WO2022091599A1 - 発泡ゴム組成物、発泡体及び成形品 - Google Patents

発泡ゴム組成物、発泡体及び成形品 Download PDF

Info

Publication number
WO2022091599A1
WO2022091599A1 PCT/JP2021/033385 JP2021033385W WO2022091599A1 WO 2022091599 A1 WO2022091599 A1 WO 2022091599A1 JP 2021033385 W JP2021033385 W JP 2021033385W WO 2022091599 A1 WO2022091599 A1 WO 2022091599A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
less
sulfur
compound
Prior art date
Application number
PCT/JP2021/033385
Other languages
English (en)
French (fr)
Inventor
敦典 近藤
貴史 砂田
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to US18/249,839 priority Critical patent/US20230383082A1/en
Priority to EP21885718.3A priority patent/EP4223787A4/en
Priority to CN202180068698.9A priority patent/CN116323683A/zh
Priority to KR1020237012112A priority patent/KR20230095066A/ko
Priority to JP2022558900A priority patent/JPWO2022091599A1/ja
Publication of WO2022091599A1 publication Critical patent/WO2022091599A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0033Use of organic additives containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/104Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof
    • C08J9/105Hydrazines; Hydrazides; Semicarbazides; Semicarbazones; Hydrazones; Derivatives thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/003Precrosslinked rubber; Scrap rubber; Used vulcanised rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2311/00Characterised by the use of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2319/00Characterised by the use of rubbers not provided for in groups C08J2307/00 - C08J2317/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the present invention relates to a foam rubber composition, a foam, a molded product, and the like.
  • Chloroprene rubber is used as a material for transmission belts or conveyor belts for general industry; air springs for automobiles; anti-vibration rubber, etc., taking advantage of its excellent dynamic properties. Further, it is possible to obtain a chloroprene rubber foam (chloroprene rubber sponge) by mixing chloroprene rubber and a foaming agent and heating and foaming, and the chloroprene rubber foam can be used for automobile parts, construction fields, leisure goods, etc. It is used in various fields of.
  • the foam of chloroprene rubber a foam obtained by mixing an organic peroxide, a foaming agent, a softening agent, a filler and a reinforcing agent with chloroprene rubber and heating and foaming (see, for example, Patent Document 1 below), and , A foam obtained by blending butadiene rubber, a softener and a foaming agent with chloroprene rubber, and foaming by pressureless open vulcanization (see, for example, Patent Document 2 below) is known.
  • the foam of chloroprene rubber is a material having voids, there is a problem that the tear strength is not sufficient.
  • a foam having a high foaming ratio can be obtained, but the tear strength of the foam is small. Therefore, there is a demand for the development of a foam that can be used in applications that require high tear strength (wet suits, etc.).
  • the foam of chloroprene rubber is a material having voids, there is a problem that it shrinks due to aging. Therefore, for a foam rubber composition using chloroprene rubber, there is a demand for the development of a foam rubber composition that gives a foam having high tear strength and a low shrinkage rate.
  • the inventors of the present application have introduced a specific structure at the molecular terminal of the sulfur-modified chloroprene rubber and used a specific amount of a chemical foaming agent to obtain high tear strength and high tear strength.
  • a foamed rubber composition that can obtain a foam having a small shrinkage rate.
  • One aspect of the present invention contains a sulfur-modified chloroprene rubber and a chemical foaming agent, and the sulfur-modified chloroprene rubber has a functional group A represented by the following general formula (A) and located at the molecular terminal, said.
  • the mass ratio B / A of the content of the functional group B represented by the following general formula (B) and located at the end of the molecule to the content of the functional group A is 12.00 or less.
  • the total amount of the functional group A and the functional group B is 0.10 to 1.00% by mass, and the content of the chemical foaming agent is 100 in total of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound.
  • a foamed rubber composition which is 3 to 16 parts by mass with respect to parts by mass.
  • R a1 and R a2 independently have a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, an alkyl group which may have a substituent, or a substituent.
  • R b1 and R b2 each independently indicate an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • a foam having a high tear strength and a small shrinkage rate can be obtained.
  • Another aspect of the present invention provides a foam of the foam rubber composition described above.
  • Another aspect of the present invention provides a molded product made of the foam.
  • a foamed rubber composition capable of obtaining a foam having a high tear strength and a small shrinkage rate.
  • a foam of the foamed rubber composition it is possible to provide a molded product made of the foam (molded product using the foam).
  • the numerical range indicated by using “-” indicates a range including the numerical values before and after “-" as the minimum value and the maximum value, respectively.
  • “A or more” in the numerical range means A and a range exceeding A.
  • “A or less” in the numerical range means A and a range less than A.
  • the upper or lower limit of the numerical range at one stage may be optionally combined with the upper or lower limit of the numerical range at another stage.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • “A or B” may include either A or B, and may include both.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the "alkyl group” may be linear, branched or cyclic unless otherwise specified.
  • the foamed rubber composition according to the present embodiment contains a sulfur-modified chloroprene rubber and a chemical foaming agent, and the sulfur-modified chloroprene rubber is represented by the following general formula (A) and has a functional group A located at the molecular end (hereinafter referred to as “functional group A”). , "Terminal functional group A”), and in sulfur-modified chloroprene rubber, the functional group B represented by the following general formula (B) and located at the end of the molecule (hereinafter referred to as "terminal functional group B").
  • the mass ratio B / A of the content to the content of the terminal functional group A is 12.00 or less, the total amount of the terminal functional group A and the terminal functional group B is 0.10 to 1.00% by mass, and the chemistry.
  • the content of the foaming agent is 3 to 16 parts by mass with respect to 100 parts by mass of the total of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound.
  • R a1 and R a2 independently have a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, an alkyl group which may have a substituent, or a substituent. Indicates an arylthio group which may have a substituent.
  • Ra 1 and Ra 2 may be the same as each other or different from each other.
  • R a1 and Ra 2 may be bonded to each other and have a substituent.
  • a good ring may be formed.
  • R a1 and R a2 can be bonded to each other to form a ring having a substituent or a ring having no substituent.
  • R b1 and R b2 each independently represent an alkyl group which may have a substituent or an aryl group which may have a substituent.
  • R b1 and R b2 are the same as each other. However, they may be different from each other.
  • a foam can be obtained by foaming the foamed rubber composition (foamable rubber composition) according to the present embodiment.
  • a foam obtained by foaming the foamed rubber composition a foam having high tear strength and a small shrinkage rate (shrinkage rate of the foam immediately after production) is obtained. It is possible, and in the evaluation of Examples described later, a tear strength of 2.00 N / mm or more (preferably 3.00 N / mm or more or 4.00 N / mm or more) and less than 5.5% (preferably less than 5.5%). Preferably, a shrinkage rate of 5.4% or less or 5.3% or less) can be obtained. Further, according to one aspect of the foamed rubber composition according to the present embodiment, a foam having a high tear strength, a low shrinkage rate, and an excellent appearance can be obtained.
  • Sulfur-modified chloroprene rubber is a polymer having a structural unit derived from chloroprene (2-chloro-1,3-butadiene).
  • the sulfur-modified chloroprene rubber contains a sulfur atom in the molecular chain and may contain a sulfur atom in the main chain.
  • the sulfur-modified chloroprene rubber may contain a polysulfide bond ( S2 to S8 ) in the molecular chain, and may contain a polysulfide bond ( S2 to S8 ) in the main chain.
  • the sulfur-modified chloroprene rubber may have a structural unit derived from a monomer copolymerizable with chloroprene.
  • the monomer copolymerizable with chloroprene include 2,3-dichloro-1,3-butadiene, 1-chloro-1,3-butadiene, styrene, acrylonitrile, methacrylonitrile, isoprene, butadiene, acrylic acid, and methacryl. Examples thereof include acids and these esters.
  • the monomer copolymerizable with chloroprene one type may be used alone, or two or more types may be used in combination.
  • 2,3-dichloro-1,3-butadiene can be used to slow down the crystallization rate of the obtained sulfur-modified chloroprene rubber.
  • Sulfur-modified chloroprene rubber which has a slow crystallization rate, can maintain rubber elasticity even in a low-temperature environment, and can improve, for example, low-temperature compression permanent strain.
  • the amount of the monomer copolymerizable with chloroprene is the total unit containing chloroprene. It is preferably 10% by mass or less in the weight (the total amount of the structural units constituting the sulfur-modified chloroprene rubber). When this amount used is 10% by mass or less, it is easy to suppress a decrease in processability of the obtained sulfur-modified chloroprene rubber.
  • the amount of chloroprene used (content of structural units derived from chloroprene) is 90% by mass or more and 92% by mass in all monomers containing chloroprene (total amount of structural units constituting sulfur-modified chloroprene rubber). % Or more, 95% by mass or more, or 98% by mass or more is preferable.
  • the structural unit constituting the sulfur-modified chloroprene rubber may be a structural unit derived from chloroprene (substantially 100% by mass of the structural unit constituting the sulfur-modified chloroprene rubber is a structural unit derived from chloroprene).
  • the terminal functional group A may be located at the end of the main chain and / or the side chain.
  • the terminal functional group A can be obtained, for example, by using a thiazole compound in the molecular weight adjustment step described later.
  • the substituent for the alkyl group which is R a1 or Ra 2 include a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group, an amino group and the like. ..
  • Examples of the substituent for the arylthio group which is R a1 or Ra 2 include an alkyl group, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group and an amino group. Can be mentioned.
  • Ra1 and Ra2 may be bonded to each other to form a ring which may have a substituent.
  • the ring include an aromatic ring, an alicyclic ring, a heterocyclic ring and the like.
  • substituent on the ring include an alkyl group, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group and an amino group.
  • the alkyl group which is a substituent on the ring include an alkyl group having 1, 2, 3 or 4 carbon atoms.
  • the terminal functional group A is a benzothiazole ring formed by bonding Ra1 and Ra2 to each other from the viewpoint that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam. It is preferable to have.
  • the benzothiazole ring does not have to have a substituent.
  • the substituent is preferably an alkyl group from the viewpoints that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam, and the benzothiazole ring is preferable.
  • An alkyl group bonded to the 4-position of is more preferable.
  • the sulfur-modified chloroprene rubber may have a terminal functional group B and may not have a terminal functional group B.
  • the terminal functional group B may be located at the end of the main chain and / or the side chain.
  • the terminal functional group B can be obtained, for example, by using a dithiocarbamic acid-based compound in the molecular weight adjustment step described later.
  • the carbon number of at least one selected from R b1 and R b2 is preferably 6 to 10 from the viewpoints that the tear strength is easily improved, the shrinkage ratio is easily reduced, and an excellent appearance is easily obtained in the foam. -9 is more preferable, and 7-8 is even more preferable.
  • the substituent for the alkyl group which is R b1 or R b2 include a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group, an amino group and the like. ..
  • Examples of the aryl group which is R b1 or R b2 include a benzyl group, a phenyl group, a tolyl group, a xsilyl group, a naphthyl group and the like.
  • Examples of the substituent for the aryl group which is R b1 or R b2 include an alkyl group, a halogen atom, a hydroxy group, an alkoxy group, a carboxy group, a carboxylic acid base, a cyano group, a sulfo group, a sulfonic acid base, a nitro group and an amino group. Can be mentioned.
  • the alkyl group or aryl group which is R b1 or R b2 does not have to have a substituent.
  • the foamed rubber composition according to the present embodiment has an embodiment in which the sulfur-modified chloroprene rubber does not have a functional group in which R b1 and R b2 are ethyl groups (unsubstituted ethyl groups) as the terminal functional group B. good.
  • the content of the terminal functional group A is preferably in the following range based on the total amount of the sulfur-modified chloroprene rubber (that is, the sulfur-modified chloroprene rubber has the following numerical value with respect to 100 parts by mass of the sulfur-modified chloroprene rubber (that is, the content of the sulfur-modified chloroprene rubber). Unit: parts by mass) preferably contains the terminal functional group A).
  • the content of the terminal functional group A is 0.50% by mass or less, 0.45% by mass or less, and 0.42% by mass or less from the viewpoint that the tear strength is easily improved and an excellent appearance is easily obtained in the foam.
  • the content of the terminal functional group A is 0.01% by mass or more, 0.03% by mass or more, and 0.04% by mass or more from the viewpoint that the shrinkage rate is easily reduced and an excellent appearance is easily obtained in the foam. , 0.05% by mass or more, 0.06% by mass or more, 0.07% by mass or more, 0.08% by mass or more, 0.09% by mass or more, 0.10% by mass or more, 0.11% by mass or more, 0.12% by mass or more, 0.13% by mass or more, 0.14% by mass or more, 0.15% by mass or more, 0.16% by mass or more, 0.18% by mass or more, 0.20% by mass or more, 0 .23% by mass or more, 0.25% by mass or more, 0.30% by mass or more, 0.35% by mass or more, 0.38% by mass or more, 0.40% by mass or more, or 0.42% by mass or more preferable.
  • the content of the terminal functional group A is 0.01 to 0.50% by mass, 0.04 to 0.42% by mass, 0.04 to 0.40% by mass, 0.04 to 0. 30% by mass, 0.04 to 0.20% by mass, 0.04 to 0.10% by mass, 0.05 to 0.42% by mass, 0.10 to 0.42% by mass, 0.20 to 0. 42% by mass, 0.30 to 0.42% by mass, 0.05 to 0.40% by mass, or 0.08 to 0.30% by mass is preferable.
  • the content of the terminal functional group A can be adjusted by adjusting the amount of the thiazole compound used in the molecular weight adjustment step described later, the treatment time in the molecular weight adjustment step, the treatment temperature, and the like.
  • the content of the terminal functional group B is not particularly limited, but is preferably in the following range based on the total amount of the sulfur-modified chloroprene rubber (that is, the sulfur-modified chloroprene rubber is described below with respect to 100 parts by mass of the sulfur-modified chloroprene rubber. It is preferable to contain the terminal functional group B having a numerical content (unit: parts by mass)).
  • the content of the terminal functional group B is less than 1.00% by mass, 0.90% by mass or less, and 0.80% by mass or less from the viewpoint that the tear strength is easily improved and an excellent appearance is easily obtained in the foam.
  • the content of the terminal functional group B is 0.25% by mass or less, 0.23% by mass or less, and 0.20% by mass or less from the viewpoint that the shrinkage rate is easily reduced and an excellent appearance is easily obtained in the foam.
  • the content of the terminal functional group B may be 0% by mass or more, and may exceed 0% by mass.
  • the content of the terminal functional group B is 0.01% by mass or more, 0.03% by mass or more, 0.05% by mass or more from the viewpoint that the shrinkage rate is easily reduced and an excellent appearance is easily obtained in the foam.
  • the content of the terminal functional group B is 0.25% by mass or more, 0.29% by mass or more, and 0.30% by mass or more from the viewpoint that the tear strength is easily improved and an excellent appearance is easily obtained in the foam.
  • the content of the terminal functional group B may be 0.50% by mass or more, 0.60% by mass or more, 0.70% by mass or more, or 0.80% by mass or more. From these viewpoints, the content of the terminal functional group B is 0% by mass or more and less than 1.00% by mass, 0 to 0.90% by mass, 0 to 0.80% by mass, 0 to 0.70% by mass, 0.
  • the content of the terminal functional group B can be adjusted by the amount of the dithiocarbamic acid-based compound used in the molecular weight adjustment step described later, the treatment time in the molecular weight adjustment step, the treatment temperature, and the like.
  • the mass ratio B / A of the content of the terminal functional group B to the content of the terminal functional group A is 12.00 or less (0 to 12.00) from the viewpoint of obtaining a small shrinkage rate in the foam.
  • the mass ratio B / A is 11.60 or less, 11.00 or less, 10.00 or less, 9.00 or less, 8.00 or less, 7.00 or less, 6 from the viewpoint that a small shrinkage ratio can be easily obtained in the foam. .00 or less, 5.00 or less, 4.00 or less, 3.00 or less, 2.50 or less, 2.20 or less, 2.00 or less, 1.50 or less, 1.00 or less, 0.60 or less, 0 It may be .50 or less, 0.40 or less, 0.30 or less, 0.20 or less, or 0.10 or less.
  • the mass ratio B / A is 0 or more, and is preferably 0 or more, preferably 0.10 or more, 0.20 or more, 0.30 or more, 0.40 or more from the viewpoint that the tear strength of the foam is easily improved.
  • 0.50 or more, 0.60 or more 1.00 or more, 1.50 or more, 2.00 or more, 2.20 or more, 2.50 or more, 3.00 or more, 4.00 or more, 5.00 or more , 6.00 or more, 7.00 or more, 8.00 or more, 9.00 or more, 10.00 or more, 11.00 or more, or 11.60 or more are preferable.
  • the mass ratio B / A is more than 0 and 12.00 or less, more than 0 and 10.00 or less, more than 0 and 6.00 or less, more than 0 and 1.00 or less, and more than 0 and 0.80.
  • more than 0 and 0.60 or less 0.10 to 12.00, 0.50 to 12.00, 0.55 to 12.00, 0.80 to 12.00, 1.00 to 12.00, 6.00 to 12.00, 8.00 to 12.00, 0.10 to 10.00, 0.50 to 10.00, 1.00 to 10.00, or 1.00 to 6.00 preferable.
  • the total amount of the terminal functional group A and the terminal functional group B (the total content of the terminal functional group A and the terminal functional group B.
  • the total mass (A + B)) is 0.10 to 1 based on the total amount of the sulfur-modified chloroprene rubber. It is 0.00% by mass. If the total mass (A + B) is less than 0.10% by mass, the foam causes an increase in shrinkage and an excellent appearance cannot be obtained. When the total mass (A + B) exceeds 1.00% by mass, the decrease in Mooney viscosity is remarkably impractical (a foam cannot be obtained).
  • the total mass (A + B) may be in the following range based on the total amount of sulfur-modified chloroprene rubber.
  • the total mass (A + B) is 0.15% by mass or more, 0.20% by mass or more, 0.24% by mass or more, and 0.25% by mass or more from the viewpoint of adjusting the balance between tear strength and shrinkage rate in the foam.
  • 0.30% by mass or more 0.35% by mass or more, 0.37% by mass or more, 0.38% by mass or more
  • 0.40% by mass or more 0.42% by mass or more, 0.45% by mass or more, 0.50% by mass or more, 0.51% by mass or more, 0.55% by mass or more, 0.57% by mass or more, 0.60% by mass or more, 0.65% by mass or more, 0.66% by mass or more, 0 It may be .70% by mass or more, 0.80% by mass or more, 0.85% by mass or more, or 0.88% by mass or more.
  • the total mass (A + B) is 0.90% by mass or less, 0.88% by mass or less, 0.85% by mass or less, and 0.80% by mass or less from the viewpoint of adjusting the balance between tear strength and shrinkage rate in the foam. , 0.70% by mass or less, 0.66% by mass or less, 0.65% by mass or less, 0.60% by mass or less, 0.57% by mass or less, 0.55% by mass or less, 0.51% by mass or less, 0.50% by mass or less, 0.45% by mass or less, 0.42% by mass or less, 0.40% by mass or less, 0.38% by mass or less, 0.37% by mass or less, 0.35% by mass or less, 0 It may be .30% by mass or less, 0.25% by mass or less, or 0.24% by mass or less.
  • the total mass (A + B) is 0.20 to 0.90 mass%, 0.20 to 0.70 mass%, 0.20 to 0.65 mass%, 0.20 to 0.55 mass. %, 0.20 to 0.40% by mass, 0.40 to 0.70% by mass, or 0.55 to 0.70% by mass.
  • the content of the terminal functional group A and the terminal functional group B in the sulfur-modified chloroprene rubber can be quantified by the procedure described in the examples.
  • the sulfur-modified chloroprene rubber does not have to have a functional group represented by the following general formula (C), and does not have a functional group represented by the following general formula (C) and located at the molecular terminal. good.
  • R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • the method for producing sulfur-modified chloroprene rubber includes a polymerization step of emulsion-polymerizing chloroprene in the presence of sulfur ( S8 ) to obtain a polymer, a molecular weight adjustment step (mixing step) of mixing the polymer and a thiazole compound, and a molecular weight adjusting step (mixing step).
  • One aspect of the method for producing sulfur-modified chloroprene rubber is a polymerization step of obtaining a polymerization solution by emulsion polymerization of at least chloroprene and sulfur, and a molecular weight of the polymer in the polymerization solution by adding a thiazole compound to the polymerization solution. It has a molecular weight adjusting step for adjusting the amount of rubber.
