WO2021200167A1 - 排ガス浄化触媒装置 - Google Patents

排ガス浄化触媒装置 Download PDF

Info

Publication number
WO2021200167A1
WO2021200167A1 PCT/JP2021/010868 JP2021010868W WO2021200167A1 WO 2021200167 A1 WO2021200167 A1 WO 2021200167A1 JP 2021010868 W JP2021010868 W JP 2021010868W WO 2021200167 A1 WO2021200167 A1 WO 2021200167A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
particles
gas purification
zeolite
zeolite particles
Prior art date
Application number
PCT/JP2021/010868
Other languages
English (en)
French (fr)
Inventor
孝平 高▲崎▼
達也 大橋
隼輔 大石
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to US17/912,140 priority Critical patent/US20230114106A1/en
Priority to CN202180024594.8A priority patent/CN115335149A/zh
Priority to EP21781160.3A priority patent/EP4129474A4/en
Publication of WO2021200167A1 publication Critical patent/WO2021200167A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/063Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust gas purification catalyst device.
  • Zeolite is known as a material used for the catalyst coat layer of the exhaust gas purification catalyst device. Zeolites are expected to have the function of adsorbing NOx and HC, especially NOx, at low temperatures, retaining them up to high temperatures, and releasing NOx at high temperatures.
  • the exhaust gas purification catalyst is difficult to activate, and NOx catalyst purification is unlikely to occur, the zeolite adsorbs and retains NOx and exhaust gas. Reduce the NOx concentration in.
  • the exhaust gas temperature rises to a high temperature at which the exhaust gas purification catalyst can be activated, NOx is released and used for catalyst purification.
  • Zeolites can improve the purification efficiency of exhaust gas by such a function.
  • the catalyst coat layer is composed of only zeolite, for example, the adhesion between the honeycomb base material and the catalyst coat layer becomes insufficient, and the uniformity of the thickness of the catalyst coat layer becomes insufficient. It is known that inconveniences such as things may occur. Therefore, an exhaust gas purification catalyst device in which an inorganic oxide other than zeolite is arranged together with zeolite in the catalyst coat layer has been proposed.
  • Patent Document 1 an HC adsorbent layer and a purification catalyst component layer are laminated in this order on a carrier, and the HC adsorbent layer contains zeolite and metal element-containing alumina for exhaust gas purification.
  • the catalyst is described.
  • an object of the present invention is an exhaust gas purification catalyst device in which a catalyst coat layer contains zeolite particles and other particles, and NOx and HC, particularly NOx, can be efficiently adsorbed and released. , To provide an exhaust gas purification catalyst device having a large amount of NOx adsorbed.
  • the present invention is as follows.
  • ⁇ Aspect 1 An exhaust gas purification catalyst device having a base material and a catalyst coat layer on the base material.
  • the catalyst coat layer contains zeolite particles, inorganic oxide particles other than the zeolite particles, and a catalyst precious metal, and
  • the ratio of the average particle size d ZEO of the zeolite particles to the average particle size d OX of the inorganic oxide particles other than the zeolite particles d ZEO / d OX is 3.4 or less.
  • ⁇ Aspect 2 The exhaust gas purification catalyst device according to Aspect 1, wherein the ratio d ZEO / d OX is 0.30 or more.
  • ⁇ Aspect 3 The exhaust gas purification catalyst device according to Aspect 1 or 2, wherein the catalyst precious metal is supported on the zeolite particles.
  • ⁇ Aspect 4 The exhaust gas purification catalyst device according to any one of aspects 1 to 3, wherein the catalyst precious metal is one or two selected from Pt and Pd.
  • ⁇ Aspect 5 Inorganic oxide particles other than the zeolite particles are particles containing one or more selected from alumina, silica, titania, ceria, and zirconia, and rare earth metal oxides other than ceria.
  • ⁇ Aspect 6 The exhaust gas purification catalyst device according to any one of aspects 1 to 5, wherein the average pore diameter of the zeolite constituting the zeolite particles is 6.0 ⁇ or less.
  • ⁇ Aspect 7 The item according to any one of aspects 1 to 6, wherein the zeolite constituting the zeolite particles contains one or more selected from MFI type, BEA type, MOR type, and FER type. Exhaust gas purification catalyst device.
  • ⁇ Aspect 8 >> The exhaust gas purification catalyst device according to any one of aspects 1 to 7, wherein the silica-alumina ratio SAR of the zeolite constituting the zeolite particles is 25 or less.
  • ⁇ Aspect 9 The exhaust gas purification catalyst device according to any one of aspects 1 to 8, wherein the zeolite particles have a particle size d ZEO of 4 ⁇ m or more and 30 ⁇ m or less.
  • “Aspect 10" the catalyst coating layer, and the mass M ZEO of the zeolite particles, the ratio M ZEO / M OX between the mass M OX of the non-zeolite particles inorganic oxide particles, 0.125 or 8.00 or less.
  • ⁇ Aspect 11 >> The exhaust gas purification catalyst device according to any one of aspects 1 to 10, which is used as a cold start catalyst.
  • an exhaust gas purification catalyst device capable of efficiently adsorbing and releasing NOx even when HC is contained together with NOx in the inflowing exhaust gas, and the amount of adsorbed NOx and HC, particularly NOx, is large. Will be done.
  • FIG. 1 is a graph showing the time-dependent changes in the NO concentration in the exhaust gas at the adsorption stage of the samples of Example 4 and Comparative Example 1 and the blank sample.
  • Exhaust gas purification catalyst device An exhaust gas purification catalyst device having a base material and a catalyst coat layer on the base material.
  • the catalyst coat layer contains zeolite particles, inorganic oxide particles other than the zeolite particles, and a catalyst precious metal, and
  • the ratio d ZEO / d OX of the average particle size d ZEO of the zeolite particles to the average particle size d OX of the inorganic oxide particles other than the zeolite particles is 3.0 or less.
  • the present inventors do not necessarily sufficiently exhibit the adsorption, retention, and release functions of NOx and HC, particularly NOx, even when the exhaust gas purification catalyst device in the prior art contains a significant amount of zeolite particles in the catalyst coat layer. The cause was examined.
  • the catalyst coat layer of the exhaust gas purification catalyst device contains zeolite particles and inorganic oxide particles other than the zeolite particles, and the particle sizes of both are adjusted to provide sufficient exhaust gas in the catalyst coat layer. It succeeded in forming a flow path.
  • the small particle size particles can be stored between the lattices of the large particle size particles regardless of the arrangement in which the large particle size particles are packed. ..
  • the ratio d big / d small is less than 3.43654, the packing arrangement of the large particle size particles for accommodating the small particle size particles between the lattices is restricted, and the contact point between the large particle size particles is restricted. Is reduced. As a result, an exhaust gas flow path is formed in the catalyst coat layer. Further, if the ratio d big / d small is less than 2.41423, it is necessary to expand the lattice of the large particle size particles in order to accommodate the small particle size particles between the lattices, and therefore the catalyst coating. The exhaust gas flow path in the layer is expanded.
  • the ratio d ZEO / d OX of the average particle size d ZEO of the zeolite particles to the average particle size d OX of the inorganic oxide particles other than the zeolite particles is 3.4 or less. It may be 3.2 or less, 3.0 or less, 2.8 or less, 2.6 or less, 2.4 or less, 2.2 or less, or 2.0 or less.
