WO2021215095A1 - ゴム組成物、加硫物及び成形品 - Google Patents

ゴム組成物、加硫物及び成形品 Download PDF

Info

Publication number
WO2021215095A1
WO2021215095A1 PCT/JP2021/005909 JP2021005909W WO2021215095A1 WO 2021215095 A1 WO2021215095 A1 WO 2021215095A1 JP 2021005909 W JP2021005909 W JP 2021005909W WO 2021215095 A1 WO2021215095 A1 WO 2021215095A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
less
rubber
sulfur
Prior art date
Application number
PCT/JP2021/005909
Other languages
English (en)
French (fr)
Inventor
敦典 近藤
貴史 砂田
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to EP21792589.0A priority Critical patent/EP4130136B1/en
Publication of WO2021215095A1 publication Critical patent/WO2021215095A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F136/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F136/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F136/04Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F136/14Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • C08F136/16Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen
    • C08F136/18Homopolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen containing halogen containing chlorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton

Definitions

  • the present invention relates to rubber compositions, vulcanized products, molded products, and the like.
  • Chloroprene rubber has excellent mechanical properties, ozone resistance, chemical resistance, etc., and is used in a wide range of fields such as automobile parts, adhesives, and various industrial rubber parts by taking advantage of these properties. Further, in recent years, the performance required for industrial rubber parts has been remarkably increased, and in addition to the above-mentioned improvements in characteristics such as mechanical properties, ozone resistance, and chemical resistance, vulcanization obtained by using chloroprene rubber Improvements in tensile strength, compression set resistance, abrasion resistance, etc. of an object are required.
  • 100 parts by weight of a rubber component is characterized by containing 5 parts by weight or more of a saturated aliphatic carboxylic acid having a molecular weight of 300 or more. Rubber compositions are known.
  • Patent Document 2 As a technique for improving compression resistance and permanent strain resistance, as described in Patent Document 2 below, 100 parts by mass of chloroprene rubber and natural rubber in total and 0.1 to 10 block copolymers of styrene and butadiene are used. A chloroprene rubber composition containing 0.1 to 3 parts by mass of ethylene thiourea, 0.1 to 3 parts by mass of dipentamethylene thiuram tetrasulfide, and 0.1 to 3 parts by mass is known.
  • chloroprene rubber sulfur-modified chloroprene rubber can be used.
  • a rubber composition containing a sulfur-modified chloroprene rubber it may be required to obtain a vulcanized product having both excellent tensile strength, compression permanent strain resistance and wear resistance.
  • one aspect of the present invention is to provide a rubber composition capable of obtaining a vulcanized product having excellent tensile strength, compression set resistance and wear resistance. Another aspect of the present invention is to provide a vulcanized product of the rubber composition. Another aspect of the present invention is to provide a molded product (molded product using a vulcanized product) made of the vulcanized product.
  • the inventors of the present application introduced a specific structure at the molecular terminal of the vulcanized chloroprene rubber and used a specific amount of carbon black having an average particle size in a specific range.
  • a specific amount of a diene polymer other than chloroprene rubber we succeeded in obtaining a vulcanized product having excellent tensile strength, compression set resistance and abrasion resistance, and completed the present invention. rice field.
  • One aspect of the present invention includes 100 parts by mass of sulfur-modified chloroprene rubber, 25 to 55 parts by mass of carbon black having an average particle diameter of 70 nm or less, and more than 0 parts by mass of diene-based rubber other than chloroprene rubber and 15 parts by mass or less.
  • the sulfur-modified chloroprene rubber contained therein is represented by the following general formula (A) and has a functional group A located at the molecular terminal, and is represented by the following general formula (B) in the sulfur-modified chloroprene rubber.
  • the mass ratio B / A of the content of the functional group B located at the end of the molecule to the content of the functional group A is 12.00 or less, and the total amount of the functional group A and the functional group B is 0.10. It relates to a rubber composition which is ⁇ 1.00% by mass.
  • R a1 and R a2 are each independently an alkyl group or an alkyl group which may have a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, or a substituent.
  • R b1 and R b2 each independently represent an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • a vulcanized product having excellent tensile strength, compression set resistance and wear resistance can be obtained.
  • Another aspect of the present invention relates to the vulcanized product of the rubber composition described above. Another aspect of the present invention relates to a molded product made of the above-mentioned vulcanized product.
  • a rubber composition capable of obtaining a vulcanized product having excellent tensile strength, compression set resistance and wear resistance.
  • a vulcanized product of the rubber composition can be provided.
  • a molded product made of the vulcanized product (a molded product using the vulcanized product).
  • the numerical range indicated by using “-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. “A or more” in the numerical range means A and a range exceeding A. “A or less” in the numerical range means A and a range less than A.
  • the upper limit value or the lower limit value of the numerical range of one step can be arbitrarily combined with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • "A or B" may include either A or B, or both.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the "alkyl group” may be linear, branched or cyclic.
  • the rubber composition (sulfur-modified chloroprene rubber composition) includes 100 parts by mass of sulfur-modified chloroprene rubber, 25 to 55 parts by mass of carbon black having an average particle diameter of 70 nm or less, and a diene-based rubber other than chloroprene rubber (sulfur-modified chloroprene rubber composition).
  • the sulfur-modified chloroprene rubber containing more than 0 parts by mass and 15 parts by mass or less (referred to as "diene-based rubber A”) is represented by the following general formula (A) and is a functional group A located at the end of the molecule.
  • terminal functional group A In sulfur-modified chloroprene rubber having (hereinafter referred to as "terminal functional group A"), it is represented by the following general formula (B) and is located at the molecular terminal of the functional group B (hereinafter referred to as “terminal functional group B”).
  • the mass ratio B / A is 12.00 or less, and the total amount of the functional group A and the functional group B is 0.10 to 1.00% by mass. That is, the sulfur-modified chloroprene rubber has at least one of the structure represented by the following general formula (A) and the structure represented by the following general formula (B) at the molecular end, and has the following general formula (A).
  • the mass ratio B / A of the terminal functional group A represented by) and the terminal functional group B represented by the following general formula (B) is 0 to 12.00, and the mass ratio of the sulfur-modified chloroprene rubber is 100 parts by mass.
  • the total amount (A + B) of the terminal functional group A and the terminal functional group B is 0.10 to 1.00 parts by mass.
  • R a1 and R a2 are each independently an alkyl group or an alkyl group which may have a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, or a substituent.
  • Indicates an arylthio group which may have a substituent Ra 1 and Ra 2 may be the same as each other or different from each other, and Ra 1 and Ra 2 may be bonded to each other and have a substituent.
  • a good ring may be formed.
  • R a1 and R a2 can be bonded to each other to form a ring having a substituent or a ring having no substituent.
  • R b1 and R b2 independently represent an alkyl group which may have a substituent or an aryl group which may have a substituent, and R b1 and R b2 are the same as each other. However, they may be different from each other.
  • a vulcanized product can be obtained by vulcanizing the rubber composition according to the present embodiment.
  • the rubber composition according to the present embodiment as a vulcanized product obtained by vulcanizing the rubber composition, it is possible to obtain a vulcanized product having excellent tensile strength, compression set resistance and abrasion resistance. can.
  • a rubber composition containing a sulfur-modified chloroprene rubber it may be required to obtain a vulcanized product having both excellent tensile strength, compression set resistance, wear resistance and scorch resistance. be.
  • a technique for improving the scorch resistance of rubber as described in Patent Document 4 above, a rubber composition containing 1 to 10 parts by weight of an amine salt of dithiocarbamic acid with respect to 100 parts by weight of chloroprene rubber. Things are known.
  • the inventors of the present application introduced a specific structure at the molecular terminal of the vulcanized chloroprene rubber, used a specific amount of carbon black having an average particle size in a specific range, and used a diene other than the chloroprene rubber.
  • a specific amount of the based polymer we succeeded in obtaining a vulcanized product having excellent tensile strength, compression set resistance, abrasion resistance and scorch resistance. That is, according to the rubber composition according to the present embodiment, it is possible to obtain a vulcanized product having excellent tensile strength, compression set resistance, wear resistance and scorch resistance (in terms of scorch resistance and tensile strength). It is possible to obtain a vulcanized product which is excellent and capable of improving compression set resistance and wear resistance).
  • the method for producing the rubber composition according to the present embodiment is a step of obtaining a sulfur-modified chloroprene rubber by the method for producing a sulfur-modified chloroprene rubber described later, and a step of mixing the sulfur-modified chloroprene rubber, carbon black, and diene-based rubber A. And.
  • Sulfur-modified chloroprene rubber is a polymer having a structural unit derived from chloroprene (2-chloro-1,3-butadiene). Sulfur-modified chloroprene rubber has chloroprene as a monomer unit.
  • the sulfur-modified chloroprene rubber contains a sulfur atom in the molecular chain and may contain a sulfur atom in the main chain.
  • Sulfur-modified chloroprene rubber may comprise a polysulfide bond to a molecular chain (S 2 ⁇ S 8), may include a main chain polysulfide bond (S 2 ⁇ S 8).
  • the sulfur-modified chloroprene rubber may have a structural unit derived from a monomer copolymerizable with chloroprene.
  • the monomer copolymerizable with chloroprene include 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, styrene, acrylonitrile, methacrylonitrile, isoprene, butadiene, acrylic acid, and methacryl. Acids, esters and the like can be mentioned.
  • the monomer copolymerizable with chloroprene one type may be used alone, or two or more types may be used in combination.
  • Sulfur-modified chloroprene rubber does not have a structural unit derived from at least one of these monomers (eg, 2,3-dichloro-1,3-butadiene) exemplified as a monomer copolymerizable with chloroprene. It's okay.
  • 2,3-dichloro-1,3-butadiene can be used to slow down the crystallization rate of the sulfur-modified chloroprene rubber.
  • the sulfur-modified chloroprene rubber having a slow crystallization rate can maintain rubber elasticity even in a low temperature environment, and can improve, for example, low temperature compression permanent strain.
  • the amount of the monomer copolymerizable with chloroprene is the total amount containing chloroprene. It is preferably 10% by mass or less in the monomer (the total amount of the structural units constituting the sulfur-modified chloroprene rubber). When this amount used is 10% by mass or less, the heat resistance of the sulfur-modified chloroprene rubber is likely to be improved and the decrease in workability is likely to be suppressed.
  • the amount of chloroprene used (content of structural units derived from chloroprene) is 90% by mass or more and 92% by mass in all monomers containing chloroprene (total amount of structural units constituting sulfur-modified chloroprene rubber). % Or more, 95% by mass or more, more than 95% by mass, or 98% by mass or more is preferable.
  • the structural unit constituting the sulfur-modified chloroprene rubber may be a structural unit derived from chloroprene (substantially 100% by mass of the structural unit constituting the sulfur-modified chloroprene rubber is a structural unit derived from chloroprene).
  • the terminal functional group A may be located at the end of the main chain and / or the side chain.
  • the terminal functional group A can be obtained, for example, by using a thiazole compound in the plasticization step described later.
  • the substituent for the alkyl group which is R a1 or R a2 include a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group, an amino group and the like. ..
  • Examples of the substituent for the arylthio group which is R a1 or Ra 2 include an alkyl group, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group and an amino group. Can be mentioned.
  • Ra1 and Ra2 may be bonded to each other to form a ring which may have a substituent.
  • the ring include an aromatic ring, an alicyclic ring, and a heterocycle.
  • the substituent on the ring include an alkyl group, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group and an amino group.
  • the alkyl group which is a substituent on the ring include an alkyl group having 1, 2, 3 or 4 carbon atoms.
  • the terminal functional group A is a benzothiazole ring formed by bonding Ra1 and Ra2 to each other from the viewpoint of easily improving the tensile strength, compression permanent strain resistance, wear resistance and scorch resistance of the vulcanized product. It is preferable to have.
  • the benzothiazole ring does not have to have a substituent.
  • the substituent is preferably an alkyl group from the viewpoint of easily improving the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the sulfide, and the benzothiazole ring.
  • An alkyl group bonded to the 4-position position is more preferable. That is, it is preferable that an alkyl group is bonded to the benzothiazole ring, and it is more preferable that an alkyl group is bonded to the 4-position of the benzothiazole ring.
  • the sulfur-modified chloroprene rubber may have a terminal functional group B and may not have a terminal functional group B.
  • the terminal functional group B may be located at the end of the main chain and / or side chain.
  • the terminal functional group B can be obtained, for example, by using a dithiocarbamic acid-based compound in the plasticization step described later.
  • Examples of the substituent for the alkyl group which is R b1 or R b2 include a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group, an amino group and the like. ..
  • Examples of the aryl group which is R b1 or R b2 include a benzyl group, a phenyl group, a tolyl group, a xsilyl group, a naphthyl group and the like.
  • Examples of the substituent for the aryl group which is R b1 or R b2 include an alkyl group, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group and an amino group. Can be mentioned.
  • the alkyl group or aryl group which is R b1 or R b2 does not have to have a substituent.
  • the carbon number of at least one selected from R b1 and R b2 is 3 or more, 3 to 10, 5 from the viewpoint of easily improving the tensile strength, compression set resistance, wear resistance and scorch resistance of the vulcanized product. -10, 6-10, 7-9, or 7-8 are preferred.
  • the rubber composition according to the present embodiment does not have to contain a sulfur-modified chloroprene rubber having a terminal functional group A and a terminal functional group B in which R b1 and R b2 are ethyl groups.
  • the content of the terminal functional group A is preferably in the following range based on the total amount of the sulfur-modified chloroprene rubber (that is, the sulfur-modified chloroprene rubber has the following numerical value with respect to 100 parts by mass of the sulfur-modified chloroprene rubber (that is, the content of the sulfur-modified chloroprene rubber). Unit: parts by mass) preferably contains the terminal functional group A).
  • the content of the terminal functional group A is 0.50% by mass or less and 0.45% by mass or less from the viewpoint of easily improving the mechanical strength, compression set resistance, abrasion resistance and scorch resistance of the sulfide.
  • 0.42% by mass or less 0.40% by mass or less, 0.38% by mass or less, 0.35% by mass or less, 0.30% by mass or less, 0.25% by mass or less, 0.23% by mass or less, 0.20% by mass or less, 0.18% by mass or less, 0.16% by mass or less, 0.15% by mass or less, 0.14% by mass or less, 0.13% by mass or less, 0.12% by mass or less, 0 .11% by mass or less, 0.10% by mass or less, 0.09% by mass or less, 0.08% by mass or less, 0.07% by mass or less, 0.06% by mass or less, 0.05% by mass or less, or It is preferably 0.04% by mass or less.
  • the content of the terminal functional group A is 0.01% by mass or more, 0.03% by mass or more, from the viewpoint of easily improving the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the vulture.
  • the content of the terminal functional group A is preferably 0.01 to 0.50% by mass, 0.05 to 0.40% by mass, or 0.10 to 0.35% by mass.
  • the content of the terminal functional group A can be adjusted by the amount of the thiazole compound used in the plasticization step described later, the plasticization time of the plasticization step, the plasticization temperature, and the like.
  • the content of the terminal functional group B is not particularly limited, but is preferably in the following range based on the total amount of the sulfur-modified chloroprene rubber (that is, the sulfur-modified chloroprene rubber is described below with respect to 100 parts by mass of the sulfur-modified chloroprene rubber. It is preferable to contain the terminal functional group B having a numerical content (unit: parts by mass)).
  • the content of the terminal functional group B is 1.00% by mass or less, 0.90% by mass or less, from the viewpoint of easily improving the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the vulture.
  • 0.80% by mass or less 0.80% by mass or less, 0.70% by mass or less, 0.60% by mass or less, 0.50% by mass or less, 0.45% by mass or less, 0.40% by mass or less, 0.33% by mass or less, 0 .32% by mass or less, 0.30% by mass or less, 0.29% by mass or less, 0.25% by mass or less, 0.23% by mass or less, 0.20% by mass or less, 0.19% by mass or less, 0.
  • the content of the terminal functional group B may be 0% by mass and may exceed 0% by mass. When the content of the terminal functional group B exceeds 0% by mass, the content is 0.01 from the viewpoint of easily improving the tensile strength, compression permanent strain resistance, abrasion resistance and scorch resistance of the sulfide.
  • Mass% or more 0.03 mass% or more, 0.05 mass% or more, 0.06 mass% or more, 0.07 mass% or more, 0.09 mass% or more, 0.10 mass% or more, 0.12 mass % Or more, 0.13% by mass or more, 0.14% by mass or more, 0.15% by mass or more, 0.19% by mass or more, 0.20% by mass or more, 0.23% by mass or more, 0.25% by mass 0.29% by mass or more, 0.30% by mass or more, 0.32% by mass or more, 0.33% by mass or more, 0.40% by mass or more, 0.45% by mass or more, 0.50% by mass or more , 0.60% by mass or more, 0.70% by mass or more, or 0.80% by mass or more is preferable.
  • the content of the terminal functional group B is preferably 0 to 1.00% by mass, 0 to 0.80% by mass, or 0.10 to 0.60% by mass.
  • the content of the terminal functional group B can be adjusted by the amount of the dithiocarbamic acid-based compound used in the plasticization step described later, the plasticization time of the plasticization step, the plasticization temperature, and the like.
  • the mass ratio B / A of the content of the terminal functional group B to the content of the terminal functional group A is 12.00 or less (0 to 12.00). If the mass ratio B / A exceeds 12.00, the compressive permanent strain resistance of the vulcanized product decreases.
  • the mass ratio B / A is 11.60 or less, 11.00 or less, 10.00 or less, 9 from the viewpoint that the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the vulture are easily improved. .00 or less, 8.00 or less, 7.00 or less, 6.00 or less, 5.00 or less, 4.00 or less, 3.00 or less, 2.50 or less, 2.00 or less, 1.00 or less, 0 .64 or less, 0.61 or less, 0.60 or less, 0.50 or less, 0.45 or less, 0.44 or less, 0.40 or less, 0.30 or less, 0.20 or less, or 0.10 or less Is preferable.
  • the mass ratio B / A may be 0 and may exceed 0.
  • the mass ratio B / A exceeds 0, the mass ratio B / A is 0.10 or more from the viewpoint of easily improving the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the sulfide. 0.20 or more, 0.30 or more, 0.40 or more, 0.50 or more, 0.60 or more, 0.61 or more, 0.64 or more, 1.00 or more, 2.00 or more, 2.50 or more, 3.00 or more, 4.00 or more, 5.00 or more, 6.00 or more, 7.00 or more, 8.00 or more, 9.00 or more, 10.00 or more, 11.00 or more, or 11.60 The above is preferable.
  • the mass ratio B / A is preferably more than 0 and 12.00 or less, 0.50 to 10.00, or 0.60 to 9.00.
  • the total amount of the terminal functional group A and the terminal functional group B (the total content of the terminal functional group A and the terminal functional group B.
  • the total mass (A + B)) is 0.10 to 1 based on the total amount of the sulfur-modified chloroprene rubber. It is 0.00% by mass. If the total mass (A + B) is less than 0.10% by mass, the compressive permanent strain resistance, wear resistance and scorch resistance of the vulcanized product are lowered. When the total mass (A + B) exceeds 1.00% by mass, the decrease in Mooney viscosity of the reaction product obtained by the method for producing sulfur-modified chloroprene rubber described later is significantly impractical (vulcanized product cannot be obtained).
  • the total mass (A + B) is preferably in the following range based on the total amount of sulfur-modified chloroprene rubber.
  • the total mass (A + B) is 0.15% by mass or more, 0.20% by mass or more, and 0. 24% by mass or more, 0.25% by mass or more, 0.30% by mass or more, 0.35% by mass or more, 0.37% by mass or more, 0.38% by mass or more, 0.40% by mass or more, 0.42 Mass% or more, 0.45% by mass or more, 0.46% by mass or more, 0.48% by mass or more, 0.50% by mass or more, 0.51% by mass or more, 0.55% by mass or more, 0.57% by mass % Or more, 0.60% by mass or more, 0.65% by mass or more, 0.66% by mass or more, 0.70% by mass or more, 0.80% by mass or more, or 0.85% by mass or more is preferable.
  • the total mass (A + B) is 0.90% by mass or less, 0.85% by mass or less, and 0. 80% by mass or less, 0.70% by mass or less, 0.66% by mass or less, 0.65% by mass or less, 0.60% by mass or less, 0.57% by mass or less, 0.55% by mass or less, 0.51 Mass% or less, 0.50 mass% or less, 0.48 mass% or less, 0.46 mass% or less, 0.45 mass% or less, 0.42 mass% or less, 0.40 mass% or less, 0.38 mass % Or less, 0.37% by mass or less, 0.35% by mass or less, 0.30% by mass or less, 0.25% by mass or less, or 0.24% by mass or less is preferable. From these viewpoints, the total mass (A + B) is preferably 0.15 to 0.90% by mass, 0.20 to 0.80% by mass, or 0.30 to 0.70% by mass.
  • the content of the terminal functional group A and the terminal functional group B in the sulfur-modified chloroprene rubber can be quantified by the procedure described in the examples.
  • the sulfur-modified chloroprene rubber does not have to have a functional group represented by the following general formula (C), and does not have a functional group represented by the following general formula (C) and located at the molecular terminal. good.
  • R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • the content of sulfur-modified chloroprene rubber in the rubber composition is as follows based on the total amount of the rubber composition from the viewpoint of easily improving the tensile strength, compression permanent strain resistance, abrasion resistance and scorch resistance of the vulcanized product. The range is preferred.
  • the content of the sulfur-modified chloroprene rubber is preferably 10% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass or more.
  • the content of the sulfur-modified chloroprene rubber is preferably 80% by mass or less, 70% by mass or less, 60% by mass or less, 55% by mass or less, 50% by mass or less, or 45% by mass or less. From these viewpoints, the content of the sulfur-modified chloroprene rubber is preferably 10 to 80% by mass, 20 to 70% by mass, or 30 to 50% by mass.
