WO2021210674A1 - フォージャサイト型ゼオライトおよびその製造方法 - Google Patents
フォージャサイト型ゼオライトおよびその製造方法 Download PDFInfo
- Publication number
- WO2021210674A1 WO2021210674A1 PCT/JP2021/015709 JP2021015709W WO2021210674A1 WO 2021210674 A1 WO2021210674 A1 WO 2021210674A1 JP 2021015709 W JP2021015709 W JP 2021015709W WO 2021210674 A1 WO2021210674 A1 WO 2021210674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- faujasite
- zeolite
- type zeolite
- range
- less
- Prior art date
Links
- 239000010457 zeolite Substances 0.000 title claims abstract description 157
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 153
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 149
- 239000012013 faujasite Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000010521 absorption reaction Methods 0.000 claims abstract description 22
- 125000005372 silanol group Chemical group 0.000 claims abstract description 14
- 238000002329 infrared spectrum Methods 0.000 claims abstract description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 8
- 230000002378 acidificating effect Effects 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 33
- 238000010306 acid treatment Methods 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 22
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 19
- 239000011148 porous material Substances 0.000 claims description 17
- 238000001179 sorption measurement Methods 0.000 claims description 14
- 238000003795 desorption Methods 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000002253 acid Substances 0.000 description 18
- 239000011973 solid acid Substances 0.000 description 18
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- 239000000843 powder Substances 0.000 description 12
- 230000007423 decrease Effects 0.000 description 10
- 230000002209 hydrophobic effect Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- -1 aluminum compound Chemical class 0.000 description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 4
- 235000011130 ammonium sulphate Nutrition 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000010025 steaming Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000011164 primary particle Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000004231 fluid catalytic cracking Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000005504 petroleum refining Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- LXPCOISGJFXEJE-UHFFFAOYSA-N oxifentorex Chemical compound C=1C=CC=CC=1C[N+](C)([O-])C(C)CC1=CC=CC=C1 LXPCOISGJFXEJE-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/026—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/084—Y-type faujasite
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/20—Faujasite type, e.g. type X or Y
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/20—Faujasite type, e.g. type X or Y
- C01B39/24—Type Y
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/16—After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/36—Steaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/37—Acid treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
Definitions
- the present invention relates to a faujasite-type zeolite having a small amount of surface silanol groups and a method for producing the same.
- zeolite is a general term for crystalline porous aluminosilicates. Zeolites have been widely used as catalysts, adsorbents, separation membranes, etc. in many industrial processes such as petroleum refining and petrochemistry. For example, the fluid catalytic cracking process is an important process that uses a catalyst to crack heavy oil in petroleum to obtain a fraction such as gasoline with high added value. Faujasite-type zeolite, which is a porous material having a strong solid acid, has long been used as a catalyst for this process. Faujasite-type zeolite has also been used as an adsorbent for a long time.
- This ratio is also commonly referred to as the Cavan ratio (SAR) and is represented by the molar ratio of SiO 2 / Al 2 O 3.
- SAR Cavan ratio
- Al in the skeleton of zeolite decreases, so that the solid acid derived from Al in the skeleton decreases, and the zeolite exhibits hydrophobicity (low affinity with water).
- this Cavan ratio is lowered, the solid acid derived from Al in the skeleton increases and exhibits hydrophilicity.
- Non-Patent Document 1 As a method for increasing the skeletal cavan ratio of faujasite-type zeolite, dealuminum treatment such as 1) hydrothermal treatment with steam, 2) EDTA treatment, or 3) ammonium hexafluorosilicate treatment is known (Non-Patent Document 1). ). By using such a treatment, a faujasite-type zeolite having a high cavan ratio can be synthesized (Patent Document 1).
- Non-Patent Document 1 and Patent Document 1 when a hydrophobic faujasite-type zeolite is synthesized, aluminum is removed from the skeleton, so that there is a problem that solid acid is reduced.
- an object of the present invention is to provide a faujasite-type zeolite which is hydrophobic but has a large amount of solid acid.
- the present inventors focused on the surface silanol groups of faujasite-type zeolite and attempted to reduce them.
- the present inventors use a method in which a faujasite-type zeolite is dealuminated, the Al compound remaining on the surface thereof is removed with an acid, and the zeolite is steam-treated at a specific temperature. It was found that a faujasite-type zeolite having a lower affinity for water (more hydrophobic) can be obtained while maintaining the above.
- the faujasite-type zeolite of the present invention has an absorption band 1 (surface silanol group) having a maximum in the range of 3730 cm -1 or more and 3760 cm -1 or less in the IR spectrum, and 3550 cm -1 or more and 3700 cm -1 or less. It has an absorption band 2 (acidic hydroxyl group) having a maximum in the range of, and the ratio (h1 / h2) of the peak height (h1) of the absorption band 1 to the peak height (h2) of the absorption band 2 is 1. It is less than .2.
- absorption band 1 surface silanol group
- absorption band 2 acidic hydroxyl group
- the method for producing a faujasite-type zeolite of the present invention is a dealumination step of extracting aluminum from the skeleton of the zeolite by steaming the faujasite-type zeolite at a temperature in the range of 500 ° C. or higher and 800 ° C. or lower.
- a faujasite-type zeolite having a large amount of solid acid while being hydrophobic and a method for producing the same can be obtained.
- the faujasite-type zeolite of the present invention (hereinafter, also referred to as “zeolite of the present invention”) has an amount of surface silanol groups that affect the affinity with water and an amount of acidic hydroxyl groups that affect its solid acidity. Is specified by the ratio of the peak heights of the absorption bands obtained from the IR spectrum. That is, in the IR spectrum, the peak height (h1) of the absorption band 1 (surface silanol group) having a maximum in the range of 3730 cm -1 or more and 3760 cm -1 or less and the peak height (h1) of 3550 cm -1 or more and 3700 cm -1 or less.
- the ratio (h1 / h2) of the absorption band 2 (acidic hydroxyl group) having the maximum to the peak height (h2) is less than 1.2. As the amount of surface hydroxyl groups decreases and the amount of acidic hydroxyl groups increases, this ratio decreases. The lower the ratio, the better, but the lower limit may be 0.01. Further, this ratio is preferably in the range of 0.01 or more and 1.0 or less. When this ratio is low, the affinity of the zeolite of the present invention with water tends to be lower (more hydrophobic), and the amount of solid acid tends to be higher. Further, this ratio is more preferably in the range of 0.1 or more and 0.8 or less.
- the zeolite of the present invention preferably has a Cavan ratio in the range of 10 or more and 200 or less.
- This Cavan ratio is calculated from the composition ratio of the zeolite of the present invention.
- the higher the cavan ratio the higher the caban ratio of the skeleton, so that the affinity of the zeolite of the present invention with water tends to decrease (become more hydrophobic).
- this Cavan ratio is too high, the amount of aluminum in the skeleton tends to decrease, and the amount of solid acid also decreases. Therefore, it is more preferable that the zeolite of the present invention has a Cavan ratio in the range of 30 or more and 150 or less.
- the zeolite of the present invention preferably has a lattice constant of 2.430 nm or more.
- the lattice constant is an index indicating the Cavan ratio of the skeleton of the zeolite of the present invention.
- the lattice constant increases, and when the amount of aluminum in the skeleton decreases (the skeleton's Cavan ratio increases), the lattice constant decreases. If the lattice constant of the zeolite of the present invention is too low, the amount of aluminum in the skeleton is small, so that the amount of solid acid is small.
- the zeolite of the present invention is more preferably in the range of 2.430 nm or more and 2.440 nm or less, and particularly preferably in the range of more than 2.431 nm and 2.435 nm or less.
- the zeolite of the present invention preferably has high crystallinity.
- the crystallinity of zeolite affects the durability and solid acid properties of zeolite.
- the intensity of the diffraction peak derived from the faujasite structure obtained by X-ray diffraction measurement was used as an index showing the crystallinity of zeolite.
- the intensity ratio of the peak derived from the faujasite structure obtained by X-ray diffraction measurement is determined by determining the crystalline property of the zeolite of the present invention. It was used as an index.
- the zeolite of the present invention preferably has this strength ratio of 1.00 or more, and more preferably 1.40 or more. It is self-evident to those skilled in the art that the higher the crystallinity, the better. In the zeolite of the present invention, the upper limit may be 3.00 or less.
- the zeolite of the present invention preferably has a specific surface area of 650 m 2 / g or more.
- Zeolites generally have a very large specific surface area due to the pore structure derived from their skeleton. If the specific surface area of the zeolite of the present invention is lower than 650 m 2 / g, the pore structure derived from the skeleton of the zeolite of the present invention may not be sufficiently developed, and the amount of solid acid thereof may be low. There is.
- the zeolite of the present invention preferably has a low alkali metal content.
- Alkali metals can poison solid acids contained in zeolites. Therefore, the alkali metal content of the zeolite of the present invention, when the alkali metal is M, is preferably not more than 0.3 mass% in M 2 O in terms, and more preferably 0.2 mass% or less .. Since the zeolite of the present invention is particularly susceptible to poisoning by Na among alkali metals, it is preferable that the content thereof is small.
