WZn×{(fFe/100)-(fMn/CMn)}
 ただし、
 WZn:亜鉛めっき層の片面当たりの付着量(g/m
 fFe:亜鉛めっき層中のFe濃度(%)
 fMn:亜鉛めっき層中のMn濃度(%)
 CMn:下地鋼板中のMn濃度(%)
 XFeは、GIの場合、Feめっき層の片面当たりの付着量を意味し、GAの場合、亜鉛めっき層と合金化せずに残存したFeめっき層の片面当たりの付着量を意味する。よって、Feめっき層の全部が亜鉛めっき層と合金化したGAにおいては、XFeはゼロとなる。XFeは、溶融亜鉛めっき鋼板の断面をSEMで観察し、Feめっき層の厚さを測定し、Feの密度に基づいて、測定した厚さを付着量に換算することによって、求めることができる。
 YFeは、亜鉛めっき層と合金化したFeめっき層の量に対応するパラメータである。Feめっき層中にMnは含まれないため、亜鉛めっき層中に含まれるMnは下地鋼板に由来するものである。そこで、亜鉛めっき層中のFe量WZn×(fFe/100)と、亜鉛めっき層中の下地鋼板に由来するFe量WZn×fMn/CMnとの差YFeを、「亜鉛めっき層と合金化したFeめっき層」に対応するパラメータとして設定する。
 なお、「亜鉛めっき層中の下地鋼板に由来するFe量=WZn×fMn/CMn」の導出過程は以下のとおりである。まず、{(下地鋼板に由来するFe量)+(下地鋼鈑に由来するMn含めた他元素の量)}×CMn=WZn×fMnとなる。ここで、下地鋼鈑に由来するFe量に比べて下地鋼鈑に由来する他元素の量は微量なので、ここではゼロとみなした。そのため、「亜鉛めっき層中の下地鋼板に由来するFe量=WZn×fMn/CMn」となる。
 ここで、YFeを算出するための4つのパラメータは、以下の方法により特定された値を採用する。
 「亜鉛めっき層の片面当たりの付着量WZn」は、インヒビターを含む塩酸で亜鉛めっき層を溶解し、その前後の鋼板の重量変化と鋼板の表面積から、求めることができる。
 「亜鉛めっき層中のFe濃度fFe」は、亜鉛めっき層(片面当たり)に含まれるFe濃度である。「fFe」は、GAの場合、インヒビターを含む塩酸で亜鉛めっき層を溶解し、その溶解液をICPで分析することで求めることができる。なお、この際、亜鉛めっき層と合金化せずに残存したFeめっき層は、塩酸には溶解しない。GIの場合、加熱合金化工程がないため、亜鉛めっき層に取り込まれるFeめっき層中のFeの量は十分に少なく、GAと同じ方法で測定した場合、fFeは1%以下となるため、「fFe」はゼロとみなして上記式に代入する。
 「亜鉛めっき層中のMn濃度fMn」は、亜鉛めっき層(片面当たり)に含まれるMn濃度である。「fMn」は、GAの場合、インヒビターを含む塩酸で亜鉛めっき層を溶解し、その溶解液をICPで分析することで求めることができる。なお、この際、亜鉛めっき層と合金化せずに残存したFeめっき層は、塩酸には溶解しない。GIの場合、加熱合金化工程がないため、亜鉛めっき層に取り込まれる下地鋼板中のMnの量は十分に少なく、「fMn」はゼロとみなして上記式に代入する。
 「下地鋼板中のMn濃度CMn」は、下地鋼板成分として求めたMn濃度を採用する。
 YFeを算出するための4つのパラメータとして、上記の方法により特定された値を採用する結果、GIにおいては、YFeはゼロとなる。これは、GIにおいては加熱合金化工程がないため、亜鉛めっき層と合金化するFeめっき層の量は十分に少ないことを適切に反映している。
 XFe+YFe:0.9以上
 XFe+YFeは、酸洗後、溶融亜鉛めっき前のFeめっき層の推定付着量に関するパラメータと考えることができる。ここで、本実施形態では、電気Feめっきによって片面当たりの付着量が1.0g/m以上のFeめっき層を形成することを必須とするが、酸洗によってFeめっき層がわずかに減少する。この点を考慮し、本実施形態による溶融亜鉛めっき鋼板においては、XFe+YFeが0.9g/m以上であることを必須とする。XFe+YFeが0.9g/m未満の場合、Feめっき層の付着量が十分でなく、溶融亜鉛めっき鋼板において良好なめっき外観を得ることができない。よって、XFe+YFeは0.9g/m以上とし、好ましくは1.9g/m以上とする。一方、XFe+YFeが9.9g/m超えの場合、Si及びMnの拡散を抑制する効果が飽和し、コストが増加する。よって、XFe+YFeは9.9g/m以下とすることが好ましく、7.9g/m以下とすることがより好ましい。
 GIの場合、及び、GAでFeめっき層が残存している場合、Feめっき層は、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を合計で10質量%以下含み、残部がFe及び不可避的不純物からなる成分組成を有することが好ましい。
 [亜鉛めっき層]
 亜鉛めっき層の片面あたりの付着量WZnは、亜鉛換算の付着量WZn×(1-fFe/100)が25~80g/mの範囲内になるように制御することが好ましい。亜鉛換算の付着量が25g/m以上でれば、耐食性を十分に確保することができ、80g/m以下であれば、めっき密着性に劣ることがない。WZn及びfFeの算出方法は上記のとおりである。