  • One aspect of the method for producing a sulfur-modified chloroprene rubber is a polymerization step of obtaining a polymerization solution by emulsion polymerization of at least chloroprene rubber and sulfur, and adding a thiazole compound to the polymerization solution to obtain a polymer in the polymerization solution. It has a plasticization step of plasticizing.
  • sulfur-modified chloroprene rubber for example, it is possible to introduce a sulfur polymer (e.g., polymer backbone), it may be introduced polysulfide bond (S 2 ⁇ S 8).
  • Sulfur-modified chloroprene rubber is used to plasticize chloroprene alone or a sulfur-modified chloroprene polymer in which chloroprene and other monomers are emulsion-polymerized and introduced with sulfur in the presence of sulfur, using a thiazole compound. Includes the latex obtained from the above and the sulfur-modified chloroprene rubber obtained by drying and washing the latex by a general method.
  • chloroprene is emulsion-polymerized in the presence of sulfur to obtain a polymer.
  • the polymer may be a polymer in a polymerization solution.
  • chloroprene and the above-mentioned monomer copolymerizable with chloroprene may be emulsion-polymerized.
  • the amount of chloroprene used or the amount of the monomer copolymerizable with chloroprene is preferably the above-mentioned amount.
  • the amount of sulfur (S 8 ) used in the emulsion polymerization is preferably in the following range with respect to 100 parts by mass of the monomers (total of the monomers to be polymerized).
  • the amount of sulfur used is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, from the viewpoint that sufficient mechanical properties or dynamic properties of the sulfur-modified chloroprene rubber can be easily obtained.
  • the amount of sulfur used is preferably 0.6 parts by mass or less, more preferably 0.5 parts by mass or less, from the viewpoint of easy processing by suppressing the adhesion of the sulfur-modified chloroprene rubber to the metal from becoming too strong. preferable. From these viewpoints, the amount of sulfur used is preferably 0.01 to 0.6 parts by mass, more preferably 0.1 to 0.55 parts by mass.
  • emulsifier used for emulsion polymerization one or more known emulsifiers that can be used for emulsion polymerization of chloroprene can be freely selected and used.
  • emulsifiers logoic acids, fatty acids, metal salts of aromatic sulfonic acid formalin condensate, sodium dodecylbenzenesulfonate, potassium dodecylbenzenesulfonate, sodium alkyldiphenyl ether sulfonate, potassium alkyldiphenyl ether sulfonate, polyoxyethylene alkyl ether Examples thereof include sodium sulfonate, sodium polyoxypropylene alkyl ether sulfonate, potassium polyoxyethylene alkyl ether sulfonate, and potassium polyoxypropylene alkyl ether sulfonate.
  • rosin acids are preferable from the viewpoint of easily improving the tensile strength, compression set resistance, wear resistance and scorch resistance of the vulcanized product.
  • the "rosin acids” mean rosin acids, disproportionate rosin acids, alkali metal salts of disproportionate rosin acids (eg, potassium disproportionate rosinates) and the like.
  • the constituent components of the disproportionate rosinic acid include sesquiterpen, 8,5-isopimaric acid, dihydropimaric acid, secodehydroabietic acid, dihydroabietic acid, deisopropyldehydroabietic acid, demethyldehydroabietic acid and the like.
  • fatty acids include fatty acids (for example, saturated or unsaturated fatty acids having 6 to 22 carbon atoms), metal salts of fatty acids (for example, sodium lauryl sulfate), and the like.
  • a metal salt of an aromatic sulfonic acid formalin condensate is preferable from the viewpoint of easily improving the tensile strength, compression permanent strain resistance, abrasion resistance and scorch resistance of the sulfide, and ⁇ -naphthalene sulfonate formalin.
  • the sodium salt of the condensate is more preferred.
  • the sodium salt of ⁇ -naphthalene sulfonic acid formarin condensate is an emulsifier used for general purposes, and its stability is improved by adding a small amount, and latex can be stably produced without aggregation and precipitation in the production process. be able to.
  • Other emulsifiers preferably used include, for example, an alkaline soap aqueous solution composed of a mixture of an alkali metal salt of disproportionate logonic acid and a saturated or unsaturated fatty acid having 6 to 22 carbon atoms.
  • the pH of the emulsion (for example, an aqueous emulsion) at the start of emulsion polymerization is preferably 10.5 or higher.
  • emulsion the emulsion polymerization initiator immediately before a mixture of chloroprene with other components (chloroprene and monomer copolymerizable emulsifier, sulfur (S 8), etc.).
  • “Emulsion” also includes the case where these other components (chloroprene monomer copolymerizable with sulfur (S 8) or the like) added after a composition of sequentially changed due divided addition.
  • the pH of the emulsion is 10.5 or more, it is possible to prevent polymer precipitation during polymerization and stably control polymerization.
  • the effect can be particularly preferably obtained when rosin acids are used as the emulsifier.
  • the pH of the emulsion can be adjusted by the amount of alkaline components such as sodium hydroxide and potassium hydroxide present at the time of emulsion polymerization.
  • the polymerization temperature of emulsion polymerization is preferably 0 to 55 ° C, more preferably 30 to 55 ° C, from the viewpoint of excellent polymerization controllability and productivity.
  • the polymerization initiator potassium persulfate, benzoyl peroxide, ammonium persulfate, hydrogen peroxide and the like, which are used in ordinary radical polymerization, can be used.
  • the polymerization is carried out at a polymerization rate (conversion rate) in the following range, and then a polymerization terminator (polymerization inhibitor) is added to terminate the polymerization.
  • the polymerization rate is preferably 60% or more, more preferably 70% or more, from the viewpoint of excellent productivity.
  • the polymerization rate is preferably 95% or less, more preferably 90% or less, from the viewpoint of suppressing the development of a branched structure or gel formation that affects the processability of the sulfur-modified chloroprene rubber. From these viewpoints, the polymerization rate is preferably 60 to 95%, more preferably 70 to 90%.
  • polymerization inhibitor examples include diethyl hydroxyamine, thiodiphenylamine, 4-tert-butylcatechol, 2,2'-methylenebis-4-methyl-6-tert-butylphenol and the like.
  • One type of polymerization inhibitor may be used alone, or two or more types may be used in combination.
  • the plasticization step the polymer obtained in the polymerization step and the thiazole compound are mixed.
  • the polymer can be plasticized by reacting the polymer obtained in the polymerization step and the thiazole compound.
  • the thiazole compound is placed in the polymerization solution obtained in the polymerization step. By adding it, the polymer in the polymerization solution can be plasticized.
  • the plasticizing step for example, from a polymer (e.g., the main chain of the polymer) of sulfur (e.g.
  • the polymer can be cleaved or depolymerized while forming the terminal functional group A of.
  • the chemical used for cleaving or depolymerizing the polymer is referred to as a "plasticizer".
  • the vulcanized product obtained by vulcanizing the sulfur-modified chloroprene rubber obtained by the plasticization step has good scorch resistance, and has a good balance of tensile strength, compressive permanent strain resistance and abrasion resistance of the vulcanized product. Is good.
  • thiazole compound compound having a thiazole ring
  • one or more known thiazole compounds can be freely selected and used.
  • the thiazole compounds are N-cyclohexyl-2-benzothiazolesulfenamide and N-cyclohexyl-4-methyl from the viewpoint of easily improving the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the vulture.
  • the thiazole compound preferably contains a benzothiazole compound (a compound having a benzothiazole ring) from the viewpoint of easily improving the tensile strength, compressive permanent strain resistance, abrasion resistance and scorch resistance of the sulfide, and is a substituent. It is more preferable to contain a benzothiazole compound having a benzothiazole ring to which (an alkyl group or the like, for example, an alkyl group having 1, 2, 3 or 4 carbon atoms) is bonded.
  • the thiazole compound preferably contains a compound having a sulfenamide group, and has a sulfenamide group, from the viewpoint of easily improving the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the vulcanized product. It is more preferable to contain a benzothiazole compound, and it is further preferable to contain a benzothiazole compound having a sulfenamide group and a cyclohexane ring.
  • the amount (addition amount) of the thiazole compound used is preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the polymer (for example, the polymer in the polymerization solution).
  • the amount of the thiazole compound used is 0.2 parts by mass or more, the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the vulcanized product are likely to be improved.
  • the amount of the thiazole compound used is 3 parts by mass or less, it is easy to obtain a reaction product having an appropriate Mooney viscosity, and as a result, the vulcanization moldability is easily improved.
  • the content of the terminal functional group A in the sulfur-modified chloroprene rubber is 0.01 to 0.50% by mass (for example, 0.05 to 0.40% by mass).
  • a thiazole compound and a dithiocarbamic acid-based compound can be used in combination as a plasticizing agent.
  • the polymer, thiazole compound, and dithiocarbamic acid-based compound obtained in the polymerization step can be mixed, and the polymer, thiazole compound, and dithiocarbamic acid-based compound obtained in the polymerization step are reacted. Can be made to.
  • the dithiocarbamic acid-based compound reacts with the thiazole compound to form a reactant having higher reactivity with sulfur (for example, polysulfide bond) in the polymer as compared with the case where the thiazole compound alone or the dithiocarbamic acid-based compound alone is used.
  • the Mooney viscosity can be easily adjusted.
  • the reaction product reacts with sulfur in the polymer (for example, a polysulfide bond, for example, sulfur in the main chain of the polymer)
  • the above-mentioned terminal functional group A derived from the thiazole compound and the above-mentioned terminal functional group A derived from the dithiocarbamic acid-based compound are derived.
  • the terminal functional group B of the above can be preferably formed.
  • dithiocarbamic acid-based compound examples include dithiocarbamic acid, dithiocarbamate, monoalkyldithiocarbamic acid, monoalkyldithiocarbamate, monoaryldithiocarbamic acid, monoaryldithiocarbamate, dialkyldithiocarbamic acid, dialkyldithiocarbamate, diaryldithiocarbamic acid, and diaryl.
  • dithiocarbamate tetraalkylthiuram disulfide, tetraarylalkylthiuram disulfide and the like.
  • the salt examples include sodium salt, potassium salt, calcium salt, zinc salt, ammonium salt, nickel salt and the like.
  • the dithiocarbamic acid-based compound one or more known dithiocarbamic acid-based compounds can be freely selected and used.
  • the dithiocarbamic acid-based compound is at least one compound selected from tetraalkylthiuram disulfide and tetraarylalkylthiuram disulfide from the viewpoint of easily improving the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the vulcanized product. Is preferably included.
  • Dithiocarbamic acid-based compounds are dithiocarbamic acid, sodium dithiocarbamate, potassium dithiocarbamate, calcium dithiocarbamate, dithiocarbamic acid from the viewpoint of easily improving the tensile strength, compressive permanent strain resistance, abrasion resistance and scorch resistance of the sulfide.
  • the amount (addition amount) of the dithiocarbamic acid-based compound used is not particularly limited, but is preferably 0 to 12 parts by mass and 0 to 8 parts by mass with respect to 100 parts by mass of the polymer (for example, the polymer in the polymer solution). More preferably, it is more preferably more than 0 parts by mass and 8 parts by mass or less, and 0.5 to 4 parts by mass is particularly preferable.
  • the amount of the dithiocarbamic acid-based compound used is within these ranges, it becomes easier to control the Mooney viscosity of the reaction product, the tensile strength, abrasion resistance and scorch resistance of the vulcanized product are further improved, and compression is performed. Permanent distortion is further reduced.
  • the amount of the dithiocarbamic acid-based compound used is 0 to 12 parts by mass (for example, 0 to 8 parts by mass)
  • the content of the terminal functional group B in the sulfur-modified chloroprene rubber is 1.00% by mass or less (for example, 0.80). It is easy to adjust to mass% or less. Criteria: total amount of sulfur-modified chloroprene rubber), and the content (residual amount) of the dithiocarbamic acid-based compound in the rubber composition is 2.50 parts by mass or less (for example, 2.00 parts by mass or less). Criteria: 100 parts by mass of sulfur-modified chloroprene rubber) is easy to adjust.
  • Sulfur-modified chloroprene rubber may be obtained by cooling, adjusting the pH, freezing, drying, etc. of the polymerized solution that has undergone the plasticization step by a general method.
  • the reaction product obtained by the above-mentioned method for producing a sulfur-modified chloroprene rubber may contain a sulfur-modified chloroprene rubber and may contain an unreacted plasticizing agent (thiazole compound, dithiocarbamic acid-based compound, etc.).
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the reaction product is not particularly limited, but the following range is preferable.
  • the Mooney viscosity is preferably 10 or more, 15 or more, 20 or more, 25 or more, or 30 or more from the viewpoint of easily maintaining the processability of the rubber composition.
  • the Mooney viscosity is preferably 80 or less, 75 or less, 70 or less, 65 or less, 60 or less, 55 or less, or 50 or less from the viewpoint of easily maintaining the processability of the rubber composition. From these viewpoints, the Mooney viscosity is preferably 10 to 80 or 20 to 80.
  • the Mooney viscosity can be adjusted by the amount of the plasticizer added, the time of the plasticizing step, the plasticizing temperature, and the like.
  • the rubber composition according to this embodiment contains carbon black. Thereby, the reinforcing effect of carbon black can be obtained.
  • the average particle size of carbon black is 70 nm or less from the viewpoint that a vulcanized product having excellent tensile strength and wear resistance can be obtained by obtaining a sufficient reinforcing effect.
  • the average particle size of carbon black is 60 nm or less, 50 nm or less, 45 nm or less, 43 nm or less, 40 nm or less, 38 nm or less, 35 nm or less, 30 nm or less, 28 nm from the viewpoint of easily improving the tensile strength and wear resistance of the vulcanized product.
  • it is preferably 27 nm or less, 25 nm or less, 20 nm or less, or 17 nm or less.
  • the average particle size of carbon black is 10 nm or more, 15 nm or more, 17 nm or more, 20 nm or more, 25 nm or more, 27 nm or more, 28 nm or more, 30 nm from the viewpoint of easily improving the compression set resistance and scorch resistance of the vulcanized product. As mentioned above, 35 nm or more, 38 nm or more, 40 nm or more, 43 nm or more, 45 nm or more, 50 nm or more, or 60 nm or more is preferable. From these viewpoints, the average particle size of carbon black is preferably 10 to 70 nm, 15 to 60 nm, 20 to 50 nm, or 20 to 40 nm. The average particle size of carbon black can be obtained by observing with an electron microscope in accordance with JIS Z8901.
  • the amount of DBP absorbed by carbon black is preferably 50 ml / 100 g or more, 60 ml / 100 g or more, or 70 ml / 100 g or more from the viewpoint of easily improving the tensile strength and wear resistance of the vulcanized product.
  • the amount of DBP absorbed by carbon black is 75 ml / 100 g or more, 80 ml / 100 g or more, 85 ml / 100 g or more, from the viewpoint of easily improving the tensile strength, compression set resistance, wear resistance and scorch resistance of the vulcanized product.
  • 90 ml / 100 g or more 95 ml / 100 g or more, 100 ml / 100 g or more, 110 ml / 100 g or more, 120 ml / 100 g or more, 127 ml / 100 g or more, 128 ml / 100 g or more, 130 ml / 100 g or more, 140 ml / 100 g or more, 150 ml / 100 g or more, Alternatively, 180 ml / 100 g or more is preferable.
  • the amount of DBP absorbed by carbon black is 180 ml / 100 g or less, 150 ml / 100 g or less, 140 ml / 100 g or less, from the viewpoint of easily improving the tensile strength, compression set resistance, wear resistance and scorch resistance of the vulcanized product.
  • the amount of DBP absorbed by carbon black is preferably 80 to 150 ml / 100 g, 100 to 140 ml / 100 g, or 100 to 120 ml / 100 g.
  • the DBP absorption amount (dibutyl phthalate absorption amount) of carbon black can be measured according to the oil absorption amount A method of JIS K6217-4.
  • the iodine adsorption amount of carbon black is 10 mg / g or more, 20 mg / g or more, 30 mg / g or more, 40 mg / g or more, 50 mg / g or more, from the viewpoint of easily improving the tensile strength and wear resistance of the vulcanized product. 55 mg / g or more, 60 mg / g or more, 70 mg / g or more, 80 mg / g or more, 85 mg / g or more, 90 mg / g or more, 100 mg / g or more, 120 mg / g or more, 130 mg / g or more, or 150 mg / g The above is preferable.
  • the iodine adsorption amount of carbon black is 150 mg / g or less, 130 mg / g or less, 120 mg / g or less, 100 mg / g or less, 90 mg / g from the viewpoint of easily improving the compression set resistance and scorch resistance of the vulcanized product. g or less, 85 mg / g or less, 80 mg / g or less, 70 mg / g or less, 60 mg / g or less, 55 mg / g or less, 50 mg / g or less, 40 mg / g or less, 30 mg / g or less, or 20 mg / g or less preferable.
  • the iodine adsorption amount of carbon black is preferably 40 to 150 mg / g, 50 to 150 mg / g, 60 to 120 mg / g, or 70 to 100 mg / g.
  • the amount of iodine adsorbed on carbon black can be measured in accordance with JIS K6217-1.
  • the content of carbon black is 25 to 55 parts by mass with respect to 100 parts by mass of sulfur-modified chloroprene rubber. If the content of carbon black is less than 25 parts by mass, the tensile strength and wear resistance of the vulcanized product will not be improved. If the content of carbon black exceeds 55 parts by mass, the scorch resistance of the vulcanized product is lowered, and the compression set resistance and abrasion resistance of the vulcanized product are not improved.
  • the content of carbon black is preferably 28 parts by mass or more, 30 parts by mass or more, 32 parts by mass or more, or 35 parts by mass or more from the viewpoint of easily improving the tensile strength and wear resistance of the vulcanized product.
  • the content of carbon black is 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or 35 parts by mass from the viewpoint of easily improving the compression set resistance, wear resistance and scorch resistance of the vulcanized product. Part or less is preferable. From these viewpoints, the content of carbon black is preferably 25 to 50 parts by mass, 25 to 45 parts by mass, or 30 to 40 parts by mass.
  • the content of carbon black in the rubber composition has the following range based on the total amount of the rubber composition from the viewpoint that the tensile strength, compression set resistance, wear resistance and scorch resistance of the vulcanized product can be easily improved.
  • the content of carbon black is preferably 1% by mass or more, 3% by mass or more, 5% by mass or more, 8% by mass or more, 10% by mass or more, 12% by mass or more, or 15% by mass or more.
  • the content of carbon black is preferably 35% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, 18% by mass or less, or 16% by mass or less. From these viewpoints, the content of carbon black is preferably 1 to 35% by mass, 5 to 30% by mass, or 10 to 20% by mass.
  • the rubber composition according to the present embodiment contains a diene-based rubber A different from that of chloroprene rubber. Thereby, it is possible to obtain the reinforcing effect of the diene rubber, and a vulcanized product having excellent wear resistance and scorch resistance can be obtained.
  • diene-based rubber A a known diene-based rubber can be used, and butadiene rubber (butadiene homopolymer, BR), styrene-butadiene rubber (SBR), nitrile rubber (NBR), and natural rubber (NR). ), Isoprene rubber (IR), ethylene-propylene-diene ternary copolymer rubber (EPDM), styrene-isoprene-styrene ternary block copolymer (SIS), styrene-butadiene-styrene ternary block copolymer ( SBS) and the like.
  • butadiene rubber butadiene homopolymer, BR
  • SBR styrene-butadiene rubber
  • NBR nitrile rubber
  • NR natural rubber
  • Isoprene rubber IR
  • EPDM ethylene-propylene-diene ternary copolymer rubber
  • SIS sty
  • the diene rubber A preferably contains at least one selected from butadiene rubber, styrene-butadiene rubber, and nitrile rubber from the viewpoint of easily improving the wear resistance and scorch resistance of the vulcanized product.
  • the diene rubber A does not have to contain substantially natural rubber.
  • the content of the diene rubber A is more than 0 parts by mass and 15 parts by mass or less with respect to 100 parts by mass of the sulfur-modified chloroprene rubber.
  • the content of the diene rubber A is 0 parts by mass, a sufficient effect of improving wear resistance and scorch resistance cannot be obtained. If the content of the diene rubber A exceeds 15 parts by mass, a sufficient reinforcing effect cannot be obtained and the tensile strength does not improve.
  • the content of the diene rubber A is 1 part by mass or more, 2 parts by mass or more, 3 parts by mass or more, 4 parts by mass or more, and 5 parts by mass from the viewpoint that the wear resistance and scorch resistance of the vulcanized product can be easily improved.
  • the content of the diene rubber A is preferably 14 parts by mass or less, 12 parts by mass or less, 10 parts by mass or less, 9 parts by mass or less, or 8 parts by mass or less from the viewpoint that the tensile strength of the vulcanized product can be easily improved. .. From these viewpoints, the content of the diene rubber A is preferably 1 to 14 parts by mass, 4 to 12 parts by mass, or 5 to 10 parts by mass.
  • the content of diene-based rubber A in the rubber composition is as follows based on the total amount of the rubber composition from the viewpoint of easily improving the tensile strength, compression set resistance, wear resistance and scorch resistance of the vulcanized product. The range is preferred.
  • the content of the diene rubber A is preferably more than 0% by mass, and is 1% by mass or more, 1.5% by mass or more, 2% by mass or more, 2.5% by mass or more, 3% by mass or more, or 3 It is preferably 5.5% by mass or more.
  • the content of the diene rubber A is preferably 10% by mass or less, 8% by mass or less, 6% by mass or less, 5% by mass or less, or 4% by mass or less. From these viewpoints, the content of the diene rubber A is preferably more than 0% by mass and 10% by mass or less, 1 to 8% by mass, or 2 to 5% by mass.
  • the total amount of sulfur-modified chloroprene rubber and diene-based rubber A in the rubber composition is the total amount of the rubber composition from the viewpoint of easily improving the tensile strength, compression permanent strain resistance, abrasion resistance and scorch resistance of the vulcanized product.
  • the following range is preferable with reference to.
  • the total amount is preferably 10% by mass or more, 20% by mass or more, 25% by mass or more, 30% by mass or more, 35% by mass or more, 40% by mass or more, or 45% by mass or more.
  • the total amount is preferably 90% by mass or less, 80% by mass or less, 70% by mass or less, 60% by mass or less, 55% by mass or less, or 50% by mass or less. From these viewpoints, the total amount is preferably 10 to 90% by mass, 20 to 70% by mass, or 30 to 50% by mass.
  • the rubber composition according to the present embodiment may contain components other than sulfur-modified chloroprene rubber, carbon black and diene-based rubber A.
  • the rubber composition according to the present embodiment may contain an unreacted plasticizer (thiazole compound, dithiocarbamic acid-based compound, etc.).
  • plasticizer the above-mentioned plasticizer for the plasticizing step can be used.
  • the content of the thiazole compound in the rubber composition is preferably in the following range with respect to 100 parts by mass of the sulfur-modified chloroprene rubber.
  • specific thiazole compounds in the rubber composition for example, each thiazole compound exemplified as described above. N-cyclohexyl-2-benzothiazolesulfenamide, N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide, etc. ) Is preferably in the following range with respect to 100 parts by mass of the sulfur-modified chloroprene rubber.