  • the ratio d ZEO / d OX is 0.30 or more, 0.40 or more, and 0. It may be .50 or more, 0.60 or more, 0.70 or more, 0.80 or more, 0.90 or more, or 1.00 or more.
  • Inorganic oxide particles other than zeolite particles such as alumina particles, generally have a wide particle size distribution, and in many cases, a significant amount of fine particles having a particle size smaller than the average particle size is present. In particular, the larger the average particle size, the higher the abundance ratio of fine particles. When the voids between the particles in the catalyst coat layer are filled with such fine particles, the exhaust gas flow path in the catalyst coat layer may be insufficient. In order to avoid this, it is conceivable to use inorganic oxide particles other than zeolite particles having a small average particle size.
  • the ratio of the average particle size d ZEO of the zeolite particles to the average particle size d OX of the inorganic oxide particles other than the zeolite particles d ZEO / d OX is more than 1.00 and 1.05 or more. It may be 1.10 or more, or 1.15 or more.
  • the average particle size of the zeolite particles and the inorganic oxide particles other than the zeolite particles means the median diameter (D50) measured by the laser diffraction / scattering method.
  • the measurement of the median diameter (D50) by the laser diffraction / scattering method is performed using, for example, a laser diffraction / scattering particle size distribution (particle size distribution) measuring device manufactured by HORIBA, Ltd., model name "LA960", or the like. Can be done.
  • the zeolite particles in the present invention may have an average pore diameter of 6.0 ⁇ or less. Since the average pore size of the zeolite particles is 6.0 ⁇ or less, the amount of NOx adsorbed can be increased even in the presence of HC. It is considered that when the average pore diameter of the zeolite particles is 6.0 ⁇ or less, CH is less likely to penetrate into the pores and NOx is preferentially adsorbed inside the pores.
  • the average pore size of the zeolite particles may be 5.8 ⁇ or less, 5.5 ⁇ or less, 5.3 ⁇ or less, or 5.0 ⁇ or less.
  • the average pore diameter of the zeolite particles has a diameter that allows NOx to easily penetrate in order to adsorb NOx in the pores.
  • the average pore size of the zeolite particles may be, for example, 3.5 ⁇ or more, 3.7 ⁇ or more, 4.0 ⁇ or more, 4.2 ⁇ or more, or 4.5 ⁇ or more.
  • the average pore size of zeolite is measured by the gas adsorption method in accordance with JIS Z8831-3: 2010.
  • the adsorbed gas for example, argon, hydrogen, nitrogen or the like can be used.
  • the zeolite having the above average pore diameter may be, for example, a zeolite containing one or more selected from MFI type, BEA type, MOR type, CHA type, and FER type.
  • the silica-alumina ratio SAR of the zeolite constituting the zeolite particles in the present invention may be 25 or less.
  • the zeolite becomes an acidic zeolite containing a large amount of Bronsted acid.
  • a catalytic noble metal for example, Pd
  • Pd a catalytic noble metal
  • the SAR of zeolite is 25 or less, and may be 23 or less, 20 or less, 18 or less, 15 or less, 12 or less, 10 or less, or 8 or less.
  • the SAR of the zeolite may be 4 or more, 5 or more, 6 or more, or 7 or more.
  • the particle size d ZEO of the zeolite particles is excessively small, the gap between the zeolite particles becomes narrow in the catalyst coat layer, and the contact between the zeolite particles and the exhaust gas may be insufficient. From the viewpoint of avoiding this, the particle size of the zeolite particles may be 2 ⁇ m or more, 3 ⁇ m or more, 4 ⁇ m or more, or 5 ⁇ m or more. On the other hand, if the particle size d ZEO of the zeolite particles is excessively large, the catalyst coat layer containing the zeolite particles becomes thick, and the flow of exhaust gas in the exhaust gas purification catalyst device may be hindered.
  • the particle size of the zeolite particles may be 30 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, 12 ⁇ m or less, 10 ⁇ m or less, or 8 ⁇ m or less.
  • Zeolite particles preferably have few surface defects from the viewpoint of maintaining the adsorption point of NOx as much as possible. From this point of view, it is preferable that the zeolite particles in the present invention do not go through the milling step after synthesis (after crystal growth).
  • the inorganic oxide particles other than the zeolite particles in the present invention may be particles containing one or more selected from alumina, silica, titania, ceria, and zirconia, and rare earth metal oxides other than ceria. ..
  • Rare earth metal oxides other than ceria may be oxides of metals such as yttrium, lanthanum, praseodymium, and neodymium.
  • the particle size d OX of the inorganic oxide particles other than the zeolite particles is arbitrary as long as the ratio d ZEO / d OX prescribed in the present invention is satisfied according to the particle size d ZEO of the zeolite particles.
  • the particle size dOX may be 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, or 4 ⁇ m or more from the viewpoint of securing gaps between particles and avoiding excessive thickening of the catalyst coat layer. ..
  • the particle size d ZEO of the zeolite particles is excessively large, the catalyst coat layer containing the zeolite particles becomes thick, and the flow of exhaust gas in the exhaust gas purification catalyst device may be hindered.
  • the particle size of the zeolite particles may be 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, or 8 ⁇ m or less.
  • the ratio M ZEO / M OX between the mass M OX of the inorganic oxide particles other than the zeolite particles may be 0.125 or more, or 1.00 or more, It may be 8.00 or less, or 3.00 or less.
  • the catalytic precious metal is expected to function as a catalyst for adsorbing NOx (for example, NO). Therefore, the catalytic precious metal in the present invention may be selected from platinum group elements, and may be one, two, or three selected from Pt, Pd, and Rh, and Pd is particularly preferable.
  • the catalytic noble metal may be supported on one or two kinds of particles selected from zeolite particles and inorganic oxide particles other than zeolite particles, and in particular, may be supported on zeolite particles.
  • the catalyst noble metal since the catalyst noble metal is supported on the zeolite particles, HC poisoning of the catalyst noble metal is suppressed, and the catalyst noble metal is selected on the catalyst noble metal even under gas conditions in which HC and NOx coexist. The advantage of being able to adsorb NOx can be obtained.
  • the particle size of the catalytic precious metal in the present invention is arbitrary, but may be, for example, 0.1 nm or more and 20 nm or less.
  • the amount of the catalyst noble metal carried in the present invention is, for example, 0.1% by mass or more, 0.2% by mass or more, 0.3% by mass or more, 0.4% by mass or more, or 0, based on the mass of the zeolite particles. It may be 5.5% by mass or more, 5.0% by mass or less, 4.0% by mass or less, 3.0% by mass or less, 2.0% by mass or less, or 1.0% by mass or less.
  • the catalyst coat layer in the exhaust gas purification catalyst device of the present invention contains zeolite particles, inorganic oxide particles other than zeolite particles, and a catalyst precious metal, but if necessary, contains any other components. good.
  • Examples of the optional component of the catalyst coat layer include a binder, an alkali metal compound, an alkaline earth metal compound, and the like.
  • the binder may be, for example, alumina sol, zirconia sol, silica sol, titania sol or the like.