  • sulfur can be introduced into a polymer (for example, the main chain of the polymer), and polysulfide bonds ( S2 to S8 ) can also be introduced.
  • Sulfur-modified chloroprene rubber is a sulfur-modified chloroprene polymer in which sulfur is introduced by emulsion polymerization of chloroprene alone or chloroprene and other monomers in the presence of sulfur, and the molecular weight is adjusted using a thiazole compound. Includes the latex obtained from the above and the sulfur-modified chloroprene rubber obtained by drying and washing the latex by a general method.
  • chloroprene is emulsion-polymerized in the presence of sulfur to obtain a polymer.
  • the polymer may be a polymer in a polymerization solution.
  • chloroprene and the above-mentioned monomer copolymerizable with chloroprene may be emulsion-polymerized.
  • the amount of chloroprene used or the amount of the monomer copolymerizable with chloroprene is preferably the above-mentioned amount.
  • the amount of sulfur (S 8 ) used in the emulsion polymerization is preferably in the following range with respect to 100 parts by mass of the monomers (total of the monomers to be polymerized).
  • the amount of sulfur used is preferably 0.01 part by mass or more, more preferably 0.1 part by mass or more, from the viewpoint that sufficient mechanical properties or dynamic properties of the obtained sulfur-modified chloroprene rubber can be easily obtained.
  • the amount of sulfur used is preferably 0.6 parts by mass or less, preferably 0.5 parts by mass or less, from the viewpoint of easy processing by suppressing the adhesiveness of the obtained sulfur-modified chloroprene rubber to the metal from becoming too strong. Is more preferable. From these viewpoints, the amount of sulfur used is preferably 0.01 to 0.6 parts by mass, more preferably 0.1 to 0.5 parts by mass.
  • emulsifier used for emulsion polymerization one or more known emulsifiers that can be used for emulsion polymerization of chloroprene can be freely selected and used.
  • emulsifiers logoic acids, fatty acids, metal salts of aromatic sulfonic acid formalin condensate, sodium dodecylbenzene sulfonate, potassium dodecylbenzene sulfonate, sodium alkyldiphenyl ether sulfonate, potassium alkyldiphenyl ether sulfonate, polyoxyethylene alkyl ether Examples thereof include sodium sulfonate, sodium polyoxypropylene alkyl ether sulfonate, potassium polyoxyethylene alkyl ether sulfonate, potassium polyoxypropylene alkyl ether sulfonate, and the like.
  • rosin acids are preferable from the viewpoints that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam.
  • the “rosin acids” mean rosin acid, disproportionate rosin acid, alkali metal salts of disproportionate rosin acid (for example, potassium disproportionate rosinate) and the like.
  • the constituent components of the disproportionate rosinic acid include sesquitelpen, 8,5-isopimaric acid, dihydropimaric acid, secodehydroabietic acid, dihydroabietic acid, deisopropyldehydroabietic acid, demethyldehydroabietic acid and the like.
  • fatty acids include fatty acids (for example, saturated or unsaturated fatty acids having 6 to 22 carbon atoms), metal salts of fatty acids (for example, sodium lauryl sulfate) and the like.
  • a metal salt of an aromatic sulfonic acid formalin condensate is preferable, and ⁇ -naphthalene sulfonic acid is preferable from the viewpoint that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam.
  • Sodium salts of formalin condensates are more preferred.
  • the sodium salt of ⁇ -naphthalene sulfonic acid formalin condensate is an emulsifier used for general purposes, and its stability is improved by adding a small amount, and a latex can be stably produced without aggregation and precipitation in the production process. be able to.
  • Other preferably used emulsifiers include, for example, alkaline soap aqueous solutions consisting of a mixture of an alkali metal salt of disproportionate logonic acid and a saturated or unsaturated fatty acid having 6 to 22 carbon atoms.
  • the pH of the emulsion (for example, an aqueous emulsion) at the start of emulsion polymerization is preferably 10.5 or higher.
  • the "emulsifying solution” is a mixed solution of chloroprene and other components (monomer, emulsifier, sulfur ( S8 ), etc. that can be copolymerized with chloroprene) immediately before the start of emulsion polymerization.
  • the "emulsified liquid” also includes cases where the composition thereof is sequentially changed by post-addition, partial addition, etc. of these other components (monomer capable of copolymerizing with chloroprene, sulfur ( S8 ), etc.).
  • the pH of the emulsion When the pH of the emulsion is 10.5 or more, it is possible to prevent polymer precipitation during polymerization and stably control the polymerization. The effect can be particularly preferably obtained when rosin acids are used as the emulsifier.
  • the pH of the emulsion can be adjusted by the amount of alkaline components such as sodium hydroxide and potassium hydroxide present at the time of emulsion polymerization.
  • the polymerization temperature of emulsion polymerization is preferably 0 to 55 ° C, more preferably 30 to 55 ° C, from the viewpoint of excellent polymerization controllability and productivity.
  • the polymerization initiator potassium persulfate, benzoyl peroxide, ammonium persulfate, hydrogen peroxide and the like, which are used in ordinary radical polymerization, can be used.
  • the polymerization is carried out at a polymerization rate (conversion rate) in the following range, and then a polymerization terminator (polymerization inhibitor) is added to terminate the polymerization.
  • the polymerization rate is preferably 60% or more, more preferably 70% or more, from the viewpoint of excellent productivity.
  • the polymerization rate is preferably 95% or less, more preferably 90% or less, from the viewpoint of suppressing the development of a branched structure or gel formation that affects the processability of the obtained sulfur-modified chloroprene rubber. From these viewpoints, the polymerization rate is preferably 60 to 95%, more preferably 70 to 90%.
  • polymerization inhibitor examples include diethylhydroxylamine, thiodiphenylamine, 4-tert-butylcatechol, 2,2'-methylenebis-4-methyl-6-tert-butylphenol and the like.
  • the polymerization inhibitor one type may be used alone, or two or more types may be used in combination.
  • the polymer obtained in the polymerization step and the thiazole compound are mixed.
  • the molecular weight of the polymer can be adjusted by reacting the polymer obtained in the polymerization step and the thiazole compound.
  • the thiazole compound is contained in the polymerization solution obtained in the polymerization step. Can be added to adjust the molecular weight of the polymer in the polymerization solution.
  • sulfur for example, polysulfide bonds ( S2 to S8 )
  • the polymer can be cleaved or depolymerized while forming the terminal functional group A of.
  • the chemical used for cleaving or depolymerizing the polymer is referred to as a "molecular weight adjusting agent".
  • thiazole compound compound having a thiazole ring
  • one or more known thiazole compounds can be freely selected and used.
  • the thiazole compound is N-cyclohexyl-2-benzothiazolesulfenamide, N-cyclohexyl-4- from the viewpoint that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam.
  • the thiazole compound preferably contains a benzothiazole compound (a compound having a benzothiazole ring) from the viewpoint that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam.
  • the foamed rubber composition according to the present embodiment may have an embodiment in which the thiazole compound does not contain N-cyclohexyl-2-benzothiazolesulfenamide and N- (tert-butyl) -2-benzothiazolesulfenamide. ..
  • the amount (addition amount) of the thiazole compound used is preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the polymer (for example, the polymer in the polymer solution).
  • the amount of the thiazole compound used is 0.2 parts by mass or more, the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam.
  • the amount of the thiazole compound used is 3 parts by mass or less, it is easy to obtain an appropriate Mooney viscosity, and as a result, it is easy to improve the vulcanization moldability.
  • the content of the terminal functional group A in the sulfur-modified chloroprene rubber is 0.01 to 0.50% by mass (for example, 0.05 to 0.40% by mass). %. Criteria: The total amount of sulfur-modified chloroprene rubber) can be easily adjusted, and the content (residual amount) of the thiazole compound in the foamed rubber composition is 0.0001 to 0.0200 parts by mass (for example, 0.0005 to 0.0100). By mass. Criteria: 100 parts by mass of sulfur-modified chloroprene rubber) is easy to adjust.
  • a thiazole compound and a dithiocarbamic acid-based compound can be used in combination as the molecular weight adjusting agent.
  • the polymer, thiazole compound, and dithiocarbamic acid-based compound obtained in the polymerization step can be mixed, and the polymer, thiazole compound, and dithiocarbamic acid-based compound obtained in the polymerization step are reacted. Can be made to.
  • the dithiocarbamic acid-based compound reacts with the thiazole compound to form a reactant having higher reactivity with sulfur (for example, polysulfide bond) in the polymer as compared with the case where the thiazole compound alone or the dithiocarbamic acid-based compound alone is used.
  • the Mooney viscosity can be easily adjusted.
  • the reaction product reacts with sulfur in the polymer (for example, a polysulfide bond, for example, sulfur in the main chain of the polymer)
  • the above-mentioned terminal functional group A derived from the thiazole compound and the above-mentioned terminal functional group A derived from the dithiocarbamic acid-based compound are derived.
  • the terminal functional group B of can be suitably formed.
  • dithiocarbamic acid-based compound examples include dithiocarbamic acid, dithiocarbamate, monoalkyldithiocarbamate, monoalkyldithiocarbamate, monoaryldithiocarbamate, monoaryldithiocarbamate, dialkyldithiocarbamate, dialkyldithiocarbamate, diaryldithiocarbamate, and diaryl.
  • dithiocarbamate tetraalkylthiuram disulfide, tetraarylalkylthium disulfide and the like.
  • the salt examples include sodium salt, potassium salt, calcium salt, zinc salt, ammonium salt, nickel salt and the like.
  • the dithiocarbamic acid-based compound one or more known dithiocarbamic acid-based compounds can be freely selected and used.
  • the dithiocarbamic acid-based compound is at least one selected from tetraalkylthiuram disulfide and tetraarylalkylthiuram disulfide from the viewpoints that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam. It preferably contains a compound.
  • Dithiocarbamate-based compounds are dithiocarbamic acid, sodium dithiocarbamate, potassium dithiocarbamate, calcium dithiocarbamate, and dithiocarbamine from the viewpoints that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam.
  • Zinc acid ammonium dithiocarbamate, nickel dithiocarbamate, mono-2-ethylhexyl dithiocarbamate, sodium mono-2-ethylhexyldithiocarbamate, sodium mono-2-ethylhexyldithiocarbamate, calcium mono-2-ethylhexyldithiocarbamate, mono-2- Zinc ethylhexyldithiocarbamate, ammonium mono-2-ethylhexylcarbamate, nickel mono-2-ethylhexylcarbamate, monobenzyldithiocarbamate, sodium monobenzyldithiocarbamate, potassium monobenzyldithiocarbamate, calcium monobenzyldithiocarbamate, monobenzyldithiocarbamate Zinc, ammonium monobenzyldithiocarbamate, nickel monobenzyldithiocarbamate, di-2-ethy
  • the amount (addition amount) of the dithiocarbamic acid-based compound used is not particularly limited, but is preferably 0 to 12 parts by mass, preferably 0 to 8 parts by mass with respect to 100 parts by mass of the polymer (for example, the polymer in the polymer solution). More preferably, it is more preferably more than 0 parts by mass and 8 parts by mass or less, and particularly preferably 0.5 to 4 parts by mass.
  • the amount of the dithiocarbamic acid-based compound used is within these ranges, the Mooney viscosity can be more easily controlled, the tear strength of the foam can be easily improved, and an excellent appearance can be easily obtained.
  • the amount of the dithiocarbamic acid-based compound used is 0 to 12 parts by mass (for example, 0 to 8 parts by mass)
  • the content of the terminal functional group B in the sulfur-modified chloroprene rubber is less than 1.00% by mass (for example, 0.80). It is easy to adjust to mass% or less. Criteria: total amount of sulfur-modified chloroprene rubber), and the content (residual amount) of the dithiocarbamic acid-based compound in the foamed rubber composition is 2.50 parts by mass or less (for example, 2.00 parts by mass or less). Criteria: 100 parts by mass of sulfur-modified chloroprene rubber) is easy to adjust.
  • the polymer solution that has undergone the molecular weight adjustment step may be cooled, pH adjusted, frozen, dried, etc. by a general method to obtain sulfur-modified chloroprene rubber.
  • the foamed rubber composition according to this embodiment contains a chemical foaming agent.
  • the chemical foaming agent may contain at least one selected from organic foaming agents and inorganic foaming agents. Examples of the organic foaming agent include azo compounds, nitroso compounds, sulfonylhydrazide compounds, azide compounds and the like.
  • azo compound examples include azodicarbonamide, azobisformamide, azobisisobutyronitrile, 2,2'-azobisisobutyronitrile, azohexahydrobenzonitrile, diazoaminobenzene and the like.
  • nitroso compound examples include N, N'-dinitrosopentamethylenetetramine, N, N'-dinitroso-N, N'-dimethylphthalamide and the like.
  • Examples of the sulfonyl hydrazide compound include p, p'-oxybisbenzenesulfonyl hydrazide, benzenesulfonyl hydrazide, benzene-1,3-sulfonylhydrazide, diphenylsulfone-3,3'-disulfonylhydrazide, diphenyloxide-4,4'-. Examples thereof include disulfonylhydrazide and paratoluenesulfonylhydrazide.
  • Examples of the azide compound include terephthal azide and pt-butylbenz azide.
  • Examples of the inorganic foaming agent include sodium hydrogen carbonate, ammonium carbonate, sodium bicarbonate, ammonium bicarbonate, ammonium nitrite, calcium azide, sodium azide, sodium borohydride and the like.
  • the chemical foaming agent preferably contains an organic foaming agent from the viewpoints that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam, and an azo compound, a nitroso compound, and a sulfonyl hydrazide are preferable. It is more preferable to contain at least one selected from the compound and the azide compound, and further preferably to contain at least one selected from the azo compound and the sulfonyl hydrazide compound.
  • the chemical foaming agent may contain at least one selected from an azo compound, a nitroso compound, a sulfonylhydrazide compound, an azide compound and an inorganic foaming agent.
  • the decomposition temperature of the chemical foaming agent is preferably 120 to 200 ° C, more preferably 130 to 170 ° C.
  • the decomposition temperature of the chemical foaming agent is within such a range, it is easy to control chemical foaming and vulcanization, and it is easy to reduce the shrinkage rate and obtain an excellent appearance in the foam.
  • the content of the chemical foaming agent is 3 to 16 parts by mass with respect to 100 parts by mass in total of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound. If the content of the chemical foaming agent is less than 3 parts by mass, the amount of the foaming agent is insufficient, so that a sufficient amount of decomposition gas may not be obtained to obtain a foam. If the content of the chemical foaming agent exceeds 16 parts by mass, it is difficult to balance foaming and vulcanization, and the appearance or tear strength of the obtained foam may be inferior.
  • the content of the chemical foaming agent is preferably in the following range with respect to a total of 100 parts by mass of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound.
  • the content of the chemical foaming agent is 0.1 part by mass or more, 0.5 part by mass or more, from the viewpoint that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam. 1 part by mass or more, 3 parts by mass or more, 4 parts by mass or more, 5 parts by mass or more, 6 parts by mass or more, 6.5 parts by mass or more, 7 parts by mass or more, or 8 parts by mass or more is preferable.
  • the content of the chemical foaming agent is 20 parts by mass or less, 18 parts by mass or less, and 15 parts by mass or less from the viewpoint that the tear strength is easily improved, the shrinkage rate is easily reduced, and an excellent appearance is easily obtained in the foam. , 12 parts by mass or less, 10 parts by mass or less, less than 10 parts by mass, 9 parts by mass or less, or 8 parts by mass or less is preferable.
  • the content of the chemical foaming agent may be 7 parts by mass or less, 6.5 parts by mass or less, 6 parts by mass or less, or 5 parts by mass or less.
  • the content of the chemical foaming agent is 0.1 to 20 parts by mass, 0.1 parts by mass or more and less than 10 parts by mass, 1 to 15 parts by mass, 3 to 15 parts by mass, 5 to 15 parts by mass. 6 to 15 parts by mass, 7 to 15 parts by mass, 8 to 15 parts by mass, 3 to 12 parts by mass, 3 to 10 parts by mass, 3 to 8 parts by mass, 3 to 7 parts by mass, or 3 to 6 parts by mass. preferable.
  • the foamed rubber composition according to the present embodiment may contain an unreacted molecular weight adjusting agent (thiazole compound, dithiocarbamic acid-based compound, etc.).
  • an unreacted molecular weight adjusting agent thiazole compound, dithiocarbamic acid-based compound, etc.
  • the molecular weight adjusting agent the molecular weight adjusting agent described above for the molecular weight adjusting step can be used.
  • the content of the thiazole compound (total amount of the compounds corresponding to the thiazole compound, for example, the residual amount) in the foamed rubber composition according to the present embodiment is preferably in the following range with respect to 100 parts by mass of the sulfur-modified chloroprene rubber.
  • specific thiazole compounds in the foam rubber composition according to the present embodiment for example, each thiazole compound exemplified as described above. N-cyclohexyl-2-benzothiazolesulfenamide, N-cyclohexyl-4-methyl-2-).
  • the content of (benzothiazole sulfenamide, etc.) is preferably in the following range with respect to 100 parts by mass of sulfur-modified chloroprene rubber.
  • the content of the thiazole compound (for example, the residual amount of the unreacted thiazole compound) can be adjusted by the amount of the thiazole compound used in the molecular weight adjustment step, the treatment time in the molecular weight adjustment step, the treatment temperature, and the like.
  • the content of the thiazole compound is 0.0001 parts by mass or more, 0.0003 parts by mass or more, 0.0004 parts by mass or more, 0.0005 parts by mass or more, 0.0006 from the viewpoint that the shrinkage rate is easily reduced in the foam.
  • 0.0010 parts by mass or more 0.0015 parts by mass or more, 0.0020 parts by mass or more, 0.0025 parts by mass or more, 0.0030 parts by mass or more, 0.0031 parts by mass or more, 0.0035 parts by mass Parts or more, 0.0040 parts by mass or more, 0.0045 parts by mass or more, 0.0050 parts by mass or more, 0.0052 parts by mass or more, 0.0055 parts by mass or more, 0.0060 parts by mass or more, 0.0070 parts by mass As mentioned above, 0.0080 parts by mass or more, 0.0090 parts by mass or more, 0.0100 parts by mass or more, or 0.0110 parts by mass or more is preferable.
  • the content of the thiazole compound is 0.0200 parts by mass or less, 0.0150 parts by mass or less, 0.0110 parts by mass or less, 0.0100 parts by mass or less, 0.0090 from the viewpoint that the tear strength is easily improved in the foam.
  • mass or less 0.0080 parts by mass or less, 0.0070 parts by mass or less, 0.0060 parts by mass or less, 0.0055 parts by mass or less, 0.0052 parts by mass or less, 0.0050 parts by mass or less, 0.0045 parts by mass Parts or less, 0.0040 parts by mass or less, 0.0035 parts by mass or less, 0.0031 parts by mass or less, 0.0030 parts by mass or less, 0.0025 parts by mass or less, 0.0020 parts by mass or less, 0.0015 parts by mass
  • it is preferably 0.0010 parts by mass or less, 0.0006 parts by mass or less, 0.0005 parts by mass or less, or 0.0004 parts by mass or less.
  • the content of the thiazole compound is 0.0001 to 0.0200 parts by mass, 0.0004 to 0.0150 parts by mass, 0.0004 to 0.0100 parts by mass, and 0.0004 to 0.0060 parts by mass.
  • Parts, 0.0030 to 0.0100 parts by mass, 0.0050 to 0.0100 parts by mass, or 0.0070 to 0.0100 parts by mass are preferable.
  • the content of the dithiocarbamic acid-based compound (total amount of compounds corresponding to the dithiocarbamic acid-based compound, for example, residual amount) in the foamed rubber composition according to the present embodiment is a viewpoint for adjusting the balance between tear strength and shrinkage rate in the foam. Therefore, the range may be as follows with respect to 100 parts by mass of the sulfur-modified chloroprene rubber.
  • the content of a specific dithiocarbamic acid-based compound for example, each dithiocarbamic acid-based compound exemplified as described above; tetrabenzylthium disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, etc.
  • a specific dithiocarbamic acid-based compound for example, each dithiocarbamic acid-based compound exemplified as described above; tetrabenzylthium disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, etc.
  • the content of the dithiocarbamic acid-based compound (for example, the residual amount of the unreacted dithiocarbamic acid-based compound) can be adjusted by the amount of the dithiocarbamic acid-based compound used in the molecular weight adjustment step, the treatment time in the molecular weight adjustment step, the treatment temperature, and the like.
  • the content of the dithiocarbamic acid-based compound is 2.50 parts by mass or less, 2.00 parts by mass or less, 1.80 parts by mass or less, 1.70 parts by mass or less, 1.50 parts by mass or less, 1.40 parts by mass or less. , 1.37 parts by mass or less, 1.35 parts by mass or less, 1.30 parts by mass or less, 1.20 parts by mass or less, 1.10 parts by mass or less, 1.00 parts by mass or less, 0.90 parts by mass or less, It may be 0.80 parts by mass or less, 0.70 parts by mass or less, 0.60 parts by mass or less, 0.50 parts by mass or less, 0.45 parts by mass or less, or 0.42 parts by mass or less.
  • the content of the dithiocarbamic acid-based compound is 0 parts by mass or more, more than 0 parts by mass, 0.01 parts by mass or more, 0.05 parts by mass or more, 0.10 parts by mass or more, 0.20 parts by mass or more, 0.30.