  • the content of the thiazole compound (for example, the residual amount of the unreacted thiazole compound) can be adjusted by the amount of the thiazole compound used in the plasticization step, the plasticization time of the plasticization step, the plasticization temperature, and the like.
  • the content of the thiazole compound is 0.0001 parts by mass or more, 0.0003 parts by mass or more, and 0. 0004 parts by mass or more, 0.0005 parts by mass or more, 0.0006 parts by mass or more, 0.0010 parts by mass or more, 0.0015 parts by mass or more, 0.0020 parts by mass or more, 0.0025 parts by mass or more, 0.0030 parts By mass or more, 0.0031 parts by mass or more, 0.0035 parts by mass or more, 0.0040 parts by mass or more, 0.0045 parts by mass or more, 0.0050 parts by mass or more, 0.0052 parts by mass or more, 0.0055 parts by mass Parts are preferably 0.0060 parts by mass or more, 0.0070 parts by mass or more, 0.0080 parts by mass or more, 0.0090 parts by mass or more, 0.0100 parts by mass or more, or 0.0110 parts by mass or more.
  • the content of the thiazole compound is 0.0200 parts by mass or less, 0.0150 parts by mass or less, 0. 0110 parts by mass or less, 0.0100 parts by mass or less, 0.0090 parts by mass or less, 0.0080 parts by mass or less, 0.0070 parts by mass or less, 0.0060 parts by mass or less, 0.0055 parts by mass or less, 0.0052 By mass or less, 0.0050 parts by mass or less, 0.0045 parts by mass or less, 0.0040 parts by mass or less, 0.0035 parts by mass or less, 0.0031 parts by mass or less, 0.0030 parts by mass or less, 0.0025 parts by mass It is preferably parts or less, 0.0020 parts by mass or less, 0.0015 parts by mass or less, 0.0010 parts by mass or less, 0.0006 parts by mass or less, 0.0005 parts by mass or less, or 0.0004 parts by mass or less. From these viewpoints, the content of the thiazole compound is preferably 0.0001 to 0.0200 parts by mass, 0.0005 to
  • the content of the dithiocarbamic acid-based compound in the rubber composition (the total amount of the compounds corresponding to the dithiocarbamic acid-based compound, for example, the residual amount) is preferably in the following range with respect to 100 parts by mass of the sulfur-modified chloroprene rubber.
  • the content of a specific dithiocarbamic acid-based compound (for example, each dithiocarbamic acid-based compound exemplified as described above; tetrabenzylthiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, etc.) in the rubber composition is a sulfur-modified chloroprene rubber.
  • the following range is preferable with respect to 100 parts by mass.
  • the content of the dithiocarbamic acid-based compound (for example, the residual amount of the unreacted dithiocarbamic acid-based compound) can be adjusted by the amount of the dithiocarbamic acid-based compound used in the plasticization step, the plasticization time of the plasticization step, the plasticization temperature, and the like.
  • the content of the dithiocarbamic acid-based compound is 2.50 parts by mass or less and 2.00 parts by mass or less from the viewpoint of easily improving the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the sulfide. 1.80 parts by mass or less, 1.70 parts by mass or less, 1.50 parts by mass or less, 1.40 parts by mass or less, 1.37 parts by mass or less, 1.35 parts by mass or less, 1.30 parts by mass or less, 1 .20 parts by mass or less, 1.10 parts by mass or less, 1.00 parts by mass or less, 0.90 parts by mass or less, 0.80 parts by mass or less, 0.70 parts by mass or less, 0.60 parts by mass or less, 0.
  • the content of the dithiocarbamic acid-based compound may be 0 parts by mass and may exceed 0 parts by mass. When the content of the dithiocarbamic acid-based compound exceeds 0 parts by mass, the content is 0.01 from the viewpoint of easily improving the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the vulture.
  • the mass ratio D / C of the content (for example, residual amount) D of the dithiocarbamic acid-based compound to the content (for example, residual amount) C of the thiazole compound is preferably in the following range.
  • the mass ratio D / C is 2500 or less, 2300 or less, 2000 or less, 1800 or less, from the viewpoint of further improving the physical property balance of the tensile strength, compression set resistance, abrasion resistance and scorch resistance of the vulcanized product.
  • the mass ratio D / C is 0 or more and may exceed 0. When the mass ratio D / C exceeds 0, the mass ratio D / C is 5 from the viewpoint of further improving the physical property balance of the tensile strength, compression permanent strain resistance, abrasion resistance and scorch resistance of the vulcanized product.
  • the mass ratio D / C is preferably 0 to 2500, 0 to 2000, or 100 to 1500.
  • the content of the thiazole compound and the content of the dithiocarbamic acid-based compound in the rubber composition can be quantified by the procedure described in the examples.
  • the rubber composition contains additives such as vulcanizing agents, processing aids, stabilizers, metal compounds, plasticizing agents (excluding thiazole compounds and dithiocarbamic acid compounds), and fillers (excluding carbon black). good.
  • Examples of the vulcanizing agent include metal oxides and the like.
  • Examples of the metal oxide include zinc oxide, magnesium oxide, lead oxide, trilead tetraoxide, iron trioxide, titanium dioxide, calcium oxide, hydrotalcite and the like.
  • One type of vulcanizing agent may be used alone, or two or more types may be used in combination.
  • the content of the vulcanizing agent is preferably 3 to 15 parts by mass with respect to 100 parts by mass of the sulfur-modified chloroprene rubber.
  • processing aid examples include fatty acids such as stearic acid; paraffin-based processing aids such as polyethylene; fatty acid amides and the like.
  • the content of the processing aid is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the sulfur-modified chloroprene rubber.
  • the content of the saturated aliphatic carboxylic acid having a molecular weight of 300 or more is 5 parts by mass or less, less than 5 parts by mass, 1 part by mass or less, and 0.1 parts by mass or less with respect to 100 parts by mass of the rubber component. It may be 0.01 part by mass or less, 0.001 part by mass or less, or substantially 0 part by mass.
  • the rubber composition can contain a stabilizer (for example, a small amount of stabilizer) in order to prevent changes in Mooney viscosity during storage.
  • a stabilizer for example, a small amount of stabilizer
  • one or more known stabilizers that can be used for chloroprene rubber can be freely selected and used.
  • Stabilizers include phenyl- ⁇ -naphthylamine, octylated diphenylamine, 2,6-di-tert-butyl-4-phenylphenol, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 4, Examples thereof include 4'-thiobis- (6-tert-butyl-3-methylphenol).
  • Stabilizers include octylated diphenylamine and 4,4'-thiobis- (6-tert-butyl-) from the viewpoint of easily improving the tensile strength, compression set resistance, wear resistance and scorch resistance of the vulcanized product. At least one selected from 3-methylphenol is preferred.
  • the metal compound is used to adjust the vulcanization rate of the rubber composition or to adsorb a chlorine source such as hydrogen chloride generated by the dehydrochlorination reaction of the rubber composition to suppress deterioration of the rubber composition. It is a compound that can be added.
  • a chlorine source such as hydrogen chloride generated by the dehydrochlorination reaction of the rubber composition to suppress deterioration of the rubber composition.
  • It is a compound that can be added.
  • oxides or hydroxides such as zinc, titanium, magnesium, lead, iron, beryllium, calcium, barium, germanium, zirconium, vanadium, molybdenum, and tungsten can be used.
  • the metal compound one type may be used alone, or two or more types may be used in combination.
  • the content of the metal compound is not particularly limited, but is preferably in the range of 3 to 15 parts by mass with respect to 100 parts by mass of the sulfur-modified chloroprene rubber. By adjusting the content of the metal compound within this range, the mechanical strength of the rubber composition can be improved.
  • the plasticizer is a component that can be added to lower the hardness of the rubber composition and improve its low temperature characteristics. Further, when a sponge is produced using the rubber composition, the texture of the sponge can be improved.
  • the plasticizer include dioctyl phthalate, dioctyl adipate ⁇ also known as bis (2-ethylhexyl) adipate ⁇ , white oil, silicon oil, naphthen oil, aroma oil, triphenyl phosphate, tricresyl phosphate and the like. ..
  • One type of plasticizer may be used alone, or two or more types may be used in combination.
  • the content of the plasticizer is not particularly limited, but is preferably in the range of 50 parts by mass or less with respect to 100 parts by mass of the sulfur-modified chloroprene rubber. By adjusting the content of the plasticizer within this range, the tensile strength, compressive permanent strain resistance, abrasion resistance and scorch resistance of the vulcanized product can be easily improved while maintaining the tear strength of the rubber composition. ..
  • the filler is a component that can be added as a reinforcing material for sulfur-modified chloroprene rubber.
  • examples of the filler include silica, clay, talc, calcium carbonate and the like.
  • the filler one type may be used alone, or two or more types may be used in combination.
  • the content of the block copolymer of styrene and butadiene, the content of ethylene thiourea, or the content of dipentamethylene thiuram tetrasulfide is determined by the diene rubber (sulfur-modified chloroprene rubber, diene rubber A). (Including, etc.) 100 parts by mass, or 0.1 parts by mass or less, less than 0.1 parts by mass, 0.01 parts by mass or less, 0.001 parts by mass with respect to a total of 100 parts by mass of chloroprene rubber and natural rubber. Hereinafter, it may be substantially 0 parts by mass.
  • the content of the amine salt of dithiocarbamic acid in the rubber composition is 1 part by mass or less, less than 1 part by mass, 0.1 part by mass or less, 0.01 part by mass or less, 0 with respect to 100 parts by mass of the sulfur-modified chloroprene rubber. It may be .001 parts by mass or less, or substantially 0 parts by mass.
  • the vulcanized product according to the present embodiment is a vulcanized product of the rubber composition according to the present embodiment, and can be obtained by subjecting the sulfur-modified chloroprene rubber in the rubber composition according to the present embodiment to a vulcanization treatment. can.
  • the molded product (molded article) according to the present embodiment is a molded article (vulcanized molded article) made of the vulcanized product according to the present embodiment, and can be obtained by molding the vulcanized product according to the present embodiment.
  • Examples of the molding method include press molding, injection molding, extrusion molding and the like. After mixing the constituent components of the rubber composition (sulfur-modified chloroprene rubber, metal compound, thermoplastic agent, filler, etc.), the molded product may be molded into a desired shape and further subjected to vulcanization treatment to obtain a molded product.
  • the vulcanization treatment may be carried out at the time of molding or after molding.
  • constituent components of the rubber composition may be mixed, then vulcanized, and further molded into a desired shape to obtain a molded product.
  • the components of the rubber composition can be mixed using a roll, a Banbury mixer, an extruder or the like.
  • molded products include transmission belts, conveyor belts, vibration-proof materials (vibration-proof rubber), air springs (for example, air springs for automobiles), seals, packings, hoses (hose products), sponges (sponge products), rubber rolls, etc. Be done.
  • the conveyor belt is a mechanical element used in the winding transmission device, and is a component that transmits power from the prime mover to the driven vehicle.
  • Conveyor belts are often used by hanging on pulleys set on shafts.
  • Elastomer materials such as chloroprene rubber, natural rubber, styrene-butadiene rubber, nitrile rubber, and hydride nitrile rubber have been conventionally used because the belt applied with high tension repeats rotational deformation in order to efficiently transmit power. ing.
  • Chloroprene rubber is known to often cause scorch during the molding process, and extending scorch time is an important technical issue. Further, since the belt is continuously used in a dynamic environment, a material for the belt having excellent wear resistance, tensile strength and compression set resistance is required in order to improve the reliability of the product.
  • the conventional technique using the sulfur-modified chloroprene rubber is used. It is possible to manufacture a conveyor belt having excellent productivity and durability as compared with the above.
  • Example 1 [Making sulfur-modified chloroprene rubber]
  • a polymer can with an internal volume of 30 liters, 100 parts by mass of chloroprene, 0.55 parts by mass of sulfur, 120 parts by mass of pure water, 4.00 parts by mass of potassium disproportionate (manufactured by Harima Kasei Co., Ltd.), 0 parts of sodium hydroxide .60 parts by mass and 0.6 parts by mass of a sodium salt of ⁇ -naphthalene sulfonate formalin condensate (trade name “Demor N”: manufactured by Kao Co., Ltd.) were added.
  • the pH of the aqueous emulsifier before the start of polymerization was 12.8.
  • a plasticizer emulsion consisting of 0.05 parts by mass of sodium (embroidery) was added to obtain a sulfur-modified chloroprene polymer latex before plasticization.
  • a plasticizer emulsion in an emulsified state is obtained by adding sodium lauryl sulfate or the like to a plasticizer solution obtained by dissolving a plasticizer in chloroprene. After obtaining the above, this plasticizer emulsion was added to the polymerization solution.
  • the above-mentioned sulfur-modified chloroprene polymer latex is distilled under reduced pressure to remove unreacted monomers, and then the raw rubber containing the sulfur-modified chloroprene rubber is plasticized by holding the latex at a temperature of 50 ° C. for 1 hour with stirring. (Latex after plasticization) was obtained.
  • the "raw rubber” may contain an unreacted plasticizer or the like.
  • the content of the terminal functional group in the sulfur-modified chloroprene rubber was quantified by the following procedure. First, the sulfur-modified chloroprene rubber was purified with benzene and methanol, and then freeze-dried again to obtain a sample for measurement. Using this measurement sample, 1 1 H-NMR measurement was carried out according to JIS K-6239. The obtained measurement data was corrected based on the peak of chloroform (7.24 ppm) in deuterated chloroform used as a solvent. Based on the corrected measurement data, the area of the peak having the peak top at 7.72 to 7.83 ppm was calculated to quantify the content of the terminal functional group (thiazole terminal species), and the content was adjusted to 5.05 to 5.50 ppm. The area of the peak having the peak top was calculated to quantify the content of the terminal functional group (dithiocarbamic acid terminal species).
  • the rubber component was separated from the precipitate by dissolving benzene and dropping methanol again in the same procedure, and the liquid phase containing a non-rubber component as a solvent-soluble component was recovered.
  • the volume was adjusted to 200 ml and the obtained liquid was obtained as a measurement sample. 20 ⁇ l of this measurement sample was injected into a liquid chromatograph (LC, manufactured by Hitachi, Ltd., pumps: L-6200, L-600, UV detector: L-4250).
  • the mobile phase of the liquid chromatograph was used with varying proportions of acetonitrile and water and flowed at a flow rate of 1 ml / min.
  • Inertsil ODS-3 ( ⁇ 4.6 ⁇ 150 mm, 5 ⁇ m, manufactured by GL Science Co., Ltd.) was used. Peak detection time was determined by using standard solutions of thiazole compound (measurement wavelength: 300 nm) of 0.05 ppm, 0.1 ppm and 1.0 ppm and standard solutions of dithiocarbamic acid-based compound (measurement wavelength: 280 nm) of 10 ppm, 50 ppm and 100 ppm. After confirmation, the quantitative value was obtained from the calibration curve obtained from the peak area. The contents of the unreacted thiazole compound and the unreacted dithiocarbamic acid compound in the raw rubber were determined by comparing this quantitative value with the sample amount used in the analysis. The measurement results are shown in Table 1.
  • Mooney viscosity (ML 1 + 4 ) of the above-mentioned raw rubber was measured at a preheating time of 1 minute, a rotation time of 4 minutes, and a test temperature of 100 ° C. of the L-shaped rotor in accordance with JIS K 630-1. The measurement results are shown in Table 1.
  • Example 2 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a plasticizing agent was changed from 1 part by mass to 0.5 part by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 8 parts by mass.
  • An evaluation sample was obtained in the same manner as in Example 1 except for the above.
  • Example 3 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a plasticizing agent was changed from 1 part by mass to 2 parts by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 2 parts by mass.
  • An evaluation sample was obtained in the same manner as in Example 1 except for the above.
  • Example 4 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a plasticizing agent was changed from 1 part by mass to 3 parts by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 2 parts by mass.
  • An evaluation sample was obtained in the same manner as in Example 1 except for the above.
  • Example 5 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a plasticizing agent was changed from 1 part by mass to 0.5 part by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 10 parts by mass.
  • An evaluation sample was obtained in the same manner as in Example 1 except for the above.
  • Example 6 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a plasticizing agent was changed from 1 part by mass to 0.5 part by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 2 parts by mass. An evaluation sample was obtained in the same manner as in Example 1 except for the above.
  • Example 7 The same as in Example 1 except that the amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a plasticizing agent was changed from 1 part by mass to 3 parts by mass and tetrabenzylthiuram disulfide was not added. An evaluation sample was obtained by the method.
  • Example 8 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a plasticizing agent was changed from 1 part by mass to 0.3 parts by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 8 parts by mass. An evaluation sample was obtained in the same manner as in Example 1 except for the above.
  • Example 9 Except that the amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a plasticizing agent was changed from 1 part by mass to 0.3 parts by mass, and the retention time for plasticization was changed from 1 hour to 3 hours. , An evaluation sample was obtained in the same manner as in Example 1.
  • Example 10 Except that the amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a plasticizing agent was changed from 1 part by mass to 1.5 parts by mass, and the retention time for plasticization was changed from 1 hour to 15 minutes. , An evaluation sample was obtained in the same manner as in Example 1.
  • Example 11 The method was the same as in Example 1 except that the amount of tetrabenzyl thiuram disulfide added as a plasticizer was changed from 4 parts by mass to 8 parts by mass and the retention time for plasticization was changed from 1 hour to 15 minutes. A sample for evaluation was obtained.
  • Example 12 An evaluation sample was prepared in the same manner as in Example 1 except that the butadiene rubber was changed to styrene-butadiene rubber (manufactured by Nippon Zeon Corporation, trade name: Nipol 1502).
  • Example 13 An evaluation sample was prepared in the same manner as in Example 1 except that the butadiene rubber was changed to nitrile rubber (manufactured by Nippon Zeon Corporation, trade name: Nipol 1041).
  • Example 14 As a plasticizing agent, except that N-cyclohexyl-2-benzothiazolesulfenamide was changed to N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide (Chemieliva farma & Chem Co., manufactured by LTD). An evaluation sample was obtained in the same manner as in Example 1. Based on the total amount of sulfur-modified chloroprene rubber, the content of the terminal functional group (thiazole terminal species A2) derived from N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide represented by the following formula (A2) is 0. It was .15% by mass, and the content of the terminal functional group (dithiocarbamic acid terminal species B1) derived from tetrabenzylthiuram disulfide represented by the above formula (B1) was 0.33% by mass.
  • thiazole terminal species A2 derived from N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide represented by the
  • Example 15 Same as Example 1 except that tetrabenzyl thiuram disulfide was changed to tetrakis (2-ethylhexyl) thiuram disulfide (trade name "Noxeller TOT-N”: manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) as a plasticizer.
  • An evaluation sample was obtained by the method. Based on the total amount of sulfur-modified chloroprene rubber, the content of the terminal functional group (thiazole terminal species A1) derived from N-cyclohexyl-2-benzothiazolesulfenamide represented by the above formula (A1) is 0.16 mass.
  • the content of the terminal functional group (dithiocarbamic acid terminal species B2) derived from tetrakis (2-ethylhexyl) thiuram disulfide represented by the following formula (B2) was 0.25% by mass.
  • Example 16 As a plasticizing agent, N-cyclohexyl-2-benzothiazolesulfenamide was changed to N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide, and tetrabenzylthium disulfide was changed to tetrakis (2-ethylhexyl) thiuram disulfide. An evaluation sample was obtained in the same manner as in Example 1 except that the sample was changed to.
  • the content of the terminal functional group (thiazole terminal species A2) derived from N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide represented by the above formula (A2) is The content was 0.14% by mass, and the content of the terminal functional group (dithiocarbamic acid terminal species B2) derived from tetrakis (2-ethylhexyl) thiuram disulfide represented by the above formula (B2) was 0.32% by mass. ..
  • Example 17 Except for changing carbon black A to carbon black B (manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 60U, average particle size: 43 nm, iodine adsorption amount: 40 mg / g, DBP absorption amount: 110 ml / 100 g).
  • An evaluation sample was prepared in the same manner as in Example 1.
  • Example 18 Except that carbon black A was changed to carbon black C (manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 95, average particle size: 17 nm, iodine adsorption amount: 150 mg / g, DBP absorption amount: 127 ml / 100 g).
  • An evaluation sample was prepared in the same manner as in Example 1.
  • Example 19 Except that carbon black A was changed to carbon black D (manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 52, average particle size: 60 nm, iodine adsorption amount: 19 mg / g, DBP absorption amount: 128 ml / 100 g). An evaluation sample was prepared in the same manner as in Example 1.
  • Example 20 Except that carbon black A was changed to carbon black E (manufactured by Asahi Carbon Co., Ltd., trade name: Asahi F-200GS, average particle size: 38 nm, iodine adsorption amount: 55 mg / g, DBP absorption amount: 180 ml / 100 g). , An evaluation sample was prepared in the same manner as in Example 1.
  • Example 21 Except that carbon black A was changed to carbon black F (manufactured by Asahi Carbon Co., Ltd., trade name: Asahi # 70L, average particle size: 27 nm, iodine adsorption amount: 85 mg / g, DBP absorption amount: 75 ml / 100 g).
  • An evaluation sample was prepared in the same manner as in Example 1.
  • Example 4 Same as in Example 1 except that N-cyclohexyl-2-benzothiazolesulfenamide and tetrabenzylthiuram disulfide were changed to tetraethylthiuram disulfide and the amount added was changed to 2.5 parts by mass as a plasticizing agent. A sample for evaluation was obtained by the method of. Based on the total amount of sulfur-modified chloroprene rubber, the content of the terminal functional group derived from tetraethylthiuram disulfide represented by the following formula was 0.26% by mass.
  • Example 5 An evaluation sample was prepared in the same manner as in Example 1 except that the amount of butadiene rubber added was changed from 8 parts by mass to 16 parts by mass.
  • Example 7 An evaluation sample was prepared in the same manner as in Example 1 except that the amount of carbon black A added was changed from 35 parts by mass to 20 parts by mass.
  • Example 8 An evaluation sample was prepared in the same manner as in Example 1 except that the amount of carbon black A added was changed from 35 parts by mass to 60 parts by mass.
  • test piece (vulcanized product) was prepared based on JIS K 6250.
  • a tensile test was performed based on JIS K 6251, and the tensile strength (TB) of each test piece was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