  • the alkali metal compound and alkaline earth metal compound are sulfates, nitrates, and hydrochlorides of desired metals, respectively. It may be an oxide or the like.
  • the exhaust gas purification catalyst device of the present invention may be manufactured by any method as long as it has the above configuration.
  • the exhaust gas purification catalyst device of the present invention may be manufactured, for example, by a method including the following steps: (1) Preparing a slurry for forming a catalyst coat layer (step 1), (2) The slurry for forming the catalyst coating layer is applied to the base material to form a coating film (step 2), and (3) the obtained coating film is fired to coat the base material with a catalyst. Forming a layer (step 3).
  • Step 1 may include, for example, the following steps.
  • (I) Preparing a slurry containing zeolite particles carrying catalytic noble metal step 1)
  • (iii) a slurry containing catalytic noble metal-supported zeolite particles and a slurry containing inorganic oxide particles other than zeolite particles To prepare a slurry for forming a catalyst coat layer (step 3).
  • step 1 of step 1 a slurry containing catalytic noble metal-supported zeolite particles is prepared.
  • particles composed of a desired zeolite and a precursor of a desired catalytic noble metal are put into a solvent, for example, water, wet-ground using a suitable grinding means, and classified as necessary. , May be done.
  • the precursor of the catalytic noble metal may be, for example, a sulfate, a nitrate, a hydrochloride, a complex compound or the like of the desired catalytic noble metal.
  • the precursor of the catalytic noble metal is preferably soluble in a solvent.
  • step 2 of step 1 a slurry containing inorganic oxide particles other than zeolite particles is prepared.
  • This step may be performed, for example, by putting the desired inorganic oxide particles into a solvent, for example, water, wet pulverizing the particles using an appropriate pulverizing means, and classifying the particles as necessary.
  • a solvent for example, water
  • Steps 1 and 2 of step 1 may be performed in no particular order.
  • step 3 of step 1 the slurry containing the catalyst noble metal-supported zeolite particles and the slurry containing the inorganic oxide particles other than the zeolite particles are mixed at a predetermined ratio to prepare a slurry for forming the catalyst coat layer. ..
  • step 2 a slurry for forming a catalyst coat layer is applied to the base material to form a coating film.
  • the application of the slurry may be carried out by a known method or by a method obtained by appropriately modifying a known method by those skilled in the art.
  • step 3 the obtained coating film is fired to form a catalyst coat layer on the base material, whereby the exhaust gas purification catalyst device of the present invention can be obtained.
  • the coating film may be dried, if necessary.
  • the coating film may be dried and fired by a known method, or by a method obtained by appropriately modifying a known method by a person skilled in the art.
  • the exhaust gas purification catalyst device of the present invention has a function of efficiently adsorbing NOx and HC, particularly NOx, at a low temperature, holding the NOx up to a high temperature, and releasing NOx and HC, particularly NOx at a high temperature.
  • the exhaust gas purification catalyst device of the present invention may be used as a cold start catalyst.
  • the exhaust gas purification catalyst device of the present invention as a cold start catalyst may be applied to, for example, an exhaust gas purification catalyst system combined with a known three-way catalyst.
  • This exhaust gas purification catalyst system may have a configuration in which the exhaust gas purification catalyst device of the present invention is arranged on the upstream side of the exhaust gas path and a known three-way catalyst is arranged on the downstream side.
  • Example 1 >> 1.
  • Preparation of Pd / Zeolite Particle-Containing Slurry In pure water, 100 parts by mass of commercially available MFI-type zeolite (SAR23, average pore diameter 5.5 ⁇ ) and nitrate equivalent to 0.5 mass% of Pd metal equivalent with respect to the zeolite.
  • a Pd / zeolite particle-containing slurry containing zeolite particles having an average particle size (D50 particle size) d ZEO 5.7 ⁇ m was obtained by charging palladium and using a ball mill filled with alumina balls as a pulverization medium. Prepared.
  • Alumina Particle-Containing Slurry Alumina with an average particle size (D50 particle size) d ZEO 31.0 ⁇ m by putting alumina in pure water and milling it using a ball mill filled with alumina balls as a crushing medium. An alumina particle-containing slurry containing particles was prepared.
  • test piece was made by pouring a slurry for forming a catalyst coat layer into a straight honeycomb base material test piece made of Corgerite with a capacity of 0.035 L, and blowing off unnecessary slurry using a blower. A coating film of a slurry for forming a catalyst coat layer was formed on the wall surface.
  • the obtained coating film was dried at 120 ° C. for 2 hours and then calcined at 500 ° C. for 2 hours to form a catalyst coat layer to prepare a sample for evaluation.
  • the coating amount of the catalyst coating layer in this evaluation sample was 80 g / L (Pd / zeolite particles 16 g / L, alumina particles 64 g / L), and the Pd amount was 0.08 g / L (Pd / zeolite). Pd supported amount in particles 0.5% by mass).
  • the ratio d ZEO / d AlO of the particle size d ZEO of the Pd / zeolite particles to the particle size d AlO of the alumina particles contained in the catalyst coat layer of this evaluation sample was 0.18.
  • the evaluation sample obtained above was subjected to a three-step treatment consisting of a pretreatment step, an adsorption step, and a desorption step in this order.
  • the model gas was supplied to the evaluation sample under the conditions shown in Table 1, and the change over time in the NO concentration in the exhaust gas at the adsorption stage was examined.
  • the desorption step consists of two steps: keeping at 100 ° C. for 180 seconds, and then raising the temperature at 20 ° C./min for 1,350 seconds (reaching temperature: 550 ° C.).
  • the difference between the NO concentration in the exhaust gas of the blank sample and the NO concentration in the exhaust gas of the evaluation sample is integrated with the required time of the adsorption step, and the obtained value is NO in mg (milligram) unit.
  • the amount of NO adsorption by the catalyst coat layer was calculated.
  • the C 3 H 6 concentration at the adsorption stage is "600 ppm-C 1 ", which means that the C 3 H 6 concentration is 600 ppm in terms of methane. Therefore, in this case, the concentration of C 3 H 6 molecules is 200 ppm.
  • the amount of NO adsorbed by the catalyst coat layer in the evaluation sample of Example 1 was 26.1 mg.
  • Examples 2 to 4 and Comparative Example 1 >> 2.
  • Preparation of Alumina Particle-Containing Slurry An evaluation sample was prepared in the same manner as in Example 1 except that the average particle size d AlO of the alumina particles contained in the alumina particle-containing slurry was adjusted as shown in Table 2. Then, the NO adsorption amount was evaluated. The evaluation results are shown in Table 2.
  • FIG. 1 shows a graph of changes in the NO concentration in the exhaust gas of the samples of Example 4 and Comparative Example 1 and the blank sample over time in the exhaust gas at the adsorption stage.
  • the numerical value of the horizontal axis "elapsed time (seconds)" of the graph of FIG. 1 indicates the cumulative time from the start time of the preprocessing stage.
  • the NO adsorption amount shown in Table 2 is a value measured using a model gas containing C 3 H 6 together with NO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Nanotechnology (AREA)