  • the content of the dithiocarbamic acid-based compound is 0 to 2.50 parts by mass, more than 0 parts by mass and 2.50 parts by mass or less, 0 to 2.00 parts by mass, and more than 0 parts by mass and 2.00.
  • mass or less 0 to 1.70 parts by mass, more than 0 parts by mass and 1.70 parts by mass or less, 0 to 1.35 parts by mass, more than 0 parts by mass and 1.35 parts by mass or less, 0 to 1.00 mass Parts, over 0 parts by mass and below 1.00 parts by mass, 0.40 to 1.70 parts by mass, 0.80 to 1.70 parts by mass, 1.00 to 1.70 parts by mass, 0.40 to 1. It may be 35 parts by mass or 0.40 to 1.00 parts by mass.
  • the mass ratio D / C of the content (for example, residual amount) D of the dithiocarbamic acid-based compound to the content (for example, residual amount) C of the thiazole compound is preferably in the following range.
  • the mass ratio D / C is preferably 2500 or less, 2300 or less, or 2000 or less from the viewpoint of further improving the physical balance between the tear strength and the shrinkage rate of the obtained foam.
  • the mass ratio D / C is 1800 or less, 1600 or less, 1500 or less, 1200 or less, 1000 or less, 800 or less, 700 or less, 600 or less, 500 or less, from the viewpoint of adjusting the balance between tear strength and shrinkage rate in the foam.
  • the mass ratio D / C is 0 or more, and may exceed 0 from the viewpoint of adjusting the balance between tear strength and shrinkage rate in the foam, and may exceed 5 or more, 10 or more, 30 or more, 50 or more, 80 or more, 100. 110 or more, 120 or more, 130 or more, 150 or more, 200 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 1000 or more, 1200 or more, 1500 or more, 1600 or more, 1800 or more, Alternatively, it may be 2000 or more.
  • the mass ratio D / C is 0 to 2500, more than 0 and 2500 or less, 0 to 2000, more than 0 and 2000 or less, 0 to 1500, 0 to 1000, 0 to 300, 0 to 130, 100 to. It may be 2500, 130-2500, or 1000-2500.
  • the content of the thiazole compound and the content of the dithiocarbamic acid-based compound can be quantified by the procedure described in the examples.
  • the relative amount of the thiazole compound with respect to the sulfur-modified chloroprene rubber and the relative amount of the dithiocarbamic acid-based compound with respect to the sulfur-modified chloroprene rubber are the sulfur-modified chloroprene rubber and thiazole with respect to the mixture of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamate-based compound. It can be maintained equally before and after mixing the compound and the components other than the dithiocarbamic acid-based compound.
  • the content of the sulfenamide compound is 0.0005 parts by mass or less, less than 0.0005 parts by mass, and 0.0001 parts by mass with respect to 100 parts by mass of the sulfur-modified chloroprene rubber. It may be less than or equal to 0.00001 parts by mass or less.
  • the foamed rubber composition according to the present embodiment may be substantially free of the sulfenamide compound (the above-mentioned content of the sulfenamide compound may be substantially 0 parts by mass).
  • the content of the organic peroxide is 1 part by mass or less, less than 1 part by mass, 0.1 part by mass or less, or 100 parts by mass with respect to 100 parts by mass of the sulfur-modified chloroprene rubber. It may be 0.01 parts by mass or less.
  • the foamed rubber composition according to the present embodiment does not have to contain substantially an organic peroxide (the above-mentioned content of the organic peroxide may be substantially 0 part by mass).
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the mixture of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound is not particularly limited, but the following range is preferable.
  • the Mooney viscosity is preferably 10 or more, 15 or more, 20 or more, 25 or more, or 30 or more from the viewpoint of easily maintaining processability.
  • the Mooney viscosity is preferably 90 or less, 85 or less, 80 or less, 75 or less, 70 or less, 65 or less, 60 or less, 55 or less, or 50 or less from the viewpoint of easily maintaining processability. From these viewpoints, the Mooney viscosity is preferably 10 to 90, or 20 to 80.
  • the Mooney viscosity can be adjusted by the amount of the molecular weight adjusting agent added, the processing time in the molecular weight adjusting step, the processing temperature, and the like.
  • the Mooney viscosity of the mixture of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound can be measured by specifying the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound contained in the foamed rubber composition according to the present embodiment. ..
  • the foamed rubber composition according to the present embodiment may contain additives such as a vulcanizing agent, a processing aid (lubricant), an antiaging agent, a metal compound, a plasticizer, and a filler.
  • additives such as a vulcanizing agent, a processing aid (lubricant), an antiaging agent, a metal compound, a plasticizer, and a filler.
  • the vulcanizing agent examples include metal oxides and the like.
  • the metal oxide include zinc oxide, magnesium oxide, lead oxide, trilead tetraoxide, iron trioxide, titanium dioxide, calcium oxide, hydrotalcite and the like.
  • the vulcanizing agent one type may be used alone, or two or more types may be used in combination.
  • the content of the vulcanizing agent is preferably 3 to 15 parts by mass with respect to 100 parts by mass of the mixture of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound.
  • processing aid examples include fatty acids such as stearic acid; paraffin-based processing aids such as polyethylene; fatty acid amides and the like.
  • fatty acids such as stearic acid
  • paraffin-based processing aids such as polyethylene
  • fatty acid amides and the like examples include fatty acids such as stearic acid; paraffin-based processing aids such as polyethylene; fatty acid amides and the like.
  • the content of the processing aid is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the mixture of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound.
  • the foam rubber composition according to the present embodiment can contain an anti-aging agent (for example, a small amount of anti-aging agent) in order to prevent changes in Mooney viscosity during storage.
  • an anti-aging agent for example, a small amount of anti-aging agent
  • one or more known compounds that can be used for chloroprene rubber can be freely selected and used.
  • Anti-aging agents include phenyl- ⁇ -naphthylamine, octylated diphenylamine, nickel dibutyl dithiocarbamate, 2,6-di-tert-butyl-4-phenylphenol, 2,2'-methylenebis (4-methyl-6-tert). -Butylphenol), 4,4'-thiobis- (6-tert-butyl-3-methylphenol) and the like.
  • the anti-aging agent at least one selected from octylated diphenylamine, nickel dibutyl dithiocarbamate and 4,4'-thiobis- (6-tert-but
  • the metal compound suppresses the deterioration of the sulfur-modified chloroprene rubber in order to adjust the vulcanization rate of the sulfur-modified chloroprene rubber or by adsorbing a chlorine source such as hydrogen chloride generated by the dehydrochlorination reaction of the sulfur-modified chloroprene rubber. It is a compound that can be added to the above.
  • oxides such as zinc, titanium, magnesium, lead, iron, beryllium, calcium, barium, germanium, zirconium, vanadium, molybdenum, and tungsten, or hydroxides can be used.
  • the metal compound one kind may be used alone, or two or more kinds may be used in combination.
  • the content of the metal compound is not particularly limited, but is preferably in the range of 3 to 15 parts by mass with respect to 100 parts by mass of the mixture of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound. By adjusting the content of the metal compound within this range, the mechanical strength of the molded product can be improved.
  • Plasticizer is a component that can be added to reduce the hardness of sulfur-modified chloroprene rubber and improve its low temperature characteristics. It is also possible to improve the texture of the sponge when producing the sponge using the sulfur-modified chloroprene rubber.
  • the plasticizer include dioctyl phthalate, dioctyl adipate ⁇ also known as bis (2-ethylhexyl) adipate ⁇ , white oil, silicon oil, naphthen oil, aroma oil, triphenyl phosphate, tricresyl phosphate and the like.
  • the plasticizer one type may be used alone, or two or more types may be used in combination.
  • the content of the plasticizer is not particularly limited, but is preferably in the range of 50 parts by mass or less with respect to 100 parts by mass of the mixture of the sulfur-modified chloroprene rubber, the thiazole compound and the dithiocarbamic acid-based compound. By adjusting the content of the plasticizer within this range, the above-mentioned effects of the plasticizer can be exhibited while maintaining the tear strength of the molded product.
  • the filler is a component that can be added as a reinforcing material for sulfur-modified chloroprene rubber.
  • examples of the filler include carbon black, silica, clay, talc, calcium carbonate and the like.
  • the filler one type may be used alone, or two or more types may be used in combination.
  • the foam according to the present embodiment is a foam of the foam rubber composition according to the present embodiment.
  • the foam according to the present embodiment may be a vulcanized product or a sponge.
  • the foam according to the present embodiment can be obtained by foaming the foamed rubber composition according to the present embodiment, and for example, the constituent components of the foamed rubber composition (vulcanized chloroprene rubber, chemical foaming agent, metal). It can be obtained by mixing a compound, a plasticizing agent, a filler, etc.) with a roll, a rubbery mixer, an extruder, or the like, adding a foaming agent, and vulcanizing while foaming.
  • a foam sheet is obtained by slicing the foam according to the present embodiment to a desired thickness, and then a fiber base material (for example, a jersey cloth such as polyester fiber or nylon fiber) is applied to at least one surface of the foam sheet. ) May be laminated (laminated) to obtain a laminated sheet.
  • the laminated sheet according to the present embodiment includes the foam according to the present embodiment and the fiber base material that supports the foam, and the foam is in the form of a sheet.
  • the laminated sheet according to the present embodiment can be used as a fabric for a wet suit, and a wet suit can be obtained by sewing the laminated sheet.
  • the molded product according to the present embodiment is a molded product (for example, a sponge product) made of the foam according to the present embodiment, and can be obtained by molding the foam according to the present embodiment.
  • the molded product include a wet suit and the like.
  • a material having excellent tear strength, shrinkage, appearance and the like is required in order to improve the reliability of the product.
  • the wet suit which is one aspect of the molded product according to the present embodiment, has higher tear strength, lower shrinkage rate, and better appearance than the conventional wet suit using sulfur-modified chloroprene rubber.
  • Example 1 [Making sulfur-modified chloroprene rubber]
  • a polymer can with an internal volume of 30 L, 100 parts by mass of chloroprene, 0.55 parts by mass of sulfur, 120 parts by mass of pure water, 4.00 parts by mass of potassium disproportionate (manufactured by Harima Kasei Co., Ltd.), and 0. 60 parts by mass and 0.6 parts by mass of a sodium salt of ⁇ -naphthalenesulfonic acid formarin condensate (manufactured by Kao Co., Ltd., trade name “Demor N”) were added.
  • the pH of the aqueous emulsion before the start of polymerization was 12.8.
  • Tetrabenzylthium disulfide (molecular weight modifier, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Noxeller TBzTD”) 4 parts by mass, sodium salt (dispersant) 0.05 parts by mass of ⁇ -naphthalene sulfonic acid formarin condensate , And 0.05 parts by mass of sodium lauryl sulfate (emulsifying agent) was added to obtain a sulfur-modified chloroprene polymer latex before adjusting the molecular weight.
  • the obtained sulfur-modified chloroprene polymer latex is distilled under reduced pressure to remove unreacted monomers, and then the mixture is kept at a temperature of 50 ° C. for 1 hour with stirring to adjust the molecular weight to contain sulfur-modified chloroprene rubber.
  • Raw rubber (latex after adjusting the molecular weight) was obtained.
  • "Raw rubber” is a mixture containing sulfur-modified chloroprene rubber and an unreacted molecular weight modifier.
  • the content of the terminal functional group in the sulfur-modified chloroprene rubber was quantified by the following procedure. First, the sulfur-modified chloroprene rubber was purified with benzene and methanol, and then freeze-dried again to obtain a sample for measurement. Using this measurement sample, 1 H-NMR measurement was performed according to JIS K-6239. The obtained measurement data was corrected based on the peak of chloroform (7.24 ppm) in deuterated chloroform used as a solvent. Based on the corrected measurement data, the area of each peak having a peak top at 7.72 to 7.83 ppm was calculated to quantify the content of the terminal functional group (thiazole terminal species), and 5.05 to 5.50 ppm. The area of the peak having the peak top was calculated and the content of the terminal functional group (dithiocarbamic acid terminal species) was quantified.
  • the content (residual amount) of the molecular weight adjusting agent with respect to 100 parts by mass of the sulfur-modified chloroprene rubber in the above-mentioned raw rubber was quantified by the following procedure. First, 1.5 g of the obtained raw rubber was dissolved in 30 mL of benzene, and then 60 mL of methanol was added dropwise. As a result, the rubber component (polymer component) was precipitated and separated from the solvent, and the liquid phase containing the non-rubber component as the solvent-soluble component was recovered.
  • the rubber component was separated from the precipitate by dissolving benzene and dropping methanol again in the same procedure, and the liquid phase containing a non-rubber component as a solvent-soluble component was recovered.
  • the volume was adjusted to 200 mL and the obtained liquid was obtained as a measurement sample. 20 ⁇ L of this measurement sample was injected into a liquid chromatograph (LC, manufactured by Hitachi, Ltd., pumps: L-6200, L-600, UV detector: L-4250).
  • the mobile phase of the liquid chromatograph was used with varying proportions of acetonitrile and water and flowed at a flow rate of 1 mL / min.
  • Inertsil ODS-3 ( ⁇ 4.6 ⁇ 150 mm, 5 ⁇ m, manufactured by GL Science Co., Ltd.) was used.
  • the peak detection time was determined using the standard solutions of the thiazole compound (measurement wavelength: 300 nm) of 0.05 ppm, 0.1 ppm and 1.0 ppm and the standard solutions of the dithiocarbamic acid-based compound (measurement wavelength: 280 nm) of 10 ppm, 50 ppm and 100 ppm.
  • the quantitative value was obtained from the calibration curve obtained from the peak area. By comparing this quantitative value with the amount of the sample used for the analysis, the contents of the unreacted thiazole compound and the unreacted dithiocarbamic acid-based compound in the raw rubber were determined.
  • unvulcanized compound (filling rate 105%) is placed in a mold having a cavity region of 100 mm in length, 95 mm in width and 8 mm in height, and the pressure is 3.5 MPa or more and 145 ° C. with respect to the cavity region.
  • Primary vulcanization (first press vulcanization) was performed for 20 minutes. Then, the primary vulcanization compound was obtained by allowing it to stand for 10 minutes under the condition of 23 ° C. under atmospheric pressure.
  • this primary vulcanization compound is placed in a mold having a cavity region of 175 mm in length, 170 mm in width and 16 mm in height, and is secondarily added to the cavity region under the conditions of a pressure of 3.5 MPa or more and 155 ° C. Sulfurization (second press vulcanization) was performed for 20 minutes.
  • Example 2 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a molecular weight adjuster was changed from 1 part by mass to 0.5 part by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 8 parts by mass.
  • An evaluation sample was obtained by the same method as in Example 1 except for the above.
  • Example 3 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a molecular weight adjuster was changed from 1 part by mass to 2 parts by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 2 parts by mass. An evaluation sample was obtained in the same manner as in Example 1 except for the above.
  • Example 4 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a molecular weight adjuster was changed from 1 part by mass to 3 parts by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 2 parts by mass. An evaluation sample was obtained in the same manner as in Example 1 except for the above.
  • Example 5 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a molecular weight adjuster was changed from 1 part by mass to 0.5 part by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 2 parts by mass.
  • An evaluation sample was obtained by the same method as in Example 1 except for the above.
  • Example 6 The same as in Example 1 except that the amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a molecular weight adjusting agent was changed from 1 part by mass to 3 parts by mass and tetrabenzylthiuram disulfide was not added. An evaluation sample was obtained by the method.
  • Example 7 The amount of N-cyclohexyl-2-benzothiazolesulfenamide added as a molecular weight adjuster was changed from 1 part by mass to 0.3 part by mass, and the amount of tetrabenzylthium disulfide added was changed from 4 parts by mass to 8 parts by mass.
  • Raw rubber was obtained in the same manner as in Example 1 except for the above.
  • Example 8 Except for changing the addition amount of N-cyclohexyl-2-benzothiazolesulfenamide, which is a molecular weight adjusting agent, from 1 part by mass to 0.3 part by mass, and changing the treatment time at the time of molecular weight adjustment from 1 hour to 3 hours. Obtained an evaluation sample by the same method as in Example 1.
  • Example 9 Except for changing the addition amount of N-cyclohexyl-2-benzothiazolesulfenamide, which is a molecular weight adjusting agent, from 1 part by mass to 1.5 parts by mass, and changing the treatment time at the time of molecular weight adjustment from 1 hour to 15 minutes. Obtained an evaluation sample by the same method as in Example 1.
  • Example 10 The same method as in Example 1 except that the amount of tetrabenzylthium disulfide added as a molecular weight adjusting agent was changed from 4 parts by mass to 8 parts by mass and the treatment time at the time of adjusting the molecular weight was changed from 1 hour to 15 minutes. A sample for evaluation was obtained at.
  • Example 11 As a molecular weight adjuster, N-cyclohexyl-2-benzothiazolesulfenamide is added to N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide (Chemieliva pharma) which gives a terminal functional group represented by the following formula (A2). & Chem Co., manufactured by LTD), an evaluation sample was obtained by the same method as in Example 1. Based on the total amount of sulfur-modified chloroprene rubber, the content of the terminal functional group (thiazole terminal species A2) derived from N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide is 0.15% by mass, as described above. The content of the terminal functional group (dithiocarbamic acid terminal species B1) derived from tetrabenzylthium disulfide represented by the formula (B1) was 0.33% by mass.
  • Example 12 As a molecular weight adjuster, tetrabenzylthiuram disulfide is used as a tetrakis (2-ethylhexyl) thiuram disulfide (manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.), which gives a terminal functional group represented by the following formula (B2), and is traded under the product name "Noxeller TOT-N". An evaluation sample was obtained by the same method as in Example 1 except that it was changed to ").
  • the content of the terminal functional group (thiazole terminal species A1) derived from N-cyclohexyl-2-benzothiazolesulfenamide represented by the above formula (A1) is 0.16 mass.
  • the content of the terminal functional group (dithiocarbamic acid terminal species B2) derived from tetrakis (2-ethylhexyl) thiuram disulfide was 0.25% by mass.
  • Example 13 As a molecular weight adjuster, N-cyclohexyl-2-benzothiazolesulfenamide is changed to N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide which gives a terminal functional group represented by the above formula (A2).
  • A2 N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide
  • B2 tetrabenzylthium disulfide
  • B2 tetrakis (2-ethylhexyl) thiuram disulfide having a terminal functional group represented by the above formula (B2).
  • the content of the terminal functional group (thiazole terminal species A2) derived from N-cyclohexyl-4-methyl-2-benzothiazolesulfenamide is 0.14% by mass, and tetrakis ( The content of the terminal functional group (dithiocarbamic acid terminal species B2) derived from 2-ethylhexyl) thiuram disulfide was 0.32% by mass.
  • Example 14 The same method as in Example 1 except that 8 parts by mass of the foaming agent 1 was changed to 5 parts by mass of the foaming agent 2 (manufactured by Sankyo Kasei Co., Ltd., trade name "Celmic C", azodicarbonamide). An evaluation sample was obtained.
  • Example 15 Except for changing 8 parts by mass of foaming agent 1 to 4 parts by mass of foaming agent 1 and 2.5 parts by mass of foaming agent 2 (manufactured by Sankyo Kasei Co., Ltd., trade name "Celmic C", azodicarbonamide). , An evaluation sample was obtained by the same method as in Example 1.
  • Example 5 An evaluation sample was obtained by the same method as in Example 1 except that the amount of the foaming agent 1 added was changed from 8 parts by mass to 2 parts by mass.
  • Example 6 An evaluation sample was obtained by the same method as in Example 1 except that the amount of the foaming agent 1 added was changed from 8 parts by mass to 20 parts by mass.
  • the Mooney viscosity (ML 1 + 4 ) was measured at a preheating time of 1 minute, a rotation time of 4 minutes, and a test temperature of 100 ° C. of the L-shaped rotor in accordance with JIS K 630-1.
  • the Mooney viscosity of the raw rubber of Comparative Example 1 was too low to measure.
  • the shrinkage ratio is H0 (mm) for the vertical length of the sponge sheet immediately after slicing, L0 (mm) for the horizontal length, H1 (mm) for the vertical length of the sponge sheet after standing for 168 hours, and horizontal.
  • Shrinkage rate (%) [(H0 ⁇ L0-H1 ⁇ L1) ⁇ (H0 ⁇ L0)] ⁇ 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