硫黄変性クロロプレンゴム100質量部と、平均粒子径70nm以下のカーボンブラック25~55質量部と、クロロプレンゴム以外のジエン系ゴム0質量部を超え15質量部以下と、を含有し、前記硫黄変性クロロプレンゴムが、特定の式(A)で表されると共に分子末端に位置する官能基Aを有し、前記硫黄変性クロロプレンゴムにおいて、特定の式(B)で表されると共に分子末端に位置する官能基Bの含有量の前記官能基Aの含有量に対する質量比B/Aが12.00以下であり、前記官能基A及び前記官能基Bの合計量が0.10~1.00質量%である、ゴム組成物。

Description

ゴム組成物、加硫物及び成形品
 本発明は、ゴム組成物、加硫物、成形品等に関する。
 クロロプレンゴムは、機械的特性、耐オゾン性、耐薬品性等の特性に優れており、その特性を活かして自動車部品、接着剤、各種工業ゴム部品等の広範囲な分野に用いられている。また、近年、工業用ゴム部品に要求される性能が著しく高まっており、前述した機械的特性、耐オゾン性、耐薬品性等の特性の向上に加えて、クロロプレンゴムを用いて得られる加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性等の向上が求められている。
 引張強度を向上させる技術としては、下記特許文献1に記載されているように、ゴム成分100重量部に対して、分子量300以上の飽和脂肪族カルボン酸を5重量部以上含有することを特徴とするゴム組成物が知られている。
 耐圧縮永久歪み性を向上させる技術としては、下記特許文献2に記載されているように、クロロプレンゴム及び天然ゴムを合計で100質量部と、スチレン及びブタジエンのブロック共重合体0.1~10質量部と、エチレンチオウレア0.1~3質量部と、ジペンタメチレンチウラムテトラスルフィド0.1~3質量部と、を含有するクロロプレンゴム組成物が知られている。
 耐摩耗性を向上させる技術としては、下記特許文献3に記載されているように、所定の性質を有する高分子量成分と、所定の性質を有する低分子量成分とを混合して得られる変性共役ジエン系重合体が知られている。
特開2013-249409号公報 特開2012-111899号公報 特開2010-121086号公報 特開2016-141736号公報
 クロロプレンゴムとしては、硫黄変性クロロプレンゴムを用いることができる。硫黄変性クロロプレンゴムを含有するゴム組成物に対しては、優れた引張強度、耐圧縮永久歪み性及び耐摩耗性を両立可能な加硫物を得ることが求められる場合がある。
 そこで、本発明の一側面は、優れた引張強度、耐圧縮永久歪み性及び耐摩耗性を有する加硫物を得ることが可能なゴム組成物を提供することを目的とする。本発明の他の一側面は、前記ゴム組成物の加硫物を提供することを目的とする。本発明の他の一側面は、前記加硫物からなる成形品(加硫物を用いた成形品)を提供することを目的とする。
 本願発明者らは、かかる課題を解決するために鋭意研究を行った結果、硫黄変性クロロプレンゴムの分子末端に特定の構造を導入し、特定の範囲の平均粒子径を有するカーボンブラックを特定量使用し、クロロプレンゴム以外のジエン系ポリマーを特定量使用することにより、優れた引張強度、耐圧縮永久歪み性及び耐摩耗性を有する加硫物を得ることに成功し、本発明を完成させるに至った。
 本発明の一側面は、硫黄変性クロロプレンゴム100質量部と、平均粒子径70nm以下のカーボンブラック25~55質量部と、クロロプレンゴム以外のジエン系ゴム0質量部を超え15質量部以下と、を含有し、前記硫黄変性クロロプレンゴムが、下記一般式(A)で表されると共に分子末端に位置する官能基Aを有し、前記硫黄変性クロロプレンゴムにおいて、下記一般式(B)で表されると共に分子末端に位置する官能基Bの含有量の前記官能基Aの含有量に対する質量比B/Aが12.00以下であり、前記官能基A及び前記官能基Bの合計量が0.10~1.00質量%である、ゴム組成物に関する。
Figure JPOXMLDOC01-appb-C000003
(式中、Ra1及びRa2は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリールチオ基を示し、Ra1及びRa2は、互いに結合して、置換基を有してもよい環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000004
(式中、Rb1及びRb2は、それぞれ独立に、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリール基を示す。)
 本発明の一側面に係るゴム組成物によれば、優れた引張強度、耐圧縮永久歪み性及び耐摩耗性を有する加硫物を得ることができる。
 本発明の他の一側面は、上述のゴム組成物の加硫物に関する。本発明の他の一側面は、上述の加硫物からなる成形品に関する。
 本発明の一側面によれば、優れた引張強度、耐圧縮永久歪み性及び耐摩耗性を有する加硫物を得ることが可能なゴム組成物を提供することができる。本発明の他の一側面によれば、前記ゴム組成物の加硫物を提供することができる。本発明の他の一側面によれば、前記加硫物からなる成形品(加硫物を用いた成形品)を提供することができる。
 以下、本発明を実施するための形態について説明する。以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。数値範囲の「A以上」とは、A、及び、Aを超える範囲を意味する。数値範囲の「A以下」とは、A、及び、A未満の範囲を意味する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で用いてもよく、2種以上を併用してもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「アルキル基」は、特に断らない限り、直鎖状、分岐又は環状のいずれであってもよい。
<ゴム組成物>
 本実施形態に係るゴム組成物(硫黄変性クロロプレンゴム組成物)は、硫黄変性クロロプレンゴム100質量部と、平均粒子径70nm以下のカーボンブラック25~55質量部と、クロロプレンゴム以外のジエン系ゴム(以下、「ジエン系ゴムA」という)0質量部を超え15質量部以下と、を含有し、硫黄変性クロロプレンゴムが、下記一般式(A)で表されると共に分子末端に位置する官能基A(以下、「末端官能基A」という)を有し、硫黄変性クロロプレンゴムにおいて、下記一般式(B)で表されると共に分子末端に位置する官能基B(以下、「末端官能基B」という)の含有量の官能基Aの含有量に対する質量比B/Aが12.00以下であり、官能基A及び官能基Bの合計量が0.10~1.00質量%である。すなわち、硫黄変性クロロプレンゴムは、下記一般式(A)で表される構造、及び、下記一般式(B)で表される構造のうち少なくとも1種を分子末端に有し、下記一般式(A)で表される末端官能基Aと、下記一般式(B)で表される末端官能基Bとの質量比B/Aが0~12.00、かつ、硫黄変性クロロプレンゴム100質量部中の末端官能基Aと末端官能基Bの合計量(A+B)が0.10~1.00質量部である。
Figure JPOXMLDOC01-appb-C000005
(式中、Ra1及びRa2は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリールチオ基を示し、Ra1及びRa2は、互いに同一でもよく、互いに異なってもよく、Ra1及びRa2は、互いに結合して、置換基を有してもよい環を形成してもよい。Ra1及びRa2は、互いに結合して、置換基を有する環、又は、置換基を有さない環を形成できる。)
Figure JPOXMLDOC01-appb-C000006
(式中、Rb1及びRb2は、それぞれ独立に、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリール基を示し、Rb1及びRb2は、互いに同一でもよく、互いに異なってもよい。)
 本実施形態に係るゴム組成物を加硫することで加硫物を得ることができる。本実施形態に係るゴム組成物によれば、ゴム組成物を加硫して得られる加硫物として、優れた引張強度、耐圧縮永久歪み性及び耐摩耗性を有する加硫物を得ることができる。
 ところで、硫黄変性クロロプレンゴムを含有するゴム組成物に対しては、優れた引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性を両立可能な加硫物を得ることが求められる場合がある。ゴムの耐スコーチ性を向上させる技術としては、上述の特許文献4に記載されているように、クロロプレンゴム100重量部に対して、ジチオカルバミン酸のアミン塩を1~10重量部を含有するゴム組成物が知られている。
 本願発明者らは、鋭意研究を行った結果、硫黄変性クロロプレンゴムの分子末端に特定の構造を導入し、特定の範囲の平均粒子径を有するカーボンブラックを特定量使用し、クロロプレンゴム以外のジエン系ポリマーを特定量使用することにより、優れた引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性を有する加硫物を得ることに成功した。すなわち、本実施形態に係るゴム組成物によれば、優れた引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性を有する加硫物を得ることができる(耐スコーチ性及び引張強度に優れ、かつ、耐圧縮永久歪み性及び耐摩耗性を向上させることが可能な加硫物を得ることができる)。
 本実施形態に係るゴム組成物の製造方法は、後述の硫黄変性クロロプレンゴムの製造方法により硫黄変性クロロプレンゴムを得る工程と、硫黄変性クロロプレンゴム、カーボンブラック、及び、ジエン系ゴムAを混合する工程と、を備える。
(硫黄変性クロロプレンゴム)
 硫黄変性クロロプレンゴムは、クロロプレン(2-クロロ-1,3-ブタジエン)由来の構造単位を有する重合体である。硫黄変性クロロプレンゴムは、クロロプレンを単量体単位として有する。硫黄変性クロロプレンゴムは、分子鎖に硫黄原子を含んでおり、主鎖に硫黄原子を含んでよい。硫黄変性クロロプレンゴムは、分子鎖にポリスルフィド結合(S~S)を含んでよく、主鎖にポリスルフィド結合(S~S)を含んでよい。
 硫黄変性クロロプレンゴムは、クロロプレンと共重合可能な単量体由来の構造単位を有してよい。クロロプレンと共重合可能な単量体としては、2,3-ジクロロ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、スチレン、アクリロニトリル、メタクリロニトリル、イソプレン、ブタジエン、アクリル酸、メタクリル酸、エステル類等が挙げられる。クロロプレンと共重合可能な単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。硫黄変性クロロプレンゴムは、クロロプレンと共重合可能な単量体として例示したこれらの単量体の少なくとも一つ(例えば2,3-ジクロロ-1,3-ブタジエン)に由来する構造単位を有さなくてよい。
 クロロプレンと共重合可能な単量体のうち、例えば、2,3-ジクロロ-1,3-ブタジエンを用いると、硫黄変性クロロプレンゴムの結晶化速度を遅くすることができる。結晶化速度が遅い硫黄変性クロロプレンゴムは、低温環境下においてもゴム弾性を維持することができ、例えば、低温圧縮永久歪みを改善することができる。
 クロロプレンと共重合可能な単量体を用いる場合、クロロプレンと共重合可能な単量体の使用量(クロロプレンと共重合可能な単量体由来の構造単位の含有量)は、クロロプレンを含む全単量体(硫黄変性クロロプレンゴムを構成する構造単位の全量)中、10質量%以下であることが好ましい。この使用量が10質量%以下であると、硫黄変性クロロプレンゴムの耐熱性が向上しやすいと共に加工性の低下を抑制しやすい。同様の観点から、クロロプレンの使用量(クロロプレン由来の構造単位の含有量)は、クロロプレンを含む全単量体(硫黄変性クロロプレンゴムを構成する構造単位の全量)中、90質量%以上、92質量%以上、95質量%以上、95質量%超、又は、98質量%以上であることが好ましい。硫黄変性クロロプレンゴムを構成する構造単位がクロロプレン由来の構造単位からなる(硫黄変性クロロプレンゴムを構成する構造単位の実質的に100質量%がクロロプレン由来の構造単位である)態様であってもよい。
 硫黄変性クロロプレンゴムにおいて末端官能基Aは、主鎖及び/又は側鎖の末端に位置してよい。末端官能基Aは、例えば、後述の可塑化工程においてチアゾール化合物を用いることにより得ることができる。Ra1又はRa2であるアルキル基に対する置換基としては、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。Ra1又はRa2であるアリールチオ基に対する置換基としては、アルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。
 末端官能基Aでは、Ra1及びRa2が互いに結合して、置換基を有してもよい環が形成されてよい。環としては、芳香環、脂環、複素環等が挙げられる。環に対する置換基としては、アルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。環に対する置換基であるアルキル基としては、炭素数1、2、3又は4のアルキル基等が挙げられる。末端官能基Aは、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、Ra1及びRa2が互いに結合して形成されたベンゾチアゾール環を有することが好ましい。ベンゾチアゾール環は、置換基を有していなくてもよい。ベンゾチアゾール環が置換基を有する場合、置換基は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、アルキル基が好ましく、ベンゾチアゾール環の4位の位置に結合したアルキル基がより好ましい。すなわち、ベンゾチアゾール環にアルキル基が結合していることが好ましく、ベンゾチアゾール環の4位の位置にアルキル基が結合していることがより好ましい。
 硫黄変性クロロプレンゴムは、末端官能基Bを有してよく、末端官能基Bを有していなくてもよい。末端官能基Bは、主鎖及び/又は側鎖の末端に位置してよい。末端官能基Bは、例えば、後述の可塑化工程においてジチオカルバミン酸系化合物を用いることにより得ることができる。
 Rb1又はRb2であるアルキル基に対する置換基としては、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。Rb1又はRb2であるアリール基としては、ベンジル基、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。Rb1又はRb2であるアリール基に対する置換基としては、アルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。Rb1又はRb2であるアルキル基又はアリール基は、置換基を有していなくてもよい。
 Rb1及びRb2から選ばれる少なくとも一種の炭素数は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、3以上、3~10、5~10、6~10、7~9、又は、7~8が好ましい。本実施形態に係るゴム組成物は、末端官能基Aと、Rb1及びRb2がエチル基である末端官能基Bと、を有する硫黄変性クロロプレンゴムを含有しなくてよい。
 末端官能基Aの含有量は、硫黄変性クロロプレンゴムの全量を基準として下記の範囲が好ましい(すなわち、硫黄変性クロロプレンゴムは、当該硫黄変性クロロプレンゴム100質量部に対して下記の数値の含有量(単位:質量部)の末端官能基Aを含有することが好ましい)。末端官能基Aの含有量は、加硫物の機械的強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、0.50質量%以下、0.45質量%以下、0.42質量%以下、0.40質量%以下、0.38質量%以下、0.35質量%以下、0.30質量%以下、0.25質量%以下、0.23質量%以下、0.20質量%以下、0.18質量%以下、0.16質量%以下、0.15質量%以下、0.14質量%以下、0.13質量%以下、0.12質量%以下、0.11質量%以下、0.10質量%以下、0.09質量%以下、0.08質量%以下、0.07質量%以下、0.06質量%以下、0.05質量%以下、又は、0.04質量%以下が好ましい。末端官能基Aの含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、0.01質量%以上、0.03質量%以上、0.04質量%以上、0.05質量%以上、0.06質量%以上、0.08質量%以上、0.09質量%以上、0.10質量%以上、0.11質量%以上、0.12質量%以上、0.13質量%以上、0.14質量%以上、0.15質量%以上、0.16質量%以上、0.18質量%以上、0.20質量%以上、0.23質量%以上、0.25質量%以上、0.30質量%以上、0.35質量%以上、0.38質量%以上、0.40質量%以上、又は、0.42質量%以上が好ましい。これらの観点から、末端官能基Aの含有量は、0.01~0.50質量%、0.05~0.40質量%、又は、0.10~0.35質量%が好ましい。末端官能基Aの含有量は、後述の可塑化工程で用いるチアゾール化合物の量、可塑化工程の可塑化時間及び可塑化温度等により調整できる。
 末端官能基Bの含有量は、特に限定されないが、硫黄変性クロロプレンゴムの全量を基準として下記の範囲が好ましい(すなわち、硫黄変性クロロプレンゴムは、当該硫黄変性クロロプレンゴム100質量部に対して下記の数値の含有量(単位:質量部)の末端官能基Bを含有することが好ましい)。末端官能基Bの含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、1.00質量%以下、0.90質量%以下、0.80質量%以下、0.70質量%以下、0.60質量%以下、0.50質量%以下、0.45質量%以下、0.40質量%以下、0.33質量%以下、0.32質量%以下、0.30質量%以下、0.29質量%以下、0.25質量%以下、0.23質量%以下、0.20質量%以下、0.19質量%以下、0.15質量%以下、0.14質量%以下、0.13質量%以下、0.12質量%以下、0.10質量%以下、0.09質量%以下、0.07質量%以下、0.06質量%以下、0.05質量%以下、0.03質量%以下、又は、0.01質量%以下が好ましい。末端官能基Bの含有量は、0質量%であってよく、0質量%を超えてよい。末端官能基Bの含有量が0質量%を超える場合、その含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、0.01質量%以上、0.03質量%以上、0.05質量%以上、0.06質量%以上、0.07質量%以上、0.09質量%以上、0.10質量%以上、0.12質量%以上、0.13質量%以上、0.14質量%以上、0.15質量%以上、0.19質量%以上、0.20質量%以上、0.23質量%以上、0.25質量%以上、0.29質量%以上、0.30質量%以上、0.32質量%以上、0.33質量%以上、0.40質量%以上、0.45質量%以上、0.50質量%以上、0.60質量%以上、0.70質量%以上、又は、0.80質量%以上が好ましい。これらの観点から、末端官能基Bの含有量は、0~1.00質量%、0~0.80質量%、又は、0.10~0.60質量%が好ましい。末端官能基Bの含有量は、後述の可塑化工程で用いるジチオカルバミン酸系化合物の量、可塑化工程の可塑化時間及び可塑化温度等により調整できる。
 末端官能基Bの含有量の末端官能基Aの含有量に対する質量比B/Aは、12.00以下(0~12.00)である。質量比B/Aが12.00を超えてしまうと、加硫物の耐圧縮永久歪み性が低下する。
 質量比B/Aは、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、11.60以下、11.00以下、10.00以下、9.00以下、8.00以下、7.00以下、6.00以下、5.00以下、4.00以下、3.00以下、2.50以下、2.00以下、1.00以下、0.64以下、0.61以下、0.60以下、0.50以下、0.45以下、0.44以下、0.40以下、0.30以下、0.20以下、又は、0.10以下が好ましい。質量比B/Aは、0であってよく、0を超えてよい。質量比B/Aが0を超える場合、質量比B/Aは、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、0.10以上、0.20以上、0.30以上、0.40以上、0.50以上、0.60以上、0.61以上、0.64以上、1.00以上、2.00以上、2.50以上、3.00以上、4.00以上、5.00以上、6.00以上、7.00以上、8.00以上、9.00以上、10.00以上、11.00以上、又は、11.60以上が好ましい。質量比B/Aは、0を超え12.00以下、0.50~10.00、又は、0.60~9.00が好ましい。
