WO2021200485A1 - アルミナ粉末、フィラー組成物、樹脂組成物、封止材、及び指紋認証センサー - Google Patents

アルミナ粉末、フィラー組成物、樹脂組成物、封止材、及び指紋認証センサー Download PDF

Info

Publication number
WO2021200485A1
WO2021200485A1 PCT/JP2021/012293 JP2021012293W WO2021200485A1 WO 2021200485 A1 WO2021200485 A1 WO 2021200485A1 JP 2021012293 W JP2021012293 W JP 2021012293W WO 2021200485 A1 WO2021200485 A1 WO 2021200485A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina powder
alumina
particle size
less
mass
Prior art date
Application number
PCT/JP2021/012293
Other languages
English (en)
French (fr)
Inventor
純也 新田
山口 純
朋浩 川畑
英明 平井
西 泰久
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020227037415A priority Critical patent/KR20220160635A/ko
Priority to CN202180026781.XA priority patent/CN115362130A/zh
Priority to EP21779392.6A priority patent/EP4129910A4/en
Priority to US17/916,209 priority patent/US20230159725A1/en
Priority to JP2022512027A priority patent/JPWO2021200485A1/ja
Publication of WO2021200485A1 publication Critical patent/WO2021200485A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/027Treatment involving fusion or vaporisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/42Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to an alumina powder, a filler composition, a resin composition, a sealing material, and a fingerprint authentication sensor.
  • Fingerprint authentication includes optical type, heat-sensitive type, capacitance type, etc., but in mobile terminals such as smartphones and tablets, capacitance type is considered from the viewpoint of high reliability, high resolution, and miniaturization. Many types of fingerprint authentication are used. Capacitive fingerprint authentication requires accurate detection of the difference in capacitance due to the subtle unevenness of the fingerprint, and in order to increase the capacitance of the fingerprint authentication system, a sealing material that protects the fingerprint authentication sensor High dielectric constant is required. A dielectric material such as alumina powder is used for increasing the dielectric property of the encapsulant (Patent Document 1 and the like).
  • the fingerprint authentication sensor is usually arranged on a semiconductor chip, and the semiconductor chip and the fingerprint authentication sensor are connected by a wire typified by a gold wire. Then, the fingerprint authentication sensor is sealed with a sealing material together with this wire.
  • the state-of-the-art encapsulant including a dielectric material is required to have a property of suppressing wire flow and generation of burrs for encapsulation.
  • the present invention has been made in view of such problems, and is capable of suppressing wire flow and burr generation during sealing, alumina powder, and a filler composition containing the alumina powder, a resin composition, and sealing.
  • the purpose is to provide materials and fingerprint authentication sensors.
  • the present inventors have a filler composition capable of suppressing wire flow and burr generation during sealing by using a specific alumina powder containing specific alumina particles. They have found that a substance, a resin composition, a sealing material, and a fingerprint authentication sensor can be obtained, and have completed the present invention.
  • Alumina powder containing alumina particles, among the alumina particles, the alumina particles having a projected area circle equivalent diameter of 50 nm or more by microscopy have an average spherical degree of 0.80 or more and a particle size of 0.80 or more.
  • the content of alumina particles of 75 ⁇ m or more is 0.05 mass% or less
  • the average particle size of the alumina powder is 0.2 ⁇ m or more and 15 ⁇ m or less
  • the average particle size is a laser diffracted light scattering type particle size distribution.
  • an alumina powder a filler composition containing the alumina powder, a resin composition, a sealing material, and a fingerprint authentication sensor, which can suppress wire flow and burr generation during sealing. can.
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and the present invention is not limited to the present embodiment.
  • the alumina powder of this embodiment contains specific alumina particles.
  • the alumina particles according to the present embodiment are also simply referred to as “alumina particles”, and the alumina powder containing the alumina particles according to the present embodiment is also simply referred to as “alumina powder”.
  • the average sphericity of the alumina particles having a projected area circle equivalent diameter of 50 nm or more by the following microscopy is 0.80 or more, preferably 0.86 or more and 0.98 or less.
  • the average sphericity of the alumina particles is in the above range, it becomes difficult to thicken the resin even if the resin is filled with alumina powder, the viscosity of the encapsulant becomes a suitable range, and the encapsulant flows during encapsulation. Deformation of the wire due to pressure can be suppressed. Further, when the average sphericity is in the above range, it is possible to prevent the sealing material from overflowing from the air vent portion of the mold.
  • the sphericity and the average sphericity are measured by, for example, the following microscopy. That is, a particle image (photograph, magnification: 2000 times) taken with a scanning electron microscope, a transmission electron microscope, or the like is taken into an image analyzer, and the projected area (SA) and peripheral length (PM) of the particles are taken from the particle image. To measure. Assuming that the area of a perfect circle having the same perimeter as the perimeter (PM) is (SB), the sphericity of the particle is SA / SB.
  • the sphericity of 200 arbitrary particles having a projected area equivalent circle diameter of 50 nm or more is obtained as described above, and the arithmetic mean value of the sphericity of each particle is defined as the average sphericity.
  • the upper limit of the diameter equivalent to the projected area circle is usually 50 ⁇ m.
  • the specific measurement method is as described in the examples.
  • the projected area circle-equivalent diameter refers to the diameter of a perfect circle having the same projected area as the projected area (SA) of the particles.
  • the content of the alumina particles having a particle size of 75 ⁇ m or more is 0.05% by mass or less, preferably 0.02% by mass or less.
  • the particle size of the alumina particles is 75 ⁇ m or more, the wire is easily deformed when the alumina particles collide with the wire.
  • alumina Since the frequency of collision of particles with the wire can be reduced, it is possible to suppress the wire flow.
  • the content of the alumina particles is 0.05% by mass or less, it becomes easy to maintain the surface smoothness of the obtained fingerprint authentication sensor, and the sensitivity is improved.
  • the lower limit of the content is, for example, 0% by mass.
  • the particle size is measured by a laser diffracted light scattering type particle size distribution measuring machine. The specific measurement method is as described in the examples.
  • the average particle size of the alumina powder is 0.2 ⁇ m or more and 15 ⁇ m or less.
  • the average particle size is in the above range, it becomes difficult to thicken the resin even if the resin is filled with alumina powder, and the viscosity of the encapsulant becomes a suitable range. Deformation can be suppressed. Further, when the average particle size is in the above range, it is possible to prevent the sealing material from overflowing from the air vent portion of the mold. Further, when the average particle size is in the above range, the surface smoothness of the obtained fingerprint authentication sensor can be maintained.
  • the average particle size is 0.2 ⁇ m or more, it is possible to suppress an increase in the viscosity of the encapsulant due to the presence of fine particles when the alumina powder is filled in the resin, and reduce the wire flow.
  • the average particle size is 15 ⁇ m or less, burrs of the sealing material can be reduced when the resin is filled.
  • the average particle size is measured by a laser diffracted light scattering type particle size distribution measuring machine. The specific measurement method is as described in the examples.
  • the amount of water contained in the alumina powder measured by the following measuring method is 30 ppm or more and 500 ppm or less, and preferably 50 ppm or more and 450 ppm or less.
  • (Measuring method) 1 g of alumina powder is heated from room temperature to 900 ° C., and the amount of water generated at 500 ° C. or higher and 900 ° C. or lower is measured by the Karl Fischer titration method. The specific measurement method is as described in the examples.
  • the water content is within the above range, it becomes difficult to thicken the resin even if the resin is filled with alumina powder, the viscosity of the encapsulant becomes a suitable range, and the wire is deformed by the flow pressure of the encapsulant during sealing.
  • the present inventors presume as follows. However, the reason is not limited to this. Since it is presumed that the water generated at 500 ° C. or higher and 900 ° C. or lower is mainly derived from the hydroxyl groups on the surface of the alumina powder, it is presumed that the alumina powder has a small amount of hydroxyl groups. Since the resin is usually hydrophobic, if a large number of hydroxyl groups are present on the surface of the alumina powder, the affinity between the resin and the alumina powder is low, and it becomes difficult to control the flow pressure of the encapsulant. In addition, since the alumina powder is difficult to hold in the resin, the frequency of collision of the alumina particles with the wire increases.
  • the resin easily protrudes from the alumina powder, it becomes difficult to maintain the surface smoothness of the fingerprint authentication sensor having the sealing material.
  • the affinity with the resin is good, but the viscosity is high, so that the sealing material overflows from the air vent portion of the mold, so-called burrs are likely to occur.
  • the affinity with the resin can be appropriately maintained, so that wire deformation and generation of burrs are suppressed, and the obtained fingerprint is obtained. It is presumed that it also has the effect of maintaining the surface smoothness of the authentication sensor.
  • the content of the alumina particles having a particle size of 25 ⁇ m or more and less than 75 ⁇ m is preferably 0.1% by mass or less.
  • the lower limit of this content is, for example, 0 parts by mass or more.
  • the specific measurement method is as described in the examples. When this content is in the above range, it becomes difficult to thicken the resin even if the resin is filled with alumina powder, and the viscosity of the encapsulant is in a suitable range. There is a tendency that deformation can be further suppressed. Further, when this content is in the above range, the surface smoothness of the obtained fingerprint authentication sensor can be kept better.
  • the wire When the particle size of the alumina particles is 25 ⁇ m or more, the wire is easily deformed when the alumina particles collide with the wire. However, by reducing the content of such alumina particles to 0.1% by mass or less, alumina Since the frequency of collision of particles with the wire can be reduced, it tends to be possible to suppress the wire flow. Further, when the content of the alumina particles is 0.1% by mass or less, it becomes easy to maintain the surface smoothness of the obtained fingerprint authentication sensor, and the sensitivity tends to be improved.
  • the content of the alumina particles having a particle size of 1 ⁇ m or less is preferably 1% by mass or more and 35% by mass or less.
  • this content is in the above range, it becomes difficult to thicken the resin even if the resin is filled with alumina powder, and the viscosity of the encapsulant is in a suitable range. There is a tendency that deformation can be further suppressed. Further, when this content is in the above range, the sealing material tends to be more suppressed from overflowing from the air vent portion of the mold.
  • the content of the alumina particles having a particle size of 1 ⁇ m or less is 35% by mass or less, the increase in viscosity due to the coarse particles is further suppressed, and the flow pressure of the encapsulant can be further controlled.
  • the content is 1% by mass or more, it becomes easier to form a propagation path by fine particles, and a highly dielectric material having a higher dielectric property tends to be easily obtained.
  • the specific measurement method is as described in the examples.
  • the average sphericality of the alumina particles having a projected area circle equivalent diameter of 50 nm or more and 1 ⁇ m or less by the above-mentioned microscopy is preferably 0.80 or more, and is 0.80 or more and 0.98 or less. Is more preferable.
  • the average sphericity is in the above range, it becomes difficult to thicken the resin even if the resin is filled with alumina powder, and the viscosity of the encapsulant becomes a suitable range. Deformation can be suppressed more effectively. Further, when the average sphericity is in the above range, the sealing material can be more effectively suppressed from overflowing from the air vent portion of the mold.
  • the specific surface area of the alumina powder is from the viewpoint of maintaining good fluidity of the sealing material is preferably from 1.0 m 2 / g or more 15m 2 / g, 1.5m 2 / g or more 10 m 2 / It is more preferably g or less.
  • the specific surface area is measured by the BET method, and is measured by, for example, the following method. That is, using a specific surface area measuring machine "Macsorb HM model-1208 (trade name)" manufactured by Mountech Co., Ltd., 1.0 g of alumina particles are used, and the measurement is performed by the BET one-point method. Prior to the measurement, the alumina particles are heated at 300 ° C. for 5 minutes in a nitrogen gas atmosphere as a pretreatment. Further, in the BET measurement, a mixed gas of 30% nitrogen and 70% helium is used as the adsorbed gas, and the flow rate is adjusted so that the indicated value of the main body flow meter is 25 ml / min.
  • the raw materials used for obtaining the alumina powder include metal aluminum powder, aluminum hydroxide powder or a slurry thereof, and alumina powder or a slurry thereof.
  • metal aluminum powder and alumina powder are preferable. ..
  • the raw material it is preferable to appropriately use metal aluminum powder and / or metal aluminum powder having an average particle size in the range of 1 ⁇ m or more and 20 ⁇ m or less.
  • the alumina powder may be an alumina powder obtained by melting, cooling, and crushing alumina to prepare a pulverized electrolytic alumina powder, and then classifying the pulverized product.
  • the metallic aluminum powder and the alumina powder may be commercially available products.
  • the flame melting method is usually used to spheroidize metallic aluminum powder and alumina powder. According to this method, there is an advantage that spheroidization is easy.
  • Metallic aluminum powder and alumina powder are sprayed and supplied into a flame by a dry feed method in which metallic aluminum powder and alumina powder are dispersed in a gas such as oxygen and air.
  • a spraying method a spraying nozzle such as that used in a spray dryer can be used, but it is important to sufficiently disperse by a feed method having a strong dispersing function. It is preferable to use a ring nozzle method that utilizes dispersion by shearing force due to high-speed air flow.
  • a fuel gas such as hydrogen, natural gas, acetylene gas, propane gas (LP gas), and butane
  • an auxiliary gas such as air and oxygen
  • the flame melting is carried out by constantly supplying water such as ion-exchanged water and changing the water vapor concentration in the atmosphere in order to adjust the water content of the obtained alumina powder by the Karl Fischer titration method.
  • water for example, a spray nozzle can be used, and pressurized air is usually used as the dispersed gas of the nozzle.
  • the temperature of the water to be sprayed is usually preferably controlled to about room temperature (25 ° C.).
  • the flame temperature is preferably maintained at 2050 ° C.
  • the flame temperature can be controlled, for example, by changing the amount of fuel gas supplied.
  • the fuel gas supply amount is in the range of 3 Nm 3 / hour or more and 15 Nm 3 / hour or less
  • the combustion assisting gas supply amount is in the range of 15 Nm 3 / hour or more and 75 Nm 3 / hour or less
  • the water supply amount is 30 L / hour.
  • Alumina powders having different average sphericalness, average particle size, and water content contained in the alumina powder can be produced by appropriately changing the time in the range of 90 L / hour or less.
  • the metallic aluminum powder and alumina powder injected into the flame are subjected to high-temperature heat treatment to spheroidize the alumina powder.
  • the heat-treated powder is sucked together with the exhaust gas by a blower or the like, and is collected by a cyclone or bag filter collector.
  • the collection temperature at that time is preferably 500 ° C. or higher. From the material of the collector, the upper limit is preferably about 1100 ° C. Further, by setting the collection temperature to 500 ° C. or higher, it is possible to suppress the mixing of a large amount of other cation impurities and anion impurities, and to make the neutrality of the alumina powder more sufficient.
  • the obtained alumina powder is classified by, for example, using a JIS standard stainless steel test sieve or the like, and the content of alumina particles having a particle size of 75 ⁇ m or more and the particle size of 25 ⁇ m. It is preferable to adjust the content of alumina particles having a size of not less than 75 ⁇ m.
  • the filler composition according to the present embodiment contains the alumina powder according to the present embodiment and silica.
  • the filler composition according to the present embodiment has improved fluidity and can suitably suppress deformation of the wire due to the flow pressure of the encapsulant.
  • silica for example, known silica such as crystalline silica, amorphous silica, quartz, fumed silica, and silicon dioxide can be used. Of these, amorphous silica is preferable from the viewpoint of insulating properties and moisture resistance stability when used as a sealing material.
  • the average sphericity of silica having a projected area circle equivalent diameter of 0.05 ⁇ m or more by the above-mentioned microscopy is 0.85 or more.
  • the average sphericity of silica is in the above range, it is possible to reduce the frictional resistance when silica enters the gaps between the alumina powder when the resin is filled with silica together with the alumina powder.
  • the resin filled with these particles is less likely to thicken, the viscosity of the encapsulant is in a suitable range, and deformation of the wire due to the flow pressure of the encapsulant can be suppressed at the time of encapsulation.
  • silica it is preferable to use silica having an average particle size of 0.05 ⁇ m or more and 1.5 ⁇ m or less. When such silica is used, silica can efficiently enter the gaps of the alumina powder, and the wire flow amount and the burr reduction effect when used as a sealing material can be further enhanced.
  • Silica may be surface-treated using a known surface treatment.
  • the method for producing silica is, for example, (1) a method of throwing metal silane particles into a high temperature field formed by a chemical flame or an electric furnace to spheroidize while causing an oxidation reaction, and (2) a slurry of metal silane particles in a flame.
  • a method of spheroidizing while spraying on (3) a method of producing by removing metal ions by neutralization or ion exchange using an alkali metal silicate such as sodium silicate called colloidal silica as a raw material, (4).
  • Examples thereof include a method of producing by hydrolyzing and condensing in an organic solvent using an alkoxysilane such as tetraethoxysilane as a raw material.
  • the filler composition contains alumina powder and silica
  • the occurrence of wire flow and burrs during sealing can be suitably suppressed, the fluidity is further improved, and the deformation of the wire due to the flow pressure of the sealing material is more preferable.
  • the alumina powder is preferably contained in an amount of 85% by volume or more and 99.8% by volume or less, more preferably 90% by volume or more and 98% by volume or less, based on 100% by volume of the filler composition. ..
  • silica is preferably contained in an amount of 0.02% by volume or more and 15% by volume or less, more preferably 2% by volume or more and 10% by volume or less, based on 100% by volume of the filler composition.
  • the filler composition of the present embodiment one kind of alumina powder according to the present embodiment may be used as it is. Further, the filler composition according to the present embodiment may be obtained by appropriately mixing two or more kinds of alumina powders. Further, the filler composition according to the present embodiment may be obtained by appropriately mixing the alumina powder according to the present embodiment and silica. Examples of the mixing method include ball mill mixing.
  • the resin composition according to the present embodiment includes a resin and an alumina powder or a filler composition according to the present embodiment.
  • the resin composition according to the present embodiment can suitably suppress the generation of wire flow and burrs during sealing.
  • the resin composition according to the present embodiment further improves the fluidity in addition to the effect of containing the alumina powder by containing the filler composition, and further deforms the wire due to the flow pressure of the encapsulant. It can be suitably suppressed.
  • resin for example, epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin and the like can be used. These resins can be used alone or in admixture of two or more.
  • the content of the alumina powder according to the present embodiment is preferably 10% by mass or more and 95% by mass or less, and 30% by mass or more and 93% by mass, based on 100% by mass of the resin composition. It is more preferably mass% or less.
  • the total content of the filler components contained in the filler composition according to the present embodiment is 10% by mass or more and 95% by mass with respect to 100% by mass of the resin composition. It is preferably 3% by mass or less, and more preferably 30% by mass or more and 93% by mass or less.
  • the content of the resin content (solid content) is preferably 5% by mass or more and 90% by mass or less, and 7% by mass or more and 70% by mass or less, from the viewpoint of moldability of the resin composition. Is more preferable.
  • the resin composition of the present embodiment contains an inorganic filler, a low stress agent, and a rubber-like material, if necessary, in addition to the alumina powder and the resin according to the present embodiment, as long as the characteristics of the present embodiment are not impaired.
  • Substances, reaction retarders, curing agents, curing accelerators, flame retardants, flame retardants, colorants, tackifiers, UV absorbers, antioxidants, fluorescent whitening agents, photosensitizers, thickeners examples thereof include lubricants, defoaming agents, surface conditioners, brighteners, silane coupling agents, mold release agents, and polymerization prohibiting agents.
  • the content of other components may be 10% by mass or less in total or 5% by mass or less with respect to 100% by mass of the resin composition. It may be 0% by mass or less, 1% by mass or less, and 0.5% by mass or less.
  • Examples of the method for producing the resin composition of the present embodiment include a method of sufficiently stirring the resin, the alumina powder or the filler composition, and other components as needed.
  • a predetermined amount of each component is blended with a blender, a Henschel mixer or the like, kneaded with a heating roll, a kneader, a uniaxial or biaxial extruder or the like, cooled, and then pulverized.
  • the encapsulant according to the present embodiment can suppress the occurrence of wire flow and burrs during encapsulation, it can be suitably used as an encapsulant for protecting the capacitance type fingerprint authentication sensor.
  • the encapsulant is produced, for example, by mixing the resin composition of the present embodiment with various known additives or solvents generally used for encapsulant materials using a known mixer. Can be done. As a method for adding various components and solvents at the time of mixing, generally known methods can be appropriately adopted.
  • the fingerprint authentication sensor according to the present embodiment is a capacitance type, and is not particularly limited as long as it includes the sealing material of the present embodiment.
  • the fingerprint authentication sensor according to the present embodiment has a low defect rate due to wire flow, occurrence of burrs, etc., and can be mass-produced at low cost.
  • a method for sealing the fingerprint authentication sensor using the sealing material according to the present embodiment for example, a known method such as a transfer molding method or a vacuum printing molding method can be applied.
  • Alumina particles having a particle size of 75 ⁇ m or more and alumina particles having a particle size of 25 ⁇ m or more and less than 75 ⁇ m were measured by the following wet sieving method.
  • a JIS standard stainless steel test sieve with a mesh size of 75 ⁇ m or 25 ⁇ m is set in the Seishin Enterprise Sieve Sorting Sieve Machine “Octagon Digital (Wet Sieve Unit) (trade name)”, and in Examples and Comparative Examples.
  • Each 10 g of the obtained alumina powder was precisely weighed and put into a sieve, shaken with a shower water volume of 9.5 L / min for 5 minutes, and then the powder remaining on the sieve was transferred to an aluminum container. It was dried in the air at 120 ° C. for 60 minutes and the mass of the alumina powder on the sieve was weighed. The mass of the alumina powder on the sieve is divided by the mass of the alumina powder used for measurement to obtain a percentage, and the ratio of the alumina powder remaining on the sieve is calculated. Alumina particles having a particle size of 75 ⁇ m or more and 25 ⁇ m or more. The content (mass%) of each of the alumina particles having a size of less than 75 ⁇ m was calculated.
  • the average particle size of alumina powder was measured using a laser diffracted light scattering type particle size distribution measuring machine LS-230 (trade name) manufactured by Beckman Coulter. At the time of measurement, 0.04 g of each of the alumina powders obtained in Examples and Comparative Examples to be measured was added to a mixed solution of 0.5 mL of ethanol and 5 mL of ion-exchanged water as a solvent, and 2 as a pretreatment. A slurry was obtained by dispersion treatment for 30 seconds using an ultrasonic generator UD-200 (with an ultratrace chip TP-030) (trade name) manufactured by Tomy Seiko Co., Ltd. for 1 minute.
  • the particle size distribution was measured at a pump rotation speed of 60 rpm.
  • 1.333 and 1.768 were used as the refractive indexes of the water and alumina particles, respectively.
  • the particle size distribution was analyzed by volume-cumulative.
  • the particles having a cumulative mass of 50% were defined as the average particle diameter ( ⁇ m), and the average particle diameter of the alumina powder was defined.
  • Moisture content in alumina powder 1 g of alumina powder is placed in a moisture vaporizer (VA-122 (trade name) manufactured by Mitsubishi Chemical Analytech Co., Ltd.) and heated from room temperature (25 ° C) to 900 ° C with an electric heater. The temperature was raised, and the amount of water generated at 500 ° C. or higher and 900 ° C. or lower was measured by the Karl Fischer titration method to measure the amount of water (ppm) contained in the alumina powder.
  • VA-122 Japanese Chemical Analytech Co., Ltd.
  • the epoxy resin is a biphenyl type epoxy resin (YX-4000H (trade name) manufactured by Japan Epoxy Resin Co., Ltd.), and the phenol resin is a phenol aralkyl resin (Millex (registered trademark) XLC-4L (trade name) manufactured by Mitsui Chemicals Co., Ltd.), silane.
  • Epoxy silane compound KBM-403 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd.) as a coupling agent
  • triphenylphosphine manufactured by Hokuko Chemical Co., Ltd.
  • carnauba wax manufactured by Clariant
  • the following was heated and kneaded.
  • the kneaded product discharged material
  • the dielectric property relative permittivity
  • fluidity spiral flow
  • moldability burr length
  • the encapsulant obtained above is molded into a circular shape having a diameter of 100 mm and a thickness of 3 mm, respectively, and then post-cured to obtain a cured product of the encapsulant.
  • the transfer molding conditions were a mold temperature of 175 ° C., a molding pressure of 7.5 MPa, and a holding time of 90 seconds, and the post-cure conditions were a heating temperature of 175 ° C. and a heating time of 8 hours.
  • a conductive paste (Dotite (registered trademark) D-550 (trade name) manufactured by Fujikura Kasei Co., Ltd.) is thinly applied to the surface of the cured body of the encapsulant, and an LCR meter (HP4284A (trade name) manufactured by Azilent Technology Co., Ltd.) and Using a measuring electrode (SE-70 (trade name) manufactured by Ando Electric Co. Ltd.), the relative permittivity was calculated from the capacitance measured at a temperature of 20 ° C., a humidity of 40%, and a frequency of 1 MHz. The larger the value of the relative permittivity, the better the dielectric property.
  • the value of the relative permittivity is preferably 6 or more from the viewpoint of improving the reading accuracy when used as a sealing material for the fingerprint authentication sensor.
  • An evaluation chip with a size of 8 mm in length, 8 mm in width, and 0.3 mm in height is placed on a substrate for FC-BGA (Flip Chip Ball Grid Array) via a dicing die attach film.
  • FC-BGA Flexible Chip Ball Grid Array
  • a structure was obtained by connecting 8 places with gold wires. The diameter of the gold wire was 20 ⁇ m ⁇ , the distance (pitch) between the centers of the gold wire was 80 ⁇ m, and the distance between the gold wires was 60 ⁇ m.
  • the structure is installed in the mold of the transfer molding machine, and each of the sealing materials obtained above is injected by a plunger so that the structure is sealed in the mold, and the size is determined.
  • each gold wire portion was observed with a soft X-ray transmission device, and the maximum flow distance through which the gold wire was flown by packaging was measured.
  • This maximum flow distance was measured for all 20 simulated tip encapsulants, an average value was calculated from the maximum flow distance of each gold wire obtained, and this average value was taken as the wire flow amount ( ⁇ m). bottom. The smaller the value of the wire flow amount, the higher the viscosity.
  • Example 1 First, as a raw material used for producing alumina powder, alumina LS-21 (trade name) manufactured by Nippon Light Metal Co., Ltd. was melted, cooled, and pulverized to prepare a pulverized fused alumina product. The crushing treatment was performed with a ball mill, and alumina balls were used as the crushing medium. From the obtained pulverized alumina product, alumina raw material 1 (average particle size: 3 ⁇ m), alumina raw material 2 (average particle size: 5 ⁇ m), alumina raw material 3 (average particle size: 8 ⁇ m), and alumina raw material 4 (average) were subjected to classification treatment. Particle size: 14 ⁇ m) was prepared.
  • the obtained alumina raw material 3 is accompanied by oxygen gas (gas flow rate: 35 Nm 3 / hour) and supplied into a flame from a spray nozzle, and fuel gas (LP gas, gas flow rate: gas flow rate: The flame melting treatment was carried out while supplying ion-exchanged water (water supply amount: 90 L / hour) in order to adjust the water content of 7 Nm 3 / hour) and the curl fisher coulometric titration method of the obtained alumina powder.
  • the alumina powder obtained by this treatment was conveyed to the bag filter by a blower together with the exhaust gas, and the alumina powder was collected.
  • the ion-exchanged water was supplied into the production furnace by spraying using an Atmax nozzle BN160 manufactured by Atmax.
  • air pressurized to 0.5 MP with a compressor was used as the dispersed gas of the nozzle, and the temperature of the sprayed water was controlled to 25 ° C.
  • the water spray nozzles were inserted in two stages at intervals of 15 ° from the center of the furnace, and the nozzle position of the first stage was installed at a height of 80 cm from the top of the furnace, and the position of the second stage was installed at a height of 100 cm from the top of the furnace. ..
  • a JIS having a mesh size of 75 ⁇ m or 25 ⁇ m is adjusted.
  • Classification was performed using a standard stainless steel test sieve. The physical characteristics of the alumina powder after classification were evaluated, and the results are shown in Table 2. The relative permittivity was 6 or more.
  • Examples 2 to 10 and Comparative Examples 1 to 6 Alumina powder was obtained in the same manner as in Example 1 except that the type of alumina raw material, the supply amount of oxygen gas, the supply amount of fuel gas, and the supply amount of ion-exchanged water were changed according to Tables 2 and 3.
  • metal aluminum powder (average particle size: 10 ⁇ m) was used as the alumina raw material.
  • the physical characteristics of the obtained alumina powder were evaluated, respectively, and the results are shown in Tables 2 and 3.
  • the relative permittivity was 6 or more except for Comparative Example 6, but it was less than 6 in Comparative Example 6.
  • an alumina powder, a filler composition containing the alumina powder, and a resin composition capable of suppressing wire flow and generation of burrs at the time of sealing can be obtained. Therefore, the alumina powder, filler composition, and resin composition of the present invention are suitable for encapsulants and fingerprint authentication sensors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Plasma & Fusion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

本発明のアルミナ粉末は、アルミナ粒子を含み、前記アルミナ粒子のうち、顕微鏡法による投影面積円相当径が50nm以上であるアルミナ粒子の平均球形度が0.80以上であり、粒子径が75μm以上であるアルミナ粒子の含有率が0.05質量%以下であり、前記アルミナ粉末の平均粒子径が、0.2μm以上15μm以下であり、前記平均粒子径は、レーザー回折光散乱式粒度分布測定機によって測定された粒子径であり、特定の測定方法によって測定された、前記アルミナ粉末に含まれる水分量が、30ppm以上500ppm以下である、アルミナ粉末。

Description

アルミナ粉末、フィラー組成物、樹脂組成物、封止材、及び指紋認証センサー
 本発明は、アルミナ粉末、フィラー組成物、樹脂組成物、封止材、及び指紋認証センサーに関する。
 近年、情報の電子化及びネットワーク化が大きく進展し、企業や個人の機密情報管理が重要となっている。これらの機密情報へのアクセス管理においては、本人認証機能が必要となり、高度な認証機能が必要な分野には、指紋認証機能の普及が進んでいる。
 指紋認証には、光学型、感熱型、及び静電容量型等があるが、スマートフォンやタブレットに代表されるモバイル端末においては、高信頼性、高解像度、及び小型化の観点から、静電容量型の指紋認証が多く採用されている。静電容量型の指紋認証は指紋の微妙な凹凸による静電容量の差を精度良く検知する必要があり、指紋認証システムの静電容量を高めるために、指紋認証センサーを保護する封止材の高誘電化が要望されている。封止材の高誘電化のためには、アルミナ粉末などの誘電材料が用いられている(特許文献1等)。
 指紋認証センサーは、通常、半導体チップ上に配され、半導体チップと指紋認証センサーとは、金ワイヤに代表されるワイヤにより接続されている。そして、指紋認証センサーは、このワイヤと共に、封止材により封止されている。
特開2005-112665号公報
 最近の指紋認証センサーでは、小型化の点から、金ワイヤに代表されるワイヤの細線化が進んでいるが、それに伴い、封止時において、封止材の流動圧力やワイヤへのフィラーの衝突によりワイヤが変形する、いわゆるワイヤ流れが発生する。そのため、指紋認証センサーの不良率が増加するとの問題がある。一方、ワイヤ流れを改善するために、封止材の粘度を低下させると、金型のエアーベント部から封止材が溢れ出る現象、いわゆるバリが発生する。以上から、誘電材料を含む最先端の封止材には、ワイヤ流れ及びバリの発生を抑制して封止できる特性が要求される。
 本発明は、このような課題に鑑みてなされたものであり、封止時におけるワイヤ流れ及びバリの発生を抑制できる、アルミナ粉末、並びにそのアルミナ粉末を含むフィラー組成物、樹脂組成物、封止材、及び指紋認証センサーの提供を目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、特定のアルミナ粒子を含む特定のアルミナ粉末を用いることで、封止時におけるワイヤ流れ及びバリの発生を抑制できるフィラー組成物、樹脂組成物、封止材、及び指紋認証センサーを得ることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
 [1]アルミナ粒子を含む、アルミナ粉末であって、前記アルミナ粒子のうち、顕微鏡法による投影面積円相当径が50nm以上であるアルミナ粒子の平均球形度が0.80以上であり、粒子径が75μm以上であるアルミナ粒子の含有率が0.05質量%以下であり、前記アルミナ粉末の平均粒子径が、0.2μm以上15μm以下であり、前記平均粒子径は、レーザー回折光散乱式粒度分布測定機によって測定された粒子径であり、下記の測定方法によって測定された、前記アルミナ粉末に含まれる水分量が、30ppm以上500ppm以下である、アルミナ粉末。
(測定方法)
 前記アルミナ粉末1gを常温から900℃まで加熱昇温させて、500℃以上900℃以下で発生した水分量をカールフィッシャー電量滴定法にて測定する。
 [2]粒子径が25μm以上75μm未満であるアルミナ粒子の含有率が0.1質量%以下である、[1]に記載のアルミナ粉末。
 [3]粒子径が1μm以下であるアルミナ粒子の含有率が1質量%以上35質量%以下であり、顕微鏡法による投影面積円相当径が50nm以上1μm以下であるアルミナ粒子の平均球形度が0.80以上である、[1]又は[2]に記載のアルミナ粉末。
 [4][1]~[3]のいずれかに記載のアルミナ粉末と、シリカとを含む、フィラー組成物。
 [5]樹脂と、[1]~[3]のいずれかに記載のアルミナ粉末又は[4]に記載のフィラー組成物とを含む、樹脂組成物。
 [6][5]に記載の樹脂組成物を含む、封止材。
 [7][6]に記載の封止材を含む、指紋認証センサー。
 本発明によれば、封止時におけるワイヤ流れ及びバリの発生を抑制できる、アルミナ粉末、並びにそのアルミナ粉末を含むフィラー組成物、樹脂組成物、封止材、及び指紋認証センサーを提供することができる。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 本実施形態のアルミナ粉末は、特定のアルミナ粒子を含む。以下、特に説明しない限り、本実施形態に係るアルミナ粒子を単に「アルミナ粒子」とも称し、本実施形態に係るアルミナ粒子を含むアルミナ粉末を単に「アルミナ粉末」とも称す。
[アルミナ粉末]
 アルミナ粒子のうち、下記の顕微鏡法による投影面積円相当径が50nm以上であるアルミナ粒子の平均球形度は、0.80以上であり、0.86以上0.98以下であることが好ましい。そのアルミナ粒子の平均球形度が上記範囲であると、樹脂にアルミナ粉末を充填しても増粘しにくくなり、封止材の粘度が好適な範囲となり、封止時において、封止材の流動圧力によるワイヤの変形を抑制できる。また、その平均球形度が上記範囲であると、金型のエアーベント部から封止材が溢れ出ることも抑制できる。本実施形態において、球形度、及び平均球形度は、例えば、下記の顕微鏡法により測定される。すなわち、走査型電子顕微鏡又は透過型電子顕微鏡等にて撮影した粒子像(写真、倍率:2000倍)を画像解析装置に取り込み、その粒子像から粒子の投影面積(SA)と周囲長(PM)を測定する。その周囲長(PM)と同一の周囲長を持つ真円の面積を(SB)とすると、その粒子の球形度はSA/SBとなる。よって、試料の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、SB=πr2であるから、SB=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=SA/SB=SA×4π/(PM)2となる。投影面積円相当径が50nm以上である任意の粒子200個の球形度を上記のようにして求め、また、個々の粒子の球形度の相加平均値を平均球形度とする。なお、投影面積円相当径の上限は、通常50μmである。なお、具体的な測定方法は、実施例に記載のとおりである。また、投影面積円相当径は、粒子の投影面積(SA)と同一の投影面積を持つ真円の直径を指す。
 アルミナ粒子のうち、粒子径が75μm以上であるアルミナ粒子の含有率は0.05質量%以下であり、0.02質量%以下であることが好ましい。アルミナ粒子の粒子径が75μm以上であると、アルミナ粒子がワイヤに衝突した際にワイヤが変形しやすくなるが、そのようなアルミナ粒子の含有率を0.05質量%以下にすることにより、アルミナ粒子のワイヤへの衝突頻度を低減できるので、ワイヤ流れを抑制することが可能となる。また、アルミナ粒子の含有率を0.05質量%以下にすると、得られる指紋認証センサーの表面平滑性を保つことが容易となり、感度が向上する。含有率の下限は、例えば、0質量%である。本実施形態において、粒子径は、レーザー回折光散乱式粒度分布測定機によって測定される。具体的な測定方法は、実施例に記載のとおりである。
 アルミナ粉末の平均粒子径は、0.2μm以上15μm以下である。平均粒子径が上記範囲にあると、樹脂にアルミナ粉末を充填しても増粘しにくくなり、封止材の粘度が好適な範囲となり、封止時において、封止材の流動圧力によるワイヤの変形を抑制できる。また、平均粒子径が上記範囲にあると、金型のエアーベント部から封止材が溢れ出ることも抑制できる。更に、平均粒子径が上記範囲にあると、得られる指紋認証センサーの表面平滑性を保つことができるとの効果も奏する。平均粒子径が0.2μm以上であると、アルミナ粉末を樹脂に充填した際に微粒子の存在に伴う封止材の粘度の上昇を抑制し、ワイヤ流れを低減することができる。平均粒子径が15μm以下であると、樹脂に充填した際に封止材のバリを低減することができる。なお、本実施形態において、平均粒子径は、レーザー回折光散乱式粒度分布測定機によって測定される。具体的な測定方法は、実施例に記載のとおりである。
 下記の測定方法によって測定された、アルミナ粉末に含まれる水分量は、30ppm以上500ppm以下であり、50ppm以上450ppm以下であることが好ましい。
(測定方法)
 アルミナ粉末1gを常温から900℃まで加熱昇温させて、500℃以上900℃以下で発生した水分量をカールフィッシャー電量滴定法にて測定する。具体的な測定方法は、実施例に記載のとおりである。
 水分量が上記範囲にあると、樹脂にアルミナ粉末を充填しても増粘しにくくなり、封止材の粘度が好適な範囲となり、封止時において、封止材の流動圧力によるワイヤの変形を抑制できる。また、水分量が上記範囲にあると、金型のエアーベント部から封止材が溢れ出ることも抑制できる。更に、水分量が上記範囲にあると、得られる指紋認証センサーの表面平滑性を保つことができるとの効果も奏する。
 本発明者らは、この理由について定かではないが、下記のように推定している。ただし、理由はこれに限定されない。
 500℃以上900℃以下で発生する水分は、主として、アルミナ粉末の表面におけるヒドロキシル基に由来すると推定されるので、アルミナ粉末には、少量のヒドロキシル基を有していると推定される。通常、樹脂は疎水性であるため、アルミナ粉末表面にヒドロキシル基が多く存在すると、樹脂とアルミナ粉末との親和性が低く、封止材の流動圧力を制御しにくくなる。また、アルミナ粉末が樹脂に保持しにくくなるため、アルミナ粒子のワイヤへの衝突頻度も多くなる。更に、アルミナ粉末から樹脂が突出しやすくなるため、封止材を有する指紋認証センサーの表面平滑性を保つことも難しくなる。一方、アルミナ粉末表面のヒドロキシル基が少ないと、樹脂との親和性は良好となるが、粘度が高くなるため、金型のエアーベント部から封止材が溢れ出る、いわゆるバリの発生が生じやすくなる。本実施形態では、アルミナ表面のヒドロキシル基に由来する水分量が上記範囲にある結果、樹脂との親和性を適度に保持することができるため、ワイヤ変形及びバリの発生が抑制され、得られる指紋認証センサーの表面平滑性を保つことができるとの効果も奏すると推定される。
 アルミナ粒子のうち、粒子径が25μm以上75μm未満であるアルミナ粒子の含有率は、0.1質量%以下であることが好ましい。この含有率の下限は、例えば、0質量部%以上である。具体的な測定方法は、実施例に記載のとおりである。
 この含有率が上記範囲にあると、樹脂にアルミナ粉末を充填しても増粘しにくくなり、封止材の粘度が好適な範囲となり、封止時において、封止材の流動圧力によるワイヤの変形を更に抑制できる傾向にある。また、この含有率が上記範囲にあると、得られる指紋認証センサーの表面平滑性をより良好に保つことができるとの効果も奏する。アルミナ粒子の粒子径が25μm以上であると、アルミナ粒子がワイヤに衝突した際にワイヤが変形しやすくなるが、そのようなアルミナ粒子の含有率を0.1質量%以下にすることにより、アルミナ粒子のワイヤへの衝突頻度を低減できるので、ワイヤ流れを抑制することが可能となる傾向にある。また、アルミナ粒子の含有率を0.1質量%以下にすると、得られる指紋認証センサーの表面平滑性を保つことが容易となり、感度が向上する傾向にある。
 アルミナ粒子のうち、粒子径が1μm以下であるアルミナ粒子の含有率は、1質量%以上35質量%以下であることが好ましい。この含有率が上記範囲にあると、樹脂にアルミナ粉末を充填しても増粘しにくくなり、封止材の粘度が好適な範囲となり、封止時において、封止材の流動圧力によるワイヤの変形を更に抑制できる傾向にある。また、この含有率が上記範囲にあると、金型のエアーベント部から封止材が溢れ出ることもより抑制できる傾向にある。粒子径が1μm以下であるアルミナ粒子の含有率が35質量%以下であると、粗粒子による粘度の上昇をより抑制し、封止材の流動圧力を更に制御しやすくなる。一方、その含有率が1質量%以上であると、微粒子による伝搬経路がより形成しやすくなり、更に高い誘電性を有する高誘電体が得られやすく傾向にある。具体的な測定方法は、実施例に記載のとおりである。
 アルミナ粒子のうち、上記の顕微鏡法による投影面積円相当径が50nm以上1μm以下であるアルミナ粒子の平均球形度は、0.80以上であることが好ましく、0.80以上0.98以下であることがより好ましい。平均球形度が上記範囲にあると、樹脂にアルミナ粉末を充填しても増粘しにくくなり、封止材の粘度が好適な範囲となり、封止時において、封止材の流動圧力によるワイヤの変形を更に有効に抑制できる。また、この平均球形度が上記範囲にあると、金型のエアーベント部から封止材が溢れ出ることもより有効に抑制できる。
 アルミナ粉末の比表面積は、封止材の良好な流動性を維持するという点から、1.0m2/g以上15m2/g以下であることが好ましく、1.5m2/g以上10m2/g以下であることがより好ましい。なお、本実施形態において、比表面積の測定は、BET法に基づく値であり、例えば、次の方法で測定される。すなわち、マウンテック社製比表面積測定機「Macsorb HM model-1208(商品名)」を用い、アルミナ粒子1.0gを用い、BET一点法にて測定する。なお、測定に先立ち、前処理として、アルミナ粒子について、窒素ガス雰囲気中で300℃、及び5分間加熱を行う。また、BET測定において、吸着ガスには、窒素30%、及びヘリウム70%の混合ガスを用い、本体流量計の指示値が25ml/minになるように流量を調整する。
[アルミナ粉末の製造方法]
 アルミナ粉末を得る際に用いられる原料としては、例えば、金属アルミニウム粉末、水酸化アルミニウム粉末若しくはそのスラリー、及びアルミナ粉末若しくはそのスラリーが挙げられるが、それらの中でも、金属アルミニウム粉末、及びアルミナ粉末が好ましい。原料としては、平均粒子径が1μm以上20μm以下の範囲にある、金属アルミニウム粉末、及び/又は金属アルミニウム粉末を適宜用いることが好ましい。また、アルミナ粉末は、アルミナを溶融、冷却、及び粉砕して電融アルミナ粉砕物を調製後、その粉砕物から分級処理して得られたアルミナ粉末であってもよい。金属アルミニウム粉末、及びアルミナ粉末は、市販品であってもよい。
 金属アルミニウム粉末、及びアルミナ粉末を、球状化するには、通常、火炎溶融法が用いられる。この方法によれば、球状化させやすい利点がある。
 金属アルミニウム粉末、及びアルミナ粉末は、金属アルミニウム粉末、アルミナ粉末を酸素、及び空気等の気体に分散させた乾式フィード法により、火炎中に噴霧供給する。噴霧方法としては、スプレードライヤーで用いられているような噴霧ノズルを利用できるが、強力な分散機能を有するフィード法で十分に分散させることが重要となり、例えば、エゼクタノズル形状にしたフィード管部を用いて、高速空気流によるせん断力による分散を利用したリングノズル方式で行うことが好ましい。
 火炎を形成するには、水素、天然ガス、アセチレンガス、プロパンガス(LPガス)、及びブタン等の燃料ガスと、空気、及び酸素等の助燃ガスとをノズルから噴射・燃焼させればよい。また、火炎溶融は、得られるアルミナ粉末のカールフィッシャー電量滴定法の水分量を調整するために、常時、イオン交換水等の水を供給し、雰囲気中の水蒸気濃度を変化させながら行う。水の噴霧は、例えば、噴霧ノズルを利用でき、ノズルの分散ガスには、通常、加圧した空気を使用する。噴霧する水の温度は、通常、室温(25℃)程度に管理することが好ましい。火炎温度は、2050℃以上2300℃以下に保持することが好ましい。火炎温度が2300℃より高いと急冷効果が得られにくくなり、また、火炎温度が2050℃より低いと高い球形度を実現することが難しくなる。火炎温度は、例えば、燃料ガスの供給量を変えることにより制御できる。また、燃料ガスの供給量を3Nm3/時間以上15Nm3/時間以下の範囲で、助燃ガスの供給量を15Nm3/時間以上75Nm3/時間以下の範囲で、及び水の供給量を30L/時間以上90L/時間以下の範囲で、それぞれ適宜変化させることにより、平均球形度、平均粒子径、アルミナ粉末に含まれる水分量の異なるアルミナ粉末を作製することができる。
 火炎中に噴射された金属アルミニウム粉末、及びアルミナ粉末は、高温の熱処理を受けて、アルミナ粉末の球状化が行われる。
 熱処理された粉末は、排ガスと共にブロワー等で吸引され、サイクロンやバグフィルターの捕集器で捕集される。その際の捕集温度は、好ましくは500℃以上である。捕集器の材質からその上限は1100℃程度であることが好ましい。また、捕集温度を500℃以上にすることにより、その他の陽イオン不純物や陰イオン不純物が多く混入するのを抑制し、アルミナ粉末の中性度をより十分にすることが可能となる。
 また、得られたアルミナ粉末に対しては、例えば、JIS規格のステンレス製試験用篩等を用いて、分級処理を行い、粒子径が75μm以上であるアルミナ粒子の含有率、及び粒子径が25μm以上75μm未満であるアルミナ粒子の含有率をそれぞれ調整することが好ましい。
[フィラー組成物及びその製造方法]
 本実施形態に係るフィラー組成物(以下、単に「フィラー組成物」とも称す)は、本実施形態に係るアルミナ粉末と、シリカとを含む。本実施形態に係るフィラー組成物は、アルミナ粉末とシリカとを含むことにより、流動性が向上し、封止材の流動圧力によるワイヤの変形を好適に抑制できる。
(シリカ)
 シリカとしては、例えば、結晶シリカ、非晶質シリカ、石英、ヒュームドシリカ、及び無水ケイ酸等公知のシリカを用いることができる。中でも、封止材として用いた際の絶縁性、及び耐湿安定性の観点から、非晶質シリカが好ましい。
 シリカは、上記の顕微鏡法による投影面積円相当径が0.05μm以上であるシリカの平均球形度が、0.85以上であることが好ましい。シリカの平均球形度が上記範囲であると、樹脂にアルミナ粉末と共にシリカを充填した場合に、アルミナ粉末の間隙にシリカが入り込む際の摩擦抵抗を低下させることができる。その結果、それらの粒子を充填した樹脂は増粘しにくくなり、封止材の粘度が好適な範囲となり、封止時において、封止材の流動圧力によるワイヤの変形を抑制できる。また、金型のエアーベント部から封止材が溢れ出ることも抑制できる。
 シリカには、平均粒子径が0.05μm以上1.5μm以下のシリカを用いることが好ましい。このようなシリカを用いると、アルミナ粉末の間隙にシリカが効率良く入り込むことができ、封止材として使用した際のワイヤ流れ量の低減、及びバリ低減効果をより高めることができる。
 シリカは、公知の表面処理を用いて表面処理されていてもよい。
(シリカの製造方法)
 シリカの製造方法は、例えば、(1)金属シラン粒子を化学炎や電気炉等で形成された高温場に投じて酸化反応させながら球状化する方法、(2)金属シラン粒子のスラリーを火炎中に噴霧して酸化反応させながら球状化する方法、(3)コロイダルシリカと呼ばれる珪酸ナトリウム等の珪酸アルカリ金属塩を原料とし、中和やイオン交換により金属イオンを除去して製造する方法、(4)テトラエトキシシラン等のアルコキシシランを原料とし、有機溶媒中で加水分解、及び縮合して製造する方法などが挙げられる。
(アルミナ粉末及びシリカの含有率)
 フィラー組成物が、アルミナ粉末と、シリカを含む場合、封止時におけるワイヤ流れ及びバリの発生を好適に抑制でき、更に流動性が向上し、封止材の流動圧力によるワイヤの変形をより好適に抑制できる点から、フィラー組成物100体積%に対して、アルミナ粉末を、85体積%以上99.8体積%以下で含むことが好ましく、90体積%以上98体積%以下で含むことがより好ましい。また、シリカは、フィラー組成物100体積%に対して、0.02体積%以上15体積%以下で含まれることが好ましく、2体積%以上10体積%以下で含まれることがより好ましい。
(フィラー組成物の製造方法)
 本実施形態のフィラー組成物としては、本実施形態に係るアルミナ粉末1種をそのまま用いてもよい。また、本実施形態に係るフィラー組成物は、2種以上のアルミナ粉末を適宜混合することで得られてもよい。さらに、本実施形態に係るフィラー組成物は、本実施形態に係るアルミナ粉末と、シリカとを適宜混合することで得られてもよい。混合方法としては、例えば、ボールミル混合が挙げられる。
[樹脂組成物及びその製造方法]
 本実施形態に係る樹脂組成物は、樹脂と、本実施形態に係るアルミナ粉末又はフィラー組成物とを含む。本実施形態に係る樹脂組成物は、アルミナ粉末を含むことにより、封止時におけるワイヤ流れ及びバリの発生を好適に抑制できる。また、本実施形態に係る樹脂組成物は、フィラー組成物を含むことにより、アルミナ粉末を含むことによる効果に加えて、更に流動性が向上し、封止材の流動圧力によるワイヤの変形をより好適に抑制できる。
(樹脂)
 樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂等を用いることができる。これらの樹脂は、1種単独で、又は2種以上を適宜混合して用いることができる。
(アルミナ粉末、フィラー組成物、及び樹脂の含有率)
 本実施形態の樹脂組成物において、樹脂組成物100質量%に対して、本実施形態に係るアルミナ粉末の含有率が、10質量%以上95質量%以下であることが好ましく、30質量%以上93質量%以下であることがより好ましい。また、樹脂組成物にフィラー組成物が含まれる場合、樹脂組成物100質量%に対して、本実施形態に係るフィラー組成物中に含まれるフィラー成分の合計の含有率が、10質量%以上95質量%以下であることが好ましく、30質量%以上93質量%以下であることがより好ましい。これらの場合、樹脂分(固形分)の含有率は、樹脂組成物の成形性の点から、5質量%以上90質量%以下であることが好ましく、7質量%以上70質量%以下であることがより好ましい。
(その他の成分)
 本実施形態の樹脂組成物には、本実施形態の特性が損なわれない範囲において、本実施形態に係るアルミナ粉末及び樹脂以外に、必要に応じて、無機充填材、低応力化剤、ゴム状物質、反応遅延剤、硬化剤、硬化促進剤、難燃助剤、難燃剤、着色剤、粘着付与剤、紫外線吸収剤、酸化防止剤、蛍光増白剤、光増感剤、増粘剤、滑剤、消泡剤、表面調整剤、光沢剤、シランカップリング剤、離型剤、及び重合禁止剤等が挙げられる。これらの成分は、1種単独で、又は2種以上を適宜混合して用いることができる。本実施形態の樹脂組成物において、その他の成分の含有率は、樹脂組成物100質量%に対して、通常、合計で10質量%以下であってよく、5質量%以下であってよく、3質量%以下であってよく、1質量%以下であってよく、0.5質量%以下であってよい。
(樹脂組成物の製造方法)
 本実施形態の樹脂組成物の製造方法は、例えば、樹脂と、アルミナ粉末又はフィラー組成物と、必要に応じてその他の成分を十分に攪拌して得る方法が挙げられる。本実施形態の樹脂組成物は、例えば、各成分の所定量を、ブレンダー及びヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、及び一軸又は二軸押し出し機等によって混練し、冷却後、粉砕することによって製造することができる。
[封止材]
 本実施形態に係る封止材は、封止時におけるワイヤ流れ及びバリの発生を抑制できることから、静電容量型の指紋認証センサーを保護する封止材に好適に用いることができる。封止材は、例えば、本実施形態の樹脂組成物と、封止材料用途で一般的に用いられる各種公知の添加剤又は溶媒等とを、公知のミキサーを用いて混合することで製造することができる。混合の際の各種成分、溶媒の添加方法は、一般に公知の方法を適宜採用できる。
[指紋認証センサー]
 本実施形態に係る指紋認証センサーは、静電容量型であり、本実施形態の封止材を含むものであれば特に限定されない。本実施形態に係る指紋認証センサーは、ワイヤ流れやバリの発生などにおける不良率が低く、安価に大量に生産することが可能である。本実施形態に係る封止材を用いて指紋認証センサーを封止する方法は、例えば、トランスファーモールド法、及び真空印刷モールド法等の公知の方法を適用することができる。
 以下に実施例及び比較例を示し、本発明を詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
〔評価方法〕
(1)アルミナ粒子の平均球形度
 上記の顕微鏡法のとおり、走査型電子顕微鏡(日本電子社製「JSM-6301F型」(商品名))にて撮影した任意の200個の粒子像を画像解析装置(マウンテック社製「MacView」(商品名))に取り込み、写真(倍率:2000倍)から、実施例及び比較例にて得られたアルミナ粉末に含まれるアルミナ粒子のそれぞれの投影面積(SA)と周囲長(PM)を測定した。それらの値を用いて、50nm以上であるアルミナ粒子、及び50nm以上1μm以下であるアルミナ粒子における、個々の粒子の球形度を求めた。また、個々の粒子の球形度の相加平均値を平均球形度とした。
(2)粒子径が75μm以上であるアルミナ粒子、及び粒子径が25μm以上75μm未満であるアルミナ粒子の含有率
 粒子径が75μm以上であるアルミナ粒子、及び25μm以上75μm未満であるアルミナ粒子のそれぞれの含有率は、それぞれ以下の湿式篩法で測定した。セイシン企業社製ふるい分け振とう機「オクタゴンDigital(湿式ふるいユニット)(商品名)」に、目開きが75μm、又は25μmのJIS規格のステンレス製試験用篩をセットし、実施例及び比較例にて得られたアルミナ粉末10gをそれぞれ精秤したものを篩上から投入し、9.5L/分のシャワー水量で5分間振とうさせた後、篩上に残った粉末をアルミニウム製容器に移し替え、大気中120℃で60分間乾燥させ、篩上のアルミナ粉末の質量を計量した。篩上のアルミナ粉末の質量を、測定に供したアルミナ粉末の質量で除して百分率にし、篩上に残ったアルミナ粉末の割合を算出し、粒子径が75μm以上であるアルミナ粒子、及び25μm以上75μm未満であるアルミナ粒子のそれぞれの含有率(質量%)を算出した。
(3)粒子径が1μm以下であるアルミナ粒子の含有率
 実施例及び比較例にて得られたアルミナ粉末から、目開き1μmのJIS規格のステンレス製試験用篩を用いた篩上品を用いて、粒子径が1μm以下であるアルミナ粒子を分取した。その後、篩上のアルミナ粉末の質量を計量した。篩上のアルミナ粉末の質量を、測定に供したアルミナ粉末の質量で除して百分率にし、篩上に残ったアルミナ粉末の割合を算出し、粒子径が1μm以下であるアルミナ粒子のそれぞれの含有率(質量%)を算出した。
(4)アルミナ粉末の平均粒子径
 アルミナ粉末の平均粒子径は、ベックマンコールター社製レーザー回折光散乱式粒度分布測定機LS-230(商品名)を用いて測定した。測定に際して、測定対象となる、実施例及び比較例にて得られたアルミナ粉末のそれぞれ0.04gを、溶媒としてエタノール0.5mLとイオン交換水5mLとの混合液に加えて、前処理として2分間、トミー精工社製の超音波発生器UD-200(超微量チップTP-030装着)(商品名)を用いて30秒分散処理して、スラリーを得た。このスラリーを用いて、ポンプ回転数60rpmで、粒度分布を測定した。粒度分布の解析において、水及びアルミナ粒子の屈折率には、それぞれ1.333、及び1.768を用いた。粒度分布の解析は、体積部-累積で行った。測定した質量基準の粒度分布において、累積質量が50%となる粒子を平均粒子径(μm)として、アルミナ粉末の平均粒子径とした。
(5)アルミナ粉末に含まれる水分量
 アルミナ粉末1gを、水分気化装置(三菱ケミカルアナリテック社製VA-122(商品名))に入れ、電気ヒーターにて常温(25℃)から900℃まで加熱昇温させて、500℃以上900℃以下で発生した水分量をカールフィッシャー電量滴定法にて、アルミナ粉末に含まれる水分量(ppm)を測定した。
(6)誘電性(比誘電率)、流動性(スパイラルフロー)、成形性(バリ長さ)、及びワイヤ流れ量・封止材の調製
 実施例及び比較例にて得られたアルミナ粉末のそれぞれについて、封止材としての特性を評価した。具体的には、平均粒子径が1μm未満のアルミナ粉末を用いる場合には、表1における配合1にて、それ以外のアルミナ粉末を用いる場合には、表1における配合2に従って、各成分を配合し、ヘンシェルミキサー(三井三池化工機社製FM-10B型(商品名))にて1000rpmで1分間ドライブレンドした。なお、エポキシ樹脂としてビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製YX-4000H(商品名))、フェノール樹脂としてフェノールアラルキル樹脂(三井化学社製ミレックス(登録商標)XLC-4L(商品名))、シランカップリング剤としてエポキシ系シラン化合物(信越化学工業社製KBM-403(商品名))、硬化促進剤としてトリフェニルホスフィン(北興化学工業社製)、及び離型剤としてカルナバワックス(クラリアント社製)を使用した。その後、同方向噛み合い二軸押出混練機(スクリュー径D=25mm、L/D=10.2、パドル回転数50rpm以上120rpm以下、吐出量3.0kg/時間、及び混練物温度94℃以上96℃以下)で加熱混練した。混練物(吐出物)をプレス機にてプレスして冷却した後、粉砕して封止材を製造した。得られた封止材を用いて、以下の方法に従って、誘電性(比誘電率)、流動性(スパイラルフロー)、成形性(バリ長さ)を評価した。
Figure JPOXMLDOC01-appb-T000001
・誘電性(比誘電率)
 トランスファー成形機を用いて、上記で得られた封止材を、直径100mm、及び厚さ3mmの円形状にそれぞれ成形し、その後、後硬化(ポストキュア)して、封止材の硬化体を作製した。トランスファー成形条件は、金型温度175℃、成形圧力7.5MPa、及び保圧時間90秒とし、ポストキュア条件は加熱温度175℃、及び加熱時間8時間とした。封止材の硬化体表面に導電性ペースト(藤倉化成社製ドータイト(登録商標)D-550(商品名))を薄く塗布し、LCRメータ(アジレント・テクノロジー社製HP4284A(商品名))、及び測定用電極(安藤電気社製SE-70(商品名))を用い、温度20℃、湿度40%、及び周波数1MHzで測定された静電容量から比誘電率を算出した。この比誘電率の値が大きいほど、誘電性が良好であることを示す。この比誘電率の値が、指紋認証センサーの封止材として使用した際の読み取り精度向上の点から、6以上であることが好ましい。
・流動性(スパイラルフロー)
 EMMI-I-66(Epoxy Molding Material Institute;Society of Plastic Industry)に準拠したスパイラルフロー測定用金型を取り付けたトランスファー成形機を用い、上記で得られた封止材のそれぞれのスパイラルフロー値(cm)を測定した。なお、トランスファー成形条件は、金型温度175℃、成形圧力7.5MPa、及び保圧時間120秒とした。このスパイラルフローの値が大きいほど、流動性が良好であることを示す。
・成形性(バリ長さ)
 2μm及び5μmのスリットを持つバリ測定用金型に、上記で得られた封止材のそれぞれを挿入し、成形温度175℃、及び成形圧力7.5MPaで成形した。その際にスリットから流れ出た封止材をノギスで測定し、それぞれのスリット幅におけるバリ長さ(mm)を測定した。このそれぞれのスリット幅のバリ長さを用いて、バリ長さの平均値を算出した。このバリ長さの平均値が短いほど、成形性が良好であることを示す。
・ワイヤ流れ量
 FC-BGA(Flip Chip Ball Grid Array)用サブストレート基板に、ダイシングダイアタッチフィルムを介して、サイズが縦8mm、横8mm、及び高さ0.3mmの評価用チップを載置し、金ワイヤで8ヶ所接続して構造体を得た。なお、金ワイヤの直径は20μmφ、金ワイヤの中心同士の距離(ピッチ)は80μm、金ワイヤ間の間隔は60μmとした。その後、構造体をトランスファー成形機の金型内に設置し、上記で得られた封止材のそれぞれを、プランジャーによりその金型内に構造体が封止されるように注入して、サイズが縦38mm、横38mm、及び高さ1.0mmのパッケージに成形後、後硬化(ポストキュア)して、模擬チップ封止材を得た。この模擬チップ封止材を、実施例及び比較例で得られた封止材毎に、それぞれ20個作製した。トランスファー成形条件は、金型温度175℃、成形圧力7.5MPa、及び保圧時間90秒とし、ポストキュア条件は加熱温度175℃、及び加熱条件8時間とした。得られた模擬チップ封止材について、それぞれの金ワイヤ部分について軟X線透過装置で観察し、パッケージングにより金ワイヤが流された最大流れ距離を測定した。この最大流れ距離の測定を20個の模擬チップ封止材の全てについて行い、得られたそれぞれの金ワイヤの最大流れ距離から平均値を算出して、この平均値をワイヤ流れ量(μm)とした。このワイヤ流れ量の値が小さいほど、高粘度であることを示す。
[実施例1]
 まず、アルミナ粉末の製造に用いる原料として、日本軽金属(株)社製アルミナLS-21(商品名)を溶融、冷却、及び粉砕して電融アルミナ粉砕物を調製した。なお、粉砕処理はボールミルで行い、粉砕メディアにはアルミナボールを用いた。
 得られたアルミナ粉砕物から、分級処理によりアルミナ原料1(平均粒子径:3μm)、アルミナ原料2(平均粒子径:5μm)、アルミナ原料3(平均粒子径:8μm)、及びアルミナ原料4(平均粒子径:14μm)を調製した。
 続いて、得られたアルミナ原料3を酸素ガス(ガス流量:35Nm3/時間)に同伴させて、噴霧ノズルから火炎中に供給し、製造炉内に常時、燃料ガス(LPガス、ガス流量:7Nm3/時間)、及び得られるアルミナ粉末のカールフィッシャー電量滴定法の水分量を調整するためにイオン交換水(水の供給量:90L/時間)を供給しながら、火炎溶融処理を行った。この処理により得られたアルミナ粉末を排ガスと共にブロワーによってバグフィルターに搬送し、アルミナ粉末を捕集した。なお、製造炉内へのイオン交換水の供給は、アトマックス社製アトマックスノズルBN160型を用いて、噴霧にて行った。噴霧は、ノズルの分散ガスにコンプレッサーで0.5MPに加圧した空気を使用し、噴霧する水の温度は25℃に管理した。水噴霧用ノズルは炉の中心から15°おきに2段挿入し、1段目のノズル位置は炉頂から80cmの高さ、及び2段目の位置は炉頂から100cmの高さに設置した。
 得られたアルミナ粉末において、粒子径が75μm以上であるアルミナ粒子の含有率、及び粒子径が25μm以上75μm未満であるアルミナ粒子の含有率を調整するために、目開きが75μm、又は25μmのJIS規格のステンレス製試験用篩を用いて、分級を行った。
 分級後のアルミナ粉末の物性を評価し、結果を表2に示した。なお、比誘電率については、6以上であった。
[実施例2~10、及び比較例1~6]
 アルミナ原料の種類、酸素ガスの供給量、燃料ガスの供給量、及びイオン交換水の供給量を表2及び3に従って変更した以外は、実施例1と同様にして、アルミナ粉末を得た。なお、実施例3、6、及び比較例3では、アルミナ原料として、金属アルミニウム粉末(平均粒子径:10μm)を用いた。
 得られたアルミナ粉末の物性をそれぞれ評価し、結果を表2及び3に示した。なお、比誘電率については、比較例6以外は、6以上であったが、比較例6は、6未満であった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本出願は、2020月3月31日出願の日本特許出願(特願2020-063815)に基づくものであり、その内容はここに参照として取り込まれる 。
 本発明によれば、封止時におけるワイヤ流れ及びバリの発生を抑制できる、アルミナ粉末、並びにそのアルミナ粉末を含むフィラー組成物、及び樹脂組成物が得られる。それゆえ、本発明のアルミナ粉末、フィラー組成物、及び樹脂組成物は、封止材、及び指紋認証センサーに好適である。
 

Claims (7)

  1.  アルミナ粒子を含む、アルミナ粉末であって、
     前記アルミナ粒子のうち、顕微鏡法による投影面積円相当径が50nm以上であるアルミナ粒子の平均球形度が0.80以上であり、粒子径が75μm以上であるアルミナ粒子の含有率が0.05質量%以下であり、
     前記アルミナ粉末の平均粒子径が、0.2μm以上15μm以下であり、
     前記平均粒子径は、レーザー回折光散乱式粒度分布測定機によって測定された粒子径であり、
     下記の測定方法によって測定された、前記アルミナ粉末に含まれる水分量が、30ppm以上500ppm以下である、アルミナ粉末。
    (測定方法)
     前記アルミナ粉末1gを常温から900℃まで加熱昇温させて、500℃以上900℃以下で発生した水分量をカールフィッシャー電量滴定法にて測定する。
  2.  粒子径が25μm以上75μm未満であるアルミナ粒子の含有率が0.1質量%以下である、請求項1に記載のアルミナ粉末。
  3.  粒子径が1μm以下であるアルミナ粒子の含有率が1質量%以上35質量%以下であり、顕微鏡法による投影面積円相当径が50nm以上1μm以下であるアルミナ粒子の平均球形度が0.80以上である、請求項1又は2に記載のアルミナ粉末。
  4.  請求項1~3のいずれか一項に記載のアルミナ粉末と、シリカとを含む、フィラー組成物。
  5.  樹脂と、請求項1~3のいずれか一項に記載のアルミナ粉末又は請求項4に記載のフィラー組成物とを含む、樹脂組成物。
  6.  請求項5に記載の樹脂組成物を含む、封止材。
  7.  請求項6に記載の封止材を含む、指紋認証センサー。
PCT/JP2021/012293 2020-03-31 2021-03-24 アルミナ粉末、フィラー組成物、樹脂組成物、封止材、及び指紋認証センサー WO2021200485A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227037415A KR20220160635A (ko) 2020-03-31 2021-03-24 알루미나 분말, 필러 조성물, 수지 조성물, 밀봉재, 및 지문 인증 센서
CN202180026781.XA CN115362130A (zh) 2020-03-31 2021-03-24 氧化铝粉末、填料组合物、树脂组合物、密封材料以及指纹识别传感器
EP21779392.6A EP4129910A4 (en) 2020-03-31 2021-03-24 ALUMINUM OXIDE POWDER, FILLER COMPOSITION, RESIN COMPOSITION, ENCAPSULATOR AND FINGERPRINT AUTHENTICATION SENSOR
US17/916,209 US20230159725A1 (en) 2020-03-31 2021-03-24 Alumina powder, filler composition, resin composition, encapsulant, and fingerprint authentication sensor
JP2022512027A JPWO2021200485A1 (ja) 2020-03-31 2021-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020063815 2020-03-31
JP2020-063815 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200485A1 true WO2021200485A1 (ja) 2021-10-07

Family

ID=77928735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012293 WO2021200485A1 (ja) 2020-03-31 2021-03-24 アルミナ粉末、フィラー組成物、樹脂組成物、封止材、及び指紋認証センサー

Country Status (7)

Country Link
US (1) US20230159725A1 (ja)
EP (1) EP4129910A4 (ja)
JP (1) JPWO2021200485A1 (ja)
KR (1) KR20220160635A (ja)
CN (1) CN115362130A (ja)
TW (1) TW202144290A (ja)
WO (1) WO2021200485A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024289A1 (fr) * 1995-12-27 1997-07-10 Tohkem Products Corporation Dioxyde de titane a teneur fortement reduite en eau volatile, son procede d'obtention et melange-mere le contenant
JP2005112665A (ja) 2003-10-07 2005-04-28 Tdk Corp 単結晶セラミックス粒子、球状酸化物粉末
JP2009246251A (ja) * 2008-03-31 2009-10-22 Oki Semiconductor Co Ltd 半導体装置、及びその製造方法
JP2014240351A (ja) * 2008-04-30 2014-12-25 電気化学工業株式会社 アルミナ粉末、その製造方法、及びそれを用いた樹脂組成物
JP2015193493A (ja) * 2014-03-31 2015-11-05 新日鉄住金化学株式会社 高比重アルミナおよびその製造方法
WO2018186315A1 (ja) * 2017-04-04 2018-10-11 デンカ株式会社 粉末混合物
JP2020063815A (ja) 2018-10-18 2020-04-23 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1396502A (fr) * 1964-03-12 1965-04-23 Du Pont Produits réfractaires à base d'alumine et leur préparation
DE10360087A1 (de) * 2003-12-20 2005-07-21 Degussa Ag Flammenhydrolytisch hergestelltes, hochoberflächiges Aluminiumoxidpulver
WO2010073457A1 (ja) * 2008-12-22 2010-07-01 電気化学工業株式会社 粉末、その製造方法、及びその粉末を含む樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024289A1 (fr) * 1995-12-27 1997-07-10 Tohkem Products Corporation Dioxyde de titane a teneur fortement reduite en eau volatile, son procede d'obtention et melange-mere le contenant
JP2005112665A (ja) 2003-10-07 2005-04-28 Tdk Corp 単結晶セラミックス粒子、球状酸化物粉末
JP2009246251A (ja) * 2008-03-31 2009-10-22 Oki Semiconductor Co Ltd 半導体装置、及びその製造方法
JP2014240351A (ja) * 2008-04-30 2014-12-25 電気化学工業株式会社 アルミナ粉末、その製造方法、及びそれを用いた樹脂組成物
JP2015193493A (ja) * 2014-03-31 2015-11-05 新日鉄住金化学株式会社 高比重アルミナおよびその製造方法
WO2018186315A1 (ja) * 2017-04-04 2018-10-11 デンカ株式会社 粉末混合物
JP2020063815A (ja) 2018-10-18 2020-04-23 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Also Published As

Publication number Publication date
EP4129910A4 (en) 2023-10-04
US20230159725A1 (en) 2023-05-25
EP4129910A1 (en) 2023-02-08
KR20220160635A (ko) 2022-12-06
CN115362130A (zh) 2022-11-18
TW202144290A (zh) 2021-12-01
JPWO2021200485A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
US5935314A (en) Inorganic filler, epoxy resin composition, and semiconductor device
JP7038048B2 (ja) 高純度チタン酸バリウム系粉末及びその製造方法、並びに樹脂組成物及び指紋センサ
US5298328A (en) Packing material and method of making same
KR20090009229A (ko) 세라믹 분말 및 그의 용도
KR101914967B1 (ko) 반도체 밀봉용 수지 조성물 및 반도체 장치
KR20030067513A (ko) 반도체 밀봉재용 흑색 복합 입자 및 반도체 밀봉재
JP6972115B2 (ja) 粉末混合物
JP2017024925A (ja) チタン酸バリウム粉末及びその製造方法、用途
KR20090104000A (ko) 비정질 실리카질 분말, 그 제조 방법 및 반도체 봉지재
TWI728089B (zh) 鈦酸鋇基粉末及其製造方法、用途
WO2021200485A1 (ja) アルミナ粉末、フィラー組成物、樹脂組成物、封止材、及び指紋認証センサー
JP2005171209A (ja) フィラー含有樹脂組成物及びその製造方法
JP3464125B2 (ja) シリカフィラーの製造方法
JP2004179245A (ja) 半導体封止材料用黒色複合粒子粉末及び半導体封止材料
KR20230079848A (ko) 반도체 밀봉용 조성물 및 이를 통해 성형된 반도체 부품
JPH10287767A (ja) 充填材及び半導体封止用樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512027

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037415

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021779392

Country of ref document: EP

Effective date: 20221031