硫黄変性クロロプレンゴム及び化学発泡剤を含有し、前記硫黄変性クロロプレンゴムが、特定の一般式(A)で表されると共に分子末端に位置する官能基Aを有し、前記硫黄変性クロロプレンゴムにおいて、特定の一般式(B)で表されると共に分子末端に位置する官能基Bの含有量の前記官能基Aの含有量に対する質量比B/Aが12.00以下であり、前記官能基A及び前記官能基Bの合計量が0.10~1.00質量%であり、前記化学発泡剤の含有量が、前記硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の合計100質量部に対して3~16質量部である、発泡ゴム組成物。

Description

発泡ゴム組成物、発泡体及び成形品
 本発明は、発泡ゴム組成物、発泡体、成形品等に関する。
 クロロプレンゴムは、優れた動的特性を生かし、一般産業用の伝動ベルト又はコンベヤベルト;自動車用空気バネ;防振ゴム等の材料として使用されている。また、クロロプレンゴムと発泡剤とを混合し加熱発泡させることによりクロロプレンゴムの発泡体(クロロプレンゴムスポンジ)を得ることが可能であり、クロロプレンゴムの発泡体は、自動車部品、建築分野、レジャー用品等の様々な分野で使用されている。
 クロロプレンゴムの発泡体としては、クロロプレンゴムに有機過酸化物、発泡剤、軟化剤、充填剤及び補強剤を配合し加熱発泡させることにより得られる発泡体(例えば、下記特許文献1参照)、及び、クロロプレンゴムにブタジエンゴム、軟化剤及び発泡剤を配合し無圧オープン加硫させ発泡させることにより得られる発泡体(例えば、下記特許文献2参照)が知られている。
特開2012-067235号公報 特開平10-298328号公報
 クロロプレンゴムの発泡体は、空隙を有する材料であるため、引き裂き強度が充分でないという問題がある。例えば、上述の特許文献1及び2に記載される技術では、発泡倍率の高い発泡体が得られるものの、発泡体の引き裂き強度は小さい。そのため、高い引き裂き強度が必要な用途(ウェットスーツ等)に使用できる発泡体の開発が要望されている。
 また、クロロプレンゴムの発泡体は、空隙を有する材料であるため、経年変化により収縮するという問題がある。そのため、クロロプレンゴムを用いた発泡ゴム組成物に対しては、引き裂き強度が高く、かつ、収縮率が小さい発泡体を与える発泡ゴム組成物の開発が要望されている。
 本発明の一側面は、高い引き裂き強度及び小さい収縮率を有する発泡体が得られる発泡ゴム組成物を提供することを目的とする。本発明の他の一側面は、当該発泡ゴム組成物の発泡体を提供することを目的とする。本発明の他の一側面は、当該発泡体からなる成形品を提供することを目的とする。
 本願発明者らは、かかる課題を解決するために鋭意研究を行った結果、硫黄変性クロロプレンゴムの分子末端に特定の構造を導入すると共に特定量の化学発泡剤を用いることにより、高い引き裂き強度及び小さい収縮率を有する発泡体が得られる発泡ゴム組成物を完成させるに至った。
 本発明の一側面は、硫黄変性クロロプレンゴム及び化学発泡剤を含有し、前記硫黄変性クロロプレンゴムが、下記一般式(A)で表されると共に分子末端に位置する官能基Aを有し、前記硫黄変性クロロプレンゴムにおいて、下記一般式(B)で表されると共に分子末端に位置する官能基Bの含有量の前記官能基Aの含有量に対する質量比B/Aが12.00以下であり、前記官能基A及び前記官能基Bの合計量が0.10~1.00質量%であり、前記化学発泡剤の含有量が、前記硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の合計100質量部に対して3~16質量部である、発泡ゴム組成物を提供する。
Figure JPOXMLDOC01-appb-C000003
(式中、Ra1及びRa2は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリールチオ基を示し、Ra1及びRa2は、互いに結合して、置換基を有してもよい環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000004
(式中、Rb1及びRb2は、それぞれ独立に、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリール基を示す。)
 本発明の一側面に係る発泡ゴム組成物によれば、高い引き裂き強度及び小さい収縮率を有する発泡体を得ることができる。
 本発明の他の一側面は、上述の発泡ゴム組成物の発泡体を提供する。本発明の他の一側面は、当該発泡体からなる成形品を提供する。
 本発明の一側面によれば、高い引き裂き強度及び小さい収縮率を有する発泡体が得られる発泡ゴム組成物を提供することができる。本発明の他の一側面によれば、当該発泡ゴム組成物の発泡体を提供することができる。本発明の他の一側面によれば、当該発泡体からなる成形品(発泡体を用いた成形品)を提供することができる。
 以下、本発明を実施するための形態について説明する。以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。数値範囲の「A以上」とは、A、及び、Aを超える範囲を意味する。数値範囲の「A以下」とは、A、及び、A未満の範囲を意味する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で用いてもよく、2種以上を併用してもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。「アルキル基」は、特に断らない限り、直鎖状、分岐又は環状のいずれであってもよい。
<発泡ゴム組成物>
 本実施形態に係る発泡ゴム組成物は、硫黄変性クロロプレンゴム及び化学発泡剤を含有し、硫黄変性クロロプレンゴムが、下記一般式(A)で表されると共に分子末端に位置する官能基A(以下、「末端官能基A」という)を有し、硫黄変性クロロプレンゴムにおいて、下記一般式(B)で表されると共に分子末端に位置する官能基B(以下、「末端官能基B」という)の含有量の末端官能基Aの含有量に対する質量比B/Aが12.00以下であり、末端官能基A及び末端官能基Bの合計量が0.10~1.00質量%であり、化学発泡剤の含有量が、硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の合計100質量部に対して3~16質量部である。
Figure JPOXMLDOC01-appb-C000005
(式中、Ra1及びRa2は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリールチオ基を示す。Ra1及びRa2は、互いに同一でもよく、互いに異なってもよい。Ra1及びRa2は、互いに結合して、置換基を有してもよい環を形成してもよい。Ra1及びRa2は、互いに結合して、置換基を有する環、又は、置換基を有さない環を形成できる。)
Figure JPOXMLDOC01-appb-C000006
(式中、Rb1及びRb2は、それぞれ独立に、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリール基を示す。Rb1及びRb2は、互いに同一でもよく、互いに異なってもよい。)
 本実施形態に係る発泡ゴム組成物(発泡性ゴム組成物)を発泡することで発泡体を得ることができる。本実施形態に係る発泡ゴム組成物によれば、発泡ゴム組成物を発泡して得られる発泡体として、高い引き裂き強度及び小さい収縮率(作製直後の発泡体の収縮率)を有する発泡体を得ることが可能であり、後述の実施例の評価において、2.00N/mm以上(好ましくは、3.00N/mm以上又は4.00N/mm以上)の引き裂き強度、及び、5.5%未満(好ましくは、5.4%以下又は5.3%以下)の収縮率を得ることができる。また、本実施形態に係る発泡ゴム組成物の一態様によれば、引き裂き強度が高く、かつ、収縮率が小さいことに加えて、優れた外観を有する発泡体が得られる。
 硫黄変性クロロプレンゴムは、クロロプレン(2-クロロ-1,3-ブタジエン)由来の構造単位を有する重合体である。硫黄変性クロロプレンゴムは、分子鎖に硫黄原子を含んでおり、主鎖に硫黄原子を含んでよい。硫黄変性クロロプレンゴムは、分子鎖にポリスルフィド結合(S~S)を含んでよく、主鎖にポリスルフィド結合(S~S)を含んでよい。
 硫黄変性クロロプレンゴムは、クロロプレンと共重合可能な単量体由来の構造単位を有してよい。クロロプレンと共重合可能な単量体としては、2,3-ジクロロ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、スチレン、アクリロニトリル、メタクリロニトリル、イソプレン、ブタジエン、アクリル酸、メタクリル酸、これらのエステル類等が挙げられる。クロロプレンと共重合可能な単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 クロロプレンと共重合可能な単量体のうち、例えば、2,3-ジクロロ-1,3-ブタジエンを用いると、得られる硫黄変性クロロプレンゴムの結晶化速度を遅くすることができる。結晶化速度が遅い硫黄変性クロロプレンゴムは、低温環境下においてもゴム弾性を維持することができ、例えば、低温圧縮永久歪みを改善することができる。
 クロロプレンと共重合可能な単量体を用いる場合、クロロプレンと共重合可能な単量体の使用量(クロロプレンと共重合可能な単量体由来の構造単位の含有量)は、クロロプレンを含む全単量体(硫黄変性クロロプレンゴムを構成する構造単位の全量)中、10質量%以下であることが好ましい。この使用量が10質量%以下であると、得られる硫黄変性クロロプレンゴムの加工性の低下を抑制しやすい。同様の観点から、クロロプレンの使用量(クロロプレン由来の構造単位の含有量)は、クロロプレンを含む全単量体(硫黄変性クロロプレンゴムを構成する構造単位の全量)中、90質量%以上、92質量%以上、95質量%以上、又は、98質量%以上であることが好ましい。硫黄変性クロロプレンゴムを構成する構造単位がクロロプレン由来の構造単位からなる(硫黄変性クロロプレンゴムを構成する構造単位の実質的に100質量%がクロロプレン由来の構造単位である)態様であってもよい。
 硫黄変性クロロプレンゴムにおいて末端官能基Aは、主鎖及び/又は側鎖の末端に位置してよい。末端官能基Aは、例えば、後述の分子量調整工程においてチアゾール化合物を用いることにより得ることができる。Ra1又はRa2であるアルキル基に対する置換基としては、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。Ra1又はRa2であるアリールチオ基に対する置換基としては、アルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。
 末端官能基Aでは、Ra1及びRa2が互いに結合して、置換基を有してもよい環が形成されてよい。環としては、芳香環、脂環、複素環等が挙げられる。環に対する置換基としては、アルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。環に対する置換基であるアルキル基としては、炭素数1、2、3又は4のアルキル基等が挙げられる。末端官能基Aは、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、Ra1及びRa2が互いに結合して形成されたベンゾチアゾール環を有することが好ましい。ベンゾチアゾール環は、置換基を有していなくてもよい。ベンゾチアゾール環が置換基を有する場合、置換基は、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、アルキル基が好ましく、ベンゾチアゾール環の4位の位置に結合したアルキル基がより好ましい。
 硫黄変性クロロプレンゴムは、末端官能基Bを有してよく、末端官能基Bを有していなくてもよい。末端官能基Bは、主鎖及び/又は側鎖の末端に位置してよい。末端官能基Bは、例えば、後述の分子量調整工程においてジチオカルバミン酸系化合物を用いることにより得ることができる。
 Rb1及びRb2から選ばれる少なくとも一種の炭素数は、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、6~10が好ましく、7~9がより好ましく、7~8が更に好ましい。Rb1又はRb2であるアルキル基に対する置換基としては、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。Rb1又はRb2であるアリール基としては、ベンジル基、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。Rb1又はRb2であるアリール基に対する置換基としては、アルキル基、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、スルホ基、スルホン酸塩基、ニトロ基、アミノ基等が挙げられる。Rb1又はRb2であるアルキル基又はアリール基は、置換基を有していなくてもよい。本実施形態に係る発泡ゴム組成物は、硫黄変性クロロプレンゴムが、末端官能基Bとして、Rb1及びRb2がエチル基(無置換のエチル基)である官能基を有しない態様であってもよい。
 末端官能基Aの含有量は、硫黄変性クロロプレンゴムの全量を基準として下記の範囲が好ましい(すなわち、硫黄変性クロロプレンゴムは、当該硫黄変性クロロプレンゴム100質量部に対して下記の数値の含有量(単位:質量部)の末端官能基Aを含有することが好ましい)。末端官能基Aの含有量は、発泡体において、引き裂き強度が向上しやすく、優れた外観が得られやすい観点から、0.50質量%以下、0.45質量%以下、0.42質量%以下、0.40質量%以下、0.38質量%以下、0.35質量%以下、0.30質量%以下、0.25質量%以下、0.23質量%以下、0.20質量%以下、0.18質量%以下、0.16質量%以下、0.15質量%以下、0.14質量%以下、0.13質量%以下、0.12質量%以下、0.11質量%以下、0.10質量%以下、0.09質量%以下、0.08質量%以下、0.07質量%以下、0.06質量%以下、0.05質量%以下、又は、0.04質量%以下が好ましい。末端官能基Aの含有量は、発泡体において、収縮率が低減されやすく、優れた外観が得られやすい観点から、0.01質量%以上、0.03質量%以上、0.04質量%以上、0.05質量%以上、0.06質量%以上、0.07質量%以上、0.08質量%以上、0.09質量%以上、0.10質量%以上、0.11質量%以上、0.12質量%以上、0.13質量%以上、0.14質量%以上、0.15質量%以上、0.16質量%以上、0.18質量%以上、0.20質量%以上、0.23質量%以上、0.25質量%以上、0.30質量%以上、0.35質量%以上、0.38質量%以上、0.40質量%以上、又は、0.42質量%以上が好ましい。これらの観点から、末端官能基Aの含有量は、0.01~0.50質量%、0.04~0.42質量%、0.04~0.40質量%、0.04~0.30質量%、0.04~0.20質量%、0.04~0.10質量%、0.05~0.42質量%、0.10~0.42質量%、0.20~0.42質量%、0.30~0.42質量%、0.05~0.40質量%、又は、0.08~0.30質量%が好ましい。末端官能基Aの含有量は、後述の分子量調整工程で用いるチアゾール化合物の量、分子量調整工程の処理時間及び処理温度等により調整できる。
 末端官能基Bの含有量は、特に限定されないが、硫黄変性クロロプレンゴムの全量を基準として下記の範囲が好ましい(すなわち、硫黄変性クロロプレンゴムは、当該硫黄変性クロロプレンゴム100質量部に対して下記の数値の含有量(単位:質量部)の末端官能基Bを含有することが好ましい)。末端官能基Bの含有量は、発泡体において、引き裂き強度が向上しやすく、優れた外観が得られやすい観点から、1.00質量%未満、0.90質量%以下、0.80質量%以下、0.70質量%以下、0.60質量%以下、0.50質量%以下、0.47質量%以下、0.45質量%以下、0.42質量%以下、0.40質量%以下、0.35質量%以下、0.33質量%以下、0.32質量%以下、0.30質量%以下、又は、0.29質量%以下が好ましい。末端官能基Bの含有量は、発泡体において、収縮率が低減されやすく、優れた外観が得られやすい観点から、0.25質量%以下、0.23質量%以下、0.20質量%以下、0.19質量%以下、0.15質量%以下、0.14質量%以下、0.13質量%以下、0.12質量%以下、0.10質量%以下、0.09質量%以下、0.07質量%以下、0.06質量%以下、0.05質量%以下、0.03質量%以下、又は、0.01質量%以下が好ましい。末端官能基Bの含有量は、0質量%以上であってよく、0質量%を超えてよい。末端官能基Bの含有量は、発泡体において、収縮率が低減されやすく、優れた外観が得られやすい観点から、0.01質量%以上、0.03質量%以上、0.05質量%以上、0.06質量%以上、0.07質量%以上、0.09質量%以上、0.10質量%以上、0.12質量%以上、0.13質量%以上、0.14質量%以上、0.15質量%以上、0.19質量%以上、0.20質量%以上、又は、0.23質量%以上が好ましい。末端官能基Bの含有量は、発泡体において、引き裂き強度が向上しやすく、優れた外観が得られやすい観点から、0.25質量%以上、0.29質量%以上、0.30質量%以上、0.32質量%以上、0.33質量%以上、0.35質量%以上、0.40質量%以上、0.42質量%以上、0.45質量%以上、又は、0.47質量%以上が好ましい。末端官能基Bの含有量は、0.50質量%以上、0.60質量%以上、0.70質量%以上、又は、0.80質量%以上であってよい。これらの観点から、末端官能基Bの含有量は、0質量%以上1.00質量%未満、0~0.90質量%、0~0.80質量%、0~0.70質量%、0~0.45質量%、0~0.25質量%、0~0.15質量%、0質量%を超え1.00質量%未満、0質量%を超え0.70質量%以下、0質量%を超え0.45質量%以下、0質量%を超え0.25質量%以下、0.10~0.70質量%、0.10~0.45質量%、0.10~0.25質量%、0.20~0.70質量%、0.25~0.70質量%、又は、0.45~0.70質量%が好ましい。末端官能基Bの含有量は、後述の分子量調整工程で用いるジチオカルバミン酸系化合物の量、分子量調整工程の処理時間及び処理温度等により調整できる。
 末端官能基Bの含有量の末端官能基Aの含有量に対する質量比B/Aは、発泡体において小さい収縮率を得る観点から、12.00以下(0~12.00)である。