 末端官能基A及び末端官能基Bの合計量(末端官能基A及び末端官能基Bの含有量の合計。質量合計(A+B))は、硫黄変性クロロプレンゴムの全量を基準として0.10~1.00質量%である。質量合計(A+B)が0.10質量%に満たないと、加硫物の耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が低下する。質量合計(A+B)が1.00質量%を超えると、後述の硫黄変性クロロプレンゴムの製造方法により得られる反応生成物のムーニー粘度の低下が著しく実用的でない(加硫物が得られない)。
 質量合計(A+B)は、硫黄変性クロロプレンゴムの全量を基準として下記の範囲が好ましい。質量合計(A+B)は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、0.15質量%以上、0.20質量%以上、0.24質量%以上、0.25質量%以上、0.30質量%以上、0.35質量%以上、0.37質量%以上、0.38質量%以上、0.40質量%以上、0.42質量%以上、0.45質量%以上、0.46質量%以上、0.48質量%以上、0.50質量%以上、0.51質量%以上、0.55質量%以上、0.57質量%以上、0.60質量%以上、0.65質量%以上、0.66質量%以上、0.70質量%以上、0.80質量%以上、又は、0.85質量%以上が好ましい。質量合計(A+B)は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、0.90質量%以下、0.85質量%以下、0.80質量%以下、0.70質量%以下、0.66質量%以下、0.65質量%以下、0.60質量%以下、0.57質量%以下、0.55質量%以下、0.51質量%以下、0.50質量%以下、0.48質量%以下、0.46質量%以下、0.45質量%以下、0.42質量%以下、0.40質量%以下、0.38質量%以下、0.37質量%以下、0.35質量%以下、0.30質量%以下、0.25質量%以下、又は、0.24質量%以下が好ましい。これらの観点から、質量合計(A+B)は、0.15~0.90質量%、0.20~0.80質量%、又は、0.30~0.70質量%が好ましい。
 硫黄変性クロロプレンゴム中の末端官能基A及び末端官能基Bの含有量は、実施例に記載の手順にて定量できる。
 硫黄変性クロロプレンゴムは、下記一般式(C)で表される官能基を有していなくてよく、下記一般式(C)で表されると共に分子末端に位置する官能基を有していなくてよい。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、水素原子、又は、置換基を有してもよい炭素数1~4のアルキル基を示す。)
 ゴム組成物における硫黄変性クロロプレンゴムの含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、ゴム組成物の全量を基準として下記の範囲が好ましい。硫黄変性クロロプレンゴムの含有量は、10質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、又は、40質量%以上が好ましい。硫黄変性クロロプレンゴムの含有量は、80質量%以下、70質量%以下、60質量%以下、55質量%以下、50質量%以下、又は、45質量%以下が好ましい。これらの観点から、硫黄変性クロロプレンゴムの含有量は、10~80質量%、20~70質量%、又は、30~50質量%が好ましい。
(硫黄変性クロロプレンゴムの製造方法)
 硫黄変性クロロプレンゴムの製造方法は、硫黄(S)の存在下でクロロプレンを乳化重合して重合体を得る重合工程と、前記重合体及びチアゾール化合物を混合する可塑化工程(混合工程)と、を有する。硫黄変性クロロプレンゴムの製造方法の一態様は、少なくともクロロプレンゴムと硫黄とを乳化重合して重合液を得る重合工程と、重合液中にチアゾール化合物を添加することにより、重合液中の重合体を可塑化する可塑化工程と、を有する。
 硫黄変性クロロプレンゴムの製造方法では、例えば、重合体(例えば重合体の主鎖)に硫黄を導入することが可能であり、ポリスルフィド結合(S~S)を導入することもできる。硫黄変性クロロプレンゴムは、硫黄の存在下で、クロロプレン単独、又は、クロロプレンと他の単量体とを乳化重合して硫黄を導入した硫黄変性クロロプレン重合体を、チアゾール化合物を用いて可塑化することにより得られるラテックス、及び、このラテックスを一般的な方法で乾燥洗浄して得られた硫黄変性クロロプレンゴムを包含する。
 以下、硫黄変性クロロプレンゴムの製造工程に沿って詳細に説明する。
[重合工程]
 硫黄変性クロロプレンゴムの製造方法では、まず、重合工程において、硫黄の存在下でクロロプレンを乳化重合して重合体を得る。重合体は、重合液中の重合体であってよい。重合工程では、必要に応じて、クロロプレンと、クロロプレンと共重合可能な上述の単量体と、を乳化重合させてよい。クロロプレンの使用量、又は、クロロプレンと共重合可能な単量体の使用量は、上述の使用量であることが好ましい。
 乳化重合における硫黄(S)の使用量は、単量体(重合させる単量体の合計)100質量部に対して下記の範囲が好ましい。硫黄の使用量は、硫黄変性クロロプレンゴムの充分な機械的特性又は動的特性が得られやすい観点から、0.01質量部以上が好ましく、0.1質量部以上がより好ましい。硫黄の使用量は、硫黄変性クロロプレンゴムの金属への粘着性が強くなりすぎることが抑制されることにより加工しやすい観点から、0.6質量部以下が好ましく、0.5質量部以下がより好ましい。これらの観点から、硫黄の使用量は、0.01~0.6質量部が好ましく、0.1~0.55質量部がより好ましい。
 乳化重合に用いる乳化剤としては、クロロプレンの乳化重合に用いることが可能な公知の乳化剤を1種又は2種以上、自由に選択して用いることができる。乳化剤としては、ロジン酸類、脂肪酸類、芳香族スルホン酸ホルマリン縮合物の金属塩、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、アルキルジフェニルエーテルスルホン酸ナトリウム、アルキルジフェニルエーテルスルホン酸カリウム、ポリオキシエチレンアルキルエーテルスルホン酸ナトリウム、ポリオキシプロピレンアルキルエーテルスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテルスルホン酸カリウム、ポリオキシプロピレンアルキルエーテルスルホン酸カリウム等が挙げられる。乳化剤としては、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、ロジン酸類が好ましい。「ロジン酸類」とは、ロジン酸、不均化ロジン酸、不均化ロジン酸のアルカリ金属塩(例えば不均化ロジン酸カリウム)等を意味する。不均化ロジン酸の構成成分としては、セスキテルペン、8,5-イソピマル酸、ジヒドロピマル酸、セコデヒドロアビエチン酸、ジヒドロアビエチン酸、デイソプロピルデヒドロアビエチン酸、デメチルデヒドロアビエチン酸等が挙げられる。脂肪酸類としては、脂肪酸(例えば炭素数6~22の飽和又は不飽和の脂肪酸)、脂肪酸の金属塩(例えばラウリル硫酸ナトリウム)等が挙げられる。
 乳化剤としては、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、芳香族スルホン酸ホルマリン縮合物の金属塩が好ましく、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩がより好ましい。β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩は、汎用に用いられる乳化剤であり、少量添加することで安定性が向上し、製造過程において凝集及び析出をすることなく、安定的にラテックスを製造することができる。好適に用いられる他の乳化剤としては、例えば、不均化ロジン酸のアルカリ金属塩と、炭素数6~22の飽和又は不飽和の脂肪酸との混合物からなるアルカリ石鹸水溶液が挙げられる。
 乳化重合開始時の乳化液(例えば水性乳化液)のpHは、10.5以上であることが好ましい。ここで、「乳化液」とは、乳化重合開始直前の、クロロプレンと他の成分(クロロプレンと共重合可能な単量体、乳化剤、硫黄(S)等)との混合液である。「乳化液」は、これらの他の成分(クロロプレンと共重合可能な単量体、硫黄(S)等)の後添加、分割添加などによりその組成が順次変わる場合も包含する。乳化液のpHが10.5以上であることで、重合中のポリマー析出等を防止し、安定的に重合を制御することができる。乳化剤としてロジン酸類を用いた場合に当該効果を特に好適に得ることができる。乳化液のpHは、乳化重合時に存在している水酸化ナトリウム、水酸化カリウム等のアルカリ成分量により調整できる。
 乳化重合の重合温度は、重合制御性及び生産性に優れる観点から、0~55℃が好ましく、30~55℃がより好ましい。
 重合開始剤としては、通常のラジカル重合で用いられる過硫酸カリウム、過酸化ベンゾイル、過硫酸アンモニウム、過酸化水素等を用いることができる。例えば、重合は、下記の範囲の重合率(転化率)で行われ、次いで、重合停止剤(重合禁止剤)を加えて停止させる。
 重合率は、生産性に優れる観点から、60%以上が好ましく、70%以上がより好ましい。重合率は、硫黄変性クロロプレンゴムの加工性に影響を及ぼす分岐構造の発達又はゲルの生成を抑制する観点から、95%以下が好ましく、90%以下がより好ましい。これらの観点から、重合率は、60~95%が好ましく、70~90%がより好ましい。
 重合停止剤としては、ジエチルヒドロキシアミン、チオジフェニルアミン、4-tert-ブチルカテコール、2,2’-メチレンビス-4-メチル-6-tert-ブチルフェノール等が挙げられる。重合停止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[可塑化工程]
 可塑化工程では、重合工程で得られた重合体、及び、チアゾール化合物を混合する。可塑化工程では、重合工程で得られた重合体、及び、チアゾール化合物を反応させることにより重合体を可塑化することが可能であり、例えば、重合工程で得られた重合液中にチアゾール化合物を添加することにより、重合液中の重合体を可塑化することができる。可塑化工程では、例えば、重合体(例えば重合体の主鎖)中に存在する硫黄(例えばポリスルフィド結合(S~S))とチアゾール化合物とが反応することで、チアゾール化合物に由来する上述の末端官能基Aを形成しながら、重合体を切断又は解重合させることができる。以下、重合体を切断又は解重合するために用いる薬品を「可塑化剤」と称する。可塑化工程により得られた硫黄変性クロロプレンゴムを加硫して得られる加硫物は、耐スコーチ性が良好であり、加硫物の引張強度、耐圧縮永久歪み性及び耐摩耗性の物性バランスが良好である。
 チアゾール化合物(チアゾール環を有する化合物)としては、公知のチアゾール化合物を1種又は2種以上、自由に選択して用いることができる。チアゾール化合物は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4,5-ジメチル-2-ベンゾチアゾールスルフェンアミド、N,N-ジシクロヘキシル-1,3-ベンゾチアゾール-2-スルフェンアミド、N-(tert-ブチル)-2-ベンゾチアゾールスルフェンアミド、N,N-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、4,5-ジヒドロチアゾール-2-スルフェンアミド、N-シクロヘキシル-4,5-ジヒドロチアゾール-2-スルフェンアミド、N-オキシジエチルベンゾチアゾール-2-スルフェンアミド、2-(4’-モルフォリニルジチオ)ベンゾチアゾール、2-メルカプトベンゾチアゾール、4,5-ジヒドロ-2-メルカプトチアゾール、ジベンジルチアゾリルジスルフィド、及び、2-(モルホリノジチオ)ベンゾチアゾールから選ばれる少なくとも一種の化合物を含むことが好ましい。チアゾール化合物は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、ベンゾチアゾール化合物(ベンゾチアゾール環を有する化合物)を含むことが好ましく、置換基(アルキル基等。例えば、炭素数1、2、3又は4のアルキル基)が結合したベンゾチアゾール環を有するベンゾチアゾール化合物を含むことがより好ましい。チアゾール化合物は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、スルフェンアミド基を有する化合物を含むことが好ましく、スルフェンアミド基を有するベンゾチアゾール化合物を含むことがより好ましく、スルフェンアミド基及びシクロヘキサン環を有するベンゾチアゾール化合物を含むことが更に好ましい。
 チアゾール化合物の使用量(添加量)は、重合体(例えば重合液中の重合体)100質量部に対して0.2~3質量部が好ましい。チアゾール化合物の使用量が0.2質量部以上であることで、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい。チアゾール化合物の使用量が3質量部以下であることで、適度なムーニー粘度の反応生成物を得やすく、その結果、加硫成形性を向上させやすい。チアゾール化合物の使用量が0.2~3質量部であることにより、硫黄変性クロロプレンゴムにおける末端官能基Aの含有量を0.01~0.50質量%(例えば0.05~0.40質量%。基準:硫黄変性クロロプレンゴムの全量)に調整しやすいと共に、ゴム組成物におけるチアゾール化合物の含有量(残存量)を0.0001~0.0200質量部(例えば0.0005~0.0100質量部。基準:硫黄変性クロロプレンゴム100質量部)に調整しやすい。
 可塑化工程では、可塑化剤としてチアゾール化合物及びジチオカルバミン酸系化合物を併用することができる。可塑化工程では、重合工程で得られる重合体、チアゾール化合物、及び、ジチオカルバミン酸系化合物を混合することが可能であり、重合工程で得られる重合体、チアゾール化合物、及び、ジチオカルバミン酸系化合物を反応させることができる。これにより、ジチオカルバミン酸系化合物がチアゾール化合物と反応し、チアゾール化合物単体又はジチオカルバミン酸系化合物単体を用いる場合と比較して重合体中の硫黄(例えばポリスルフィド結合)との反応性が高い反応物を形成し、ムーニー粘度を容易に調整できる。反応物が重合体中の硫黄(例えばポリスルフィド結合。例えば重合体の主鎖中の硫黄)と反応することで、チアゾール化合物に由来する上述の末端官能基Aと、ジチオカルバミン酸系化合物に由来する上述の末端官能基Bと、を好適に形成できる。
 ジチオカルバミン酸系化合物としては、ジチオカルバミン酸、ジチオカルバミン酸塩、モノアルキルジチオカルバミン酸、モノアルキルジチオカルバミン酸塩、モノアリールジチオカルバミン酸、モノアリールジチオカルバミン酸塩、ジアルキルジチオカルバミン酸、ジアルキルジチオカルバミン酸塩、ジアリールジチオカルバミン酸、ジアリールジチオカルバミン酸塩、テトラアルキルチウラムジスルフィド、テトラアリールアルキルチウラムジスルフィド等が挙げられる。塩としては、ナトリウム塩、カリウム塩、カルシウム塩、亜鉛塩、アンモニウム塩、ニッケル塩等が挙げられる。
 ジチオカルバミン酸系化合物としては、公知のジチオカルバミン酸系化合物を1種又は2種以上、自由に選択して用いることができる。ジチオカルバミン酸系化合物は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、テトラアルキルチウラムジスルフィド及びテトラアリールアルキルチウラムジスルフィドから選ばれる少なくとも一種の化合物を含むことが好ましい。ジチオカルバミン酸系化合物は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、ジチオカルバミン酸、ジチオカルバミン酸ナトリウム、ジチオカルバミン酸カリウム、ジチオカルバミン酸カルシウム、ジチオカルバミン酸亜鉛、ジチオカルバミン酸アンモニウム、ジチオカルバミン酸ニッケル、モノ-2-エチルヘキシルジチオカルバミン酸、モノ-2-エチルヘキシルジチオカルバミン酸ナトリウム、モノ-2-エチルヘキシルジチオカルバミン酸カリウム、モノ-2-エチルヘキシルジチオカルバミン酸カルシウム、モノ-2-エチルヘキシルジチオカルバミン酸亜鉛、モノ-2-エチルヘキシルカルバミン酸アンモニウム、モノ-2-エチルヘキシルカルバミン酸ニッケル、モノベンジルジチオカルバミン酸、モノベンジルジチオカルバミン酸ナトリウム、モノベンジルジチオカルバミン酸カリウム、モノベンジルジチオカルバミン酸カルシウム、モノベンジルジチオカルバミン酸亜鉛、モノベンジルジチオカルバミン酸アンモニウム、モノベンジルジチオカルバミン酸ニッケル、ジ-2-エチルヘキシルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸ナトリウム、ジ-2-エチルヘキシルジチオカルバミン酸カリウム、ジ-2-エチルヘキシルジチオカルバミン酸カルシウム、ジ-2-エチルヘキシルジチオカルバミン酸亜鉛、ジ-2-エチルヘキシルカルバミン酸アンモニウム、ジ-2-エチルヘキシルカルバミン酸ニッケル、ジベンジルジチオカルバミン酸、ジベンジルジチオカルバミン酸ナトリウム、ジベンジルジチオカルバミン酸カリウム、ジベンジルジチオカルバミン酸カルシウム、ジベンジルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸アンモニウム、ジベンジルジチオカルバミン酸ニッケル、テトラキス(2-エチルヘキシル)チウラムジスルフィド、及び、テトラベンジルチウラムジスルフィドから選ばれる少なくとも一種の化合物を含むことが好ましい。
 ジチオカルバミン酸系化合物の使用量(添加量)は、特に限定されないが、重合体(例えば重合液中の重合体)100質量部に対して、0~12質量部が好ましく、0~8質量部がより好ましく、0質量部を超え8質量部以下が更に好ましく、0.5~4質量部が特に好ましい。ジチオカルバミン酸系化合物の使用量がこれらの範囲内であることで、反応生成物のムーニー粘度の制御が一層容易となり、加硫物の引張強度、耐摩耗性及び耐スコーチ性が一層向上し、圧縮永久歪みが一層低減される。ジチオカルバミン酸系化合物の使用量が0~12質量部(例えば0~8質量部)であることにより、硫黄変性クロロプレンゴムにおける末端官能基Bの含有量を1.00質量%以下(例えば0.80質量%以下。基準:硫黄変性クロロプレンゴムの全量)に調整しやすいと共に、ゴム組成物におけるジチオカルバミン酸系化合物の含有量(残存量)を2.50質量部以下(例えば2.00質量部以下。基準:硫黄変性クロロプレンゴム100質量部)に調整しやすい。
 可塑化工程を経た重合液を一般的な方法で冷却、pH調整、凍結、乾燥等を行って硫黄変性クロロプレンゴムを得てよい。
 上述の硫黄変性クロロプレンゴムの製造方法により得られる反応生成物は、硫黄変性クロロプレンゴムを含有し、未反応の可塑化剤(チアゾール化合物、ジチオカルバミン酸系化合物等)を含有してよい。反応生成物のムーニー粘度(ML1+4、100℃)は、特に限定されないが、下記の範囲が好ましい。ムーニー粘度は、ゴム組成物の加工性を維持しやすい観点から、10以上、15以上、20以上、25以上、又は、30以上が好ましい。ムーニー粘度は、ゴム組成物の加工性を維持しやすい観点から、80以下、75以下、70以下、65以下、60以下、55以下、又は、50以下が好ましい。これらの観点から、ムーニー粘度は、10~80、又は、20~80が好ましい。ムーニー粘度は、可塑化剤の添加量、可塑化工程の時間及び可塑化温度等により調整できる。
(カーボンブラック)
 本実施形態に係るゴム組成物は、カーボンブラックを含有する。これにより、カーボンブラックの補強効果を得ることができる。
 カーボンブラックの平均粒子径は、充分な補強効果が得られることにより、優れた引張強度及び耐摩耗性を有する加硫物が得られる観点から、70nm以下である。カーボンブラックの平均粒子径は、加硫物の引張強度及び耐摩耗性が向上しやすい観点から、60nm以下、50nm以下、45nm以下、43nm以下、40nm以下、38nm以下、35nm以下、30nm以下、28nm以下、27nm以下、25nm以下、20nm以下、又は、17nm以下が好ましい。カーボンブラックの平均粒子径は、加硫物の耐圧縮永久歪み性及び耐スコーチ性が向上しやすい観点から、10nm以上、15nm以上、17nm以上、20nm以上、25nm以上、27nm以上、28nm以上、30nm以上、35nm以上、38nm以上、40nm以上、43nm以上、45nm以上、50nm以上、又は、60nm以上が好ましい。これらの観点から、カーボンブラックの平均粒子径は、10~70nm、15~60nm、20~50nm、又は、20~40nmが好ましい。カーボンブラックの平均粒子径は、JIS Z 8901に準拠して、電子顕微鏡を用いて観察することにより得ることができる。