Abstract

基材と、前記基材上の触媒コート層とを有する、排ガス浄化触媒装置であって、前記触媒コート層が、ゼオライト粒子と、前記ゼオライト粒子以外の無機酸化物粒子と、触媒貴金属とを含み、前記触媒貴金属は、かつ、前記ゼオライト粒子の平均粒径dZEOと、前記ゼオライト粒子以外の無機酸化物粒子の平均粒径dOXとの比dZEO/dOXが、3.4以下である、排ガス浄化触媒装置。

Description

排ガス浄化触媒装置
 本発明は、排ガス浄化触媒装置に関する。
 自動車等のエンジンから排出される排ガス中に含まれる、窒素酸化物(NOx)、炭化水素(HC)、一酸化炭素(CO)等を、浄化した後に大気放出するために、例えばコージェライト製のハニカム基材上に、触媒コート層が形成されている、排ガス浄化触媒装置が用いられている。
 排ガス浄化触媒装置の触媒コート層に用いられる材料として、ゼオライトが知られている。ゼオライトには、低温ではNOx及びHC、特にNOxを吸着し、これを高温まで保持し、高温ではNOxを放出する機能が期待される。
 すなわち、ゼオライトは、例えばエンジンの始動直後等の、排ガスの温度が低く、排ガス浄化触媒が活性化され難く、NOxの触媒浄化が起こり難い低温条件下では、NOxを吸着して保持し、排出ガス中のNOx濃度を低減する。一方、排ガス温度が上昇して、排ガス浄化触媒が活性化され得る高温になると、NOxを放出して、触媒浄化に供する。
 ゼオライトは、このような機能によって、排ガスの浄化効率を高めることができる。
 しかしながら、触媒コート層を、ゼオライトのみから構成されるものとすると、例えば、ハニカム基材と触媒コート層との密着性が不十分となること、触媒コート層の厚みの均一性が不十分となること、等の不都合が生ずる場合があることが知られている。そのため、触媒コート層に、ゼオライトとともに、ゼオライト以外の無機酸化物を配置した排ガス浄化触媒装置が提案されている。
 例えば、特許文献1には、担体上に、HC吸着材層と浄化触媒成分層とがこの順で積層されており、HC吸着材層が、ゼオライトと、金属元素含有アルミナを含む、排ガス浄化用触媒が記載されている。
特開2006-35130号公報
 従来技術における排ガス浄化触媒装置では、触媒コート層にゼオライト含む場合でも、NOx及びHC、特にNOxの吸着、保持、及び放出機能が、必ずしも十分に発揮されているわけではない。
 本発明は、上記の事情に鑑みてなされたものである。したがって、本発明の目的は、触媒コート層に、ゼオライト粒子と、それ以外の粒子とが含まれる、排ガス浄化触媒装置であって、NOx及びHC、特にNOxを効率よく吸着及び放出することができ、NOxの吸着量が大きい、排ガス浄化触媒装置を提供することである。
 本発明は、以下のとおりである。
 《態様1》基材と、前記基材上の触媒コート層とを有する、排ガス浄化触媒装置であって、
 前記触媒コート層が、ゼオライト粒子と、前記ゼオライト粒子以外の無機酸化物粒子と、触媒貴金属とを含み、かつ、
 前記ゼオライト粒子の平均粒径dZEOと、前記ゼオライト粒子以外の無機酸化物粒子の平均粒径dOXとの比dZEO/dOXが、3.4以下である、
排ガス浄化触媒装置。
 《態様2》前記比dZEO/dOXが、0.30以上である、態様1に記載の排ガス浄化触媒装置。
 《態様3》 前記触媒貴金属が、前記ゼオライト粒子に担持されている、態様1又は2に記載の排ガス浄化触媒装置。
 《態様4》前記触媒貴金属が、Pt及びPdから選択される1種又は2種である、態様1~3のいずれか一項に記載の排ガス浄化触媒装置。
 《態様5》前記ゼオライト粒子以外の無機酸化物粒子が、アルミナ、シリカ、チタニア、セリア、及びジルコニア、並びにセリア以外の希土類金属酸化物から選択される1種又は2種以上を含む粒子である、態様1~4のいずれか一項に記載の排ガス浄化触媒装置。
 《態様6》前記ゼオライト粒子を構成するゼオライトの平均細孔径が、6.0Å以下である、態様1~5のいずれか一項に記載の排ガス浄化触媒装置。
 《態様7》前記ゼオライト粒子を構成するゼオライトが、MFI型、BEA型、MOR型、及びFER型から選択される1種又は2種以上を含む、態様1~6のいずれか一項に記載の排ガス浄化触媒装置。
 《態様8》前記ゼオライト粒子を構成するゼオライトのシリカ・アルミナ比SARが、25以下である、態様1~7のいずれか一項に記載の排ガス浄化触媒装置。
 《態様9》前記ゼオライト粒子の粒径dZEOが、4μm以上30μm以下である、態様1~8のいずれか一項に記載の排ガス浄化触媒装置。
 《態様10》前記触媒コート層における、前記ゼオライト粒子の質量MZEOと、前記ゼオライト粒子以外の無機酸化物粒子の質量MOXとの比MZEO/MOXが、0.125以上8.00以下である、態様1~9のいずれか一項に記載の排ガス浄化触媒装置。
 《態様11》コールドスタート触媒として用いられる、態様1~10のいずれか一項に記載の排ガス浄化触媒装置。
 本発明によると、流入する排ガス中に、NOxとともにHCが含まれる場合でも、NOxを効率よく吸着及び放出することができ、NOx及びHC、特にNOxの吸着量が大きい、排ガス浄化触媒装置が提供される。
図1は、実施例4及び比較例1のサンプル、並びにブランクサンプルの、吸着段階における排出ガス中のNO濃度の継時変化を示すグラフである。
 《排ガス浄化触媒装置》
 本発明の排ガス浄化触媒装置は、
  基材と、前記基材上の触媒コート層とを有する、排ガス浄化触媒装置であって、
  前記触媒コート層が、ゼオライト粒子と、前記ゼオライト粒子以外の無機酸化物粒子と、触媒貴金属とを含み、かつ、
  前記ゼオライト粒子の平均粒径dZEOと、前記ゼオライト粒子以外の無機酸化物粒子の平均粒径dOXとの比dZEO/dOXが、3.0以下である。
 本発明者らは、従来技術における排ガス浄化触媒装置が、触媒コート層に有意量のゼオライト粒子を含む場合でも、NOx及びHC、特にNOxの吸着、保持、及び放出機能が、必ずしも十分に発現されない原因について検討した。
 そして、触媒コート層中の排ガス流路が十分に形成されず、ゼオライト粒子と排ガスとの接触効率が悪い場合に、NOxの吸着量が低くなるとの仮説に基づいて、排ガス流路が十分に形成されるような、触媒コート層の構成について検討した。
 その結果、排ガス浄化触媒装置の触媒コート層中に、ゼオライト粒子と、ゼオライト粒子以外の無機酸化物粒子とを含ませ、かつ、両者の粒径を調整して、触媒コート層中に十分な排ガス流路を形成することに成功したのである。
 すなわち、数学上の球充填理論では、空間に、粒径の異なる2種の粒子を充填する場合、大粒径粒子の粒径dbigと、小粒径粒子の粒径dsmallとの比dbig/dsmallの値が、十分に大きい値であれば、大粒径粒子がどのような配置で充填されていようとも、小粒径粒子は、大粒径粒子の格子間に収納可能である。
 しかしながら、比dbig/dsmallが、3.43654未満であると、小粒径粒子を格子間に収納するための、大粒径粒子の充填配置は制限され、大粒径粒子同士の接触点が少なくなる。これにより、触媒コート層中に排ガス流路が形成される。更に、比dbig/dsmallが、2.41423未満であると、小粒径粒子を格子間に収納するためには、大粒径粒子の格子が拡張することを要し、したがって、触媒コート層中の排ガス流路は拡張される。
 本発明では、このような観点から、ゼオライト粒子の平均粒径dZEOと、ゼオライト粒子以外の無機酸化物粒子の平均粒径dOXとの比dZEO/dOXは、3.4以下であり、3.2以下、3.0以下、2.8以下、2.6以下、2.4以下、2.2以下、又は2.0以下であってもよい。