 質量比B/Aは、発泡体において小さい収縮率を得やすい観点から、11.60以下、11.00以下、10.00以下、9.00以下、8.00以下、7.00以下、6.00以下、5.00以下、4.00以下、3.00以下、2.50以下、2.20以下、2.00以下、1.50以下、1.00以下、0.60以下、0.50以下、0.40以下、0.30以下、0.20以下、又は、0.10以下であってよい。質量比B/Aは、0以上であり、発泡体において引き裂き強度が向上しやすい観点から、0を超えることが好ましく、0.10以上、0.20以上、0.30以上、0.40以上、0.50以上、0.60以上、1.00以上、1.50以上、2.00以上、2.20以上、2.50以上、3.00以上、4.00以上、5.00以上、6.00以上、7.00以上、8.00以上、9.00以上、10.00以上、11.00以上、又は、11.60以上が好ましい。これらの観点から、質量比B/Aは、0を超え12.00以下、0を超え10.00以下、0を超え6.00以下、0を超え1.00以下、0を超え0.80以下、0を超え0.60以下、0.10~12.00、0.50~12.00、0.55~12.00、0.80~12.00、1.00~12.00、6.00~12.00、8.00~12.00、0.10~10.00、0.50~10.00、1.00~10.00、又は、1.00~6.00が好ましい。
 末端官能基A及び末端官能基Bの合計量(末端官能基A及び末端官能基Bの含有量の合計。質量合計(A+B))は、硫黄変性クロロプレンゴムの全量を基準として0.10~1.00質量%である。質量合計(A+B)が0.10質量%に満たないと、発泡体において、収縮率の増加を引き起こすと共に、優れた外観が得られない。質量合計(A+B)が1.00質量%を超えると、ムーニー粘度の低下が著しく実用的でない(発泡体が得られない)。
 質量合計(A+B)は、硫黄変性クロロプレンゴムの全量を基準として下記の範囲であってよい。質量合計(A+B)は、発泡体において引き裂き強度及び収縮率のバランスを調整する観点から、0.15質量%以上、0.20質量%以上、0.24質量%以上、0.25質量%以上、0.30質量%以上、0.35質量%以上、0.37質量%以上、0.38質量%以上、0.40質量%以上、0.42質量%以上、0.45質量%以上、0.50質量%以上、0.51質量%以上、0.55質量%以上、0.57質量%以上、0.60質量%以上、0.65質量%以上、0.66質量%以上、0.70質量%以上、0.80質量%以上、0.85質量%以上、又は、0.88質量%以上であってよい。質量合計(A+B)は、発泡体において引き裂き強度及び収縮率のバランスを調整する観点から、0.90質量%以下、0.88質量%以下、0.85質量%以下、0.80質量%以下、0.70質量%以下、0.66質量%以下、0.65質量%以下、0.60質量%以下、0.57質量%以下、0.55質量%以下、0.51質量%以下、0.50質量%以下、0.45質量%以下、0.42質量%以下、0.40質量%以下、0.38質量%以下、0.37質量%以下、0.35質量%以下、0.30質量%以下、0.25質量%以下、又は、0.24質量%以下であってよい。これらの観点から、質量合計(A+B)は、0.20~0.90質量%、0.20~0.70質量%、0.20~0.65質量%、0.20~0.55質量%、0.20~0.40質量%、0.40~0.70質量%、又は、0.55~0.70質量%であってよい。
 硫黄変性クロロプレンゴム中の末端官能基A及び末端官能基Bの含有量は、実施例に記載の手順にて定量できる。
 硫黄変性クロロプレンゴムは、下記一般式(C)で表される官能基を有していなくてよく、下記一般式(C)で表されると共に分子末端に位置する官能基を有していなくてよい。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、水素原子、又は、置換基を有してもよい炭素数1~4のアルキル基を示す。)
 硫黄変性クロロプレンゴムの製造方法は、硫黄(S)の存在下でクロロプレンを乳化重合して重合体を得る重合工程と、前記重合体及びチアゾール化合物を混合する分子量調整工程(混合工程)と、を有する。硫黄変性クロロプレンゴムの製造方法の一態様は、少なくともクロロプレンと硫黄とを乳化重合して重合液を得る重合工程と、重合液中にチアゾール化合物を添加することにより、重合液中の重合体の分子量を調整する分子量調整工程と、を有する。
 硫黄変性クロロプレンゴムの製造方法では、例えば、重合体(例えば重合体の主鎖)に硫黄を導入することが可能であり、ポリスルフィド結合(S~S)を導入することもできる。硫黄変性クロロプレンゴムは、硫黄の存在下で、クロロプレン単独、又は、クロロプレンと他の単量体とを乳化重合して硫黄を導入した硫黄変性クロロプレン重合体を、チアゾール化合物を用いて分子量調整することにより得られるラテックス、及び、このラテックスを一般的な方法で乾燥洗浄して得られた硫黄変性クロロプレンゴムを包含する。
 以下、硫黄変性クロロプレンゴムの製造工程に沿って詳細に説明する。
 硫黄変性クロロプレンゴムの製造方法では、まず、重合工程において、硫黄の存在下でクロロプレンを乳化重合して重合体を得る。重合体は、重合液中の重合体であってよい。重合工程では、必要に応じて、クロロプレンと、クロロプレンと共重合可能な上述の単量体と、を乳化重合させてよい。クロロプレンの使用量、又は、クロロプレンと共重合可能な単量体の使用量は、上述の使用量であることが好ましい。
 乳化重合における硫黄(S)の使用量は、単量体(重合させる単量体の合計)100質量部に対して下記の範囲が好ましい。硫黄の使用量は、得られる硫黄変性クロロプレンゴムの充分な機械的特性又は動的特性が得られやすい観点から、0.01質量部以上が好ましく、0.1質量部以上がより好ましい。硫黄の使用量は、得られる硫黄変性クロロプレンゴムの金属への粘着性が強くなりすぎることが抑制されることにより加工しやすい観点から、0.6質量部以下が好ましく、0.5質量部以下がより好ましい。これらの観点から、硫黄の使用量は、0.01~0.6質量部が好ましく、0.1~0.5質量部がより好ましい。
 乳化重合に用いる乳化剤としては、クロロプレンの乳化重合に用いることが可能な公知の乳化剤を1種又は2種以上、自由に選択して用いることができる。乳化剤としては、ロジン酸類、脂肪酸類、芳香族スルホン酸ホルマリン縮合物の金属塩、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、アルキルジフェニルエーテルスルホン酸ナトリウム、アルキルジフェニルエーテルスルホン酸カリウム、ポリオキシエチレンアルキルエーテルスルホン酸ナトリウム、ポリオキシプロピレンアルキルエーテルスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテルスルホン酸カリウム、ポリオキシプロピレンアルキルエーテルスルホン酸カリウム等が挙げられる。乳化剤としては、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、ロジン酸類が好ましい。「ロジン酸類」とは、ロジン酸、不均化ロジン酸、不均化ロジン酸のアルカリ金属塩(例えば不均化ロジン酸カリウム)等を意味する。不均化ロジン酸の構成成分としては、セスキテルペン、8,5-イソピマル酸、ジヒドロピマル酸、セコデヒドロアビエチン酸、ジヒドロアビエチン酸、デイソプロピルデヒドロアビエチン酸、デメチルデヒドロアビエチン酸等が挙げられる。脂肪酸類としては、脂肪酸(例えば炭素数6~22の飽和又は不飽和の脂肪酸)、脂肪酸の金属塩(例えばラウリル硫酸ナトリウム)等が挙げられる。
 乳化剤としては、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、芳香族スルホン酸ホルマリン縮合物の金属塩が好ましく、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩がより好ましい。β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩は、汎用に用いられる乳化剤であり、少量添加することで安定性が向上し、製造過程において凝集及び析出をすることなく、安定的にラテックスを製造することができる。好適に用いられる他の乳化剤としては、例えば、不均化ロジン酸のアルカリ金属塩と、炭素数6~22の飽和又は不飽和の脂肪酸との混合物からなるアルカリ石鹸水溶液が挙げられる。
 乳化重合開始時の乳化液(例えば水性乳化液)のpHは、10.5以上であることが好ましい。ここで、「乳化液」とは、乳化重合開始直前の、クロロプレンと他の成分(クロロプレンと共重合可能な単量体、乳化剤、硫黄(S)等)との混合液である。「乳化液」は、これらの他の成分(クロロプレンと共重合可能な単量体、硫黄(S)等)の後添加、分割添加などによりその組成が順次変わる場合も包含する。乳化液のpHが10.5以上であることで、重合中のポリマー析出等を防止し、安定的に重合を制御することができる。乳化剤としてロジン酸類を用いた場合に当該効果を特に好適に得ることができる。乳化液のpHは、乳化重合時に存在している水酸化ナトリウム、水酸化カリウム等のアルカリ成分量により調整できる。
 乳化重合の重合温度は、重合制御性及び生産性に優れる観点から、0~55℃が好ましく、30~55℃がより好ましい。
 重合開始剤としては、通常のラジカル重合で用いられる過硫酸カリウム、過酸化ベンゾイル、過硫酸アンモニウム、過酸化水素等を用いることができる。例えば、重合は、下記の範囲の重合率(転化率)で行われ、次いで、重合停止剤(重合禁止剤)を加えて停止させる。
 重合率は、生産性に優れる観点から、60%以上が好ましく、70%以上がより好ましい。重合率は、得られる硫黄変性クロロプレンゴムの加工性に影響を及ぼす分岐構造の発達又はゲルの生成を抑制する観点から、95%以下が好ましく、90%以下がより好ましい。これらの観点から、重合率は、60~95%が好ましく、70~90%がより好ましい。
 重合停止剤としては、ジエチルヒドロキシルアミン、チオジフェニルアミン、4-tert-ブチルカテコール、2,2’-メチレンビス-4-メチル-6-tert-ブチルフェノール等が挙げられる。重合停止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 分子量調整工程では、重合工程で得られた重合体、及び、チアゾール化合物を混合する。分子量調整工程では、重合工程で得られた重合体、及び、チアゾール化合物を反応させることにより重合体の分子量を調整することが可能であり、例えば、重合工程で得られた重合液中にチアゾール化合物を添加することにより、重合液中の重合体の分子量を調整することができる。分子量調整工程では、例えば、重合体(例えば重合体の主鎖)中に存在する硫黄(例えばポリスルフィド結合(S~S))とチアゾール化合物とが反応することで、チアゾール化合物に由来する上述の末端官能基Aを形成しながら、重合体を切断又は解重合させることができる。以下、重合体を切断又は解重合するために用いる薬品を「分子量調整剤」と称する。
 チアゾール化合物(チアゾール環を有する化合物)としては、公知のチアゾール化合物を1種又は2種以上、自由に選択して用いることができる。チアゾール化合物は、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4,5-ジメチル-2-ベンゾチアゾールスルフェンアミド、N,N-ジシクロヘキシル-1,3-ベンゾチアゾール-2-スルフェンアミド、N-(tert-ブチル)-2-ベンゾチアゾールスルフェンアミド、N,N-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、4,5-ジヒドロチアゾール-2-スルフェンアミド、N-シクロヘキシル-4,5-ジヒドロチアゾール-2-スルフェンアミド、N-オキシジエチルベンゾチアゾール-2-スルフェンアミド、2-(4’-モルフォリニルジチオ)ベンゾチアゾール、2-メルカプトベンゾチアゾール、4,5-ジヒドロ-2-メルカプトチアゾール、ジベンジルチアゾリルジスルフィド、及び、2-(モルホリノジチオ)ベンゾチアゾールから選ばれる少なくとも一種の化合物を含むことが好ましい。チアゾール化合物は、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、ベンゾチアゾール化合物(ベンゾチアゾール環を有する化合物)を含むことが好ましい。本実施形態に係る発泡ゴム組成物は、チアゾール化合物がN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド及びN-(tert-ブチル)-2-ベンゾチアゾールスルフェンアミドを含まない態様であってもよい。
 チアゾール化合物の使用量(添加量)は、重合体(例えば重合液中の重合体)100質量部に対して0.2~3質量部が好ましい。チアゾール化合物の使用量が0.2質量部以上であることで、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい。チアゾール化合物の使用量が3質量部以下であることで、適度なムーニー粘度を得やすく、その結果、加硫成形性を向上させやすい。チアゾール化合物の使用量が0.2~3質量部であることにより、硫黄変性クロロプレンゴムにおける末端官能基Aの含有量を0.01~0.50質量%(例えば0.05~0.40質量%。基準:硫黄変性クロロプレンゴムの全量)に調整しやすいと共に、発泡ゴム組成物におけるチアゾール化合物の含有量(残存量)を0.0001~0.0200質量部(例えば0.0005~0.0100質量部。基準:硫黄変性クロロプレンゴム100質量部)に調整しやすい。
 分子量調整工程では、分子量調整剤としてチアゾール化合物及びジチオカルバミン酸系化合物を併用することができる。分子量調整工程では、重合工程で得られる重合体、チアゾール化合物、及び、ジチオカルバミン酸系化合物を混合することが可能であり、重合工程で得られる重合体、チアゾール化合物、及び、ジチオカルバミン酸系化合物を反応させることができる。これにより、ジチオカルバミン酸系化合物がチアゾール化合物と反応し、チアゾール化合物単体又はジチオカルバミン酸系化合物単体を用いる場合と比較して重合体中の硫黄(例えばポリスルフィド結合)との反応性が高い反応物を形成し、ムーニー粘度を容易に調整できる。反応物が重合体中の硫黄(例えばポリスルフィド結合。例えば重合体の主鎖中の硫黄)と反応することで、チアゾール化合物に由来する上述の末端官能基Aと、ジチオカルバミン酸系化合物に由来する上述の末端官能基Bと、を好適に形成できる。
 ジチオカルバミン酸系化合物としては、ジチオカルバミン酸、ジチオカルバミン酸塩、モノアルキルジチオカルバミン酸、モノアルキルジチオカルバミン酸塩、モノアリールジチオカルバミン酸、モノアリールジチオカルバミン酸塩、ジアルキルジチオカルバミン酸、ジアルキルジチオカルバミン酸塩、ジアリールジチオカルバミン酸、ジアリールジチオカルバミン酸塩、テトラアルキルチウラムジスルフィド、テトラアリールアルキルチウラムジスルフィド等が挙げられる。塩としては、ナトリウム塩、カリウム塩、カルシウム塩、亜鉛塩、アンモニウム塩、ニッケル塩等が挙げられる。
 ジチオカルバミン酸系化合物としては、公知のジチオカルバミン酸系化合物を1種又は2種以上、自由に選択して用いることができる。ジチオカルバミン酸系化合物は、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、テトラアルキルチウラムジスルフィド及びテトラアリールアルキルチウラムジスルフィドから選ばれる少なくとも一種の化合物を含むことが好ましい。ジチオカルバミン酸系化合物は、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、ジチオカルバミン酸、ジチオカルバミン酸ナトリウム、ジチオカルバミン酸カリウム、ジチオカルバミン酸カルシウム、ジチオカルバミン酸亜鉛、ジチオカルバミン酸アンモニウム、ジチオカルバミン酸ニッケル、モノ-2-エチルヘキシルジチオカルバミン酸、モノ-2-エチルヘキシルジチオカルバミン酸ナトリウム、モノ-2-エチルヘキシルジチオカルバミン酸カリウム、モノ-2-エチルヘキシルジチオカルバミン酸カルシウム、モノ-2-エチルヘキシルジチオカルバミン酸亜鉛、モノ-2-エチルヘキシルカルバミン酸アンモニウム、モノ-2-エチルヘキシルカルバミン酸ニッケル、モノベンジルジチオカルバミン酸、モノベンジルジチオカルバミン酸ナトリウム、モノベンジルジチオカルバミン酸カリウム、モノベンジルジチオカルバミン酸カルシウム、モノベンジルジチオカルバミン酸亜鉛、モノベンジルジチオカルバミン酸アンモニウム、モノベンジルジチオカルバミン酸ニッケル、ジ-2-エチルヘキシルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸ナトリウム、ジ-2-エチルヘキシルジチオカルバミン酸カリウム、ジ-2-エチルヘキシルジチオカルバミン酸カルシウム、ジ-2-エチルヘキシルジチオカルバミン酸亜鉛、ジ-2-エチルヘキシルカルバミン酸アンモニウム、ジ-2-エチルヘキシルカルバミン酸ニッケル、ジベンジルジチオカルバミン酸、ジベンジルジチオカルバミン酸ナトリウム、ジベンジルジチオカルバミン酸カリウム、ジベンジルジチオカルバミン酸カルシウム、ジベンジルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸アンモニウム、ジベンジルジチオカルバミン酸ニッケル、テトラキス(2-エチルヘキシル)チウラムジスルフィド、及び、テトラベンジルチウラムジスルフィドから選ばれる少なくとも一種の化合物を含むことが好ましく、ジベンジルジチオカルバミン酸、ジベンジルジチオカルバミン酸ナトリウム、ジベンジルジチオカルバミン酸カリウム、ジベンジルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸アンモニウム、ジベンジルジチオカルバミン酸ニッケル、ジ-2-エチルヘキシルジチオカルバミン酸ナトリウム、ジ-2-エチルヘキシルジチオカルバミン酸カリウム、ジ-2-エチルヘキシルジチオカルバミン酸カルシウム、ジ-2-エチルヘキシルジチオカルバミン酸亜鉛、ジ-2-エチルヘキシルカルバミン酸アンモニウム、テトラベンジルチウラムジスルフィド、及び、テトラキス(2-エチルヘキシル)チウラムジスルフィドから選ばれる少なくとも一種の化合物を含むことがより好ましい。
 ジチオカルバミン酸系化合物の使用量(添加量)は、特に限定されないが、重合体(例えば重合液中の重合体)100質量部に対して、0~12質量部が好ましく、0~8質量部がより好ましく、0質量部を超え8質量部以下が更に好ましく、0.5~4質量部が特に好ましい。ジチオカルバミン酸系化合物の使用量がこれらの範囲内であることで、ムーニー粘度の制御が一層容易となり、発泡体において、引き裂き強度が向上しやすく、優れた外観が得られやすい。ジチオカルバミン酸系化合物の使用量が0~12質量部(例えば0~8質量部)であることにより、硫黄変性クロロプレンゴムにおける末端官能基Bの含有量を1.00質量%未満(例えば0.80質量%以下。基準:硫黄変性クロロプレンゴムの全量)に調整しやすいと共に、発泡ゴム組成物におけるジチオカルバミン酸系化合物の含有量(残存量)を2.50質量部以下(例えば2.00質量部以下。基準:硫黄変性クロロプレンゴム100質量部)に調整しやすい。
 分子量調整工程を経た重合液を一般的な方法で冷却、pH調整、凍結、乾燥等を行って硫黄変性クロロプレンゴムを得てよい。
 本実施形態に係る発泡ゴム組成物は、化学発泡剤を含有する。化学発泡剤は、有機発泡剤及び無機発泡剤から選ばれる少なくとも一種を含んでよい。有機発泡剤としては、アゾ化合物、ニトロソ化合物、スルホニルヒドラジド化合物、アジド化合物等が挙げられる。