 カーボンブラックのDBP吸収量は、加硫物の引張強度及び耐摩耗性が向上しやすい観点から、50ml/100g以上、60ml/100g以上、又は、70ml/100g以上が好ましい。カーボンブラックのDBP吸収量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、75ml/100g以上、80ml/100g以上、85ml/100g以上、90ml/100g以上、95ml/100g以上、100ml/100g以上、110ml/100g以上、120ml/100g以上、127ml/100g以上、128ml/100g以上、130ml/100g以上、140ml/100g以上、150ml/100g以上、又は、180ml/100g以上が好ましい。カーボンブラックのDBP吸収量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、180ml/100g以下、150ml/100g以下、140ml/100g以下、130ml/100g以下、128ml/100g以下、127ml/100g以下、120ml/100g以下、110ml/100g以下、100ml/100g以下、95ml/100g以下、90ml/100g以下、85ml/100g以下、80ml/100g以下、又は、75ml/100g以下が好ましい。これらの観点から、カーボンブラックのDBP吸収量は、80~150ml/100g、100~140ml/100g、又は、100~120ml/100gが好ましい。カーボンブラックのDBP吸収量(フタル酸ジブチル吸収量)は、JIS K6217-4の吸油量A法に準拠して測定できる。
 カーボンブラックのヨウ素吸着量は、加硫物の引張強度及び耐摩耗性が向上しやすい観点から、10mg/g以上、20mg/g以上、30mg/g以上、40mg/g以上、50mg/g以上、55mg/g以上、60mg/g以上、70mg/g以上、80mg/g以上、85mg/g以上、90mg/g以上、100mg/g以上、120mg/g以上、130mg/g以上、又は、150mg/g以上が好ましい。カーボンブラックのヨウ素吸着量は、加硫物の耐圧縮永久歪み性及び耐スコーチ性が向上しやすい観点から、150mg/g以下、130mg/g以下、120mg/g以下、100mg/g以下、90mg/g以下、85mg/g以下、80mg/g以下、70mg/g以下、60mg/g以下、55mg/g以下、50mg/g以下、40mg/g以下、30mg/g以下、又は、20mg/g以下が好ましい。これらの観点から、カーボンブラックのヨウ素吸着量は、40~150mg/g、50~150mg/g、60~120mg/g、又は、70~100mg/gが好ましい。カーボンブラックのヨウ素吸着量は、JIS K6217-1に準拠して測定できる。
 カーボンブラックの含有量は、硫黄変性クロロプレンゴム100質量部に対して25~55質量部である。カーボンブラックの含有量が25質量部に満たないと、加硫物の引張強度及び耐摩耗性が向上しない。カーボンブラックの含有量が55質量部を超えてしまうと、加硫物の耐スコーチ性が低下してしまうと共に、加硫物の耐圧縮永久歪み性及び耐摩耗性が向上しない。カーボンブラックの含有量は、加硫物の引張強度及び耐摩耗性が向上しやすい観点から、28質量部以上、30質量部以上、32質量部以上、又は、35質量部以上が好ましい。カーボンブラックの含有量は、加硫物の耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、50質量部以下、45質量部以下、40質量部以下、又は、35質量部以下が好ましい。これらの観点から、カーボンブラックの含有量は、25~50質量部、25~45質量部、又は、30~40質量部が好ましい。
 ゴム組成物におけるカーボンブラックの含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、ゴム組成物の全量を基準として下記の範囲が好ましい。カーボンブラックの含有量は、1質量%以上、3質量%以上、5質量%以上、8質量%以上、10質量%以上、12質量%以上、又は、15質量%以上が好ましい。カーボンブラックの含有量は、35質量%以下、30質量%以下、25質量%以下、20質量%以下、18質量%以下、又は、16質量%以下が好ましい。これらの観点から、カーボンブラックの含有量は、1~35質量%、5~30質量%、又は、10~20質量%が好ましい。
(ジエン系ゴムA)
 本実施形態に係るゴム組成物は、クロロプレンゴムとは異なるジエン系ゴムAを含有する。これにより、ジエン系ゴムの補強効果を得ることが可能であり、優れた耐摩耗性及び耐スコーチ性を有する加硫物が得られる。
 ジエン系ゴムAとしては、公知のジエン系ゴムを用いることが可能であり、ブタジエンゴム(ブタジエンの単独重合体、BR)、スチレン・ブタジエンゴム(SBR)、ニトリルゴム(NBR)、天然ゴム(NR)、イソプレンゴム(IR)、エチレン-プロピレン-ジエン三元共重合体ゴム(EPDM)、スチレン-イソプレン-スチレン三元ブロック共重合体(SIS)、スチレン-ブタジエン-スチレン三元ブロック共重合体(SBS)等が挙げられる。ジエン系ゴムAは、加硫物の耐摩耗性及び耐スコーチ性が向上しやすい観点から、ブタジエンゴム、スチレン・ブタジエンゴム、及び、ニトリルゴムから選ばれる少なくとも一種を含むことが好ましい。ジエン系ゴムAは、天然ゴムを実質的に含まなくてよい。
 ジエン系ゴムAの含有量は、硫黄変性クロロプレンゴム100質量部に対して、0質量部を超え15質量部以下である。ジエン系ゴムAの含有量が0質量部であると、充分な耐摩耗性及び耐スコーチ性の改良効果が得られない。ジエン系ゴムAの含有量が15質量部を超えると、充分な補強効果が得られず引張強度が向上しない。ジエン系ゴムAの含有量は、加硫物の耐摩耗性及び耐スコーチ性が向上しやすい観点から、1質量部以上、2質量部以上、3質量部以上、4質量部以上、5質量部以上、6質量部以上、7質量部以上、又は、8質量部以上が好ましい。ジエン系ゴムAの含有量は、加硫物の引張強度が向上しやすい観点から、14質量部以下、12質量部以下、10質量部以下、9質量部以下、又は、8質量部以下が好ましい。これらの観点から、ジエン系ゴムAの含有量は、1~14質量部、4~12質量部、又は、5~10質量部が好ましい。
 ゴム組成物におけるジエン系ゴムAの含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、ゴム組成物の全量を基準として下記の範囲が好ましい。ジエン系ゴムAの含有量は、0質量%を超えることが好ましく、1質量%以上、1.5質量%以上、2質量%以上、2.5質量%以上、3質量%以上、又は、3.5質量%以上が好ましい。ジエン系ゴムAの含有量は、10質量%以下、8質量%以下、6質量%以下、5質量%以下、又は、4質量%以下が好ましい。これらの観点から、ジエン系ゴムAの含有量は、0質量%を超え10質量%以下、1~8質量%、又は、2~5質量%が好ましい。
 ゴム組成物における硫黄変性クロロプレンゴム及びジエン系ゴムAの合計量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、ゴム組成物の全量を基準として下記の範囲が好ましい。合計量は、10質量%以上、20質量%以上、25質量%以上、30質量%以上、35質量%以上、40質量%以上、又は、45質量%以上が好ましい。合計量は、90質量%以下、80質量%以下、70質量%以下、60質量%以下、55質量%以下、又は、50質量%以下が好ましい。これらの観点から、合計量は、10~90質量%、20~70質量%、又は、30~50質量%が好ましい。
(その他の成分)
 本実施形態に係るゴム組成物は、硫黄変性クロロプレンゴム、カーボンブラック及びジエン系ゴムA以外の成分を含有してよい。
 本実施形態に係るゴム組成物は、未反応の可塑化剤(チアゾール化合物、ジチオカルバミン酸系化合物等)を含有してよい。可塑化剤としては、可塑化工程に関して上述した可塑化剤を用いることができる。
 ゴム組成物におけるチアゾール化合物の含有量(チアゾール化合物に該当する化合物の合計量。例えば残存量)は、硫黄変性クロロプレンゴム100質量部に対して下記の範囲が好ましい。また、ゴム組成物における特定のチアゾール化合物(例えば、上述のとおり例示した各チアゾール化合物。N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド等)の含有量は、硫黄変性クロロプレンゴム100質量部に対して下記の範囲が好ましい。チアゾール化合物の含有量(例えば未反応のチアゾール化合物の残存量)は、可塑化工程で用いるチアゾール化合物の量、可塑化工程の可塑化時間及び可塑化温度等により調整できる。
 チアゾール化合物の含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、0.0001質量部以上、0.0003質量部以上、0.0004質量部以上、0.0005質量部以上、0.0006質量部以上、0.0010質量部以上、0.0015質量部以上、0.0020質量部以上、0.0025質量部以上、0.0030質量部以上、0.0031質量部以上、0.0035質量部以上、0.0040質量部以上、0.0045質量部以上、0.0050質量部以上、0.0052質量部以上、0.0055質量部以上、0.0060質量部以上、0.0070質量部以上、0.0080質量部以上、0.0090質量部以上、0.0100質量部以上、又は、0.0110質量部以上が好ましい。チアゾール化合物の含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、0.0200質量部以下、0.0150質量部以下、0.0110質量部以下、0.0100質量部以下、0.0090質量部以下、0.0080質量部以下、0.0070質量部以下、0.0060質量部以下、0.0055質量部以下、0.0052質量部以下、0.0050質量部以下、0.0045質量部以下、0.0040質量部以下、0.0035質量部以下、0.0031質量部以下、0.0030質量部以下、0.0025質量部以下、0.0020質量部以下、0.0015質量部以下、0.0010質量部以下、0.0006質量部以下、0.0005質量部以下、又は、0.0004質量部以下が好ましい。これらの観点から、チアゾール化合物の含有量は、0.0001~0.0200質量部、0.0005~0.0100質量部、又は、0.0010~0.0080質量部が好ましい。
 ゴム組成物におけるジチオカルバミン酸系化合物の含有量(ジチオカルバミン酸系化合物に該当する化合物の合計量。例えば残存量)は、硫黄変性クロロプレンゴム100質量部に対して下記の範囲が好ましい。また、ゴム組成物における特定のジチオカルバミン酸系化合物(例えば、上述のとおり例示した各ジチオカルバミン酸系化合物。テトラベンジルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド等)の含有量は、硫黄変性クロロプレンゴム100質量部に対して下記の範囲が好ましい。ジチオカルバミン酸系化合物の含有量(例えば未反応のジチオカルバミン酸系化合物の残存量)は、可塑化工程で用いるジチオカルバミン酸系化合物の量、可塑化工程の可塑化時間及び可塑化温度等により調整できる。
 ジチオカルバミン酸系化合物の含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、2.50質量部以下、2.00質量部以下、1.80質量部以下、1.70質量部以下、1.50質量部以下、1.40質量部以下、1.37質量部以下、1.35質量部以下、1.30質量部以下、1.20質量部以下、1.10質量部以下、1.00質量部以下、0.90質量部以下、0.80質量部以下、0.70質量部以下、0.60質量部以下、0.50質量部以下、0.45質量部以下、又は、0.42質量部以下が好ましい。ジチオカルバミン酸系化合物の含有量は、0質量部であってよく、0質量部を超えてよい。ジチオカルバミン酸系化合物の含有量が0質量部を超える場合、その含有量は、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、0.01質量部以上、0.05質量部以上、0.10質量部以上、0.20質量部以上、0.30質量部以上、0.40質量部以上、0.42質量部以上、0.45質量部以上、0.50質量部以上、0.60質量部以上、0.70質量部以上、0.80質量部以上、0.90質量部以上、1.00質量部以上、1.10質量部以上、1.20質量部以上、1.30質量部以上、1.35質量部以上、1.37質量部以上、1.40質量部以上、1.50質量部以上、1.70質量部以上、1.80質量部以上、又は、2.00質量部以上が好ましい。これらの観点から、ジチオカルバミン酸系化合物の含有量は、0~2.50質量部、0~2.00質量部、又は、0.40~1.70質量部が好ましい。
 ゴム組成物において、チアゾール化合物の含有量(例えば残存量)Cに対するジチオカルバミン酸系化合物の含有量(例えば残存量)Dの質量比D/Cは、下記の範囲が好ましい。質量比D/Cは、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性の物性バランスが一層良好である観点から、2500以下、2300以下、2000以下、1800以下、1600以下、1500以下、1200以下、1000以下、800以下、700以下、600以下、500以下、400以下、300以下、200以下、150以下、130以下、120以下、110以下、100以下、80以下、50以下、30以下、又は、10以下が好ましい。質量比D/Cは、0以上であり、0を超えてよい。質量比D/Cが0を超える場合、質量比D/Cは、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性の物性バランスが一層良好である観点から、5以上、10以上、30以上、50以上、80以上、100以上、110以上、120以上、130以上、150以上、200以上、300以上、400以上、500以上、600以上、700以上、800以上、1000以上、1200以上、1500以上、1600以上、1800以上、又は、2000以上が好ましい。これらの観点から、質量比D/Cは、0~2500、0~2000、又は、100~1500が好ましい。
 ゴム組成物中のチアゾール化合物の含有量及びジチオカルバミン酸系化合物の含有量は、実施例に記載の手順にて定量できる。
 ゴム組成物は、加硫剤、加工助剤、安定剤、金属化合物、可塑化剤(チアゾール化合物及びジチオカルバミン酸系化合物を除く)、充填剤(カーボンブラックを除く)等の添加剤を含有してよい。
 加硫剤としては、金属酸化物等が挙げられる。金属酸化物としては、酸化亜鉛、酸化マグネシウム、酸化鉛、四酸化三鉛、三酸化鉄、二酸化チタン、酸化カルシウム、ハイドロタルサイト等が挙げられる。加硫剤は、1種を単独で用いてもよく、2種以上を併用してもよい。加硫剤の含有量は、硫黄変性クロロプレンゴム100質量部に対して3~15質量部が好ましい。
 加工助剤としては、ステアリン酸等の脂肪酸;ポリエチレン等のパラフィン系加工助剤;脂肪酸アミドなどが挙げられる。加工助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。加工助剤の含有量は、硫黄変性クロロプレンゴム100質量部に対して0.5~5質量部が好ましい。ゴム組成物において、分子量300以上の飽和脂肪族カルボン酸の含有量は、ゴム成分100質量部に対して、5質量部以下、5質量部未満、1質量部以下、0.1質量部以下、0.01質量部以下、0.001質量部以下、又は、実質的に0質量部であってよい。
 ゴム組成物は、貯蔵時のムーニー粘度の変化を防止するため、安定剤(例えば少量の安定剤)を含有することができる。安定剤としては、クロロプレンゴムに用いることが可能な公知の安定剤を1種又は2種以上、自由に選択して用いることができる。安定剤としては、フェニル-α-ナフチルアミン、オクチル化ジフェニルアミン、2,6-ジ-tert-ブチル-4-フェニルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4’-チオビス-(6-tert-ブチル-3-メチルフェノール)等が挙げられる。安定剤としては、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい観点から、オクチル化ジフェニルアミン及び4,4’-チオビス-(6-tert-ブチル-3-メチルフェノールから選ばれる少なくとも一種が好ましい。
 金属化合物は、ゴム組成物の加硫速度を調整するため、又は、ゴム組成物の脱塩酸反応によって生じる塩化水素等の塩素源を吸着して、ゴム組成物が劣化することを抑制するために添加可能な化合物である。金属化合物としては、亜鉛、チタン、マグネシウム、鉛、鉄、ベリリウム、カルシウム、バリウム、ゲルマニウム、ジルコニウム、バナジウム、モリブテン、タングステン等の酸化物又は水酸化物などを用いることができる。金属化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 金属化合物の含有量は、特に限定されないが、硫黄変性クロロプレンゴム100質量部に対して3~15質量部の範囲が好ましい。金属化合物の含有量をこの範囲に調整することにより、ゴム組成物の機械的強度を向上させることができる。
 可塑化剤は、ゴム組成物の硬度を下げて、その低温特性を改良するために添加可能な成分である。また、ゴム組成物を用いてスポンジを製造する際に、そのスポンジの風合いを向上させることもできる。可塑化剤としては、ジオクチルフタレート、ジオクチルアジペート{別名:アジピン酸ビス(2-エチルヘキシル)}、ホワイトオイル、シリコンオイル、ナフテンオイル、アロマオイル、トリフェニルフォスフェート、トリクレジルフォスフェート等が挙げられる。可塑化剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 可塑化剤の含有量は、特に限定されないが、硫黄変性クロロプレンゴム100質量部に対して50質量部以下の範囲が好ましい。可塑化剤の含有量をこの範囲に調整することにより、ゴム組成物の引き裂き強度を維持しつつ、加硫物の引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性が向上しやすい。
 充填剤は、硫黄変性クロロプレンゴムの補強材として添加可能な成分である。充填剤としては、シリカ、クレー、タルク、炭酸カルシウム等が挙げられる。充填剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 ゴム組成物において、スチレンとブタジエンとのブロック共重合体の含有量、エチレンチオウレアの含有量、又は、ジペンタメチレンチウラムテトラスルフィドの含有量は、ジエン系ゴム(硫黄変性クロロプレンゴム、ジエン系ゴムA等を含む)100質量部、又は、クロロプレンゴム及び天然ゴムの合計100質量部に対して、0.1質量部以下、0.1質量部未満、0.01質量部以下、0.001質量部以下、又は、実質的に0質量部であってよい。ゴム組成物においてジチオカルバミン酸のアミン塩の含有量は、硫黄変性クロロプレンゴム100質量部に対して、1質量部以下、1質量部未満、0.1質量部以下、0.01質量部以下、0.001質量部以下、又は、実質的に0質量部であってよい。
<加硫物及び成形品>
 本実施形態に係る加硫物は、本実施形態に係るゴム組成物の加硫物であり、本実施形態に係るゴム組成物中の硫黄変性クロロプレンゴムに加硫処理を施すことにより得ることができる。
 本実施形態に係る成形品(成形体)は、本実施形態に係る加硫物からなる成形品(加硫成形体)であり、本実施形態に係る加硫物を成形することにより得ることができる。成形方法としては、プレス成形、射出成形、押出成形等が挙げられる。ゴム組成物の構成成分(硫黄変性クロロプレンゴム、金属化合物、可塑化剤、充填剤等)を混合した後、所望する形状に成形し、さらに、加硫処理を施して成形品を得てよい。加硫処理は、成形時又は成形後に行ってよい。また、ゴム組成物の構成成分を混合した後、加硫処理を施し、さらに、所望する形状に成形して成形品を得てもよい。ゴム組成物の構成成分は、ロール、バンバリーミキサー、押出機等を用いて混合できる。
 成形品としては、伝動ベルト、コンベアベルト、防振材(防振ゴム)、空気バネ(例えば自動車用空気バネ)、シール、パッキン、ホース(ホース製品)、スポンジ(スポンジ製品)、ゴムロール等が挙げられる。