- the zeolite of the present invention preferably has an average particle size in the range of 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5 ⁇ m or less, and 0.7 ⁇ m or more and 3 ⁇ m or less. It is particularly preferable that it is in the range. When used as a catalyst, when the average particle size is in this range, the catalytic activity and durability tend to be good.
- the zeolite of the present invention preferably has a pore volume of 3.5 nm or more and 5 nm or less calculated from the pore distribution measured by the nitrogen adsorption method, preferably less than 0.03 cm 3 / g, and 0.02 cm 3 / g. It is more preferably g or less, and particularly preferably 0.01 cm 3 / g or less.
- the zeolite of the present invention preferably has an ammonia temperature desorption amount of 0.1 mmol / g or more and 1.3 mmol / g or less, and more preferably 0.15 mmol / g or more and 1 mmol / g or less. , 0.25 mmol / g or more, and 1 mmol / g or less is particularly preferable.
- the amount of ammonia desorption by temperature is an index showing the amount of solid acid in a substance.
- the amount of water adsorbed on faujasite-type zeolite is an index showing hydrophobicity, and the smaller the amount, the more hydrophobic it is.
- the zeolite of the present invention preferably has a water adsorption amount of 16% or less, more preferably 10% or less, and particularly preferably 5% or less.
- the ratio of the amount of heated desorption of ammonia to the amount of water adsorption of the zeolite of the present invention is preferably 0.045 or more and 0.1 or less, preferably 0.05 or more. , 0.1 or less, more preferably 0.06 or more and 0.1 or less.
- the amount of aluminum temperature desorption of faujasite-type zeolite is affected by the content of aluminum contained in the zeolite skeleton, and the smaller the content of aluminum contained in the zeolite skeleton, the smaller the amount of ammonia temperature desorption tends to be. It is in.
- the amount of water adsorbed on the faujasite-type zeolite is affected by the content of aluminum contained in the zeolite skeleton and the amount of surface silanol groups, and the smaller the amount, the smaller the amount of water adsorbed tends to be. Since the zeolite of the present invention has a smaller amount of surface silanol groups than the conventional faujasite type zeolite, the amount of water adsorption is about the same as that of the conventional faujasite type zeolite, and the amount of ammonia temperature desorption is large. Can be done (see Figure 4).
- the zeolite of the present invention is hydrophobic but contains a large amount of solid acid, it can be used as one of the constituents of a catalyst for fluid catalytic cracking and a catalyst for hydrocracking in petroleum refining, for example. It can also be used as an adsorbent.
- the method for producing a faujasite-type zeolite of the present invention is a method. Faujasite-type zeolite is steam-treated at a temperature in the range of 500 ° C or higher and 800 ° C or lower to extract aluminum from the skeleton of the zeolite.
- the present invention includes a steam treatment step of steaming the faujasite-type zeolite obtained through the acid treatment step at a temperature in the range of 300 ° C. or higher and 650 ° C. or lower.
- the production method of the present invention includes a dealumination step of extracting aluminum from the skeleton of the zeolite by steaming the faujasite-type zeolite at a temperature in the range of 500 ° C. or higher and 800 ° C. or lower.
- a dealumination step of extracting aluminum from the skeleton of the zeolite by steaming the faujasite-type zeolite at a temperature in the range of 500 ° C. or higher and 800 ° C. or lower Although it is possible to extract aluminum in the skeleton of a faujasite-type zeolite by acid treatment, these methods tend to cause great damage to the skeleton of the zeolite. Therefore, it is important to perform this step before the acid treatment step described later. At this time, the extracted aluminum remains as an aluminum compound on the surface of the zeolite. This is also called extraskeletal aluminum.
- the faujasite-type zeolite used in this step may be a commercially available one, or may be synthesized by a conventionally known method.
- a faujasite-type zeolite can be obtained by adding a Si raw material and an Al raw material, further adding a Na raw material and water, and then hydrothermally treating the temperature at 80 ° C. or higher and 120 ° C. or lower.
- the cavan ratio of the faujasite-type zeolite used as a raw material is preferably in the range of 2 or more and 10 or less. Faujasite-type zeolites with a Cavan ratio in this range are easy to mass-produce industrially. It is more preferable that the faujasite-type zeolite is ion-exchanged with ammonium ions.
- the faujasite-type zeolite it is preferable to steam the faujasite-type zeolite at a temperature in the range of 600 ° C. or higher and 700 ° C. or lower.
- a temperature in the range of 600 ° C. or higher and 700 ° C. or lower it is preferable to steam the faujasite-type zeolite at a temperature in the range of 600 ° C. or higher and 700 ° C. or lower.
- the steam processing time is in the range of about 1 hour or more and 24 hours or less. Although it depends on the steam treatment temperature described above, even if the treatment time is too short, aluminum may not be sufficiently extracted from the skeleton by the steam treatment, which is not preferable. Further, even if the steam processing time is lengthened, it is not preferable from the viewpoint of productivity.
- the steam concentration in this step is 50% or more, preferably 90% or more of the saturated water vapor amount.
- the skeleton of zeolite tends to be easily broken. The reason for this is considered to be that the skeleton becomes unstable due to defects formed during the formation of extraskeletal aluminum. In such a state, the skeleton of zeolite is easily broken by heat. On the other hand, if the amount of saturated water vapor is within the above range, the skeleton of zeolite tends to be hard to break.
- the faujasite-type zeolite obtained in this step preferably has a lattice constant in the range of 2.430 nm or more and 2.445 nm or less.
- the production method of the present invention includes an acid treatment step of removing aluminum extracted from the skeleton by acid-treating the faujasite-type zeolite obtained through the dealumination step.
- extraskeleton aluminum remaining on the surface of the zeolite after steam treatment is removed using sulfuric acid, EDTA (ethylenediaminetetraacetate) or the like.
- a conventionally known acid can be used as the acid.
- the acid sulfuric acid, nitric acid, hydrochloric acid, acetic acid, EDTA, citric acid and the like can be used.
- sulfuric acid, nitric acid, hydrochloric acid, acetic acid, EDTA, citric acid and the like can be used.
- the temperature of the acid treatment in this step is preferably in the range of 50 ° C. or higher and 98 ° C. or lower, and more preferably in the range of 65 ° C. or higher and 95 ° C. or lower. In this step, it is preferable to perform acid treatment at a higher temperature to remove as much as possible the extraskeletal aluminum remaining on the surface of the zeolite.
- a salt containing ammonium ions may be added to the acid solution in this step.
- the alkali metal contained in the faujasite-type zeolite can be easily removed.
- the acid in this step has a molar number of protons derived from the acid of 1.2 or more and 8.3 or less with respect to 1 mol of aluminum contained in the faujasite-type zeolite obtained through the dealumination step. It is preferable that the mixture is contained in the solution in such an amount. For example, when a faujasite-type zeolite containing 1 mol of aluminum (Al) is acid-treated with sulfuric acid (H 2 SO 4 ), the amount of sulfuric acid contained in the acid solution is in the range of 0.6 mol or more and 4.2 mol or less. It is preferable to adjust.
- the acid treatment time in this step depends on the acid treatment temperature or the amount of acid, but is preferably in the range of about 0.5 hours or more and 24 hours or less. If the acid treatment time is generally within this range, the purpose of the acid treatment step can be sufficiently achieved. There is no problem even if the acid treatment time is long, but it is not preferable from the viewpoint of productivity.
- the acid solution and zeolite after acid treatment can be solid-liquid separated by a method such as filtration.
- components derived from the acid solution may remain in the zeolite separated at this time. Therefore, it is preferable to suspend the separated zeolite in ion-exchanged water again and perform a washing treatment such as sprinkling warm water at less than 75 ° C. on the filter cloth. This washing process may be repeated until the conductivity of the filtrate becomes 0.1 mS / cm or less.
- the separated zeolite can be dried at a temperature of 80 ° C. or higher and 200 ° C. or lower to obtain a zeolite.
- the faujasite-type zeolite obtained in this step preferably has a lattice constant in the range of 2.430 nm or more and 2.440 nm or less.
- the production method of the present invention includes a steam treatment step of steaming the faujasite-type zeolite obtained through the acid treatment step at a temperature in the range of 300 ° C. or higher and 650 ° C. or lower.
- a steam treatment step of steaming the faujasite-type zeolite obtained through the acid treatment step at a temperature in the range of 300 ° C. or higher and 650 ° C. or lower.
- this step it is preferable to steam-treat the faujasite-type zeolite obtained through the above-mentioned acid treatment step at a temperature in the range of 400 ° C. or higher and 650 ° C. or lower.
- a temperature in the range of 400 ° C. or higher and 650 ° C. or lower When steam treatment is performed in this temperature range, Si is easily moved near the surface of the zeolite and aluminum in the skeleton is less likely to be extracted. Therefore, the surface silanol groups can be reduced while maintaining the solid acid amount of the zeolite. ..
- the steam processing time is in the range of about 0.5 hours or more and 12 hours or less. In this step, although it depends on the treatment temperature, if the steam treatment time is too long, the aluminum in the skeleton is easily extracted. Further, if it is too short, the movement of Si may be small and the amount of reduction of surface silanol groups may be small. Therefore, the steam processing time is more preferably in the range of 1 hour or more and 6 hours or less.
- the steam concentration in this step is 50% or more, preferably 90% or more of the saturated water vapor amount.
- the higher the steam concentration the more the movement of Si near the surface of the zeolite can be promoted.
- composition analysis The Si, Al, and Na contents of the sample were measured using a fluorescent X-ray measuring device (RIX-3000). From this measurement result, the Si and Al contents were converted into SiO 2 and Al 2 O 3 , respectively, and the Cavan ratio (SiO 2 / Al 2 O 3 molar ratio) was calculated.
- IR measurement The sample powder was molded into pellets of ⁇ 20 mm with 20 to 25 mg. Before the measurement, the pellets were introduced into a vacuum heating pretreatment apparatus manufactured by Makuhari Rikagaku Co., Ltd., and pretreatment was carried out at 300 ° C. for 3 hours in a high vacuum (10 -3 Pa). After cooling the cell to 50 ° C., IR was measured under the following conditions by FT / IR-6100 manufactured by JASCO Corporation. Detector: TGS Resolution: 2.0 cm -1 Measuring range: 4,000-800 cm -1 Number of integration: For 100 times obtained spectrum, and the absorbance at 4,000 cm -1, the two-point correction for connecting a straight line and the absorbance at 3,000 cm -1, and establish a baseline.
- the sample powder that had been pretreated at 500 ° C. for 1 hour in an inert gas atmosphere was put into a sample cell for measurement, and nitrogen was introduced in a measuring device (“MR-6” manufactured by Nippon Bell Co., Ltd.) in an atmosphere of -196 ° C.
- MR-6 manufactured by Nippon Bell Co., Ltd.
- a mixed gas having a gas concentration of 30 vol% and a helium gas concentration of 70 vol% was sufficiently circulated, and nitrogen was adsorbed on the sample powder.
- the nitrogen adsorbed on the sample powder was desorbed by raising the atmospheric temperature to 25 ° C., and the desorbed amount was detected by a TCD detector.
- the specific surface area per 1 g of the sample powder was determined by converting the detected amount of nitrogen desorbed into the specific surface area using the cross-sectional area of the nitrogen molecule.
- the pore distribution was measured by the nitrogen adsorption method under the following conditions. Measuring method Nitrogen adsorption method Measuring device BEL SORP-miniII (manufactured by Microtrack Bell Co., Ltd.) Sample amount about 0.05g Pretreatment 500 ° C, 1 hour (under vacuum) Relative pressure range 0-1.0 The mesopore distribution was calculated from the adsorption isotherm by the BJH method, and the pore volume of the pore group in the pore diameter range of 3.5 to 5.0 nm and the pores in the pore diameter range of 3.5 to 60 nm. The pore volume of the group was calculated.
- Example 1 Faujasite-type zeolite having a Cavan ratio of 5.0, a lattice constant of 2.466 nm, a specific surface area of 720 m 2 / g, and a Na content of 13.0 mass% in terms of Na 2 O (hereinafter, “NaY”).
- NaY Na 2 O
- Example 2 In the steam treatment step, zeolite was obtained in the same manner as in Example 1 except that the temperature of the steam treatment was set to 600 ° C. The zeolite was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 3 In the steam treatment step, zeolite was obtained in the same manner as in Example 2 except that the steam concentration was set to 50% of the saturated steam amount. The zeolite was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 4 Zeolites were obtained in the same manner as in Example 1 except that the amount of sulfuric acid was 22.1 kg in the acid treatment step, the treatment temperature was 90 ° C., and the steam temperature was 400 ° C. in the steam treatment step. The zeolite was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 5 Zeolites were obtained in the same manner as in Example 1 except that the amount of sulfuric acid was 20.1 kg in the acid treatment step, the treatment temperature was 90 ° C., and the steam temperature was 350 ° C. in the steam treatment step. The zeolite was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 6 Zeolites were obtained in the same manner as in Example 1 except that the amount of sulfuric acid was 42.0 kg in the acid treatment step, the treatment temperature was 90 ° C., and the steam temperature was 400 ° C. in the steam treatment step. The zeolite was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 1 The zeolite obtained in the acid treatment step of Example 1 was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1. The IR spectrum is shown in FIG.
- Example 2 In the steam treatment step, zeolite was obtained in the same manner as in Example 1 except that the temperature of the steam treatment was set to 700 ° C. The zeolite was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1. The IR spectrum is shown in FIG.
- Example 3 A commercially available faujasite-type zeolite (CBV720 manufactured by Zeolist) was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Example 4 The zeolite obtained in the acid treatment step of Example 6 was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1.
- Faujasite-type zeolite of Examples 1-6 as compared with the zeolite of Comparative Examples 1 to 4, NH 3 NoboriAtsushida' Hanareryou much when compared with the same water adsorption amount (see FIG. 4), more solid There is a lot of acid.
- the zeolite of the present invention is hydrophobic but has a large amount of solid acid.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
IRスペクトルにおいて、3730cm-1以上3760cm-1以下の範囲に極大を有する吸収帯1(表面シラノール基)と、3550cm-1以上3700cm-1以下の範囲に極大を有する吸収帯2(酸性水酸基)とを有し、前記吸収帯2のピーク高さ(h2)に対する前記吸収帯1のピーク高さ(h1)の比(h1/h2)が1.2未満である、フォージャサイト型ゼオライト。
Description
本発明は、表面シラノール基が少ないフォージャサイト型ゼオライトおよびその製造方法に関する。
ゼオライトという物質名は、結晶性の多孔質アルミノシリケートの総称である。ゼオライトは、石油精製や石油化学をはじめとする多くの工業プロセスにおいて、触媒、吸着剤、および分離膜などとして幅広く使用されてきた。例えば、流動接触分解プロセスは、触媒を用いて石油中の重油分を分解し、付加価値の高いガソリンなどの留分を得る重要なプロセスである。このプロセスの触媒として、強い固体酸を有する多孔性材料であるフォージャサイト型ゼオライトが古くから使用されてきた。また、フォージャサイト型ゼオライトは、吸着剤としても、古くから使用されている。
フォージャサイト型ゼオライトの特性は、SiとAlとの比率によって大きく影響を受けることが知られている。この比率は、一般的にケイバン比(SAR)とも呼ばれ、SiO2/Al2O3のモル比で表される。例えば、このケイバン比を高くすると、ゼオライトの骨格内のAlが減少するので、骨格内Alに由来する固体酸が減少し、疎水性(水との親和性が低い)を示すことが知られている。逆に、このケイバン比を低くすると、骨格内Alに由来する固体酸が増加し、親水性を示す。
フォージャサイト型ゼオライトの骨格ケイバン比を高める方法として、1)水蒸気による水熱処理、2)EDTA処理、または3)ヘキサフルオロケイ酸アンモニウム処理などの脱アルミニウム処理が知られている(非特許文献1)。このような処理を用いることで、ケイバン比が高いフォージャサイト型ゼオライトが合成できるようになった(特許文献1)。
小野嘉夫、八嶋建明編、「ゼオライトの科学と工学」、第1版、株式会社講談社、2000年7月10日、p.119~134
非特許文献1および特許文献1の方法では、疎水性のフォージャサイト型ゼオライトを合成すると、その骨格内からアルミニウムが除去されるので、固体酸が減少してしまうという課題があった。
このような状況を踏まえ、本発明は、疎水性でありながら、固体酸が多いフォージャサイト型ゼオライトを提供することを目的とする。
本発明者らは、フォージャサイト型ゼオライトの表面シラノール基に着目し、これを減少させることを試みた。本発明者らは、フォージャサイト型ゼオライトを脱アルミニウム処理した後、その表面に残留するAl化合物を酸で除去して、特定の温度でスチーム処理する方法を用いると、当該ゼオライトの固体酸量を維持しつつ、水との親和性がより低い(より疎水性の)フォージャサイト型ゼオライトが得られることを見出した。
すなわち、本発明のフォージャサイト型ゼオライトは、IRスペクトルにおいて、3730cm-1以上、3760cm-1以下の範囲に極大を有する吸収帯1(表面シラノール基)と、3550cm-1以上、3700cm-1以下の範囲に極大を有する吸収帯2(酸性水酸基)とを有し、前記吸収帯2のピーク高さ(h2)に対する前記吸収帯1のピーク高さ(h1)の比(h1/h2)が1.2未満である。
また、本発明のフォージャサイト型ゼオライトの製造方法は、フォージャサイト型ゼオライトを500℃以上、800℃以下の範囲の温度でスチーム処理して当該ゼオライトの骨格からアルミニウムを引き抜く脱アルミニウム工程、前記脱アルミニウム工程を経て得られたフォージャサイト型ゼオライトを酸処理して、骨格から引き抜かれたアルミニウムを除去する酸処理工程、前記酸処理工程を経て得られたフォージャサイト型ゼオライトを300℃以上、650℃以下の範囲の温度でスチーム処理するスチーム処理工程、を備える。
本発明によれば、疎水性でありながら、固体酸が多いフォージャサイト型ゼオライトおよびその製造方法が得られる。
以下、本発明のフォージャサイト型ゼオライトについて、詳述する。
本発明のフォージャサイト型ゼオライト(以下、「本発明のゼオライト」ともいう。)は、水との親和性に影響を与える表面シラノール基の量と、その固体酸性に影響を与える酸性水酸基の量とを、IRスペクトルから得られる吸収帯のピーク高さの比で特定したものである。すなわち、IRスペクトルにおいて、3730cm-1以上、3760cm-1以下の範囲に極大を有する吸収帯1(表面シラノール基)のピーク高さ(h1)と、3550cm-1以上、3700cm-1以下の範囲に極大を有する吸収帯2(酸性水酸基)のピーク高さ(h2)との比(h1/h2)が、1.2未満である。表面水酸基の量が減少し、酸性水酸基の量が増えれば、この比は小さくなる。この比は、低ければ低いほど良いが、その下限値は0.01であってもよい。また、この比は、0.01以上、1.0以下の範囲にあることが好ましい。この比が低くなると、本発明のゼオライトの水との親和性がより低下し(より疎水性になる)、固体酸量がより多くなる傾向がある。さらに、この比は0.1以上、0.8以下の範囲にあることがより好ましい。
なお、3730cm-1以上、3760cm-1以下の範囲および3550cm-1以上、3700cm-1以下の範囲に、複数のピークがある場合、複数のピークのうち最もピーク高さが高いピークのピーク高さを、各吸収帯のピーク高さとする。
なお、3730cm-1以上、3760cm-1以下の範囲および3550cm-1以上、3700cm-1以下の範囲に、複数のピークがある場合、複数のピークのうち最もピーク高さが高いピークのピーク高さを、各吸収帯のピーク高さとする。
本発明のゼオライトは、そのケイバン比が、10以上、200以下の範囲にあることが好ましい。このケイバン比は、本発明のゼオライトの組成比から算出したものである。このケイバン比が高いほど、骨格のケイバン比も高くなりやすいので、本発明のゼオライトの水との親和性がより低下し(より疎水性になる)やすくなる。ただし、このケイバン比が高すぎると、骨格内のアルミニウムが少なくなりやすいので、固体酸量も少なくなってしまう。したがって、本発明のゼオライトは、そのケイバン比が、30以上、150以下の範囲にあることがより好ましい。
本発明のゼオライトは、その格子定数が、2.430nm以上であることが好ましい。本発明において、格子定数は、本発明のゼオライトの骨格のケイバン比を示す指標である。骨格内のアルミニウムが増える(骨格のケイバン比が小さくなる)と格子定数は大きくなり、骨格内のアルミニウムが減る(骨格のケイバン比が大きくなる)と格子定数は小さくなる。本発明のゼオライトの格子定数が低すぎると、骨格内のアルミニウムが少ないので、その固体酸量が少なくなってしまう。また、その格子定数が大きすぎても、水との親和性が高くなりやすい。したがって、本発明のゼオライトは、2.430nm以上、2.440nm以下の範囲にあることがより好ましく、2.431nm超、2.435nm以下の範囲にあることが特に好ましい。
本発明のゼオライトは、その結晶性が高いほうが好ましい。ゼオライトの結晶性は、ゼオライトの耐久性や固体酸性質に影響を与える。本発明では、ゼオライトの結晶性を表す指標として、X線回折測定により得られるフォージャサイト構造に由来する回折ピークの強度を用いた。具体的には、特定の方法で得られたフォージャサイト型ゼオライトを標準物質とし、X線回折測定により得られるフォージャサイト構造に由来するピークの強度比を、本発明のゼオライトの結晶性の指標とした。本発明のゼオライトは、この強度比が、1.00以上であることが好ましく、1.40以上であることがより好ましい。結晶性が高ければ高いほど好ましいことは当業者にとって自明である。本発明のゼオライトでは、その上限が3.00以下であってもよい。
本発明のゼオライトは、その比表面積が、650m2/g以上であることが好ましい。ゼオライトは、一般的に、その骨格に由来する細孔構造によって極めて広い比表面積を有する。本発明のゼオライトの比表面積が650m2/gより低い場合、本発明のゼオライトが有する骨格に由来する細孔構造が十分に発達していないおそれがあり、その固体酸量が低くなってしまうことがある。フォージャサイト型ゼオライトの比表面積は、高ければ高いほど好ましいが、その上限が、850m2/g以下であってもよい。より具体的には、その比表面積が、700m2/g以上、750m2/g以下の範囲にあってもよい。
本発明のゼオライトは、そのアルカリ金属含有量が低いことが好ましい。アルカリ金属は、ゼオライトに含まれる固体酸を被毒することがある。したがって、本発明のゼオライトのアルカリ金属含有量は、アルカリ金属をMとしたとき、M2O換算で0.3質量%以下であることが好ましく、0.2質量%以下であることがより好ましい。本発明のゼオライトは、アルカリ金属の中でも特にNaによって被毒されやすいので、その含有量が少ないことが好ましい。
本発明のゼオライトは、その平均粒子径が0.1μm以上、10μm以下の範囲にあることが好ましく、0.5μm以上、5μm以下の範囲にあることがより好ましく、0.7μm以上、3μm以下の範囲にあることが特に好ましい。触媒用途として用いる場合、平均粒子径がこの範囲にあると、触媒活性や耐久性が良好になりやすい。
本発明のゼオライトは、窒素吸着法により測定される細孔分布から算出された3.5nm以上、5nm以下の細孔容積が0.03cm3/g未満であることが好ましく、0.02cm3/g以下であることがより好ましく、0.01cm3/g以下であることが特に好ましい。このメソ孔に該当する細孔容積が少ないほど、ゼオライトの外表面も小さくなりやすいので、水吸着量を少なくすることができる。
本発明のゼオライトは、そのアンモニア昇温脱離量が0.1mmol/g以上、1.3mmol/g以下であることが好ましく、0.15mmol/g以上、1mmol/g以下であることがより好ましく、0.25mmol/g以上、1mmol/g以下であることが特に好ましい。アンモニア昇温脱離量は、物質の固体酸の量を示す指標である。
フォージャサイト型ゼオライトの水吸着量は、疎水性を示す指標であり、その量が少ないほど疎水性である。本発明のゼオライトは、その水吸着量が16%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることが特に好ましい。
本発明のゼオライトの水吸着量に対するアンモニア昇温脱離量の比(アンモニア昇温脱離量/水吸着量)は、0.045以上、0.1以下であることが好ましく、0.05以上、0.1以下であることがより好ましく、0.06以上、0.1以下であることが特に好ましい。フォージャサイト型ゼオライトのアンモニア昇温脱離量は、そのゼオライト骨格に含まれるアルミニウムの含有量に影響を受け、ゼオライト骨格に含まれるアルミニウムの含有量が少ないほどアンモニア昇温脱離量も少ない傾向にある。一方、フォージャサイト型ゼオライトの水吸着量はゼオライト骨格に含まれるアルミニウムの含有量および表面シラノール基の量に影響を受け、これらが少ないほど水吸着量も少ない傾向にある。本発明のゼオライトは、従来のフォージャサイト型ゼオライトと比較して表面シラノール基の量が少ないので、従来のフォージャサイト型ゼオライトと同程度の水吸着量で、アンモニア昇温脱離量を多くすることができるを(図4参照)。
本発明のゼオライトは疎水性でありながら、固体酸が多いので、例えば、石油精製における流動接触分解用触媒や水素化分解用触媒の構成成分の一つとして用いることができる。また、吸着剤としても使用することができる。
以下、本発明のフォージャサイト型ゼオライトの製造方法について、詳述する。
本発明のフォージャサイト型ゼオライトの製造方法(以下、「本発明の製造方法」ともいう。)は、
フォージャサイト型ゼオライトを500℃以上、800℃以下の範囲の温度でスチーム処理して当該ゼオライトの骨格からアルミニウムを引き抜く脱アルミニウム工程、
前記脱アルミニウム工程を経て得られたフォージャサイト型ゼオライトを酸処理して、骨格から引き抜かれたアルミニウムを除去する酸処理工程、
前記酸処理工程を経て得られたフォージャサイト型ゼオライトを300℃以上、650℃以下の範囲の温度でスチーム処理するスチーム処理工程、を備える。
フォージャサイト型ゼオライトを500℃以上、800℃以下の範囲の温度でスチーム処理して当該ゼオライトの骨格からアルミニウムを引き抜く脱アルミニウム工程、
前記脱アルミニウム工程を経て得られたフォージャサイト型ゼオライトを酸処理して、骨格から引き抜かれたアルミニウムを除去する酸処理工程、
前記酸処理工程を経て得られたフォージャサイト型ゼオライトを300℃以上、650℃以下の範囲の温度でスチーム処理するスチーム処理工程、を備える。
本発明の製造方法は、フォージャサイト型ゼオライトを500℃以上、800℃以下の範囲の温度でスチーム処理して当該ゼオライトの骨格からアルミニウムを引き抜く脱アルミニウム工程を備える。酸処理でもフォージャサイト型ゼオライトの骨格中のアルミニウムを引き抜くことは可能であるが、これらの方法では当該ゼオライトの骨格へのダメージが大きくなりやすい。したがって、後述の酸処理工程の前に、この工程を行っておくことが重要である。なお、このとき、引き抜かれたアルミニウムは、ゼオライトの表面にアルミニウム化合物として残留する。これは骨格外アルミニウムとも呼ばれる。
この工程で用いるフォージャサイト型ゼオライトは、市販されているものを購入してもよく、また従来公知の方法で合成してもよい。例えば、Si原料、Al原料を加え、さらにNa原料および水を加えた後、80℃以上、120℃以下程度の温度で水熱処理することで、フォージャサイト型ゼオライトが得られる。原料として用いるフォージャサイト型ゼオライトのケイバン比は、2以上、10以下の範囲にあることが好ましい。ケイバン比がこの範囲にあるフォージャサイト型ゼオライトは、工業的に量産しやすい。このフォージャサイト型ゼオライトは、アンモニウムイオンでイオン交換されたものであることがより好ましい。
この工程では、フォージャサイト型ゼオライトを600℃以上、700℃以下の範囲の温度でスチーム処理することが好ましい。この温度域でスチーム処理を行うと、効率よくゼオライトの骨格からアルミニウムを引き抜くことができる。
この工程では、スチーム処理時間が、概ね1時間以上、24時間以下の範囲にあることが好ましい。前述のスチーム処理温度にもよるが、処理時間が短すぎてもスチーム処理によって骨格からアルミニウムを充分に引き抜けないことがあるので、好ましくない。また、スチーム処理時間を長くしても、生産性の観点から好ましくない。
この工程におけるスチーム濃度は、飽和水蒸気量の50%以上であり、90%以上であることが好ましい。飽和水蒸気量が低い状態でスチーム処理をすると、ゼオライトの骨格が壊れやすくなる傾向にある。この理由は、骨格外アルミニウムが生成する際にできる欠陥によって骨格が不安定になるためと考えられる。このような状態では、熱によってゼオライトの骨格が壊れやすくなる。一方、前述の飽和水蒸気量の範囲であれば、ゼオライトの骨格は壊れにくくなる傾向にある。
この工程で得られるフォージャサイト型ゼオライトは、その格子定数が2.430nm以上、2.445nm以下の範囲にあることが好ましい。格子定数がこの範囲に含まれるようにスチーム処理を行うことで、後述の酸処理工程でフォージャサイト型ゼオライトの骨格が壊れにくくなる。
本発明の製造方法は、前記脱アルミニウム工程を経て得られたフォージャサイト型ゼオライトを酸処理して、骨格から引き抜かれたアルミニウムを除去する酸処理工程を備える。この工程では、硫酸やEDTA(エチレンジアミンテトラアセテート)などを用いてスチーム処理後のゼオライトの表面に残留した骨格外アルミニウムを除去する。
この工程では、酸として、従来公知の酸を用いることができる。例えば酸としては、硫酸、硝酸、塩酸、酢酸、EDTA、およびクエン酸などを用いることができる。この工程においては、安価な無機酸を用いることが好ましい。
この工程における酸処理の温度は、50℃以上、98℃以下の範囲にあることが好ましく、65℃以上、95℃以下の範囲にあることがより好ましい。この工程では、高めの温度で酸処理して、ゼオライトの表面に残留した骨格外アルミニウムを可能な限り除去することが好ましい。
この工程における酸溶液には、アンモニウムイオンを含む塩を添加してもよい。このように、アンモニウムイオンが存在する酸溶液を用いて酸処理を行うと、フォージャサイト型ゼオライトに含まれるアルカリ金属を除去しやすい。
この工程における酸は、前記脱アルミニウム工程を経て得られたフォージャサイト型ゼオライトに含まれるアルミニウム1モルに対して、酸に由来するプロトンのモル数が1.2以上、8.3以下の範囲となるような量で溶液中に含まれていることが好ましい。例えば、1molのアルミニウム(Al)を含むフォージャサイト型ゼオライトを硫酸(H2SO4)で酸処理する場合、酸溶液に含まれる硫酸を0.6モル以上、4.2モル以下の範囲に調整することが好ましい。
この工程における酸処理の時間は、酸処理の温度、または酸の量にもよるが、概ね0.5時間以上、24時間以下の範囲であることが好ましい。酸処理の時間が概ねこの範囲内であれば、酸処理工程の目的を十分に達成することができる。酸処理の時間は長くても問題ないが、生産性の観点からいえば、好ましくない。
酸処理後の酸溶液とゼオライトは、ろ過などの方法で固液分離することができる。また、この時に分離したゼオライトには酸溶液に由来する成分が残留することがある。そのため、分離したゼオライトを再度イオン交換水に懸濁させ、濾布上で75℃未満の温水を掛けるなどの洗浄処理を行うことが好ましい。この洗浄処理は、濾液の電導度が0.1mS/cm以下となるまで繰り返すとよい。分離したゼオライトは、温度80℃以上、200℃以下の範囲で乾燥させて、ゼオライトを得ることができる。
この工程で得られるフォージャサイト型ゼオライトは、その格子定数が2.430nm以上、2.440nm以下の範囲にあることが好ましい。格子定数がこの範囲に含まれるように酸処理を行うことで、後述のスチーム処理工程で得られるフォージャサイト型ゼオライトの固体酸量を維持できる。
本発明の製造方法は、前記酸処理工程を経て得られたフォージャサイト型ゼオライトを300℃以上、650℃以下の範囲の温度でスチーム処理するスチーム処理工程を備える。この工程では、前述の脱アルミニウム工程においてゼオライトの骨格内のアルミニウムが除去されているので、アルミニウムの脱離はそれほど起こらず、ゼオライトの表面付近でSiの移動が起こるようになる。このとき、前述の酸処理工程において骨格外アルミニウムを除去した際に生成した表面シラノール基とSiが結合して、ゼオライトの表面シラノール基が減少するものと考えられる。
この工程では、前述の酸処理工程を経て得られたフォージャサイト型ゼオライトを400℃以上、650℃以下の範囲の温度でスチーム処理することが好ましい。この温度域でスチーム処理を行うと、ゼオライトの表面付近でSiが移動しやすくなると共に骨格内のアルミニウムが引き抜かれにくくなるので、ゼオライトの固体酸量を維持しつつ表面シラノール基を減らすことができる。
この工程では、スチーム処理時間が、概ね0.5時間以上、12時間以下の範囲にあることが好ましい。この工程では、処理温度にもよるが、スチーム処理の時間が長すぎると骨格内のアルミニウムが引き抜かれやすくなってしまう。また、短すぎても、Siの移動が少なくなり、表面シラノール基の減少量が少なくなることがある。したがって、スチーム処理時間は、1時間以上、6時間以下の範囲にあることがより好ましい。
この工程におけるスチーム濃度は、飽和水蒸気量の50%以上であり、90%以上であることが好ましい。この工程では、スチーム濃度が高いほうが、ゼオライトの表面付近のSiの移動を促進することができる。
以下、本発明のゼオライトおよびその製造方法について、実施例を用いて詳述するが、本発明はこれらの例によってなんら限定されるものではない。
本発明の実施例における測定および評価は、次の方法で行った。
(組成分析)
蛍光X線測定装置(RIX-3000)を用いて、試料のSi、Al、およびNa含有量を測定した。この測定結果から、SiおよびAl含有量を、それぞれSiO2、Al2O3に換算して、ケイバン比(SiO2/Al2O3モル比)を算出した。