 アゾ化合物としては、アゾジカルボンアミド、アゾビスホルムアミド、アゾビスイソブチロニトリル、2,2’-アゾビスイソブチロニトリル、アゾヘキサヒドロベンゾニトリル、ジアゾアミノベンゼン等が挙げられる。ニトロソ化合物としては、N,N’-ジニトロソペンタメチレンテトラミン、N,N’-ジニトロソ-N,N’-ジメチルフタルアミド等が挙げられる。スルホニルヒドラジド化合物としては、p,p’-オキシビスベンゼンスルホニルヒドラジド、ベンゼンスルホニルヒドラジド、ベンゼン-1,3-スルホニルヒドラジド、ジフェニルスルホン-3,3’-ジスルホニルヒドラジド、ジフェニルオキシド-4,4’-ジスルホニルヒドラジド、パラトルエンスルホニルヒドラジド等が挙げられる。アジド化合物としては、テレフタルアジド、p-t-ブチルベンズアジド等が挙げられる。無機発泡剤としては、炭酸水素ナトリウム、炭酸アンモニウム、重炭酸ナトリウム、重炭酸アンモニウム、亜硝酸アンモニウム、カルシウムアジド、ナトリウムアジド、ホウ水素ナトリウム等が挙げられる。
 化学発泡剤は、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、有機発泡剤を含むことが好ましく、アゾ化合物、ニトロソ化合物、スルホニルヒドラジド化合物及びアジド化合物から選ばれる少なくとも一種を含むことがより好ましく、アゾ化合物及びスルホニルヒドラジド化合物から選ばれる少なくとも一種を含むことが更に好ましい。化学発泡剤は、アゾ化合物、ニトロソ化合物、スルホニルヒドラジド化合物、アジド化合物及び無機発泡剤から選ばれる少なくとも一種を含んでよい。
 化学発泡剤の分解温度は、120~200℃が好ましく、130~170℃がより好ましい。化学発泡剤の分解温度がこのような範囲内であることにより、化学発泡及び加硫の制御が容易であり、発泡体において、収縮率が低減しやすいと共に優れた外観が得られやすい。
 化学発泡剤の含有量は、硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の合計100質量部に対して3~16質量部である。化学発泡剤の含有量が3質量部に満たないと、発泡剤量が不足することから、発泡体を得るのに充分な分解ガス量が得られない場合がある。化学発泡剤の含有量が16質量部を超えると、発泡と加硫とのバランスが取りにくく、得られる発泡体の外観又は引き裂き強度が劣る場合がある。
 化学発泡剤の含有量は、硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の合計100質量部に対して下記の範囲が好ましい。化学発泡剤の含有量は、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、0.1質量部以上、0.5質量部以上、1質量部以上、3質量部以上、4質量部以上、5質量部以上、6質量部以上、6.5質量部以上、7質量部以上、又は、8質量部以上が好ましい。化学発泡剤の含有量は、発泡体において、引き裂き強度が向上しやすく、収縮率が低減されやすく、優れた外観が得られやすい観点から、20質量部以下、18質量部以下、15質量部以下、12質量部以下、10質量部以下、10質量部未満、9質量部以下、又は、8質量部以下が好ましい。化学発泡剤の含有量は、7質量部以下、6.5質量部以下、6質量部以下、又は、5質量部以下であってよい。これらの観点から、化学発泡剤の含有量は、0.1~20質量部、0.1質量部以上10質量部未満、1~15質量部、3~15質量部、5~15質量部、6~15質量部、7~15質量部、8~15質量部、3~12質量部、3~10質量部、3~8質量部、3~7質量部、又は、3~6質量部が好ましい。
 本実施形態に係る発泡ゴム組成物は、未反応の分子量調整剤(チアゾール化合物、ジチオカルバミン酸系化合物等)を含有してよい。分子量調整剤としては、分子量調整工程に関して上述した分子量調整剤を用いることができる。
 本実施形態に係る発泡ゴム組成物におけるチアゾール化合物の含有量(チアゾール化合物に該当する化合物の合計量。例えば残存量)は、硫黄変性クロロプレンゴム100質量部に対して下記の範囲が好ましい。また、本実施形態に係る発泡ゴム組成物における特定のチアゾール化合物(例えば、上述のとおり例示した各チアゾール化合物。N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド等)の含有量は、硫黄変性クロロプレンゴム100質量部に対して下記の範囲が好ましい。チアゾール化合物の含有量(例えば未反応のチアゾール化合物の残存量)は、分子量調整工程で用いるチアゾール化合物の量、分子量調整工程の処理時間及び処理温度等により調整できる。
 チアゾール化合物の含有量は、発泡体において収縮率が低減されやすい観点から、0.0001質量部以上、0.0003質量部以上、0.0004質量部以上、0.0005質量部以上、0.0006質量部以上、0.0010質量部以上、0.0015質量部以上、0.0020質量部以上、0.0025質量部以上、0.0030質量部以上、0.0031質量部以上、0.0035質量部以上、0.0040質量部以上、0.0045質量部以上、0.0050質量部以上、0.0052質量部以上、0.0055質量部以上、0.0060質量部以上、0.0070質量部以上、0.0080質量部以上、0.0090質量部以上、0.0100質量部以上、又は、0.0110質量部以上が好ましい。チアゾール化合物の含有量は、発泡体において引き裂き強度が向上しやすい観点から、0.0200質量部以下、0.0150質量部以下、0.0110質量部以下、0.0100質量部以下、0.0090質量部以下、0.0080質量部以下、0.0070質量部以下、0.0060質量部以下、0.0055質量部以下、0.0052質量部以下、0.0050質量部以下、0.0045質量部以下、0.0040質量部以下、0.0035質量部以下、0.0031質量部以下、0.0030質量部以下、0.0025質量部以下、0.0020質量部以下、0.0015質量部以下、0.0010質量部以下、0.0006質量部以下、0.0005質量部以下、又は、0.0004質量部以下が好ましい。これらの観点から、チアゾール化合物の含有量は、0.0001~0.0200質量部、0.0004~0.0150質量部、0.0004~0.0100質量部、0.0004~0.0060質量部、0.0004~0.0040質量部、0.0004~0.0020質量部、0.0005~0.0150質量部、0.0030~0.0150質量部、0.0050~0.0150質量部、0.0070~0.0150質量部、0.0005~0.0100質量部、0.0005~0.0060質量部、0.0005~0.0040質量部、0.0005~0.0020質量部、0.0030~0.0100質量部、0.0050~0.0100質量部、又は、0.0070~0.0100質量部が好ましい。
 本実施形態に係る発泡ゴム組成物におけるジチオカルバミン酸系化合物の含有量(ジチオカルバミン酸系化合物に該当する化合物の合計量。例えば残存量)は、発泡体において引き裂き強度及び収縮率のバランスを調整する観点から、硫黄変性クロロプレンゴム100質量部に対して下記の範囲であってよい。また、本実施形態に係る発泡ゴム組成物における特定のジチオカルバミン酸系化合物(例えば、上述のとおり例示した各ジチオカルバミン酸系化合物。テトラベンジルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド等)の含有量は、発泡体において引き裂き強度及び収縮率のバランスを調整する観点から、硫黄変性クロロプレンゴム100質量部に対して下記の範囲であってよい。ジチオカルバミン酸系化合物の含有量(例えば未反応のジチオカルバミン酸系化合物の残存量)は、分子量調整工程で用いるジチオカルバミン酸系化合物の量、分子量調整工程の処理時間及び処理温度等により調整できる。
 ジチオカルバミン酸系化合物の含有量は、2.50質量部以下、2.00質量部以下、1.80質量部以下、1.70質量部以下、1.50質量部以下、1.40質量部以下、1.37質量部以下、1.35質量部以下、1.30質量部以下、1.20質量部以下、1.10質量部以下、1.00質量部以下、0.90質量部以下、0.80質量部以下、0.70質量部以下、0.60質量部以下、0.50質量部以下、0.45質量部以下、又は、0.42質量部以下であってよい。ジチオカルバミン酸系化合物の含有量は、0質量部以上、0質量部超え、0.01質量部以上、0.05質量部以上、0.10質量部以上、0.20質量部以上、0.30質量部以上、0.40質量部以上、0.42質量部以上、0.45質量部以上、0.50質量部以上、0.60質量部以上、0.70質量部以上、0.80質量部以上、0.90質量部以上、1.00質量部以上、1.10質量部以上、1.20質量部以上、1.30質量部以上、1.35質量部以上、1.37質量部以上、1.40質量部以上、1.50質量部以上、1.70質量部以上、1.80質量部以上、又は、2.00質量部以上であってよい。これらの観点から、ジチオカルバミン酸系化合物の含有量は、0~2.50質量部、0質量部を超え2.50質量部以下、0~2.00質量部、0質量部を超え2.00質量部以下、0~1.70質量部、0質量部を超え1.70質量部以下、0~1.35質量部、0質量部を超え1.35質量部以下、0~1.00質量部、0質量部を超え1.00質量部以下、0.40~1.70質量部、0.80~1.70質量部、1.00~1.70質量部、0.40~1.35質量部、又は、0.40~1.00質量部であってよい。
 本実施形態に係る発泡ゴム組成物において、チアゾール化合物の含有量(例えば残存量)Cに対するジチオカルバミン酸系化合物の含有量(例えば残存量)Dの質量比D/Cは、下記の範囲が好ましい。質量比D/Cは、得られる発泡体の引き裂き強度及び収縮率の物性バランスが一層良好である観点から、2500以下、2300以下、又は、2000以下が好ましい。質量比D/Cは、発泡体において引き裂き強度及び収縮率のバランスを調整する観点から、1800以下、1600以下、1500以下、1200以下、1000以下、800以下、700以下、600以下、500以下、400以下、300以下、200以下、150以下、130以下、120以下、110以下、100以下、80以下、50以下、30以下、又は、10以下であってよい。質量比D/Cは、0以上であり、発泡体において引き裂き強度及び収縮率のバランスを調整する観点から、0を超えてよく、5以上、10以上、30以上、50以上、80以上、100以上、110以上、120以上、130以上、150以上、200以上、300以上、400以上、500以上、600以上、700以上、800以上、1000以上、1200以上、1500以上、1600以上、1800以上、又は、2000以上であってよい。これらの観点から、質量比D/Cは、0~2500、0を超え2500以下、0~2000、0を超え2000以下、0~1500、0~1000、0~300、0~130、100~2500、130~2500、又は、1000~2500であってよい。
 チアゾール化合物の含有量及びジチオカルバミン酸系化合物の含有量は、実施例に記載の手順にて定量できる。硫黄変性クロロプレンゴムに対するチアゾール化合物の相対量、及び、硫黄変性クロロプレンゴムに対するジチオカルバミン酸系化合物の相対量は、硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の混合物に対して硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物以外の成分を混合する前後において同等に維持され得る。
 本実施形態に係る発泡ゴム組成物において、スルフェンアミド化合物の含有量は、硫黄変性クロロプレンゴム100質量部に対して、0.0005質量部以下、0.0005質量部未満、0.0001質量部以下、又は、0.00001質量部以下であってよい。本実施形態に係る発泡ゴム組成物は、実質的にスルフェンアミド化合物を含有しなくてよい(スルフェンアミド化合物の上述の含有量は、実質的に0質量部であってよい)。
 本実施形態に係る発泡ゴム組成物において、有機過酸化物の含有量は、硫黄変性クロロプレンゴム100質量部に対して、1質量部以下、1質量部未満、0.1質量部以下、又は、0.01質量部以下であってよい。本実施形態に係る発泡ゴム組成物は、実質的に有機過酸化物を含有しなくてよい(有機過酸化物の上述の含有量は、実質的に0質量部であってよい)。
 硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の混合物のムーニー粘度(ML1+4、100℃)は、特に限定されないが、下記の範囲が好ましい。ムーニー粘度は、加工性を維持しやすい観点から、10以上、15以上、20以上、25以上、又は、30以上が好ましい。ムーニー粘度は、加工性を維持しやすい観点から、90以下、85以下、80以下、75以下、70以下、65以下、60以下、55以下、又は、50以下が好ましい。これらの観点から、ムーニー粘度は、10~90、又は、20~80が好ましい。ムーニー粘度は、分子量調整剤の添加量、分子量調整工程の処理時間及び処理温度等により調整できる。硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の混合物のムーニー粘度は、本実施形態に係る発泡ゴム組成物に含まれる硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物を特定することにより測定できる。
 本実施形態に係る発泡ゴム組成物は、加硫剤、加工助剤(滑剤)、老化防止剤、金属化合物、可塑剤、充填剤等の添加剤を含有してよい。
 加硫剤としては、金属酸化物等が挙げられる。金属酸化物としては、酸化亜鉛、酸化マグネシウム、酸化鉛、四酸化三鉛、三酸化鉄、二酸化チタン、酸化カルシウム、ハイドロタルサイト等が挙げられる。加硫剤は、1種を単独で用いてもよく、2種以上を併用してもよい。加硫剤の含有量は、硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の混合物100質量部に対して3~15質量部が好ましい。
 加工助剤としては、ステアリン酸等の脂肪酸;ポリエチレン等のパラフィン系加工助剤;脂肪酸アミドなどが挙げられる。加工助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。加工助剤の含有量は、硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の混合物100質量部に対して0.5~5質量部が好ましい。
 本実施形態に係る発泡ゴム組成物は、貯蔵時のムーニー粘度の変化を防止するため、老化防止剤(例えば少量の老化防止剤)を含有することができる。老化防止剤としては、クロロプレンゴムに用いることが可能な公知の化合物を1種又は2種以上、自由に選択して用いることができる。老化防止剤としては、フェニル-α-ナフチルアミン、オクチル化ジフェニルアミン、ジブチルジチオカルバミン酸ニッケル、2,6-ジ-tert-ブチル-4-フェニルフェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、4,4’-チオビス-(6-tert-ブチル-3-メチルフェノール)等が挙げられる。老化防止剤としては、オクチル化ジフェニルアミン、ジブチルジチオカルバミン酸ニッケル及び4,4’-チオビス-(6-tert-ブチル-3-メチルフェノール)から選ばれる少なくとも一種が好ましい。
 金属化合物は、硫黄変性クロロプレンゴムの加硫速度を調整するため、又は、硫黄変性クロロプレンゴムの脱塩酸反応によって生じる塩化水素等の塩素源を吸着して、硫黄変性クロロプレンゴムが劣化することを抑制するために添加可能な化合物である。金属化合物としては、亜鉛、チタン、マグネシウム、鉛、鉄、ベリリウム、カルシウム、バリウム、ゲルマニウム、ジルコニウム、バナジウム、モリブテン、タングステン等の酸化物又は水酸化物などを用いることができる。金属化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 金属化合物の含有量は、特に限定されないが、硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の混合物100質量部に対して3~15質量部の範囲が好ましい。金属化合物の含有量をこの範囲に調整することにより、成形品の機械的強度を向上させることができる。
 可塑剤は、硫黄変性クロロプレンゴムの硬度を下げて、その低温特性を改良するために添加可能な成分である。また、硫黄変性クロロプレンゴムを用いてスポンジを製造する際に、スポンジの風合いを向上させることもできる。可塑剤としては、ジオクチルフタレート、ジオクチルアジペート{別名:アジピン酸ビス(2-エチルヘキシル)}、ホワイトオイル、シリコンオイル、ナフテンオイル、アロマオイル、トリフェニルフォスフェート、トリクレジルフォスフェート等が挙げられる。可塑剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 可塑剤の含有量は、特に限定されないが、硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の混合物100質量部に対して50質量部以下の範囲が好ましい。可塑剤の含有量をこの範囲に調整することにより、成形品の引き裂き強度を維持しつつ、可塑剤の上述の効果を発揮することができる。
 充填剤は、硫黄変性クロロプレンゴムの補強材として添加可能な成分である。充填剤としては、カーボンブラック、シリカ、クレー、タルク、炭酸カルシウム等が挙げられる。充填剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
<発泡体及び成形品>
 本実施形態に係る発泡体は、本実施形態に係る発泡ゴム組成物の発泡体である。本実施形態に係る発泡体は、加硫物であってよく、スポンジであってよい。本実施形態に係る発泡体は、本実施形態に係る発泡ゴム組成物を発泡させることにより得ることが可能であり、例えば、発泡ゴム組成物の構成成分(硫黄変性クロロプレンゴム、化学発泡剤、金属化合物、可塑剤、充填剤等)をロール、バンバリーミキサー、押出機等で混合した後に発泡剤を加え、発泡させながら加硫することにより得ることができる。
 本実施形態に係る発泡体を、所望する厚さにスライス加工することにより発泡シートを得た後、当該発泡シートの少なくとも一方の面に繊維基材(例えば、ポリエステル繊維、ナイロン繊維等のジャージ布)を積層(ラミネート)することにより積層シートを得てよい。本実施形態に係る積層シートは、本実施形態に係る発泡体と、当該発泡体を支持する繊維基材と、を備え、発泡体がシート状である。本実施形態に係る積層シートは、ウェットスーツ用の生地として用いることが可能であり、積層シートを縫製することによりウェットスーツを得ることができる。
 本実施形態に係る成形品は、本実施形態に係る発泡体からなる成形品(例えばスポンジ製品)であり、本実施形態に係る発泡体を成形することにより得ることができる。成形品としては、ウェットスーツ等が挙げられる。ウェットスーツの構成材料に対しては、製品の信頼性の向上のため、引き裂き強度、収縮性、外観等に優れた材料が求められている。本実施形態に係る成形品の一態様であるウェットスーツは、従来の硫黄変性クロロプレンゴムを用いたウェットスーツよりも、引き裂き強度が高く、収縮率が小さく、かつ、外観が優れる。