 コンベアベルトは、巻掛け伝動装置に使われる機械要素であり、原動車から従動車に動力を伝達する部品である。コンベアベルトは、軸にセットされたプーリーにかけて用いられることが多い。効率的に動力を伝達するため、高い張力でかけられたベルトが回転変形を繰り返すことから、従来、クロロプレンゴム、天然ゴム、スチレン・ブタジエンゴム、ニトリルゴム、水素化ニトリルゴム等のエラストマー材料が使用されている。クロロプレンゴムは、成形段階でしばしばスコーチを引き起こすことが知られており、スコーチタイムを伸ばすことは重要な技術課題である。また、ベルトは持続的に動的環境で使用されることから、製品の信頼性向上のため、耐摩耗性、引張強度及び耐圧縮永久歪み性に優れたベルト用の材料が求められている。
 これに対し、本実施形態によれば、コンベアベルトの引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性を高めることが可能であることから、硫黄変性クロロプレンゴムを用いた従来の技術と比較して、生産性及び耐久性に優れたコンベアベルトを製造することができる。
 以下、実施例に基づいて本発明を更に詳細に説明する。以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
<評価用サンプルの作製>
(実施例1)
[硫黄変性クロロプレンゴムの作製]
 内容積30リットルの重合缶に、クロロプレン100質量部、硫黄0.55質量部、純水120質量部、不均化ロジン酸カリウム(ハリマ化成株式会社製)4.00質量部、水酸化ナトリウム0.60質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(商品名「デモールN」:花王株式会社製)0.6質量部を添加した。重合開始前の水性乳化剤のpHは12.8であった。重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。転化率85%となった時点で、重合停止剤であるジエチルヒドロキシアミン0.05質量部を加えて重合を停止させることによりクロロプレンの重合液を得た。
 上述の重合液に、クロロプレン5質量部、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(可塑化剤、商品名「ノクセラーCZ」:大内新興化学工業株式会社製)1質量部、テトラベンジルチウラムジスルフィド(可塑化剤、商品名「ノクセラーTBzTD」:大内新興化学工業株式会社製)4質量部、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(乳化剤)0.05質量部、及び、ラウリル硫酸ナトリウム(乳化剤)0.05質量部からなる可塑化剤乳化液を添加し、可塑化前の硫黄変性クロロプレン重合体ラテックスを得た。当該操作においては、より安定した可塑化を可能とする観点から、クロロプレンに可塑化剤を溶解させて得られた可塑化剤液にラウリル硫酸ナトリウム等を添加して乳化状態の可塑化剤乳化液を得た後、重合液にこの可塑化剤乳化液を添加した。
 上述の硫黄変性クロロプレン重合体ラテックスを減圧蒸留して未反応の単量体を除去した後、撹拌しながら温度50℃で1時間保持して可塑化することにより、硫黄変性クロロプレンゴムを含有する生ゴム(可塑化後のラテックス)を得た。「生ゴム」は、未反応の可塑化剤等を含有し得る。
[末端官能基の含有量の分析]
 生ゴムを冷却した後、常法の凍結-凝固法で重合体を単離して硫黄変性クロロプレンゴムを得た。硫黄変性クロロプレンゴムの全量を基準として、下記式(A1)で表されるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド由来の末端官能基(チアゾール末端種A1)の含有量は0.13質量%であり、下記式(B1)で表されるテトラベンジルチウラムジスルフィド由来の末端官能基(ジチオカルバミン酸末端種B1)の含有量は0.29質量%であった。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 硫黄変性クロロプレンゴムにおける末端官能基の含有量は以下の手順にて定量した。まず、硫黄変性クロロプレンゴムをベンゼン及びメタノールで精製した後、再度凍結乾燥して測定用試料を得た。この測定用試料を用いて、JIS K-6239に従ってH-NMR測定を行った。得られた測定データを、溶媒として用いた重水素化クロロホルム中のクロロホルムのピーク(7.24ppm)を基準に補正した。補正した測定データに基づいて、7.72~7.83ppmにピークトップを有するピークの面積を算出して末端官能基(チアゾール末端種)の含有量を定量し、5.05~5.50ppmにピークトップを有するピークの面積を算出して末端官能基(ジチオカルバミン酸末端種)の含有量を定量した。
[可塑化剤の残存量の測定]
 上述の生ゴム中の硫黄変性クロロプレンゴム100質量部に対する可塑化剤の含有量(残存量)を以下の手順にて定量した。まず、上述の生ゴム1.5gをベンゼン30mlに溶解した後、メタノール60mlを滴下した。これにより、ゴム成分(ポリマー分)を析出させて溶媒から分離し、溶媒可溶成分として非ゴム分を含有する液相を回収した。析出物に対し、再度、同様の手順でベンゼン溶解及びメタノール滴下を行うことによりゴム成分を分離し、溶媒可溶成分として非ゴム分を含有する液相を回収した。1回目及び2回目の液相を混合した後に200mlに定容して得られた液を測定用試料として得た。この測定用試料を液体クロマトグラフ(LC、株式会社日立製作所製、ポンプ:L-6200、L-600、UV検出器:L-4250)に20μl注入した。液体クロマトグラフの移動相は、アセトニトリル及び水の比率を変化させながら使用し、1ml/minの流量で流した。カラムとしては、Inertsil ODS-3(φ4.6×150mm、5μm、GLサイエンス株式会社製)を用いた。チアゾール化合物(測定波長:300nm)の標準液0.05ppm、0.1ppm及び1.0ppmと、ジチオカルバミン酸系化合物(測定波長:280nm)の標準液10ppm、50ppm及び100ppmとを用いてピーク検出時間を確認し、そのピーク面積から求めた検量線により定量値を求めた。本定量値と、分析に用いたサンプル量との比較により、生ゴム中の未反応のチアゾール化合物及び未反応のジチオカルバミン酸系化合物の含有量を求めた。測定結果を表1に示す。
[ムーニー粘度の測定]
 上述の生ゴムについて、JIS K 6300-1に準拠して、L型ロータの予熱時間1分、回転時間4分、試験温度100℃にてムーニー粘度(ML1+4)の測定を行った。測定結果を表1に示す。
[ゴム組成物の調製]
 上述の生ゴム(硫黄変性クロロプレンゴム100質量部を含有)、表1に示すカーボンブラック(カーボンブラックA、旭カーボン株式会社製、商品名:旭#70、平均粒子径:28nm、ヨウ素吸着量:80mg/g、DBP吸収量:101ml/100g)35質量部、ジエン系ゴム(ブタジエンゴム、JSR株式会社製、商品名:BR01)8質量部、加工助剤(滑剤、新日本理化株式会社製、商品名:ステアリン酸50S)1質量部、老化防止剤1(大内新興化学工業製、商品名:ノクラックAD-F)3質量部、老化防止剤2(大内新興化学工業製、商品名:ノクラック810-NA)1質量部、酸化マグネシウム(協和化学工業株式会社製、商品名:キョーワマグ30)4質量部、充填剤(白石カルシウム株式会社製、商品名:クラウンクレー)20質量部、難燃剤1(昭和電工株式会社製、商品名:ハイジライトH-42M)20質量部、難燃剤2(味の素ファインテクノ株式会社、商品名:エンパラ70)22質量部、難燃剤3(味の素ファインテクノ株式会社、商品名:エンパラ40)8質量部、加硫剤(堺化学工業株式会社製、商品名:酸化亜鉛2種)5質量部、加硫促進剤1(川口化学工業株式会社、商品名:アクセル22S)1.2質量部、及び、加硫促進剤2(大内新興化学工業製、商品名:ノクセラーDM)0.5質量部を、8インチロールを用いて混合することによりゴム組成物(硫黄変性クロロプレンゴム組成物)を得た。ゴム組成物を160℃で20分間プレス架橋して評価用サンプル(加硫物)を作製した。
(実施例2)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.5質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から8質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例3)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から2質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から2質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例4)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から3質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から2質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例5)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.5質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から10質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例6)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.5質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から2質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例7)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から3質量部に変更し、テトラベンジルチウラムジスルフィドを添加しなかったこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例8)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.3質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から8質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例9)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.3質量部に変更し、可塑化の保持時間を1時間から3時間に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例10)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から1.5質量部に変更し、可塑化の保持時間を1時間から15分に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例11)
 可塑化剤であるテトラベンジルチウラムジスルフィドの添加量を4質量部から8質量部に変更し、可塑化の保持時間を1時間から15分に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例12)
 ブタジエンゴムをスチレン・ブタジエンゴム(日本ゼオン株式会社製、商品名:Nipol 1502)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(実施例13)
 ブタジエンゴムをニトリルゴム(日本ゼオン株式会社製、商品名:Nipol 1041)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(実施例14)
 可塑化剤として、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドをN-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド(Chemieliva pharma & Chem Co.,LTD製)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。硫黄変性クロロプレンゴムの全量を基準として、下記式(A2)で表されるN-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド由来の末端官能基(チアゾール末端種A2)の含有量は0.15質量%であり、上述の式(B1)で表されるテトラベンジルチウラムジスルフィド由来の末端官能基(ジチオカルバミン酸末端種B1)の含有量は0.33質量%であった。
Figure JPOXMLDOC01-appb-C000010
(実施例15)
 可塑化剤として、テトラベンジルチウラムジスルフィドをテトラキス(2-エチルヘキシル)チウラムジスルフィド(商品名「ノクセラーTOT-N」:大内新興化学工業株式会社製)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。硫黄変性クロロプレンゴムの全量を基準として、上述の式(A1)で表されるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド由来の末端官能基(チアゾール末端種A1)の含有量は0.16質量%であり、下記式(B2)で表されるテトラキス(2-エチルヘキシル)チウラムジスルフィド由来の末端官能基(ジチオカルバミン酸末端種B2)の含有量は0.25質量%であった。
Figure JPOXMLDOC01-appb-C000011
(実施例16)
 可塑化剤として、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドをN-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミドに変更すると共に、テトラベンジルチウラムジスルフィドをテトラキス(2-エチルヘキシル)チウラムジスルフィドに変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。硫黄変性クロロプレンゴムの全量を基準として、上述の式(A2)で表されるN-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド由来の末端官能基(チアゾール末端種A2)の含有量は0.14質量%であり、上述の式(B2)で表されるテトラキス(2-エチルヘキシル)チウラムジスルフィド由来の末端官能基(ジチオカルバミン酸末端種B2)の含有量は0.32質量%であった。
(実施例17)
 カーボンブラックAをカーボンブラックB(旭カーボン株式会社製、商品名:旭#60U、平均粒子径:43nm、ヨウ素吸着量:40mg/g、DBP吸収量:110ml/100g)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(実施例18)
 カーボンブラックAをカーボンブラックC(旭カーボン株式会社製、商品名:旭#95、平均粒子径:17nm、ヨウ素吸着量:150mg/g、DBP吸収量:127ml/100g)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(実施例19)
 カーボンブラックAをカーボンブラックD(旭カーボン株式会社製、商品名:旭#52、平均粒子径:60nm、ヨウ素吸着量:19mg/g、DBP吸収量:128ml/100g)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(実施例20)
 カーボンブラックAをカーボンブラックE(旭カーボン株式会社製、商品名:旭F-200GS、平均粒子径:38nm、ヨウ素吸着量:55mg/g、DBP吸収量:180ml/100g)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(実施例21)
 カーボンブラックAをカーボンブラックF(旭カーボン株式会社製、商品名:旭#70L、平均粒子径:27nm、ヨウ素吸着量:85mg/g、DBP吸収量:75ml/100g)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(比較例1)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から3質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から12質量部に変更したこと以外は、実施例1と同様の方法にて生ゴムを得た。比較例1では、生ゴムのムーニー粘度が低すぎることから評価用サンプル(加硫物)を作製できなかったため各評価を行わなかった。
(比較例2)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.3質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から0.5質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(比較例3)
 可塑化剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.5質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から12質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(比較例4)
 可塑化剤として、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド及びテトラベンジルチウラムジスルフィドをテトラエチルチウラムジスルフィドに変更し、その添加量を2.5質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。硫黄変性クロロプレンゴムの全量を基準として、下記式で表されるテトラエチルチウラムジスルフィド由来の末端官能基の含有量は0.26質量%であった。
Figure JPOXMLDOC01-appb-C000012
(比較例5)
 ブタジエンゴムの添加量を8質量部から16質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(比較例6)
 ブタジエンゴムを添加しないこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(比較例7)
 カーボンブラックAの添加量を35質量部から20質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(比較例8)
 カーボンブラックAの添加量を35質量部から60質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
(比較例9)
 カーボンブラックAをカーボンブラックG(旭カーボン株式会社製、商品名:アサヒサーマル、平均粒子径:80nm、ヨウ素吸着量:24mg/g、DBP吸収量:28ml/100g)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを作製した。
<評価>
(耐スコーチ性:スコーチタイム)
 上述の評価用サンプルについて、JIS K 6300-1に準拠してムーニースコーチ試験を実施した。
(引張強度)
 上述の評価用サンプルを用いて、JIS K 6250に基づいてテストピース(加硫物)を作製した。JIS K 6251に基づいて引張試験を行い、各テストピースの引張強度(TB)を測定した。
(圧縮永久歪み)
 上述の評価用サンプルについて、JIS K 6262に準拠し、100℃、72時間の試験条件で圧縮永久歪み(CS、耐圧縮永久歪み性)を測定した。
(耐摩耗性)
 上述の評価用サンプルについて、JIS K 6264-2に準拠してDIN摩耗試験(ΔV)を行った。
<結果>
 実施例の結果を下記表1及び表2に示し、比較例の結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表1~表3に示す通り、実施例1~21の評価用サンプルでは、引張強度、耐圧縮永久歪み性、耐摩耗性及び耐スコーチ性に優れていることが確認できた。チアゾール化合物を用いていても、硫黄変性クロロプレンゴム中の末端官能基の含有量の合計(A+B)が1.00質量%を超える比較例1については、ムーニー粘度が低すぎて評価用サンプル(加硫物)を作製することができなかった。