 上記の考察は、ゼオライト粒子と、ゼオライト粒子以外の無機酸化物粒子との大小関係が逆転した場合にも妥当するから、比dZEO/dOXは、0.30以上、0.40以上、0.50以上、0.60以上、0.70以上、0.80以上、0.90以上、又は1.00以上であってよい。
 ゼオライト粒子以外の無機酸化物粒子、例えばアルミナ粒子は、一般に粒径分布が広く、平均粒径よりも小粒径の微小粒子が、有意量存在することが多い。特に、平均粒径が大きいほど、微小粒子の存在割合が多くなる。このような微小粒子によって、触媒コート層における粒子間の空隙が埋められると、触媒コート層中の排ガス流路が不十分となる場合がある。これを回避するために、ゼオライト粒子以外の無機酸化物粒子として、平均粒径が小さいものを使用することが考えられる。
 このような観点から、ゼオライト粒子の平均粒径dZEOと、ゼオライト粒子以外の無機酸化物粒子の平均粒径dOXとの比dZEO/dOXは、1.00超、1.05以上、1.10以上、又は1.15以上であってよい。
 本明細書における、ゼオライト粒子、及びゼオライト粒子以外の無機酸化物粒子の平均粒径は、レーザ回折/散乱法によって測定されたメジアン径(D50)を意味する。レーザ回折/散乱法によるメジアン径(D50)の測定は、例えば、(株)堀場製作所製のレーザ回折/散乱式粒子径分布(粒度分布)測定装置、型式名「LA960」等を用いて行うことができる。
 以下、本発明の排ガス浄化触媒装置を構成する各要素について、順に説明する。
 〈ゼオライト粒子〉
 本発明におけるゼオライト粒子は、平均細孔径が6.0Å以下であってよい。ゼオライト粒子の平均細孔径が6.0Å以下であることにより、HC共存下でも、NOxの吸着量を大きくすることができる。ゼオライト粒子の平均細孔径が6.0Å以下であると、CHが細孔内部に侵入し難くなり、細孔内部でNOxが優先的に吸着されることによると考えられる。ゼオライト粒子の平均細孔径は、5.8Å以下、5.5Å以下、5.3Å以下、又は5.0Å以下であってよい。
 一方、ゼオライト粒子の平均細孔径は、細孔内でNOxを吸着するために、NOxが容易に侵入可能な径を有していることが好ましい。この観点から、ゼオライト粒子の平均細孔径は、例えば、3.5Å以上、3.7Å以上、4.0Å以上、4.2Å以上、又は4.5Å以上であってよい。
 ゼオライトの平均細孔径は、JIS Z8831-3:2010に準拠して、ガス吸着法によって測定される。吸着ガスとしては、例えば、アルゴン、水素、窒素等を使用できる。
 上記のような平均細孔径を有するゼオライトは、例えば、MFI型、BEA型、MOR型、CHA型、及びFER型から選択される1種又は2種以上を含む、ゼオライトであってよい。
 本発明におけるゼオライト粒子を構成するゼオライトのシリカ・アルミナ比SARは、25以下であってよい。ゼオライトのSARが25以下であると、ブレンステッド酸が多い、酸性のゼオライトとなる。触媒貴金属、例えばPdが、このような酸性のゼオライト上に担持されると、高酸化状態となり易く、HCによる被毒が抑制される。その結果、HCとNOxとが共存するガス条件下でも、触媒貴金属上がNOx吸着点として機能できるとの利点が得られる。
 この観点から、ゼオライトのSARは、25以下であり、23以下、20以下、18以下、15以下、12以下、10以下、又は8以下であってよい。一方で、ゼオライトのSARが過度に低いと、ゼオライトの比表面積が低下して、NOxの吸着点が減少する不都合を生じる場合がある。これを回避する観点から、ゼオライトのSARは、4以上、5以上、6以上、又は7以上であってよい。
 ゼオライト粒子の粒径dZEOが過度に小さいと、触媒コート層中で、ゼオライト粒子間の間隙が狭小となり、ゼオライト粒子と排ガスとの接触が不十分となる場合がある。これを回避する観点から、ゼオライト粒子の粒径は、2μm以上、3μm以上、4μm以上、又は5μm以上であってよい。一方で、ゼオライト粒子の粒径dZEOが過度に大きいと、該ゼオライト粒子を含む触媒コート層が厚くなり、排ガス浄化触媒装置中の排ガスの流通が妨げられる場合がある。これを回避する観点から、ゼオライト粒子の粒径は、30μm以下、25μm以下、20μm以下、15μm以下、12μm以下、10μm以下、又は8μm以下であってよい。
 ゼオライト粒子は、NOxの吸着点をできるだけ維持する観点から、表面欠陥が少ないことが好ましい。この観点から、本発明におけるゼオライト粒子は、合成後(結晶成長の後)、ミリング工程を経由していないことが好ましい。
 〈ゼオライト粒子以外の無機酸化物粒子〉
 本発明における、ゼオライト粒子以外の無機酸化物粒子は、アルミナ、シリカ、チタニア、セリア、及びジルコニア、並びにセリア以外の希土類金属酸化物から選択される1種又は2種以上を含む粒子であってよい。セリア以外の希土類金属酸化物は、イットリウム、ランタン、プラセオジウム、ネオジム等の金属の酸化物であってよい。
 ゼオライト粒子以外の無機酸化物粒子の粒径dOXは、ゼオライト粒子の粒径dZEOに応じて、本発明所定の比dZEO/dOXを充足する限りで、任意である。しかしながら、粒子間の間隙を確保し、かつ、触媒コート層が過度に厚くなることを回避する観点から、この粒径dOXは、1μm以上、2μm以上、3μm以上、又は4μm以上であってよい。一方で、ゼオライト粒子の粒径dZEOが過度に大きいと、該ゼオライト粒子を含む触媒コート層が厚くなり、排ガス浄化触媒装置中の排ガスの流通が妨げられる場合がある。これを回避する観点から、ゼオライト粒子の粒径は、50μm以下、40μm以下、30μm以下、20μm以下、15μm以下、10μm以下、又は8μm以下であってよい。
 〈ゼオライト粒子と、ゼオライト粒子以外の無機酸化物粒子との質量割合〉
 触媒コート層における、ゼオライト粒子の質量MZEOと、ゼオライト粒子以外の無機酸化物粒子の質量MOXとの比MZEO/MOXは、0.125以上、又は1.00以上であってよく、8.00以下、又は3.00以下であってよい。
 〈触媒貴金属〉
 本発明において、触媒貴金属は、NOx(例えばNO)を吸着する触媒として機能することが予定されている。したがって、本発明における触媒貴金属は、白金族元素から選択されてよく、特に、Pt、Pd、及びRhから選択される1種、2種、又は3種であってよく、特にPdが好ましい。
 本発明において、触媒貴金属は、ゼオライト粒子、及びゼオライト粒子以外の無機酸化物粒子から選択される、1種又は2種の粒子に担持されていてよく、特に、ゼオライト粒子に担持されていてよい。本発明の排ガス浄化触媒装置では、触媒貴金属がゼオライト粒子に担持されていることにより、触媒貴金属へのHC被毒が抑制され、HCとNOxとが共存するガス条件下でも、触媒貴金属上に選択的にNOxを吸着できる利点が得られる。
 本発明における触媒貴金属の粒径は、任意であるが、例えば、0.1nm以上20nm以下であってよい。
 本発明における触媒貴金属の担持量は、ゼオライト粒子の質量を基準として、例えば、0.1質量%以上、0.2質量%以上、0.3質量%以上、0.4質量%以上、又は0.5質量%以上であってよく、5.0質量%以下、4.0質量%以下、3.0質量%以下、2.0質量%以下、又は1.0質量%以下であってよい。
 〈触媒コート層の任意成分〉
 本発明の排ガス浄化触媒装置における触媒コート層は、上述のとおり、ゼオライト粒子、ゼオライト粒子以外の無機酸化物粒子、及び触媒貴金属を含むが、必要に応じて、これ以外の任意成分を含んでいてよい。
 触媒コート層の任意成分としては、例えば、バインダー、アルカリ金属化合物、アルカリ土類金属化合物等が挙げられる。
 バインダーは、例えば、アルミナゾル、ジルコニアゾル、シリカゾル、チタニアゾル等であってよい。
 アルカリ金属化合物及びアルカリ土類金属化合物は、それぞれ、所望の金属の硫酸塩、硝酸塩、塩化水素酸塩。酸化物等であってよい。
 《排ガス浄化触媒装置の製造方法》