 以下、実施例に基づいて本発明を更に詳細に説明する。以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
<評価用サンプルの作製>
(実施例1)
[硫黄変性クロロプレンゴムの作製]
 内容積30Lの重合缶に、クロロプレン100質量部、硫黄0.55質量部、純水120質量部、不均化ロジン酸カリウム(ハリマ化成株式会社製)4.00質量部、水酸化ナトリウム0.60質量部、及び、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(花王株式会社製、商品名「デモールN」)0.6質量部を添加した。重合開始前の水性乳化液のpHは12.8であった。重合開始剤として過硫酸カリウム0.1質量部を添加した後、重合温度40℃にて窒素気流下で乳化重合を行った。転化率85%となった時点で、重合停止剤であるジエチルヒドロキシルアミン0.05質量部を加えて重合を停止させることによりクロロプレンの重合液を得た。
 得られた重合液に、クロロプレン(溶剤)5質量部、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(分子量調整剤、大内新興化学工業株式会社製、商品名「ノクセラーCZ」)1質量部、テトラベンジルチウラムジスルフィド(分子量調整剤、大内新興化学工業株式会社製、商品名「ノクセラーTBzTD」)4質量部、β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(分散剤)0.05質量部、及び、ラウリル硫酸ナトリウム(乳化剤)0.05質量部を添加し、分子量調整前の硫黄変性クロロプレン重合体ラテックスを得た。
 得られた硫黄変性クロロプレン重合体ラテックスを減圧蒸留して未反応の単量体を除去した後、撹拌しながら温度50℃で1時間保持して分子量調整することにより、硫黄変性クロロプレンゴムを含有する生ゴム(分子量調整後のラテックス)を得た。「生ゴム」は、硫黄変性クロロプレンゴム及び未反応の分子量調整剤を含有する混合物である。
{末端官能基の含有量の分析}
 生ゴムを冷却した後、常法の凍結-凝固法で重合体を単離して硫黄変性クロロプレンゴムを得た。硫黄変性クロロプレンゴムの全量を基準として、下記式(A1)で表されるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド由来の末端官能基(チアゾール末端種A1)の含有量は0.13質量%であり、下記式(B1)で表されるテトラベンジルチウラムジスルフィド由来の末端官能基(ジチオカルバミン酸末端種B1)の含有量は0.29質量%であった。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 硫黄変性クロロプレンゴムにおける末端官能基の含有量は以下の手順にて定量した。まず、硫黄変性クロロプレンゴムをベンゼン及びメタノールで精製した後、再度凍結乾燥して測定用試料を得た。この測定用試料を用いて、JIS K-6239に従ってH-NMR測定を行った。得られた測定データを、溶媒として用いた重水素化クロロホルム中のクロロホルムのピーク(7.24ppm)を基準に補正した。補正した測定データに基づいて、7.72~7.83ppmにピークトップを有する各ピークの面積を算出して末端官能基(チアゾール末端種)の含有量を定量し、5.05~5.50ppmにピークトップを有するピークの面積を算出して末端官能基(ジチオカルバミン酸末端種)の含有量を定量した。
{分子量調整剤の残存量の測定}
 上述の生ゴム中の硫黄変性クロロプレンゴム100質量部に対する分子量調整剤の含有量(残存量)を以下の手順にて定量した。まず、得られた生ゴム1.5gをベンゼン30mLに溶解した後、メタノール60mLを滴下した。これにより、ゴム成分(ポリマー分)を析出させて溶媒から分離し、溶媒可溶成分として非ゴム分を含有する液相を回収した。析出物に対し、再度、同様の手順でベンゼン溶解及びメタノール滴下を行うことによりゴム成分を分離し、溶媒可溶成分として非ゴム分を含有する液相を回収した。1回目及び2回目の液相を混合した後に200mLに定容して得られた液を測定用試料として得た。この測定用試料を液体クロマトグラフ(LC、株式会社日立製作所製、ポンプ:L-6200、L-600、UV検出器:L-4250)に20μL注入した。液体クロマトグラフの移動相は、アセトニトリル及び水の比率を変化させながら使用し、1mL/minの流量で流した。カラムとしては、Inertsil ODS-3(φ4.6×150mm、5μm、GLサイエンス株式会社製)を用いた。チアゾール化合物(測定波長:300nm)の標準液0.05ppm、0.1ppm及び1.0ppmと、ジチオカルバミン酸系化合物(測定波長:280nm)の標準液10ppm、50ppm及び100ppmとを用いてピーク検出時間を確認し、そのピーク面積から求めた検量線により定量値を求めた。本定量値と、分析に用いたサンプル量との比較により、生ゴム中の未反応のチアゾール化合物及び未反応のジチオカルバミン酸系化合物の含有量を求めた。
[サンプルの作製]
 上述の生ゴム100質量部、加工助剤1(滑剤、新日本理化株式会社製、商品名「ステアリン酸50S」)1質量部、加工助剤2(滑剤、エスアンドエスジャパン株式会社製、商品名「ストラクトールWB212」)2質量部、加工助剤3(日本精蝋株式会社製、商品名「パラフィンワックス130°F」)1質量部、老化防止剤1(大内新興化学工業株式会社製、商品名「ノクラックAD-F」、オクチル化ジフェニルアミン)1質量部、老化防止剤2(大内新興化学工業株式会社製、商品名「ノクラックNBC」、ジブチルジチオカルバミン酸ニッケル)1質量部、酸化マグネシウム(協和化学工業株式会社製、商品名「キョーワマグ150」)4質量部、充填剤1(旭カーボン株式会社製、商品名「アサヒサーマル」、カーボンブラック)10質量部、充填剤2(白石カルシウム株式会社製、商品名「デキシクレー」)10質量部、充填剤3(白石カルシウム株式会社製、商品名「クラウンクレー」)15質量部、可塑剤1(出光興産株式会社製、商品名「NP-24」、ナフテン系鉱物油)15質量部、可塑剤2(出光興産株式会社製、商品名「AH-16」、芳香族系プロセス油)20質量部、加硫剤(堺化学工業株式会社製、酸化亜鉛2種)5質量部、及び、発泡剤1(三協化成株式会社製、商品名「セルマイクS」、p,p’-オキシビスベンゼンスルホニルヒドラジド)8質量部を、8インチロールを用いて混合することにより未加硫コンパウンドを得た。次に、JIS K 6299に準拠してこの未加硫コンパウンドに対して下記2度のプレス加硫を行うことにより評価用サンプル(スポンジ)を作製した。
 キャビティー領域が縦100mm、横95mm、高さ8mmの金型に未加硫コンパウンド102g(充填率105%)を入れ、キャビティー領域に対して、圧力3.5MPa以上、145℃の条件下で1次加硫(1度目のプレス加硫)を20分間行った。その後、大気圧下、23℃の条件下で10分間静置することにより1次加硫コンパウンドを得た。そして、キャビティー領域が縦175mm、横170mm、高さ16mmの金型にこの1次加硫コンパウンドを入れ、キャビティー領域に対して、圧力3.5MPa以上、155℃の条件下で2次加硫(2度目のプレス加硫)を20分間行った。
(実施例2)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.5質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から8質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例3)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から2質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から2質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例4)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から3質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から2質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例5)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.5質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から2質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例6)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から3質量部に変更し、テトラベンジルチウラムジスルフィドを添加しなかったこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例7)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.3質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から8質量部に変更したこと以外は、実施例1と同様の方法にて生ゴムを得た。
(実施例8)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.3質量部に変更し、分子量調整時の処理時間を1時間から3時間に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例9)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から1.5質量部に変更し、分子量調整時の処理時間を1時間から15分に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例10)
 分子量調整剤であるテトラベンジルチウラムジスルフィドの添加量を4質量部から8質量部に変更し、分子量調整時の処理時間を1時間から15分に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例11)
 分子量調整剤として、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドを、下記式(A2)で表される末端官能基を与えるN-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド(Chemieliva pharma & Chem Co.,LTD製)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。硫黄変性クロロプレンゴムの全量を基準として、N-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド由来の末端官能基(チアゾール末端種A2)の含有量は0.15質量%であり、上述の式(B1)で表されるテトラベンジルチウラムジスルフィド由来の末端官能基(ジチオカルバミン酸末端種B1)の含有量は0.33質量%であった。
Figure JPOXMLDOC01-appb-C000010
(実施例12)
 分子量調整剤として、テトラベンジルチウラムジスルフィドを、下記式(B2)で表される末端官能基を与えるテトラキス(2-エチルヘキシル)チウラムジスルフィド(大内新興化学工業株式会社製、商品名「ノクセラーTOT-N」)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。硫黄変性クロロプレンゴムの全量を基準として、上述の式(A1)で表されるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド由来の末端官能基(チアゾール末端種A1)の含有量は0.16質量%であり、テトラキス(2-エチルヘキシル)チウラムジスルフィド由来の末端官能基(ジチオカルバミン酸末端種B2)の含有量は0.25質量%であった。
Figure JPOXMLDOC01-appb-C000011
(実施例13)
 分子量調整剤として、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドを、上述の式(A2)で表される末端官能基を与えるN-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミドに変更すると共に、テトラベンジルチウラムジスルフィドを、上述の式(B2)で表される末端官能基を与えるテトラキス(2-エチルヘキシル)チウラムジスルフィドに変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。硫黄変性クロロプレンゴムの全量を基準として、N-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド由来の末端官能基(チアゾール末端種A2)の含有量は0.14質量%であり、テトラキス(2-エチルヘキシル)チウラムジスルフィド由来の末端官能基(ジチオカルバミン酸末端種B2)の含有量は0.32質量%であった。
(実施例14)
 8質量部の発泡剤1を5質量部の発泡剤2(三協化成株式会社製、商品名「セルマイクC」、アゾジカルボンアミド)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(実施例15)
 8質量部の発泡剤1を4質量部の発泡剤1及び2.5質量部の発泡剤2(三協化成株式会社製、商品名「セルマイクC」、アゾジカルボンアミド)に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(比較例1)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から3質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から12質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(比較例2)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.3質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から0.5質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(比較例3)
 分子量調整剤であるN-シクロヘキシル-2-ベンゾチアゾールスルフェンアミドの添加量を1質量部から0.5質量部に変更し、テトラベンジルチウラムジスルフィドの添加量を4質量部から12質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(比較例4)
 分子量調整剤として、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド及びテトラベンジルチウラムジスルフィドを、下記式で表される末端官能基を与えるテトラエチルチウラムジスルフィド(大内新興化学工業株式会社製、商品名「ノクセラーTET」)に変更し、その添加量を2.5質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。硫黄変性クロロプレンゴムの全量を基準として、テトラエチルチウラムジスルフィド由来の末端官能基の含有量は0.26質量%であった。
Figure JPOXMLDOC01-appb-C000012
(比較例5)
 発泡剤1の添加量を8質量部から2質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
(比較例6)
 発泡剤1の添加量を8質量部から20質量部に変更したこと以外は、実施例1と同様の方法にて評価用サンプルを得た。
<評価>
 上述の生ゴム及び評価用サンプル(発泡体)について評価を行った。実施例の結果を表1及び表2に示し、比較例の結果を表3に示す。比較例1では、生ゴムのムーニー粘度が低すぎることから評価用サンプルを作製できなかったため各評価を行わなかった。比較例5では、発泡せず評価用サンプルを作製することができなかったため各評価を行わなかった。
(ムーニー粘度)
 上述の生ゴムについて、JIS K 6300-1に準拠して、L型ロータの予熱時間1分、回転時間4分、試験温度100℃にてムーニー粘度(ML1+4)の測定を行った。比較例1の生ゴムのムーニー粘度は低すぎて測定不能であった。
(引き裂き強度)
 JIS K 6400-1に準拠して、打ち抜き冶具を用いて上述の評価用サンプルから4号形切込みなしアングル形試験片を作製した。その後、JIS K6400-5に準拠して定速引張試験機で試験速度500mm/分にて測定し、試験片が破断するまでの間に示した最大引き裂き荷重を膜厚で除することにより引き裂き強度を得た。
(収縮率)
 上述の評価用サンプル(作製直後の評価用サンプル)を大気圧下、23℃の条件下で168時間静置した後、評価用サンプルの表層を厚さ2mm±0.20mmにスライスしてスポンジシートを作製した。スライス直後のスポンジシートの縦横の大きさを測定し基準値として得た後、大気圧下、23℃の条件下で168時間静置した時のスポンジシートの縦横の大きさを再度測定した。収縮率は、スライス直後のスポンジシートの縦の長さをH0(mm)、横の長さをL0(mm)、168時間静置後のスポンジシートの縦の長さをH1(mm)、横の長さをL1(mm)として下記式から算出した。
  収縮率(%)=[(H0×L0-H1×L1)÷(H0×L0)]×100
(外観)
 上述の評価用サンプル(作製直後の評価用サンプル)を大気圧下、23℃の条件下で24時間静置した後、評価用サンプルの表面状態を目視で観察した。観察は以下の3項目について行い、全ての項目で「A」であった場合を「A」と評価し、少なくとも一つの項目で「A」の条件でなかった場合を「B」と評価した。
[項目1:クレーターの有無]
 ガス抜け等によって生じるクレーター状の凸凹の有無を確認した。凹凸が全く確認されなかった場合を「A」と評価した。
[項目2:爪痕の有無]
 評価用サンプルの表面に爪を立てて軽く押した後に開放したときの爪痕の有無を観察した。爪痕が全く残らなかった場合を「A」と評価した。
[項目3:コーナー部分の観察]
 評価用サンプルの角部(コーナー)について、収縮によるしわよりの状態を確認した。角がしっかり残っていた場合を「A」と評価した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表1~3に示す通り、実施例の発泡ゴム組成物を用いて得られる発泡体によれば、引き裂き強度、収縮率及び外観が優れた発泡体が得られることが確認される。比較例1では、ムーニー粘度が低すぎて、評価用サンプルを作製することができなかった。比較例5では、発泡せず評価用サンプルを作製することができなかった。