Claims (17)

  1.  硫黄変性クロロプレンゴム100質量部と、平均粒子径70nm以下のカーボンブラック25~55質量部と、クロロプレンゴム以外のジエン系ゴム0質量部を超え15質量部以下と、を含有し、
     前記硫黄変性クロロプレンゴムが、下記一般式(A)で表されると共に分子末端に位置する官能基Aを有し、
     前記硫黄変性クロロプレンゴムにおいて、下記一般式(B)で表されると共に分子末端に位置する官能基Bの含有量の前記官能基Aの含有量に対する質量比B/Aが12.00以下であり、前記官能基A及び前記官能基Bの合計量が0.10~1.00質量%である、ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Ra1及びRa2は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリールチオ基を示し、Ra1及びRa2は、互いに結合して、置換基を有してもよい環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rb1及びRb2は、それぞれ独立に、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリール基を示す。)
  2.  前記質量比B/Aが0を超え12.00以下である、請求項1に記載のゴム組成物。
  3.  前記Rb1及びRb2から選ばれる少なくとも一種の炭素数が3以上である、請求項2に記載のゴム組成物。
  4.  前記Rb1及びRb2から選ばれる少なくとも一種の炭素数が7~8である、請求項2に記載のゴム組成物。
  5.  前記官能基Aが、前記Ra1及びRa2が互いに結合して形成されたベンゾチアゾール環を有する、請求項1~4のいずれか一項に記載のゴム組成物。
  6.  前記硫黄変性クロロプレンゴムにおける前記官能基Aの含有量が0.05~0.40質量%である、請求項1~5のいずれか一項に記載のゴム組成物。
  7.  前記硫黄変性クロロプレンゴムにおける前記官能基Bの含有量が0.80質量%以下である、請求項1~6のいずれか一項に記載のゴム組成物。
  8.  チアゾール化合物の含有量が前記硫黄変性クロロプレンゴム100質量部に対して0.0005~0.0100質量部である、請求項1~7のいずれか一項に記載のゴム組成物。
  9.  前記チアゾール化合物が、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4,5-ジメチル-2-ベンゾチアゾールスルフェンアミド、N,N-ジシクロヘキシル-1,3-ベンゾチアゾール-2-スルフェンアミド、N-(tert-ブチル)-2-ベンゾチアゾールスルフェンアミド、N,N-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、4,5-ジヒドロチアゾール-2-スルフェンアミド、N-シクロヘキシル-4,5-ジヒドロチアゾール-2-スルフェンアミド、N-オキシジエチルベンゾチアゾール-2-スルフェンアミド、2-(4’-モルフォリニルジチオ)ベンゾチアゾール、2-メルカプトベンゾチアゾール、4,5-ジヒドロ-2-メルカプトチアゾール、ジベンジルチアゾリルジスルフィド、及び、2-(モルホリノジチオ)ベンゾチアゾールから選ばれる少なくとも一種の化合物を含む、請求項8に記載のゴム組成物。
  10.  ジチオカルバミン酸系化合物の含有量が前記硫黄変性クロロプレンゴム100質量部に対して2.00質量部以下である、請求項1~9のいずれか一項に記載のゴム組成物。
  11.  前記ジチオカルバミン酸系化合物が、ジベンジルジチオカルバミン酸、ジベンジルジチオカルバミン酸ナトリウム、ジベンジルジチオカルバミン酸カリウム、ジベンジルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸アンモニウム、ジベンジルジチオカルバミン酸ニッケル、ジ-2-エチルヘキシルジチオカルバミン酸ナトリウム、ジ-2-エチルヘキシルジチオカルバミン酸カリウム、ジ-2-エチルヘキシルジチオカルバミン酸カルシウム、ジ-2-エチルヘキシルジチオカルバミン酸亜鉛、ジ-2-エチルヘキシルカルバミン酸アンモニウム、テトラベンジルチウラムジスルフィド、及び、テトラキス(2-エチルヘキシル)チウラムジスルフィドから選ばれる少なくとも一種の化合物を含む、請求項10に記載のゴム組成物。
  12.  チアゾール化合物の含有量Cに対するジチオカルバミン酸系化合物の含有量Dの質量比D/Cが2000以下である、請求項8~11のいずれか一項に記載のゴム組成物。
  13.  前記カーボンブラックのDBP吸収量が80~150ml/100gである、請求項1~12のいずれか一項に記載のゴム組成物。
  14.  前記カーボンブラックのヨウ素吸着量が40~150mg/gである、請求項1~13のいずれか一項に記載のゴム組成物。
  15.  前記ジエン系ゴムが、ブタジエンゴム、スチレン・ブタジエンゴム、及び、ニトリルゴムから選ばれる少なくとも一種を含む、請求項1~14のいずれか一項に記載のゴム組成物。
  16.  請求項1~15のいずれか一項に記載のゴム組成物の加硫物。
  17.  請求項16に記載の加硫物からなる、成形品。
PCT/JP2021/005909 2020-04-21 2021-02-17 ゴム組成物、加硫物及び成形品 WO2021215095A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21792589.0A EP4130136B1 (en) 2020-04-21 2021-02-17 Rubber composition, vulcanized material, and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-075211 2020-04-21
JP2020075211A JP2023075373A (ja) 2020-04-21 2020-04-21 ゴム組成物、該ゴム組成物の加硫物及び加硫成形体

Publications (1)

Publication Number Publication Date
WO2021215095A1 true WO2021215095A1 (ja) 2021-10-28

Family

ID=78270562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005909 WO2021215095A1 (ja) 2020-04-21 2021-02-17 ゴム組成物、加硫物及び成形品

Country Status (3)

Country Link
EP (1) EP4130136B1 (ja)
JP (1) JP2023075373A (ja)
WO (1) WO2021215095A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115346A (ja) * 1982-12-06 1984-07-03 デンカ・ケミカル・コ−ポレ−シヨン クロロプレン−硫黄共重合物の瞬間的解凝固方法
JPH08188676A (ja) * 1994-05-20 1996-07-23 Denki Kagaku Kogyo Kk クロロプレン系重合体組成物及びその製造方法
JPH093120A (ja) * 1995-06-22 1997-01-07 Denki Kagaku Kogyo Kk 硫黄変性クロロプレン重合体の製造方法
JP2010121086A (ja) 2008-11-21 2010-06-03 Jsr Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
JP2012111899A (ja) 2010-11-26 2012-06-14 Denki Kagaku Kogyo Kk クロロプレンゴム組成物及びその加硫物並びに成形体
JP2013216029A (ja) * 2012-04-11 2013-10-24 Nagaoka Univ Of Technology 加硫物及びその製造方法
JP2013249409A (ja) 2012-06-01 2013-12-12 Toyo Tire & Rubber Co Ltd ゴム組成物
WO2014119517A1 (ja) * 2013-01-30 2014-08-07 電気化学工業株式会社 クロロプレンゴム組成物及び加硫成形体
JP2016141736A (ja) 2015-02-02 2016-08-08 東ソー株式会社 クロロプレンゴム組成物
WO2019102898A1 (ja) * 2017-11-24 2019-05-31 デンカ株式会社 硫黄変性クロロプレンゴム組成物及び加硫物、並びに該加硫物を用いた成形品及び硫黄変性クロロプレンゴム組成物の製造方法
WO2020189518A1 (ja) * 2019-03-20 2020-09-24 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020189515A1 (ja) * 2019-03-20 2020-09-24 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020230746A1 (ja) * 2019-05-13 2020-11-19 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
JP2021021024A (ja) * 2019-07-29 2021-02-18 住友ゴム工業株式会社 ゴム組成物及びタイヤ
JP2021031517A (ja) * 2019-08-19 2021-03-01 デンカ株式会社 ゴム組成物、該ゴム組成物の加硫物及び成形品

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115346A (ja) * 1982-12-06 1984-07-03 デンカ・ケミカル・コ−ポレ−シヨン クロロプレン−硫黄共重合物の瞬間的解凝固方法
JPH08188676A (ja) * 1994-05-20 1996-07-23 Denki Kagaku Kogyo Kk クロロプレン系重合体組成物及びその製造方法
JPH093120A (ja) * 1995-06-22 1997-01-07 Denki Kagaku Kogyo Kk 硫黄変性クロロプレン重合体の製造方法
JP2010121086A (ja) 2008-11-21 2010-06-03 Jsr Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物
JP2012111899A (ja) 2010-11-26 2012-06-14 Denki Kagaku Kogyo Kk クロロプレンゴム組成物及びその加硫物並びに成形体
JP2013216029A (ja) * 2012-04-11 2013-10-24 Nagaoka Univ Of Technology 加硫物及びその製造方法
JP2013249409A (ja) 2012-06-01 2013-12-12 Toyo Tire & Rubber Co Ltd ゴム組成物
WO2014119517A1 (ja) * 2013-01-30 2014-08-07 電気化学工業株式会社 クロロプレンゴム組成物及び加硫成形体
JP2016141736A (ja) 2015-02-02 2016-08-08 東ソー株式会社 クロロプレンゴム組成物
WO2019102898A1 (ja) * 2017-11-24 2019-05-31 デンカ株式会社 硫黄変性クロロプレンゴム組成物及び加硫物、並びに該加硫物を用いた成形品及び硫黄変性クロロプレンゴム組成物の製造方法
WO2020189518A1 (ja) * 2019-03-20 2020-09-24 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020189515A1 (ja) * 2019-03-20 2020-09-24 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020230746A1 (ja) * 2019-05-13 2020-11-19 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
JP2021021024A (ja) * 2019-07-29 2021-02-18 住友ゴム工業株式会社 ゴム組成物及びタイヤ
JP2021031517A (ja) * 2019-08-19 2021-03-01 デンカ株式会社 ゴム組成物、該ゴム組成物の加硫物及び成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130136A4

Also Published As

Publication number Publication date
EP4130136A1 (en) 2023-02-08
JP2023075373A (ja) 2023-05-31
EP4130136B1 (en) 2024-04-17
EP4130136A4 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
JPWO2019102898A1 (ja) 硫黄変性クロロプレンゴム組成物及び加硫物、並びに該加硫物を用いた成形品及び硫黄変性クロロプレンゴム組成物の製造方法
JP7390373B2 (ja) 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
JP7366999B2 (ja) 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020189518A1 (ja) 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020189515A1 (ja) 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
JP7366998B2 (ja) 硫黄変性クロロプレンゴムの製造方法
JP7365817B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP7285734B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP7336221B2 (ja) 硫黄変性クロロプレンゴム、加硫物及び該加硫物を用いた成形品並びに硫黄変性クロロプレンゴムの製造方法
WO2021215095A1 (ja) ゴム組成物、加硫物及び成形品
WO2021205753A1 (ja) ゴム組成物、加硫物及び成形品
JP7209586B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP7285733B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
WO2022091599A1 (ja) 発泡ゴム組成物、発泡体及び成形品
JP7319862B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
WO2022085333A1 (ja) 発泡ゴム組成物、発泡体及び成形品
JP7461204B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP7421997B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び加硫成形体
JP7421998B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP7456841B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP7315411B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP2020196786A (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP2021031526A (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21792589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021792589

Country of ref document: EP

Effective date: 20221024

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP