WO2021193674A1 - 分散安定性の向上に優れるカチオン変性ダイユータンガム - Google Patents

分散安定性の向上に優れるカチオン変性ダイユータンガム Download PDF

Info

Publication number
WO2021193674A1
WO2021193674A1 PCT/JP2021/012095 JP2021012095W WO2021193674A1 WO 2021193674 A1 WO2021193674 A1 WO 2021193674A1 JP 2021012095 W JP2021012095 W JP 2021012095W WO 2021193674 A1 WO2021193674 A1 WO 2021193674A1
Authority
WO
WIPO (PCT)
Prior art keywords
cation
modified
gum
carbon atoms
daiyutan
Prior art date
Application number
PCT/JP2021/012095
Other languages
English (en)
French (fr)
Inventor
陽平 馬場
Original Assignee
Dsp五協フード&ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsp五協フード&ケミカル株式会社 filed Critical Dsp五協フード&ケミカル株式会社
Priority to JP2022510574A priority Critical patent/JPWO2021193674A1/ja
Publication of WO2021193674A1 publication Critical patent/WO2021193674A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof

Definitions

  • the present invention relates to polysaccharides, and more specifically to cation-modified Daiyutan gum.
  • polysaccharides have been used to improve the quality of various products such as foods, cosmetics, and industrial products.
  • examples of such polysaccharides include natural polysaccharides such as xanthan gum, tamarind gum, and fenugreek gum.
  • Patent Documents 1 to 4 propose cation-modified polysaccharides by substituting a part of hydroxyl groups with quaternary nitrogen-containing groups in order to improve the functions of polysaccharides. Further, it is described that when a cation-modified polysaccharide is contained in shampoo or the like, conditioning properties such as suppression of squeaky hair when washing hair are improved.
  • a polysaccharide in a liquid composition containing insoluble solid particles, may be used in order to uniformly disperse the solid particles in the liquid composition.
  • a polysaccharide in the case of a cosmetic composition, may be used to uniformly disperse the scrubbing agent as solid particles in the cosmetic composition.
  • polysaccharides when the liquid composition is an emulsified composition, polysaccharides may be used to uniformly disperse the emulsified particles in the composition.
  • the solid particles and the emulsified particles in the liquid composition may be stably and uniformly dispersed.
  • the solid particles may float or precipitate on the liquid surface of the liquid composition.
  • the oily component and water may undergo phase separation, and the emulsified particles may not be uniformly dispersed. Therefore, the provision of polysaccharides capable of improving the dispersion stability of the liquid composition continues to be sought after.
  • the present inventor has made a diligent study, and found that when the cation-modified daiyutan gum obtained by cation-modifying a polysaccharide called daiyutan gum is adjusted to a specific cation charge amount, the above-mentioned It has been found that the dispersion stability of the liquid composition is improved.
  • the cation-modified beef tongue gum according to the present invention A cation-modified beef tongue gum in which a part of the hydroxyl group is substituted with a quaternary nitrogen-containing group represented by the chemical formula (1).
  • the amount of cation charge derived from the quaternary nitrogen-containing group is 0.3 to 0.8 meq / g.
  • R 1 and R 2 are alkyl groups having 1 to 3 carbon atoms
  • R 3 is an alkyl group having 1 to 24 carbon atoms
  • R 4 and R 5 are alkyl groups having 1 to 3 carbon atoms or hydrogen.
  • an atom, X - represents a monovalent anion
  • R 4 and R 5 are hydrogen atoms.
  • R 3 is an alkyl group having 1 to 3 carbon atoms.
  • R 1 , R 2 and R 3 are methyl groups.
  • dispersion stabilizer according to the present invention contains the above-mentioned cation-modified daiyutan gum.
  • the cosmetic composition according to the present invention contains the above-mentioned cation-modified beef tongue gum.
  • FIG. 1 compares the IR spectra of the cation-modified daiyutan gum (solid line) of Example 2 and the unmodified daiyutan gum (broken line) of Comparative Example 3.
  • the cation-modified daiyutan gum of the present embodiment is preferably contained in a liquid composition and used in order to exert its function.
  • the liquid composition is composed of a dispersion liquid in which solid particles are dispersed, and is contained in a state in which the cation-modified Daiyutan gum is dissolved in a dispersion medium of the dispersion liquid.
  • the solid particles can be stably and uniformly dispersed in the liquid composition.
  • the dispersion medium may be emulsified containing an oily component and water. In other words, the liquid composition may be an emulsified composition.
  • the emulsified particles contained therein become minute and stably and uniformly dispersed.
  • the degree of the state in which the solid particles and / or the emulsified particles are uniformly and stably dispersed in the liquid composition may be referred to as dispersion stability.
  • the aqueous solution containing the cation-modified daiyutan gum has a specific viscosity.
  • the viscosity (temperature 25 ° C.) of the 0.25% by mass aqueous solution of the cation-modified daiyutan gum is 10,000 to 100,000 mPa ⁇ s at a shear rate of 0.01 s-1. It is preferably 30,000 to 60,000 mPa ⁇ s, more preferably 30,000 to 60,000 mPa ⁇ s.
  • the viscosity means a value measured by the method described in Examples.
  • the emulsified composition may be an oil-in-water (O / W) type or a water-in-oil (W / O) type.
  • the emulsified particle size (median diameter) is preferably 50 ⁇ m or less, and more preferably 40 ⁇ m or less. This can improve the emulsification stability of the emulsified composition.
  • the emulsified particle size means a value measured by the measuring method described in the examples.
  • the cation-modified daiyutan gum according to the present embodiment is a cation-modified daiyutan gum in which a part of the hydroxyl groups contained in the daiyutan gum is replaced with a quaternary nitrogen-containing group represented by the chemical formula (1).
  • the cationically modified Dyutan gum has a cationic charge.
  • the Daiyutan gum is a polysaccharide in which the genus Alcaligenes accumulates outside the cells during the fermentation process.
  • the repeating unit of Daiyutan gum has a main chain composed of glucose, glucuronic acid, glucose and rhamnose, and a side chain composed of rhamnose disaccharide. That is, the Daiyutan gum is an anionic polysaccharide having a repeating unit of these 6 sugars.
  • a commercially available product can be used as the die-utan gum. Examples of the commercially available product include KELCO-VIS DG (manufactured by CP Kelco US, Inc.).
  • R 1 and R 2 represent an alkyl group having 1 to 3 carbon atoms.
  • R 1 and R 2 include a methyl group, an ethyl group, and a propyl group, and among these, a methyl group is preferable.
  • R 1 and R 2 are preferably functional groups of the same type.
  • the propyl group may be an n-propyl group or an iso-propyl group.
  • R 3 represents an alkyl group having 1 to 24 carbon atoms.
  • R 3 a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, heptyl group, octyl group, nonyl group, and decyl group.
  • a methyl group or an ethyl group is preferable, and a methyl group is more preferable.
  • R 3 is preferably a functional group of the same type as R 1 and R 2.
  • These alkyl groups may be linear, branched or cyclic.
  • R 4 and R 5 represent an alkyl group or a hydrogen atom having 1 to 3 carbon atoms.
  • Examples of R 4 and R 5 in the case of an alkyl group include a methyl group, an ethyl group, and a propyl group.
  • R 4 and R 5 a methyl group or a hydrogen atom is preferable, and a hydrogen atom is more preferable.
  • the propyl group may be an n-propyl group or an iso-propyl group.
  • X - represents a monovalent anion.
  • X ⁇ include halide ions such as chloride ion, bromide ion, and iodide ion, methyl sulfate ion, ethyl sulfate ion, and the like. Of these, halide ions are preferable, and chloride ions are more preferable.
  • the cation-modified daiyutan gum is synthesized by reacting the cation-modified daiyutan gum with a glycidyl trialkylammonium salt having a corresponding structure, a 3-halogeno-2-hydroxypropyltrialkylammonium salt, or the like.
  • the reaction is carried out in the presence of alkali in a suitable solvent, preferably hydrous alcohol.
  • a suitable solvent preferably hydrous alcohol.
  • the introduction of such a quaternary nitrogen-containing group can be carried out according to a conventionally known method, but is not necessarily limited thereto.
  • the amount of cation charge of the cation-modified Daiyutan gum is 0.3 to 0.8 meq / g, preferably 0.30 to 0.85 meq / g, and 0.44 to 0. It is more preferably 7 meq / g, and even more preferably 0.44 to 0.62 meq / g.
  • the amount of cation charge is in the above numerical range, the dispersion stability of the liquid composition becomes excellent. Further, the spinnability of the liquid composition is lowered, and the workability when the liquid composition is filled in a container or the like is improved.
  • the cation charge amount means the equivalent number of nitrogen components derived from the quaternary nitrogen-containing group contained in 1 g of the cation-modified daiyutan gum.
  • the amount of cation charge means a value calculated by the following mathematical formula (1).
  • the nitrogen content derived from the quaternary nitrogen-containing group in the mathematical formula (1) means a value measured by the Kjeldahl method (former cosmetic raw material standard, general test method, nitrogen quantification method, second method). .. Since the diet tan gum usually contains a nitrogen content derived from a protein, it is necessary to remove the nitrogen content derived from the protein when measuring the nitrogen content of the cation-modified daiyu tan gum.
  • the nitrogen content derived from the quaternary nitrogen-containing group in the cation-modified Daiyutan gum measured by the Kjeldahl method is based on the measured value of the nitrogen content of the cation-modified Daiyutan gum before the cation-modification.
  • the value obtained by subtracting the measured value of the nitrogen content of the gum is adopted. This will be specifically described with reference to the measurement examples of Example 2 and Comparative Example 3 shown in Table 1 below.
  • the measured value of the nitrogen content of the cation-modified Daiyutan gum (Example 2) was 1.66%
  • the measured value of the nitrogen content of the cation-modified Daiyutan gum (Comparative Example 3) was 0.88%. Therefore, by substituting these measured values into the following mathematical formula (1), the amount of cation charge of the cation-modified Daiyutan gum of Example 2 is calculated to be 0.557 (meq / g).
  • the cation-modified daiyutan gum of the present embodiment shows an IR spectrum different from that of the cation-modified daiyutan gum (FIG. 1). Specifically, in the IR spectrum of the cation-modified daiyutan gum, a decrease in peak intensity (peak height) is observed at some peaks as compared with the IR spectrum of the cation-modified daiyutan gum. In particular, a significant decrease in peak intensity is observed at the first peak P1 near 1730 cm -1. On the other hand, no significant decrease in peak intensity is observed at the second peak P2 near 1600 cm -1 adjacent to the first peak P1.
  • the ratio of the peak intensity of the first peak P1 to the peak intensity of the second peak P2 in the IR spectrum is 0.1 to 0.4.
  • the ratio of the peak intensity of the first peak P1 to the peak intensity of the second peak P2 in the IR spectrum is 0.5 to 1.0.
  • the cation-modified beef tongue gum has a smaller ratio than the beef tongue gum.
  • the IR spectrum shall be measured by the method described in Examples. Further, the ratio of the peak intensities means a value calculated by the method described in the examples.
  • the cation-modified daiyutan gum of the present embodiment can be used as a dispersion stabilizer for imparting excellent dispersion stability to the liquid composition as described above.
  • the dispersion stabilizer can be suitably used for products such as foods, cosmetics, and industrial products, which contain the solid particles and / or the emulsified particles.
  • the dosage form of the dispersion stabilizer is not particularly limited, but may be in the form of a solid such as powder or granules, or in the form of a liquid such as an aqueous solution.
  • the content of the cation-modified daiyutan gum with respect to the total mass of the dispersion stabilizer is usually 0.1 to 100% by mass.
  • the concentration of the cation-modified daiyutan gum in the dispersion stabilizer is usually 0.1 to 10% by mass.
  • the dispersion stabilizer may contain an additive other than the cation-modified beef tongue gum as long as it exerts its function.
  • the additive include thickeners such as xanthan gum and locust bean gum, lubricants such as magnesium stearate, metal salts such as sodium chloride and potassium chloride, and dispersants (viscosity adjusters) such as glucose and dextrin. Be done.
  • the liquid composition is preferably a cosmetic composition containing the cation-modified beef tongue gum.
  • the dosage form of the cosmetic composition is not particularly limited, and any one can be adopted. Specific dosage forms include lotions, milky lotions, beauty essences, gels, creams, facial cleansers, oil-in lotions, sunscreens, shampoos, treatments, body soaps and the like. Among these uses, the cosmetic composition is preferably used as a cleanser for facial cleansers, shampoos, body soaps and the like. In other words, the cosmetic composition is preferably a cleansing cosmetic composition used for facial cleansers, shampoos, body soaps and the like.
  • the content of the cation-modified daiyutan gum with respect to the total mass of the cosmetic composition is usually 0.05 to 5% by mass, more preferably 0.1 to 3% by mass.
  • the cosmetic composition has excellent dispersion stability, suppresses a slimy feeling and a sticky feeling at the time of use, and has a good feeling of use.
  • the density of the liquid component contained in the cosmetic composition is usually 0.70 to 1.30 (g / mL).
  • the oily component that can be contained in the cosmetic composition is preferably an oily component that is easily adapted to hair, skin, nails, and the like.
  • oily components include fatty acids, fatty acid esters, hydrocarbon oils, and silicone oils.
  • the fatty acid is preferably a fatty acid having 8 to 22 carbon atoms, more preferably a fatty acid having 12 to 18 carbon atoms, and further preferably a fatty acid having 16 to 18 carbon atoms.