Claims (15)

  1.  硫黄変性クロロプレンゴム及び化学発泡剤を含有し、
     前記硫黄変性クロロプレンゴムが、下記一般式(A)で表されると共に分子末端に位置する官能基Aを有し、
     前記硫黄変性クロロプレンゴムにおいて、下記一般式(B)で表されると共に分子末端に位置する官能基Bの含有量の前記官能基Aの含有量に対する質量比B/Aが12.00以下であり、
     前記官能基A及び前記官能基Bの合計量が0.10~1.00質量%であり、
     前記化学発泡剤の含有量が、前記硫黄変性クロロプレンゴム、チアゾール化合物及びジチオカルバミン酸系化合物の合計100質量部に対して3~16質量部である、発泡ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Ra1及びRa2は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、カルボキシ基、カルボン酸塩基、シアノ基、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリールチオ基を示し、Ra1及びRa2は、互いに結合して、置換基を有してもよい環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rb1及びRb2は、それぞれ独立に、置換基を有してもよいアルキル基、又は、置換基を有してもよいアリール基を示す。)
  2.  前記質量比B/Aが0を超え12.00以下である、請求項1に記載の発泡ゴム組成物。
  3.  前記官能基Aが、Ra1及びRa2が互いに結合して形成されたベンゾチアゾール環を有する、請求項1又は2に記載の発泡ゴム組成物。
  4.  Rb1及びRb2から選ばれる少なくとも一種の炭素数が7~8である、請求項1~3のいずれか一項に記載の発泡ゴム組成物。
  5.  前記硫黄変性クロロプレンゴムにおいて前記官能基Aの含有量が0.05~0.40質量%である、請求項1~4のいずれか一項に記載の発泡ゴム組成物。
  6.  前記硫黄変性クロロプレンゴムにおいて前記官能基Bの含有量が0.80質量%以下である、請求項1~5のいずれか一項に記載の発泡ゴム組成物。
  7.  前記チアゾール化合物の含有量が前記硫黄変性クロロプレンゴム100質量部に対して0.0005~0.0100質量部である、請求項1~6のいずれか一項に記載の発泡ゴム組成物。
  8.  前記チアゾール化合物が、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4-メチル-2-ベンゾチアゾールスルフェンアミド、N-シクロヘキシル-4,5-ジメチル-2-ベンゾチアゾールスルフェンアミド、N,N-ジシクロヘキシル-1,3-ベンゾチアゾール-2-スルフェンアミド、N-(tert-ブチル)-2-ベンゾチアゾールスルフェンアミド、N,N-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド、4,5-ジヒドロチアゾール-2-スルフェンアミド、N-シクロヘキシル-4,5-ジヒドロチアゾール-2-スルフェンアミド、N-オキシジエチルベンゾチアゾール-2-スルフェンアミド、2-(4’-モルフォリニルジチオ)ベンゾチアゾール、2-メルカプトベンゾチアゾール、4,5-ジヒドロ-2-メルカプトチアゾール、ジベンジルチアゾリルジスルフィド、及び、2-(モルホリノジチオ)ベンゾチアゾールから選ばれる少なくとも一種の化合物を含む、請求項1~7のいずれか一項に記載の発泡ゴム組成物。
  9.  前記ジチオカルバミン酸系化合物の含有量が前記硫黄変性クロロプレンゴム100質量部に対して2.00質量部以下である、請求項1~8のいずれか一項に記載の発泡ゴム組成物。
  10.  前記ジチオカルバミン酸系化合物が、ジベンジルジチオカルバミン酸、ジベンジルジチオカルバミン酸ナトリウム、ジベンジルジチオカルバミン酸カリウム、ジベンジルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸アンモニウム、ジベンジルジチオカルバミン酸ニッケル、ジ-2-エチルヘキシルジチオカルバミン酸ナトリウム、ジ-2-エチルヘキシルジチオカルバミン酸カリウム、ジ-2-エチルヘキシルジチオカルバミン酸カルシウム、ジ-2-エチルヘキシルジチオカルバミン酸亜鉛、ジ-2-エチルヘキシルカルバミン酸アンモニウム、テトラベンジルチウラムジスルフィド、及び、テトラキス(2-エチルヘキシル)チウラムジスルフィドから選ばれる少なくとも一種の化合物を含む、請求項1~9のいずれか一項に記載の発泡ゴム組成物。
  11.  前記チアゾール化合物の含有量Cに対する前記ジチオカルバミン酸系化合物の含有量Dの質量比D/Cが2000以下である、請求項1~10のいずれか一項に記載の発泡ゴム組成物。
  12.  前記硫黄変性クロロプレンゴム、前記チアゾール化合物及び前記ジチオカルバミン酸系化合物の混合物のムーニー粘度が20~80である、請求項1~11のいずれか一項に記載の発泡ゴム組成物。
  13.  前記化学発泡剤が、アゾ化合物、ニトロソ化合物、スルホニルヒドラジド化合物、アジド化合物及び無機発泡剤から選ばれる少なくとも一種を含む、請求項1~12のいずれか一項に記載の発泡ゴム組成物。
  14.  請求項1~13のいずれか一項に記載の発泡ゴム組成物の発泡体。
  15.  請求項14に記載の発泡体からなる、成形品。
PCT/JP2021/033385 2020-10-27 2021-09-10 発泡ゴム組成物、発泡体及び成形品 WO2022091599A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/249,839 US20230383082A1 (en) 2020-10-27 2021-09-10 Rubber foam composition, foam and molded article
EP21885718.3A EP4223787A4 (en) 2020-10-27 2021-09-10 COMPOSITION OF FOAM RUBBER, FOAM, AND MOLDED ARTICLE
CN202180068698.9A CN116323683A (zh) 2020-10-27 2021-09-10 发泡橡胶组合物、发泡体及成型品
KR1020237012112A KR20230095066A (ko) 2020-10-27 2021-09-10 발포 고무 조성물, 발포체 및 성형품
JP2022558900A JPWO2022091599A1 (ja) 2020-10-27 2021-09-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-179391 2020-10-27
JP2020179391 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022091599A1 true WO2022091599A1 (ja) 2022-05-05

Family

ID=81382285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033385 WO2022091599A1 (ja) 2020-10-27 2021-09-10 発泡ゴム組成物、発泡体及び成形品

Country Status (6)

Country Link
US (1) US20230383082A1 (ja)
EP (1) EP4223787A4 (ja)
JP (1) JPWO2022091599A1 (ja)
KR (1) KR20230095066A (ja)
CN (1) CN116323683A (ja)
WO (1) WO2022091599A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230095065A (ko) * 2020-12-14 2023-06-28 덴카 주식회사 고무 재료, 고무 조성물, 가황물, 발포체, 및 웨트슈트

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053756A (ja) * 1996-08-09 1998-02-24 Otsuka Chem Co Ltd 発泡剤組成物及び発泡体
JPH10298328A (ja) 1997-04-28 1998-11-10 Tosoh Corp 無圧オープン加硫高発泡スポンジ用クロロプレンゴム組成物
JP2000170846A (ja) * 1998-12-08 2000-06-23 Bando Chem Ind Ltd 伝動ベルト及びエラストマー組成物
JP2001151822A (ja) * 1999-11-22 2001-06-05 Mitsui Chemicals Inc エチレン系共重合体ゴム、その製造方法およびゴム組成物
WO2003072651A1 (en) * 2002-02-21 2003-09-04 The University Of Akron Dynamically vulcanized elastomeric blends including hydrogenated acrylonitrile-butadiene copolymers
JP2007063450A (ja) * 2005-09-01 2007-03-15 Denki Kagaku Kogyo Kk 水膨張性発泡シール材
JP2007090820A (ja) * 2005-09-30 2007-04-12 Hokushin Ind Inc 発泡ゴムロール及び発泡ゴムロールの製造方法
JP2012067235A (ja) 2010-09-27 2012-04-05 Sanwa Kako Co Ltd クロロプレンゴム発泡体及びその製造方法
JP2012213615A (ja) * 2011-03-22 2012-11-08 Ube Industries Ltd 靴底用発泡体ゴム組成物及びアウトソール
JP2013144748A (ja) * 2012-01-13 2013-07-25 Denki Kagaku Kogyo Kk 硫黄変性クロロプレンゴム及びその製造方法、並びに成形体
WO2014148297A1 (ja) * 2013-03-19 2014-09-25 日東電工株式会社 発泡積層体
WO2014157602A1 (ja) * 2013-03-28 2014-10-02 電気化学工業株式会社 ブレンドゴム、ブレンドゴム組成物及び加硫物
WO2015177838A1 (ja) * 2014-05-19 2015-11-26 横浜ゴム株式会社 ゴム組成物、ゴム組成物金属積層体、及び加硫ゴム製品
WO2017068893A1 (ja) * 2015-10-19 2017-04-27 株式会社エラストミックス ゴム組成物並びに架橋ゴム製品及びその製造方法
WO2018074465A1 (ja) * 2016-10-18 2018-04-26 鉦則 藤田 ゴム成形体、シール材、自動車用部品、未架橋ゴム組成物、及び、ゴム成形体の製造方法
JP2019123852A (ja) * 2018-01-12 2019-07-25 住友ゴム工業株式会社 ゴム組成物、ゴムローラおよび画像形成装置
WO2020116577A1 (ja) * 2018-12-05 2020-06-11 デンカ株式会社 多孔質吸音材及びその製造方法、並びに、吸音方法
US20200190296A1 (en) * 2016-12-30 2020-06-18 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and associated articles and methods
WO2020189518A1 (ja) * 2019-03-20 2020-09-24 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020189517A1 (ja) * 2019-03-20 2020-09-24 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289266B2 (ja) * 2017-11-24 2023-06-09 デンカ株式会社 硫黄変性クロロプレンゴム組成物及び加硫物、並びに該加硫物を用いた成形品及び硫黄変性クロロプレンゴム組成物の製造方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053756A (ja) * 1996-08-09 1998-02-24 Otsuka Chem Co Ltd 発泡剤組成物及び発泡体
JPH10298328A (ja) 1997-04-28 1998-11-10 Tosoh Corp 無圧オープン加硫高発泡スポンジ用クロロプレンゴム組成物
JP2000170846A (ja) * 1998-12-08 2000-06-23 Bando Chem Ind Ltd 伝動ベルト及びエラストマー組成物
JP2001151822A (ja) * 1999-11-22 2001-06-05 Mitsui Chemicals Inc エチレン系共重合体ゴム、その製造方法およびゴム組成物
WO2003072651A1 (en) * 2002-02-21 2003-09-04 The University Of Akron Dynamically vulcanized elastomeric blends including hydrogenated acrylonitrile-butadiene copolymers
JP2007063450A (ja) * 2005-09-01 2007-03-15 Denki Kagaku Kogyo Kk 水膨張性発泡シール材
JP2007090820A (ja) * 2005-09-30 2007-04-12 Hokushin Ind Inc 発泡ゴムロール及び発泡ゴムロールの製造方法
JP2012067235A (ja) 2010-09-27 2012-04-05 Sanwa Kako Co Ltd クロロプレンゴム発泡体及びその製造方法
JP2012213615A (ja) * 2011-03-22 2012-11-08 Ube Industries Ltd 靴底用発泡体ゴム組成物及びアウトソール
JP2013144748A (ja) * 2012-01-13 2013-07-25 Denki Kagaku Kogyo Kk 硫黄変性クロロプレンゴム及びその製造方法、並びに成形体
WO2014148297A1 (ja) * 2013-03-19 2014-09-25 日東電工株式会社 発泡積層体
WO2014157602A1 (ja) * 2013-03-28 2014-10-02 電気化学工業株式会社 ブレンドゴム、ブレンドゴム組成物及び加硫物
WO2015177838A1 (ja) * 2014-05-19 2015-11-26 横浜ゴム株式会社 ゴム組成物、ゴム組成物金属積層体、及び加硫ゴム製品
WO2017068893A1 (ja) * 2015-10-19 2017-04-27 株式会社エラストミックス ゴム組成物並びに架橋ゴム製品及びその製造方法
WO2018074465A1 (ja) * 2016-10-18 2018-04-26 鉦則 藤田 ゴム成形体、シール材、自動車用部品、未架橋ゴム組成物、及び、ゴム成形体の製造方法
US20200190296A1 (en) * 2016-12-30 2020-06-18 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and associated articles and methods
JP2019123852A (ja) * 2018-01-12 2019-07-25 住友ゴム工業株式会社 ゴム組成物、ゴムローラおよび画像形成装置
WO2020116577A1 (ja) * 2018-12-05 2020-06-11 デンカ株式会社 多孔質吸音材及びその製造方法、並びに、吸音方法
WO2020189518A1 (ja) * 2019-03-20 2020-09-24 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020189517A1 (ja) * 2019-03-20 2020-09-24 デンカ株式会社 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4223787A4

Also Published As

Publication number Publication date
EP4223787A4 (en) 2024-03-20
US20230383082A1 (en) 2023-11-30
KR20230095066A (ko) 2023-06-28
CN116323683A (zh) 2023-06-23
EP4223787A1 (en) 2023-08-09
JPWO2022091599A1 (ja) 2022-05-05

Similar Documents

Publication Publication Date Title
JP7289266B2 (ja) 硫黄変性クロロプレンゴム組成物及び加硫物、並びに該加硫物を用いた成形品及び硫黄変性クロロプレンゴム組成物の製造方法
JP7294889B2 (ja) 発泡ゴム組成物、発泡加硫物及び成形品
CN113661181B (zh) 硫改性氯丁橡胶及其制造方法、硫改性氯丁橡胶组合物、硫化物以及成型品
WO2022091599A1 (ja) 発泡ゴム組成物、発泡体及び成形品
WO2022085333A1 (ja) 発泡ゴム組成物、発泡体及び成形品
JP7366998B2 (ja) 硫黄変性クロロプレンゴムの製造方法
JP7366999B2 (ja) 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020189518A1 (ja) 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
WO2020189515A1 (ja) 硫黄変性クロロプレンゴム及びその製造方法、硫黄変性クロロプレンゴム組成物、加硫物、並びに、成形品
JP7336221B2 (ja) 硫黄変性クロロプレンゴム、加硫物及び該加硫物を用いた成形品並びに硫黄変性クロロプレンゴムの製造方法
JP2014070214A (ja) 硫黄変性クロロプレンゴム組成物、これを用いたスポンジ及びウェットスーツ
JP2021031518A (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP2022070369A (ja) 発泡ゴム組成物、スポンジ及び成形品
JP2022067291A (ja) 発泡ゴム組成物、スポンジ及び成形品
JP2022070368A (ja) 発泡ゴム組成物、スポンジ及び成形品
JP2022067292A (ja) 発泡ゴム組成物、スポンジ及び成形品
JP2020196784A (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
WO2021215095A1 (ja) ゴム組成物、加硫物及び成形品
WO2021205753A1 (ja) ゴム組成物、加硫物及び成形品
WO2022130702A1 (ja) ゴム材料、ゴム組成物、加硫物、発泡体、及び、ウェットスーツ
JP7461204B2 (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP2021172695A (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品
JP2021169544A (ja) ゴム組成物、該ゴム組成物の加硫物及び加硫成形体
JP2021169545A (ja) ゴム組成物、該ゴム組成物の加硫物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558900

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18249839

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021885718

Country of ref document: EP

Effective date: 20230504

NENP Non-entry into the national phase

Ref country code: DE