 GAの場合、亜鉛めっき層は、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を合計で1質量%以下含み、残部がZn、Al、Fe、Mn及び不可避的不純物からなる成分組成を有することが好ましい。GIの場合、亜鉛めっき層は、Zn、Al、Fe及び不可避的不純物からなる成分組成を有する。
 亜鉛めっき層中に含まれるSは、Feめっき鋼板の表面及び表層部に残留した硫酸化合物に由来するものであり、耐食性を低下させる。そのため、本実施形態では、亜鉛めっき層中のS含有量が200質量ppm以下であることが肝要であり、好ましくは100質量ppm以下とする。S含有量の下限は特に規定しないが、硫酸浴を用いた電気Feめっきの場合、めっき液中に不可避的にSが含まれ、これが亜鉛めっき層中にも含まれる。このため、本実施形態において、亜鉛めっき層中のS含有量は、通常15ppm以上となる。なお、「亜鉛めっき層中のS含有量」は、インヒビターを含む塩酸で亜鉛めっき層を溶解し、溶解した液をICP分析することで求めることができる。
 表1に示す成分組成(残部はFe及び不可避的不純物)を有する鋼を溶製して得たスラブを熱間圧延して熱延鋼板を得て、この熱延鋼板に脱脂及び酸洗を施し、その後、熱延鋼板を冷間圧延して、板厚1.2mmの冷延鋼板を得た。冷延鋼板の引張強さTSを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 次いで、冷延鋼板にアルカリでの脱脂と、これに続いて、塩酸5質量%、60℃の酸洗液により酸洗を施した。次いで、表2に示す硫酸イオン濃度を有する硫酸浴中で、冷延鋼板を陰極として電解処理を行い、Feめっき鋼板を製造した。その他の電解条件は、以下のとおりとし、通電時間でFeめっき層の付着量を制御した。Feめっき直後の「Feめっき層の片面当たりの付着量」を既述の方法で求め、表2に示した。
 [電解条件]
 浴温:50℃
 pH:2.0
 電流密度:45A/dm
 Fe2+濃度:80g/L
 陽極:酸化イリジウム電極
 通板速度:50mpm
 次いで、Feめっき鋼板に、表2に示す条件で酸洗を施した。酸洗後、Feめっき鋼板に水洗と、これに続くロール絞りを施し、その後、Feめっき鋼板を乾燥させた。
 オールラジアントチューブ(ART)型焼鈍炉を有するCGLにより、表2に示す露点の、水素を10体積%含み、残部がN及び不可避的不純物からなる還元性雰囲気にて、表2に示す焼鈍温度に鋼板を加熱する焼鈍を行った。焼鈍温度での保持時間は100秒とした。
 次いで、焼鈍され冷却されたFeめっき鋼板をCGLの溶融亜鉛めっき浴に浸漬させることにより、Feめっき鋼板に溶融亜鉛めっきを施して、亜鉛めっき層が合金化されていない溶融亜鉛めっき鋼板(GI)を製造した。浴中Al濃度は0.20質量%、浴温は465℃、板温は470℃とした。亜鉛めっき層の片面あたりの付着量は、ガスワイピングにより制御した。次いで、一部の水準では、表2に示す合金化温度にて亜鉛めっき層を加熱合金化する工程をさらに行って、合金化溶融亜鉛めっき鋼板(GA)を製造した。
 各水準において、既述の方法でXFeを求めた。また、各水準において、既述の方法でWZn、fFe、fMn、及びCMnを特定し、これらの値からYFeを算出した。結果を表2に示した。
 また、亜鉛めっき層中のS含有量を既述のICP分析によりで求め、表2に示した。
 以上により得られた溶融亜鉛めっき鋼板(GI及びGA)に対して、以下の評価を行い、結果を表2に示した。
 [めっき外観]
 めっき外観を目視観察し、不めっき欠陥がないものを○、欠陥がわずかにあるがおおむね良好であるものを△、欠陥があるものは×とした。
 [耐食性]
 寸法70mm×150mmのサンプルを採取し、JISZ 2371(2000年)に基づく塩水噴霧試験を3日間行った。その後、腐食生成物を除去するためにクロム酸(濃度200g/L、80℃)を用いてサンプルを1分間洗浄した。片面あたりの試験前後の亜鉛めっき層の腐食減量(g/m・日)を重量法にて測定し、下記基準で評価した。
 ○(良好)    :15g/m・日未満
 △(おおむね良好):15g/m・日以上20g/m・日未満
 ×(不良)    :20g/m・日以上
 [加工性]
 圧延方向を引張方向としてJIS5号試験片を用いてJISZ2241に準拠した方法で行った。
 ○(良好)    :TS×EL ≧ 12000
 △(おおむね良好):TS×EL ≧ 10000
 ×(不良)    :TS×EL < 10000
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明例では、不めっきのない美麗な表面外観を有し、さらに耐食性に優れた溶融亜鉛めっき鋼板を得ることができた。
 本発明の溶融亜鉛めっき鋼板の製造方法によれば、めっき外観及び耐食性に優れる溶融亜鉛めっき鋼板を製造することができる。本発明により製造された溶融亜鉛めっき鋼板を、例えば、自動車構造部材に適用することで、車体軽量化による燃費改善を図ることができ、産業上の利用価値は非常に大きい。