 本発明の排ガス浄化触媒装置は、上記の構成を有している限り、任意の方法によって製造されてよい。
 しかしながら、本発明の排ガス浄化触媒装置は、例えば、以下の工程を含む方法によって製造されてよい:
  (1)触媒コート層形成用スラリーを調製すること(工程1)、
  (2)基材に、前記触媒コート層形成用スラリーを塗布して、塗膜を形成すること(工程2)、及び
  (3)得られた塗膜を焼成して、基材上に触媒コート層を形成すること(工程3)。
 工程1は、例えば、以下のステップを含んでよい。
  (i)触媒貴金属担持ゼオライト粒子含有スラリーを調製すること(ステップ1)、
  (ii)ゼオライト粒子以外の無機酸化物粒子を含有するスラリーを調製すること(ステップ2)、及び
  (iii)触媒貴金属担持ゼオライト粒子含有スラリーと、ゼオライト粒子以外の無機酸化物粒子を含有するスラリーとを混合して、触媒コート層形成用スラリーを調製すること(ステップ3)
 工程1のステップ1では、触媒貴金属担持ゼオライト粒子含有スラリーを調製する。本ステップは、例えば、溶媒、例えば水中に、所望のゼオライトから成る粒子、及び所望の触媒貴金属の前駆体を投入し、適当な粉砕手段を用いて湿式粉砕し、必要に応じて分級することにより、行われてよい。
 触媒貴金属の前駆体は、例えば、所望の触媒貴金属の硫酸塩、硝酸塩、塩酸塩、錯化合物等であってよい。触媒貴金属を、ゼオライト粒子上に均一に分散させるために、触媒貴金属の前駆体は、溶媒に可溶であることが好ましい。
 工程1のステップ2では、ゼオライト粒子以外の無機酸化物粒子を含有するスラリーを調製する。本ステップは、例えば、溶媒、例えば水中に、所望の無機酸化物粒子を投入し、適当な粉砕手段を用いて湿式粉砕し、必要に応じて分級することにより、行われてよい。
 工程1のステップ1及びステップ2は、順不同で行われてよい。
 そして、工程1のステップ3において、触媒貴金属担持ゼオライト粒子含有スラリーと、ゼオライト粒子以外の無機酸化物粒子を含有するスラリーとを、所定の割合で混合して、触媒コート層形成用スラリーを調製する。
 工程2では、基材に、触媒コート層形成用スラリーを塗布して、塗膜を形成する。スラリーの塗布は、公知の方法によって、又は公知の方法に当業者による適宜の変更を加えた方法によって、行われてよい。
 そして、工程3において、得られた塗膜を焼成して、基材上に触媒コート層を形成することにより、本発明の排ガス浄化触媒装置が得られる。塗布後、焼成前に、必要に応じて、塗膜の乾燥を行ってもよい。
 塗膜の乾燥及び焼成は、それぞれ、公知の方法によって、又は公知の方法に当業者による適宜の変更を加えた方法によって、行われてよい。
 〈排ガス浄化触媒装置の用途〉
 本発明の排ガス浄化触媒装置は、低温ではNOx及びHC、特にNOxを効率よく吸着し、これを高温まで保持し、高温ではNOx及びHC、特にNOxを放出する機能を有する。
 したがって、本発明の排ガス浄化触媒装置は、コールドスタート触媒として用いられてよい。
 コールドスタート触媒としての本発明の排ガス浄化触媒装置は、例えば、公知の三元触媒と組み合わされた排ガス浄化触媒システムに適用されてよい。この排ガス浄化触媒システムは、排ガス経路の上流側に、本発明の排ガス浄化触媒装置が配置され、下流側に公知の三元触媒が配置された構成であってよい。
 《実施例1》
 1.Pd/ゼオライト粒子含有スラリーの調製
 純水中に、100質量部の市販のMFI型ゼオライト(SAR23、平均細孔径5.5Å)、及び該ゼオライトに対してPd金属換算0.5質量%相当の硝酸パラジウムを投入し、粉砕メディアとしてアルミナ製のボールを充填したボールミルを用いてミリングすることにより、平均粒径(D50粒径)dZEO5.7μmのゼオライト粒子を含む、Pd/ゼオライト粒子含有スラリーを調製した。
 2.アルミナ粒子含有スラリーの調製
 純水中に、アルミナを投入し、粉砕メディアとしてアルミナ製のボールを充填したボールミルを用いてミリングすることにより、平均粒径(D50粒径)dZEO31.0μmのアルミナ粒子を含む、アルミナ粒子含有スラリーを調製した。
 3.触媒コート層形成用スラリーの調製
 上記のPd/ゼオライト粒子含有スラリー及びアルミナ粒子含有スラリーを、Pd/ゼオライト:アルミナの質量比が1:4となるように混合して、触媒コート層形成用スラリーを調製した。
 4.評価用サンプルの作製
 容量0.035Lのコージェライト製ストレート型ハニカム基材テストピースに、触媒コート層形成用スラリーを流し込み、ブロワーを用いて不要のスラリーを吹き払って除去することにより、テストピースの壁面に、触媒コート層形成用スラリーの塗膜を形成した。
 得られた塗膜につき、120℃にて2時間乾燥した後、500℃にて2時間焼成して、触媒コート層を形成することにより、評価用サンプルを作製した。この評価用サンプルにおける触媒コート層のコート量は、80g/L(Pd/ゼオライト粒子16g/L、アルミナ粒子64g/L)であり、Pd量は、0.08g/Lであった(Pd/ゼオライト粒子中のPd担持量0.5質量%)。
 また、この評価用サンプルの触媒コート層に含まれる、Pd/ゼオライト粒子の粒径dZEOとアルミナ粒子の粒径dAlOとの比dZEO/dAlOは、0.18であった。
 5.NO吸着量の評価
 上記で得られた評価用サンプルにつき、前処理段階、吸着段階、及び脱離段階から成る3段階処理を、この順に行った。各段階において、それぞれ、表1に示した条件にて、評価用サンプルにモデルガスを供給し、吸着段階における排出ガス中のNO濃度の継時変化を調べた。脱離段階は、100℃キープ180秒間、次いで、20℃/分にて昇温1,350秒(到達温度550℃)の2ステップから成る。
Figure JPOXMLDOC01-appb-T000001
 また、触媒コート層が形成されていないハニカム基材をブランクサンプルとして用い、同様の3段階処理を行って、吸着段階における排出ガス中のNO濃度の継時変化を調べた。
 そして、ブランクサンプルの排出ガス中のNO濃度と、評価用サンプルの排出ガス中のNO濃度との差分を、吸着段階の所要時間で積分して、得られた値をmg(ミリグラム)単位のNO量に換算することにより、触媒コート層によるNO吸着量を算出した。
 なお、表1中、吸着段階におけるC濃度が「600ppm-C」であるとは、C濃度がメタン換算で600ppmであることを示す。したがって、この場合、C分子の濃度は、200ppmである。
 実施例1の評価用サンプルにおける、触媒コート層によるNO吸着量は、26.1mgであった。
 《実施例2~4及び比較例1》
 2.アルミナ粒子含有スラリーの調製
 アルミナ粒子含有スラリーに含まれるアルミナ粒子の平均粒径dAlOを、それぞれ、表2に記載のように調整した他は、実施例1と同様にして、評価用サンプルを作製して、NO吸着量の評価を行った。評価結果は、表2に示す。
 また、図1に、実施例4及び比較例1のサンプル、並びにブランクサンプルの、吸着段階における排出ガス中のNO濃度の継時変化のグラフを示す。図1のグラフの横軸「経過時間(秒)」の数値は、前処理段階開始時点からの累積時間を示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、Pd/ゼオライト粒子の粒径dZEOとアルミナ粒子の粒径dAlOとの比dZEO/dAlOが3以下である、実施例1~4のサンプルは、比dZEO/dAlOが3を超える比較例1と比較して、NO吸着量が顕著に多いことが確認された。また、この比dZEO/dAlOが0.3以上である、実施例2~4のサンプルは、NO吸着量が特に大きいことが分かった。
 なお、表2に示されたNO吸着量は、NOとともにCを含有するモデルガスを用いて測定された値であることに留意されたい。