蛍光X線測定装置(RIX-3000)を用いて、試料のSi、Al、およびNa含有量を測定した。この測定結果から、SiおよびAl含有量を、それぞれSiO2、Al2O3に換算して、ケイバン比(SiO2/Al2O3モル比)を算出した。
(結晶構造の確認)
乳鉢で粉砕した試料をX線回折装置(リガク社製「RINT-Ultima」、線源:CuKα)にセットし、2θ=14~33°までスキャンしてX線回折測定した。得られた試料のX線回折パターンから、フォージャサイト構造(FAU)に帰属される回折面にピークが確認できたものは、フォージャサイト構造を有していると判断した。具体的には、(331)、(511)、(440)、(533)、(642)および(555)面に帰属される回折ピークの有無を確認した。なお、これらの回折面に帰属されるピークの位置は、技術文献(M. M. J. Treacy, J. B. Higgins, COLLECTION OF SIMULATED XRD POWDERPATTERNS FOR ZEOLITES, Fifth Revised Edition, Elsevier)から確認することができる。なお、ピークの位置は測定条件などによって多少変動することがあるので、上記文献に記載されたピーク位置から±0.5°の範囲にあれば、フォージャサイト構造に由来するピークを有しているものとみなせる。
乳鉢で粉砕した試料をX線回折装置(リガク社製「RINT-Ultima」、線源:CuKα)にセットし、2θ=14~33°までスキャンしてX線回折測定した。得られた試料のX線回折パターンから、フォージャサイト構造(FAU)に帰属される回折面にピークが確認できたものは、フォージャサイト構造を有していると判断した。具体的には、(331)、(511)、(440)、(533)、(642)および(555)面に帰属される回折ピークの有無を確認した。なお、これらの回折面に帰属されるピークの位置は、技術文献(M. M. J. Treacy, J. B. Higgins, COLLECTION OF SIMULATED XRD POWDERPATTERNS FOR ZEOLITES, Fifth Revised Edition, Elsevier)から確認することができる。なお、ピークの位置は測定条件などによって多少変動することがあるので、上記文献に記載されたピーク位置から±0.5°の範囲にあれば、フォージャサイト構造に由来するピークを有しているものとみなせる。
(IR測定)
試料粉末を20~25mgでΦ20mmのペレットに成形した。測定前にペレットを幕張理化学製真空加熱前処理装置に導入し、高真空(10-3Pa)中で300℃にて3時間の前処理を実施した。セルを50℃に冷却した後、日本分光製FT/IR-6100により以下の条件でIRを測定した
検出器:TGS
分解能:2.0cm-1
測定範囲:4,000~800cm-1
積算回数:100回
得られたスペクトルについて、4,000cm-1における吸光度と、3,000cm-1における吸光度とを直線で結ぶ2点間補正により、ベースラインを設定した。そして、3730cm-1以上、3760cm-1以下の範囲に極大を有する吸収帯(表面シラノール基)のピーク高さ(h1)と、3550cm-1以上、3700cm-1以下の範囲に極大を有する吸収帯(酸性水酸基)のピーク高さ(h2)を計測し、ピーク高さの比(h1/h2)を算出した。
なお、3730cm-1以上、3760cm-1以下の範囲および3550cm-1以上、3700cm-1以下の範囲に、複数のピークがある場合、複数のピークのうち最もピーク高さが高いピークのピーク高さを、各吸収帯のピーク高さとした。
試料粉末を20~25mgでΦ20mmのペレットに成形した。測定前にペレットを幕張理化学製真空加熱前処理装置に導入し、高真空(10-3Pa)中で300℃にて3時間の前処理を実施した。セルを50℃に冷却した後、日本分光製FT/IR-6100により以下の条件でIRを測定した
検出器:TGS
分解能:2.0cm-1
測定範囲:4,000~800cm-1
積算回数:100回
得られたスペクトルについて、4,000cm-1における吸光度と、3,000cm-1における吸光度とを直線で結ぶ2点間補正により、ベースラインを設定した。そして、3730cm-1以上、3760cm-1以下の範囲に極大を有する吸収帯(表面シラノール基)のピーク高さ(h1)と、3550cm-1以上、3700cm-1以下の範囲に極大を有する吸収帯(酸性水酸基)のピーク高さ(h2)を計測し、ピーク高さの比(h1/h2)を算出した。
なお、3730cm-1以上、3760cm-1以下の範囲および3550cm-1以上、3700cm-1以下の範囲に、複数のピークがある場合、複数のピークのうち最もピーク高さが高いピークのピーク高さを、各吸収帯のピーク高さとした。
(格子定数測定)
試料粉末を約2/3重量部、内部標準としてTiO2アナターゼ型の粉末(関東化学製、酸化チタン(IV)(アナターゼ型))を約1/3重量部秤量し、乳鉢を用いて混合した。この粉末をX線回折装置(リガク社製「RINT-Ultima」、線源:CuKα)にセットし、2θ=23~33°までスキャンしてX線回折パターンを測定した。得られたパターンから、TiO2アナターゼ型、フォージャサイト型ゼオライトの(533)面、(642)面のそれぞれのピーク半値幅の中心を示す2θを用いて、以下の数式(1)~(3)から格子定数を算出した。
試料粉末を約2/3重量部、内部標準としてTiO2アナターゼ型の粉末(関東化学製、酸化チタン(IV)(アナターゼ型))を約1/3重量部秤量し、乳鉢を用いて混合した。この粉末をX線回折装置(リガク社製「RINT-Ultima」、線源:CuKα)にセットし、2θ=23~33°までスキャンしてX線回折パターンを測定した。得られたパターンから、TiO2アナターゼ型、フォージャサイト型ゼオライトの(533)面、(642)面のそれぞれのピーク半値幅の中心を示す2θを用いて、以下の数式(1)~(3)から格子定数を算出した。
(X線回折強度比)
乳鉢で粉砕した粉末試料をX線回折装置(リガク社製「RINT-Ultima」、線源:CuKα)にセットし、2θ=14~33°までスキャンしてX線回折パターンを測定した。得られたパターンから、T、フォージャサイト構造(FAU)の(331)、(511)、(440)、(533)、(642)および(555)面に帰属される回折ピークの強度を合計し、同様にして測定した市販されているフォージャサイト型ゼオライト(Zeolyst社製CBV720)のピーク強度の合計に対する割合を算出してX線回折強度比を算出した。
乳鉢で粉砕した粉末試料をX線回折装置(リガク社製「RINT-Ultima」、線源:CuKα)にセットし、2θ=14~33°までスキャンしてX線回折パターンを測定した。得られたパターンから、T、フォージャサイト構造(FAU)の(331)、(511)、(440)、(533)、(642)および(555)面に帰属される回折ピークの強度を合計し、同様にして測定した市販されているフォージャサイト型ゼオライト(Zeolyst社製CBV720)のピーク強度の合計に対する割合を算出してX線回折強度比を算出した。
(比表面積測定)
不活性ガス雰囲気下で500℃1時間の前処理を実施した試料粉末を測定用試料セルに投入し、測定装置(日本ベル社製「MR-6」)内で-196℃雰囲気下にて窒素ガス濃度30vol%、ヘリウムガス濃度70vol%の混合ガスを充分流通させて、試料粉末に窒素を吸着させた。その後、雰囲気温度を25℃に上昇させることによって試料粉末に吸着した窒素を脱離させて、その脱離量をTCD検出器にて検出した。検出された窒素の脱離量を窒素分子の断面積を用いて比表面積に換算することによって、試料粉末1g当たりの比表面積を求めた。
不活性ガス雰囲気下で500℃1時間の前処理を実施した試料粉末を測定用試料セルに投入し、測定装置(日本ベル社製「MR-6」)内で-196℃雰囲気下にて窒素ガス濃度30vol%、ヘリウムガス濃度70vol%の混合ガスを充分流通させて、試料粉末に窒素を吸着させた。その後、雰囲気温度を25℃に上昇させることによって試料粉末に吸着した窒素を脱離させて、その脱離量をTCD検出器にて検出した。検出された窒素の脱離量を窒素分子の断面積を用いて比表面積に換算することによって、試料粉末1g当たりの比表面積を求めた。
(窒素吸着法を用いた細孔分布測定)
以下の条件で窒素吸着法による細孔分布測定を行った。
測定方法 窒素吸着法
測定装置 BEL SORP-miniII(マイクロトラック・ベル株式会社製)
サンプル量 約0.05g
前処理 500℃、1時間(真空下)
相対圧範囲 0~1.0
吸着等温線からBJH法でメソ孔分布を算出し、細孔直径3.5~5.0nmの範囲にある細孔群の細孔容積および細孔直径3.5~60nmの範囲にある細孔群の細孔容積を算出した。
以下の条件で窒素吸着法による細孔分布測定を行った。
測定方法 窒素吸着法
測定装置 BEL SORP-miniII(マイクロトラック・ベル株式会社製)
サンプル量 約0.05g
前処理 500℃、1時間(真空下)
相対圧範囲 0~1.0
吸着等温線からBJH法でメソ孔分布を算出し、細孔直径3.5~5.0nmの範囲にある細孔群の細孔容積および細孔直径3.5~60nmの範囲にある細孔群の細孔容積を算出した。
(一次粒子径評価)
試料粉末を試料板に分散させた後、走査型電子顕微鏡(日本電子社製:JSM-7600S)を用いて一次粒子を観察した(加速電圧1.0kV、倍率1万~5万倍)。得られた画像から無作為に50個の一次粒子を選出し、長径の平均値を平均粒子径とした。
試料粉末を試料板に分散させた後、走査型電子顕微鏡(日本電子社製:JSM-7600S)を用いて一次粒子を観察した(加速電圧1.0kV、倍率1万~5万倍)。得られた画像から無作為に50個の一次粒子を選出し、長径の平均値を平均粒子径とした。
(水吸着量評価)
試料粉末1.0gに300℃で3時間の前処理を実施し、東京理化器社製恒温恒湿器「KCL-2000」を用いて40℃、湿度40%の雰囲気で5時間吸湿させた。吸湿前後の試料重量から次のように水吸着量を算出した。
水吸着量(%)=(吸湿後の試料重量-吸湿前の試料重量)/吸湿前の試料重量×100
試料粉末1.0gに300℃で3時間の前処理を実施し、東京理化器社製恒温恒湿器「KCL-2000」を用いて40℃、湿度40%の雰囲気で5時間吸湿させた。吸湿前後の試料重量から次のように水吸着量を算出した。
水吸着量(%)=(吸湿後の試料重量-吸湿前の試料重量)/吸湿前の試料重量×100
(固体酸量評価(NH3昇温脱離量))
500℃で1時間の前処理を実施した試料粉末を0.05g計量し、マイクロトラック・ベル社製「BELCAT II」装置を用いてNH3昇温脱離量を測定した。Heを流通させ500℃まで1時間かけて昇温し、500℃で1時間保持後、100℃に冷却し、NH35%/Heを流通させて100℃で30分間保持した。その後、Heを流通させながら100℃で30分間保持した。Heを流通させながら100℃から700℃まで10℃/分の速度で昇温させながら、TCDで脱離したNH3を検出した。
500℃で1時間の前処理を実施した試料粉末を0.05g計量し、マイクロトラック・ベル社製「BELCAT II」装置を用いてNH3昇温脱離量を測定した。Heを流通させ500℃まで1時間かけて昇温し、500℃で1時間保持後、100℃に冷却し、NH35%/Heを流通させて100℃で30分間保持した。その後、Heを流通させながら100℃で30分間保持した。Heを流通させながら100℃から700℃まで10℃/分の速度で昇温させながら、TCDで脱離したNH3を検出した。
[実施例1]
(脱アルミニウム工程)
ケイバン比が5.0、格子定数が2.466nm、比表面積が720m2/g、Na含有量がNa2O換算で13.0質量%であるフォージャサイト型ゼオライト(以下、「NaY」)を準備した。このNaY50.0kgを温度60℃の水500Lに加え、さらに硫酸アンモニウム14.0kgを加えて懸濁液を得た。この懸濁液を70℃で1時間攪拌し、ろ過した。ろ過により得られた固体を水で洗浄した。次いで、この固体を、温度60℃の水500Lに硫酸アンモニウム14.0kgを溶解した硫酸アンモニウム溶液で洗浄し、さらに、60℃の水500Lで洗浄し、130℃で20時間乾燥して、NaYに含まれるNaの約65質量%がアンモニウムイオン(NH4 +)でイオン交換されたフォージャサイト型ゼオライト(以下、「65NH4Y」)を約45kg得た。このNH4YのNa含有量はNa2O換算で4.5質量%であった。このNH4Y40kgを、飽和水蒸気雰囲気中にて670℃で1時間スチーム処理し、脱アルミニウムされたフォージャサイト型ゼオライト(以下、「USY」)を得た。
(脱アルミニウム工程)
ケイバン比が5.0、格子定数が2.466nm、比表面積が720m2/g、Na含有量がNa2O換算で13.0質量%であるフォージャサイト型ゼオライト(以下、「NaY」)を準備した。このNaY50.0kgを温度60℃の水500Lに加え、さらに硫酸アンモニウム14.0kgを加えて懸濁液を得た。この懸濁液を70℃で1時間攪拌し、ろ過した。ろ過により得られた固体を水で洗浄した。次いで、この固体を、温度60℃の水500Lに硫酸アンモニウム14.0kgを溶解した硫酸アンモニウム溶液で洗浄し、さらに、60℃の水500Lで洗浄し、130℃で20時間乾燥して、NaYに含まれるNaの約65質量%がアンモニウムイオン(NH4 +)でイオン交換されたフォージャサイト型ゼオライト(以下、「65NH4Y」)を約45kg得た。このNH4YのNa含有量はNa2O換算で4.5質量%であった。このNH4Y40kgを、飽和水蒸気雰囲気中にて670℃で1時間スチーム処理し、脱アルミニウムされたフォージャサイト型ゼオライト(以下、「USY」)を得た。
このUSYを温度60℃の水400Lに全量加え、次いで硫酸アンモニウム49.0kgを加え、懸濁液を得た。この懸濁液を90℃で1時間攪拌し、ろ過した。ろ過により得られた固体を温度60℃の水2400Lで洗浄した。次いで、この固体を130℃で20時間乾燥して、当初のNaYに含まれるNaの約93質量%がNH4でイオン交換されたフォージャサイト型ゼオライト、(以下「93NH4USY」)を約37kg得た。この93NH4USYの組成分析を実施したところ、ケイバン比が5.0、Na含有量がNa2O換算で1.1質量%であった。この93NH4USY10.0kgを、飽和水蒸気雰囲気中にて670℃で2時間スチーム処理し、酸処理用のゼオライトを約2.7kg得た。この時、酸処理用のゼオライトの格子定数は、2.438nmであった。
(酸処理工程)
この酸処理用のゼオライト8.0kgを、室温の水62Lに懸濁し、25質量%の硫酸27.2kgを徐々に加えて酸溶液を調製した後、これを75℃に昇温し、4時間攪拌した。撹拌終了後の酸溶液をろ過して得られた固体を、60℃のイオン交換水96Lで洗浄し、さらに110℃で20時間乾燥した。得られたゼオライトの組成分析を実施したところ、ケイバン比が64、格子定数は、2.431nmであった。
この酸処理用のゼオライト8.0kgを、室温の水62Lに懸濁し、25質量%の硫酸27.2kgを徐々に加えて酸溶液を調製した後、これを75℃に昇温し、4時間攪拌した。撹拌終了後の酸溶液をろ過して得られた固体を、60℃のイオン交換水96Lで洗浄し、さらに110℃で20時間乾燥した。得られたゼオライトの組成分析を実施したところ、ケイバン比が64、格子定数は、2.431nmであった。
(スチーム処理工程)
前述の工程で得られた酸処理後のゼオライト200gを、飽和水蒸気雰囲気中にて500℃で2時間スチーム処理した。この工程を経て得られたゼオライトについて、上記の測定および評価を行った。その結果を、表1に示す。また、そのIRスペクトルを図1に示す。
前述の工程で得られた酸処理後のゼオライト200gを、飽和水蒸気雰囲気中にて500℃で2時間スチーム処理した。この工程を経て得られたゼオライトについて、上記の測定および評価を行った。その結果を、表1に示す。また、そのIRスペクトルを図1に示す。
[実施例2]
スチーム処理工程において、スチーム処理の温度を600℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
スチーム処理工程において、スチーム処理の温度を600℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
[実施例3]
スチーム処理工程において、スチーム濃度を飽和水蒸気量の50%とした以外は、実施例2と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
スチーム処理工程において、スチーム濃度を飽和水蒸気量の50%とした以外は、実施例2と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
[実施例4]
酸処理工程において硫酸量を22.1kg、処理温度を90℃とし、スチーム処理工程において、スチーム温度を400℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
酸処理工程において硫酸量を22.1kg、処理温度を90℃とし、スチーム処理工程において、スチーム温度を400℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
[実施例5]
酸処理工程において硫酸量を20.1kg、処理温度を90℃とし、スチーム処理工程において、スチーム温度を350℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
酸処理工程において硫酸量を20.1kg、処理温度を90℃とし、スチーム処理工程において、スチーム温度を350℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
[実施例6]
酸処理工程において硫酸量を42.0kg、処理温度を90℃とし、スチーム処理工程において、スチーム温度を400℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
酸処理工程において硫酸量を42.0kg、処理温度を90℃とし、スチーム処理工程において、スチーム温度を400℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
[比較例1]
実施例1の酸処理工程で得られたゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。また、そのIRスペクトルを図2に示す。
実施例1の酸処理工程で得られたゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。また、そのIRスペクトルを図2に示す。
[比較例2]
スチーム処理工程において、スチーム処理の温度を700℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。また、そのIRスペクトルを図3に示す。
スチーム処理工程において、スチーム処理の温度を700℃とした以外は、実施例1と同様の方法でゼオライトを得た。このゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。また、そのIRスペクトルを図3に示す。
[比較例3]
市販されているフォージャサイト型ゼオライト(Zeolyst社製CBV720)について、実施例1と同様の測定および評価を行った。その結果を表1に示す。
市販されているフォージャサイト型ゼオライト(Zeolyst社製CBV720)について、実施例1と同様の測定および評価を行った。その結果を表1に示す。
[比較例4]
実施例6の酸処理工程で得られたゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
実施例6の酸処理工程で得られたゼオライトについて、実施例1と同様の測定および評価を行った。その結果を表1に示す。
実施例1~6のフォージャサイト型ゼオライトは、比較例1~4のゼオライトと比べて、同じ水吸着量で比較した場合にNH3昇温脱離量が多く(図4参照)、より固体酸量が多い。このように、本発明のゼオライトは、疎水性でありながら、固体酸が多い。
Claims (6)
- IRスペクトルにおいて、3730cm-1以上、3760cm-1以下の範囲に極大を有する吸収帯1(表面シラノール基)と、3550cm-1以上、3700cm-1以下の範囲に極大を有する吸収帯2(酸性水酸基)とを有し、前記吸収帯2のピーク高さ(h2)に対する前記吸収帯1のピーク高さ(h1)の比(h1/h2)が1.2未満である、フォージャサイト型ゼオライト。
- ケイバン比が10以上、200以下である請求項1に記載されたフォージャサイト型ゼオライト。
- 窒素吸着法により測定される細孔直径3.5nm以上、5nmの範囲にある細孔を持つ細孔群の細孔容積が0.03g/cm3未満の範囲にある、請求項1または2に記載されたフォージャサイト型ゼオライト。
- NH3昇温脱離量が0.1mmol/g以上、1.3mmol/g以下の範囲にある請求項1~3の何れか1項に記載されたフォージャサイト型ゼオライト。
- 水吸着量に対するNH3昇温脱離量の比が0.045以上、0.1以下の範囲にある請求項4に記載されたフォージャサイト型ゼオライト。
- フォージャサイト型ゼオライトを500℃以上、800℃以下の範囲の温度でスチーム処理して当該ゼオライトの骨格からアルミニウムを引き抜く脱アルミニウム工程、
前記脱アルミニウム工程を経て得られたフォージャサイト型ゼオライトを酸処理して、骨格から引き抜かれたアルミニウムを除去する酸処理工程、
前記酸処理工程を経て得られたフォージャサイト型ゼオライトを300℃以上、650℃以下の範囲の温度でスチーム処理するスチーム処理工程、を備えるフォージャサイト型ゼオライトの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21787811.5A EP4137458A4 (en) | 2020-04-16 | 2021-04-16 | FAUJASITE TYPE ZEOLITE AND ITS PRODUCTION PROCESS |
JP2021556288A JP7145343B2 (ja) | 2020-04-16 | 2021-04-16 | フォージャサイト型ゼオライトおよびその製造方法 |
US17/919,478 US20230159342A1 (en) | 2020-04-16 | 2021-04-16 | Faujasite type zeolite and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020073626 | 2020-04-16 | ||
JP2020-073626 | 2020-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021210674A1 true WO2021210674A1 (ja) | 2021-10-21 |
Family
ID=78084933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/015709 WO2021210674A1 (ja) | 2020-04-16 | 2021-04-16 | フォージャサイト型ゼオライトおよびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230159342A1 (ja) |
EP (1) | EP4137458A4 (ja) |
JP (1) | JP7145343B2 (ja) |
WO (1) | WO2021210674A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023112545A1 (ja) * | 2021-12-17 | 2023-06-22 | 日揮触媒化成株式会社 | フォージャサイト型ゼオライト、およびその製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115818661A (zh) * | 2022-11-09 | 2023-03-21 | 复榆(张家港)新材料科技有限公司 | 一种具有fau结构的多级孔高硅疏水沸石制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62216913A (ja) | 1986-03-05 | 1987-09-24 | モ−ビル オイル コ−ポレ−シヨン | ゼオライトの脱アルミニウム法 |
JPH03205313A (ja) * | 1989-10-04 | 1991-09-06 | Res Assoc Residual Oil Process<Rarop> | 新規なフォージャサイト型アルミノシリケート及びその製造方法並びに重質油水素化分解触媒 |
JPH08253312A (ja) * | 1995-03-13 | 1996-10-01 | Idemitsu Kosan Co Ltd | 鉄含有結晶性アルミノシリケート及びそれを用いた触媒組成物 |
JP2014104372A (ja) * | 2012-11-22 | 2014-06-09 | Tottori Univ | ゼオライト触媒及びその製造方法 |
CN104230633A (zh) * | 2013-06-17 | 2014-12-24 | 中国石油化工股份有限公司 | 液相烷基转移方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000086233A (ja) * | 1997-09-30 | 2000-03-28 | Idemitsu Kosan Co Ltd | 鉄含有結晶性アルミノシリケート |
JP2001089773A (ja) * | 1999-07-21 | 2001-04-03 | Idemitsu Kosan Co Ltd | 水素製造用原料油およびその製造方法 |
CN1230496C (zh) * | 2002-10-28 | 2005-12-07 | 中国石油化工股份有限公司 | 一种含稀土y型沸石的石油烃裂化催化剂及其制备方法 |
CN100422081C (zh) * | 2005-10-19 | 2008-10-01 | 中国石油化工股份有限公司 | 一种改性y沸石及其制备方法 |
CN103073024B (zh) * | 2011-10-26 | 2014-12-31 | 中国石油化工股份有限公司 | 一种改性y型分子筛及其制备方法 |
CN107973314B (zh) * | 2016-10-21 | 2019-11-15 | 中国石油化工股份有限公司 | 一种含磷和稀土的y分子筛及其制备方法 |
CN107970969B (zh) * | 2016-10-21 | 2020-05-19 | 中国石油化工股份有限公司 | 一种含稀土的y分子筛及其制备方法 |
-
2021
- 2021-04-16 WO PCT/JP2021/015709 patent/WO2021210674A1/ja unknown
- 2021-04-16 EP EP21787811.5A patent/EP4137458A4/en active Pending
- 2021-04-16 JP JP2021556288A patent/JP7145343B2/ja active Active
- 2021-04-16 US US17/919,478 patent/US20230159342A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62216913A (ja) | 1986-03-05 | 1987-09-24 | モ−ビル オイル コ−ポレ−シヨン | ゼオライトの脱アルミニウム法 |
JPH03205313A (ja) * | 1989-10-04 | 1991-09-06 | Res Assoc Residual Oil Process<Rarop> | 新規なフォージャサイト型アルミノシリケート及びその製造方法並びに重質油水素化分解触媒 |
JPH08253312A (ja) * | 1995-03-13 | 1996-10-01 | Idemitsu Kosan Co Ltd | 鉄含有結晶性アルミノシリケート及びそれを用いた触媒組成物 |
JP2014104372A (ja) * | 2012-11-22 | 2014-06-09 | Tottori Univ | ゼオライト触媒及びその製造方法 |
CN104230633A (zh) * | 2013-06-17 | 2014-12-24 | 中国石油化工股份有限公司 | 液相烷基转移方法 |
Non-Patent Citations (1)
Title |
---|
"Zeoraito no Kagaku to Kougaku (science and engineering of zeolite)", 10 July 2000, KODANSHA LTD., pages: 119 - 134 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023112545A1 (ja) * | 2021-12-17 | 2023-06-22 | 日揮触媒化成株式会社 | フォージャサイト型ゼオライト、およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4137458A4 (en) | 2024-10-23 |
JPWO2021210674A1 (ja) | 2021-10-21 |
US20230159342A1 (en) | 2023-05-25 |
EP4137458A1 (en) | 2023-02-22 |
JP7145343B2 (ja) | 2022-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021210674A1 (ja) | フォージャサイト型ゼオライトおよびその製造方法 | |
US4784750A (en) | Catalytic cracking process | |
EP2792408A1 (en) | Magnesium modified ultra-stable rare earth y-type molecular sieve and preparation method therefor | |
CN107970974B (zh) | 一种催化裂化催化剂及其制备方法 | |
US20220184589A1 (en) | Catalytic Cracking Catalyst and Preparation Process Thereof | |
EP3466879B1 (en) | Chabazite zeolite with high hydrothermal resistance and method for producing same | |
JP2017014100A (ja) | 高シリカチャバザイト型ゼオライトの製造方法および高シリカチャバザイト型ゼオライト | |
CN108940351B (zh) | 一种催化材料的制备方法 | |
JP2023047642A (ja) | フォージャサイト型ゼオライトの製造方法 | |
CN109967117B (zh) | 一种改性y型分子筛的制备方法 | |
Babic | Increasing the porosity of zeolites | |
CN107970975B (zh) | 一种催化裂化催化剂及其制备方法 | |
WO2017213022A1 (ja) | 高耐水熱性チャバザイト型ゼオライトおよびその製造方法 | |
CN112808296B (zh) | 一种含y型分子筛的催化剂及其制备方法 | |
CN112808298B (zh) | 含多级孔y型分子筛的催化剂及其制备方法 | |
CN107970973A (zh) | 一种催化裂化催化剂及其制备方法 | |
CN107970971B (zh) | 一种催化裂化催化剂及其制备方法 | |
JP2019182741A (ja) | 局所的に結晶構造を有する非晶質シリカアルミナおよびその製造方法 | |
JP6727884B2 (ja) | アーモンド状の形状を有するzsm−5型ゼオライトおよびその製造方法 | |
CN110871108B (zh) | 一种含y型分子筛的多孔催化材料的制备方法 | |
CN113492013B (zh) | 一种催化裂化催化剂及其制备方法和应用 | |
CN111744529A (zh) | 稀土改性复合催化材料的方法 | |
WO2023112545A1 (ja) | フォージャサイト型ゼオライト、およびその製造方法 | |
CN116328819B (zh) | 一种低生焦催化裂化催化剂的制备方法 | |
CN113492014B (zh) | 一种抗重金属污染的催化裂化催化剂及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021556288 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21787811 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021787811 Country of ref document: EP Effective date: 20221116 |