Claims (22)

  1.  Si及びMnを含有する冷延鋼板に、硫酸イオンを20g/L以上200g/L以下含む硫酸浴中で電気Feめっきを施して、前記冷延鋼板の少なくとも片面に付着量が1.0g/m以上のFeめっき層が形成されたFeめっき鋼板を得る工程と、
     その後、前記Feめっき鋼板に酸洗を施す工程と、
     その後、前記Feめっき鋼板を還元性雰囲気中で焼鈍する工程と、
     その後、前記Feめっき鋼板に溶融亜鉛めっきを施して、亜鉛めっき層を有する溶融亜鉛めっき鋼板を得る工程と、
    を有する溶融亜鉛めっき鋼板の製造方法。
  2.  前記Feめっき鋼板に対する酸洗を、塩酸を含む酸洗液中にて行う、請求項1に記載の溶融亜鉛めっき鋼板の製造方法。
  3.  前記Feめっき鋼板に対する酸洗を1.0秒以上20秒以下行う、請求項1又は2に記載の溶融亜鉛めっき鋼板の製造方法。
  4.  前記冷延鋼板が、780MPa以上の引張強さを有する高強度鋼板である、請求項1~3のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  5.  前記冷延鋼板が、質量%で、Si:0.05%以上2.5%以下、及び、Mn:1.0%以上3.5%以下を含む成分組成を有する、請求項1~4のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  6.  前記冷延鋼板が、質量%で、
      C :0.8%以下、
      Si:0.05%以上2.5%以下、
      Mn:1.0%以上3.5%以下、
      P :0.1%以下、及び
      S :0.03%以下を含み、
      残部がFe及び不可避的不純物からなる成分組成を有する、請求項1~4のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  7.  前記成分組成が、さらに、質量%で、
      Al:0.1%以下、
      B :0.005%以下、
      Ti:0.2%以下、
      N :0.010%以下、
      Cr:1.0%以下、
      Cu:1.0%以下、
      Ni:1.0%以下、
      Mo:1.0%以下、
      Nb:0.20%以下、
      V :0.5%以下、
      Sb:0.200%以下、
      Ta:0.1%以下、
      W :0.5%以下、
      Zr:0.1%以下、
      Sn:0.20%以下、
      Ca:0.005%以下、
      Mg:0.005%以下、及び
      REM:0.005%以下
    からなる群から選ばれる少なくとも一種の元素を含有する、請求項6に記載の溶融亜鉛めっき鋼板の製造方法。
  8.  前記亜鉛めっき層を加熱合金化する工程を行わない、請求項1~7のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  9.  前記亜鉛めっき層を加熱合金化する工程をさらに有する、請求項1~7のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  10.  前記硫酸浴中に、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を、前記Feめっき層中でこれらの元素の合計含有量が10質量%以下となるように含有する、請求項1~9のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  11.  前記硫酸浴中に、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を、前記亜鉛めっき層中でこれらの元素の合計含有量が1質量%以下となるように含有する、請求項9に記載の溶融亜鉛めっき鋼板の製造方法。
  12.  Si及びMnを含有する冷延鋼板である下地鋼板と、
     前記下地鋼板の少なくとも片面に形成された亜鉛めっき層と、
     前記下地鋼板と前記亜鉛めっき層との間に任意に存在するFeめっき層と、
    を有し、
     前記Feめっき層の片面当たりの付着量XFe(g/m)と、以下の式で求められるYFe(g/m)との和が0.9以上であり、
     前記亜鉛めっき層中のS含有量が200質量ppm以下である、溶融亜鉛めっき鋼板。
     YFe=WZn×{(fFe/100)-(fMn/CMn)}
     ただし、
     WZn:亜鉛めっき層の片面当たりの付着量(g/m
     fFe:亜鉛めっき層中のFe濃度(%)
     fMn:亜鉛めっき層中のMn濃度(%)
     CMn:下地鋼板中のMn濃度(%)
  13.  前記亜鉛めっき層中のS含有量が100質量ppm以下である、請求項12に記載の溶融亜鉛めっき鋼板。
  14.  前記亜鉛めっき層中のS含有量が15質量ppm以上である、請求項12又は13に記載の溶融亜鉛めっき鋼板。
  15.  前記下地鋼板が、780MPa以上の引張強さを有する高強度鋼板である、請求項12~14のいずれか一項に記載の溶融亜鉛めっき鋼板。
  16.  前記下地鋼板が、質量%で、Si:0.05%以上2.5%以下、及び、Mn:1.0%以上3.5%以下を含む成分組成を有する、請求項12~15のいずれか一項に記載の溶融亜鉛めっき鋼板。
  17.  前記下地鋼板が、質量%で、
      C :0.8%以下、
      Si:0.05%以上2.5%以下、
      Mn:1.0%以上3.5%以下、
      P :0.1%以下、及び
      S :0.03%以下を含み、
      残部がFe及び不可避的不純物からなる成分組成を有する、請求項12~15のいずれか一項に記載の溶融亜鉛めっき鋼板。
  18.  前記成分組成が、さらに、質量%で、
      Al:0.1%以下、
      B :0.005%以下、
      Ti:0.2%以下、
      N :0.010%以下、
      Cr:1.0%以下、
      Cu:1.0%以下、
      Ni:1.0%以下、
      Mo:1.0%以下、
      Nb:0.20%以下、
      V :0.5%以下、
      Sb:0.200%以下、
      Ta:0.1%以下、
      W :0.5%以下、
      Zr:0.1%以下、
      Sn:0.20%以下、
      Ca:0.005%以下、
      Mg:0.005%以下、及び
      REM:0.005%以下
    からなる群から選ばれる少なくとも一種の元素を含有する、請求項17に記載の溶融亜鉛めっき鋼板。
  19.  前記亜鉛めっき層が合金化されていない、請求項12~18のいずれか一項に記載の溶融亜鉛めっき鋼板。
  20.  前記亜鉛めっき層が合金化されている、請求項12~18のいずれか一項に記載の溶融亜鉛めっき鋼板。
  21.  前記Feめっき層が、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を合計で10質量%以下含み、残部がFe及び不可避的不純物からなる成分組成を有する、請求項12~20のいずれか一項に記載の溶融亜鉛めっき鋼板。
  22.  前記亜鉛めっき層が、B、C、P、N、O、Ni、Mo、Zn、W、Pb、Sn、Cr、V、及びCoからなる群から選ばれる少なくとも一種の元素を合計で1質量%以下含み、残部がZn、Al、Fe、Mn及び不可避的不純物からなる成分組成を有する、請求項20に記載の溶融亜鉛めっき鋼板。
PCT/JP2021/006481 2020-04-24 2021-02-19 溶融亜鉛めっき鋼板及びその製造方法 WO2021215100A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180029889.4A CN115485416A (zh) 2020-04-24 2021-02-19 热浸镀锌钢板及其制造方法
MX2022013299A MX2022013299A (es) 2020-04-24 2021-02-19 Chapa de acero galvanizada por inmersion en caliente y metodo de produccion de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020077747A JP7247946B2 (ja) 2020-04-24 2020-04-24 溶融亜鉛めっき鋼板及びその製造方法
JP2020-077747 2020-04-24

Publications (1)

Publication Number Publication Date
WO2021215100A1 true WO2021215100A1 (ja) 2021-10-28

Family

ID=78270579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006481 WO2021215100A1 (ja) 2020-04-24 2021-02-19 溶融亜鉛めっき鋼板及びその製造方法

Country Status (4)

Country Link
JP (1) JP7247946B2 (ja)
CN (1) CN115485416A (ja)
MX (1) MX2022013299A (ja)
WO (1) WO2021215100A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023158573A (ja) * 2022-04-18 2023-10-30 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法および溶融亜鉛めっき鋼板の製造設備

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770268A (en) * 1980-10-21 1982-04-30 Nippon Steel Corp Preparation of galvanized sheet iron
JPH05171389A (ja) * 1991-12-16 1993-07-09 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板の製造方法
JPH05279829A (ja) * 1992-04-01 1993-10-26 Sumitomo Metal Ind Ltd 高張力合金化溶融亜鉛めっき鋼板の製造方法
JP2002322551A (ja) * 2001-04-25 2002-11-08 Kobe Steel Ltd 溶融亜鉛めっき鋼板
JP2003328099A (ja) * 2002-05-02 2003-11-19 Nippon Steel Corp 高強度溶融亜鉛めっき鋼板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284122B1 (en) * 1998-06-09 2001-09-04 International Lead Zinc Research Organization, Inc. Production of a zinc-aluminum alloy coating by immersion into molten metal baths
JP4184832B2 (ja) * 2003-02-27 2008-11-19 株式会社神戸製鋼所 鋼材表面の処理方法および鋼材の製造方法
JP4299560B2 (ja) * 2003-03-20 2009-07-22 日新製鋼株式会社 加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法
AU2009234667B2 (en) * 2008-04-10 2012-03-08 Nippon Steel Corporation High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both
CN102996975A (zh) * 2012-12-17 2013-03-27 济南玫德铸造有限公司 带有双重镀层的管件及其制造方法
US10563296B2 (en) * 2015-09-29 2020-02-18 Nippon Steel Corporation Coated steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770268A (en) * 1980-10-21 1982-04-30 Nippon Steel Corp Preparation of galvanized sheet iron
JPH05171389A (ja) * 1991-12-16 1993-07-09 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板の製造方法
JPH05279829A (ja) * 1992-04-01 1993-10-26 Sumitomo Metal Ind Ltd 高張力合金化溶融亜鉛めっき鋼板の製造方法
JP2002322551A (ja) * 2001-04-25 2002-11-08 Kobe Steel Ltd 溶融亜鉛めっき鋼板
JP2003328099A (ja) * 2002-05-02 2003-11-19 Nippon Steel Corp 高強度溶融亜鉛めっき鋼板の製造方法

Also Published As

Publication number Publication date
JP7247946B2 (ja) 2023-03-29
CN115485416A (zh) 2022-12-16
MX2022013299A (es) 2022-11-30
JP2021172855A (ja) 2021-11-01

Similar Documents

Publication Publication Date Title
KR100595947B1 (ko) 고강도 박강판, 고강도 합금화 용융아연도금 강판 및이들의 제조방법
CN108603263B (zh) 高屈服比型高强度镀锌钢板及其制造方法
CN113272466B (zh) 热浸镀锌钢板的制造方法
JP2010501725A (ja) 6−30重量%のMnを含有する熱間圧延鋼板または冷間圧延鋼板に金属保護層をめっきする方法
WO2003074751A1 (fr) Plaque d'acier a surface traitee et procede de production correspondant
WO2013103117A1 (ja) 合金化溶融亜鉛めっき鋼板
EP4242340A1 (en) Fe-based electroplated steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for manufacturing same
WO2014136412A1 (ja) 高強度鋼板及びその製造方法並びに高強度溶融亜鉛めっき鋼板及びその製造方法
JP5888268B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
CN115335554A (zh) Fe系电镀钢板、电沉积涂装钢板、汽车部件、电沉积涂装钢板的制造方法及Fe系电镀钢板的制造方法
WO2017131056A1 (ja) 高降伏比型高強度亜鉛めっき鋼板及びその製造方法
JP7137492B2 (ja) 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法
KR101528010B1 (ko) 도금성이 우수한 고망간강 용융아연도금강판 및 이의 제조방법
JP2008266685A (ja) 外観に優れた高張力合金化溶融亜鉛めっき鋼板の製造方法
JP7247946B2 (ja) 溶融亜鉛めっき鋼板及びその製造方法
KR101736640B1 (ko) 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법
CN111601906B (zh) 高强度合金化电镀锌钢板及其制造方法
JP7235165B2 (ja) Fe系皮膜付き素材冷延鋼板、Fe系皮膜付き素材冷延鋼板の製造方法、Fe系皮膜付き冷延鋼板の製造方法、溶融亜鉛めっき鋼板の製造方法、および合金化溶融亜鉛めっき鋼板の製造方法
KR101978014B1 (ko) 고강도 강판 및 고강도 용융 아연 도금 강판 그리고 그것들의 제조 방법
JP7444283B2 (ja) Fe系電気めっき鋼板および溶融亜鉛めっき鋼板ならびにそれらの製造方法
JP7508015B1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5907106B2 (ja) 亜鉛めっき冷延鋼板
JPH05132740A (ja) 耐孔あき腐食性に優れた深絞り用溶融亜鉛めつき鋼板の製造方法
JP5971155B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
JP4855290B2 (ja) 溶融亜鉛メッキ鋼板および合金化溶融亜鉛メッキ鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791951

Country of ref document: EP

Kind code of ref document: A1