Claims (11)

  1.  基材と、前記基材上の触媒コート層とを有する、排ガス浄化触媒装置であって、
     前記触媒コート層が、ゼオライト粒子と、前記ゼオライト粒子以外の無機酸化物粒子と、触媒貴金属とを含み、かつ、
     前記ゼオライト粒子の平均粒径dZEOと、前記ゼオライト粒子以外の無機酸化物粒子の平均粒径dOXとの比dZEO/dOXが、3.4以下である、
    排ガス浄化触媒装置。
  2.  前記比dZEO/dOXが、0.30以上である、請求項1に記載の排ガス浄化触媒装置。
  3.  前記触媒貴金属が、前記ゼオライト粒子に担持されている、請求項1又は2に記載の排ガス浄化触媒装置。
  4.  前記触媒貴金属が、Pt及びPdから選択される1種又は2種である、請求項1~3のいずれか一項に記載の排ガス浄化触媒装置。
  5.  前記ゼオライト粒子以外の無機酸化物粒子が、アルミナ、シリカ、チタニア、セリア、及びジルコニア、並びにセリア以外の希土類金属酸化物から選択される1種又は2種以上を含む粒子である、請求項1~4のいずれか一項に記載の排ガス浄化触媒装置。
  6.  前記ゼオライト粒子を構成するゼオライトの平均細孔径が、6.0Å以下である、請求項1~5のいずれか一項に記載の排ガス浄化触媒装置。
  7.  前記ゼオライト粒子を構成するゼオライトが、MFI型、BEA型、MOR型、及びFER型から選択される1種又は2種以上を含む、請求項1~6のいずれか一項に記載の排ガス浄化触媒装置。
  8.  前記ゼオライト粒子を構成するゼオライトのシリカ・アルミナ比SARが、25以下である、請求項1~7のいずれか一項に記載の排ガス浄化触媒装置。
  9.  前記ゼオライト粒子の粒径dZEOが、4μm以上30μm以下である、請求項1~8のいずれか一項に記載の排ガス浄化触媒装置。
  10.  前記触媒コート層における、前記ゼオライト粒子の質量MZEOと、前記ゼオライト粒子以外の無機酸化物粒子の質量MOXとの比MZEO/MOXが、0.125以上8.00以下である、請求項1~9のいずれか一項に記載の排ガス浄化触媒装置。
  11.  コールドスタート触媒として用いられる、請求項1~10のいずれか一項に記載の排ガス浄化触媒装置。
PCT/JP2021/010868 2020-04-03 2021-03-17 排ガス浄化触媒装置 WO2021200167A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/912,140 US20230114106A1 (en) 2020-04-03 2021-03-17 Exhaust gas purification catalyst device
CN202180024594.8A CN115335149A (zh) 2020-04-03 2021-03-17 排气净化催化剂装置
EP21781160.3A EP4129474A4 (en) 2020-04-03 2021-03-17 CATALYST DEVICE FOR EXHAUST GAS PURIFICATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020067904A JP6956826B2 (ja) 2020-04-03 2020-04-03 排ガス浄化触媒装置
JP2020-067904 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021200167A1 true WO2021200167A1 (ja) 2021-10-07

Family

ID=77928196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010868 WO2021200167A1 (ja) 2020-04-03 2021-03-17 排ガス浄化触媒装置

Country Status (5)

Country Link
US (1) US20230114106A1 (ja)
EP (1) EP4129474A4 (ja)
JP (1) JP6956826B2 (ja)
CN (1) CN115335149A (ja)
WO (1) WO2021200167A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139144A (ja) * 1987-11-25 1989-05-31 Toyota Motor Corp 排気浄化用触媒
JP2006035130A (ja) 2004-07-28 2006-02-09 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
WO2008047639A1 (en) * 2006-10-11 2008-04-24 Nikki-Universal Co., Ltd. Purifying catalyst for gas within reflow furnace, method for preventing contamination of reflow furnace, and reflow furnace
JP2010501326A (ja) * 2006-08-19 2010-01-21 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 触媒で被覆されたディーゼル粒子フィルター、その製造方法、およびその使用
WO2014104051A1 (ja) * 2012-12-25 2014-07-03 日揮ユニバーサル株式会社 耐珪素被毒性に優れた排ガス浄化用触媒
JP2016506294A (ja) * 2012-12-12 2016-03-03 ビーエーエスエフ コーポレーション 触媒組成物、触媒物品、並びに大きい粒子の分子ふるいを利用するシステム及び方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210986A (ja) * 2002-01-21 2003-07-29 Nissan Motor Co Ltd 燃料改質触媒
KR101126063B1 (ko) * 2004-07-15 2012-03-29 니키 유니바사루 가부시키가이샤 유기 질소 화합물 함유 배기가스의 정화용 촉매 및 동배기가스의 정화 방법
JP4969843B2 (ja) * 2005-12-09 2012-07-04 新日鉄マテリアルズ株式会社 排ガス浄化用触媒及び排ガス浄化触媒部材
US9539543B2 (en) * 2009-01-29 2017-01-10 Basf Corporation Mechanically fused materials for pollution abatement in mobile and stationary sources
MY152352A (en) * 2009-03-04 2014-09-15 Nissan Motor Exhaust gas purifying catalyst and method for manufacturing the same
EP2502672B1 (en) * 2009-11-17 2016-09-14 Nissan Motor Co., Ltd. Exhaust gas purification catalyst and manufacturing method therefor
US20130281284A1 (en) * 2010-12-27 2013-10-24 Mitsubishi Plastics, Inc. Catalyst for nitrogen oxide removal
US20120308439A1 (en) * 2011-06-01 2012-12-06 Johnson Matthey Public Limited Company Cold start catalyst and its use in exhaust systems
WO2014050296A1 (ja) * 2012-09-26 2014-04-03 エヌ・イーケムキャット株式会社 白金系酸化触媒、及びそれを用いた排気ガス浄化方法
FR2999432B1 (fr) * 2012-12-17 2014-12-12 Ethypharm Sa Comprimes orodispersibles obtenus par compression moulage
WO2018151289A1 (ja) * 2017-02-20 2018-08-23 株式会社キャタラー 排ガス浄化用触媒
JP2019171277A (ja) * 2018-03-28 2019-10-10 エヌ・イーケムキャット株式会社 ディーゼル酸化触媒粉末及びその製造方法、並びに一体構造型排ガス浄化用触媒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139144A (ja) * 1987-11-25 1989-05-31 Toyota Motor Corp 排気浄化用触媒
JP2006035130A (ja) 2004-07-28 2006-02-09 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JP2010501326A (ja) * 2006-08-19 2010-01-21 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 触媒で被覆されたディーゼル粒子フィルター、その製造方法、およびその使用
WO2008047639A1 (en) * 2006-10-11 2008-04-24 Nikki-Universal Co., Ltd. Purifying catalyst for gas within reflow furnace, method for preventing contamination of reflow furnace, and reflow furnace
JP2016506294A (ja) * 2012-12-12 2016-03-03 ビーエーエスエフ コーポレーション 触媒組成物、触媒物品、並びに大きい粒子の分子ふるいを利用するシステム及び方法
WO2014104051A1 (ja) * 2012-12-25 2014-07-03 日揮ユニバーサル株式会社 耐珪素被毒性に優れた排ガス浄化用触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4129474A4

Also Published As

Publication number Publication date
EP4129474A4 (en) 2024-04-24
EP4129474A1 (en) 2023-02-08
US20230114106A1 (en) 2023-04-13
JP2021159902A (ja) 2021-10-11
CN115335149A (zh) 2022-11-11
JP6956826B2 (ja) 2021-11-02

Similar Documents

Publication Publication Date Title
US11149610B2 (en) Nitrous oxide removal catalysts for exhaust systems
JP4956801B2 (ja) 排気ガス浄化触媒及びその製造方法
JP6556115B2 (ja) 特定の粒径分布を有する金属酸化物支持体粒子を含む触媒組成物
JP2019513078A (ja) コア/シェル炭化水素トラップ触媒および製作方法
GB2583581A (en) A catalyst article and the use thereof for filtering fine particles
JP5589321B2 (ja) 排気ガス浄化用触媒およびその製造方法
US9415383B2 (en) Exhaust gas purification catalyst
EP3421127B1 (en) Exhaust-gas purifying catalyst and manufacturing method therefor
JP4656188B2 (ja) 排気ガス浄化用触媒
JP6956826B2 (ja) 排ガス浄化触媒装置
JP2016203116A (ja) 排気ガス浄化用触媒
US8932982B2 (en) Exhaust gas purification catalyst
EP3144062B1 (en) Exhaust gas purification catalyst
JP2008279352A (ja) リーンバーン自動車排NOx用浄化触媒
JP7218402B2 (ja) 排ガス浄化触媒装置
US11344864B2 (en) Diesel engine exhaust gas purification catalyst, production method therefor, and exhaust gas purification method using the same
US11691133B2 (en) Catalyst for exhaust gas oxidation, method for producing same, and exhaust gas oxidation method using same
CN102186581B (zh) 废气净化用催化剂以及使用该催化剂的净化方法
JP5181839B2 (ja) 排気ガス浄化用触媒
JP3431507B2 (ja) 排ガス浄化用触媒
JP2005262071A (ja) 排気ガス浄化用触媒及びその製造方法
JP5871179B2 (ja) 排ガス浄化触媒
CN118119451A (zh) 废气净化用催化剂和使用其的废气净化方法
JP2007007609A (ja) 排気ガス浄化用触媒及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021781160

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021781160

Country of ref document: EP

Effective date: 20221103

NENP Non-entry into the national phase

Ref country code: DE