  • the fatty acid having such a carbon number include capric acid (8 carbon atoms), undecylenic acid (11 carbon atoms), capric acid (10 carbon atoms), lauric acid (12 carbon atoms), and myristic acid (14 carbon atoms).
  • Examples thereof include icosapentaenoic acid (20 carbon atoms), behenic acid (22 carbon atoms), and docosahexaenoic acid (22 carbon atoms).
  • the fatty acid ester is preferably a fatty acid ester having 12 to 54 carbon atoms, more preferably a fatty acid ester having 14 to 50 carbon atoms, and further preferably a fatty acid ester having 16 to 46 carbon atoms.
  • Examples of the fatty acid ester having such a carbon number include cetyl octanate (24 carbon atoms), ethyl laurate (14 carbon atoms), hexyl laurate (18 carbon atoms), isopropyl myristate (17 carbon atoms), and myristic acid.
  • Octyldodecyl (34 carbon atoms), myristyl myristate (28 carbon atoms), -2-hexyldecyl myristate (30 carbon atoms), glycerin trimyristate (45 carbon atoms), isopropyl palmitate (19 carbon atoms), palmitin 2-Ethylhexyl acid (24 carbons), -2-heptylundecyl palmitate (36 carbons), -2-hexyldecyl palmitate (34 carbons), butyl stearate (22 carbons), isocetyl stearate (22 carbons) 34 carbon atoms), isocetyl isostearate (34 carbon atoms), cholesteryl 12-hydroxystearate (45 carbon atoms), trimethylolpropane triisostearate (54 carbon atoms), decyl oleate (28 carbon atoms), cetyl lactate (28 carbon atoms) 19 carbon atoms),
  • a natural oily component can be used as the oily component containing a plurality of the fatty acid and / or the fatty acid ester.
  • Examples of the natural oily component include olive oil, jojoba oil, castor oil, mink oil, tall oil, palm oil, palm oil and the like.
  • hydrocarbon oil examples include liquid paraffin, squalane, ⁇ -olefin oligomer, petrolatum and the like.
  • silicone oil examples include dimethylpolysiloxane, tristrimethylsiloxymethylsilane, caprylylmethicone, phenyltrimethicone, tetraxtrimethylsiloxysilane, methylphenylpolysiloxane, methylhexylpolysiloxane, methylhydrogenpolysiloxane, and dimethylsiloxane.
  • organopolysiloxanes such as methylphenylsiloxane copolymers, octamethylcyclotetrasiloxanes, decamethylcyclopentasiloxanes, dodecamethylcyclohexasiloxanes, tetramethyltetrahydrogencyclotetrasiloxanes , Tetramethyltetraphenylcyclotetrasiloxane and other cyclic organopolysiloxanes, amino-modified organopolysiloxanes, pyrrolidone-modified organopolysiloxanes, pyrrolidone carboxylic acid-modified organopolysiloxanes, high-polymerization gum-like dimethylpolysiloxanes, gum-like amino-modified organoxanes.
  • organopolysiloxanes such as methylphenylsiloxane copolymers, octamethylcyclotetrasiloxa
  • Silicone rubber such as polysiloxane, gum-like dimethylsiloxane / methylphenylsiloxane copolymer, cyclic organopolysiloxane solution of silicone gum and rubber, higher alkoxy-modified silicone such as stearoki silicone, higher fatty acid-modified silicone, alkyl-modified silicone , Long-chain alkyl-modified silicone, amino acid-modified silicone, fluorine-modified silicone and the like.
  • the content of the oily component is usually 0.1 to 90% by mass, preferably 4 to 40% by mass, based on the total mass of the cosmetic composition.
  • the water content is usually 10 to 99% by mass, preferably 50 to 95% by mass, based on the total mass of the cosmetic composition.
  • the solid particles include low-density solid particles having a specific gravity of less than 1 with respect to the liquid component and high-density solid particles having a specific gravity of 1 or more with respect to the liquid component.
  • the specific gravity of the low specific density solid particles is preferably 0.01 to 0.99, and more preferably 0.20 to 0.95.
  • the specific gravity of the high-density solid particles is preferably 1.01 to 20, more preferably 1.05 to 10, and even more preferably 1.05 to 1.25.
  • the solid particles that can be contained in the cosmetic composition may be organic solid particles or inorganic solid particles.
  • organic solid particles examples include solid paraffin, selecin, synthetic wax, solid fat such as carnauba wax, polylactic acid, polyhydroxybutyric acid, polyester such as polyacrylic acid / acrylic acid ester, polyamide such as nylon, polyethylene, and the like.
  • Polymer particles such as polypropylene, polyurethane, vinyl resins, tetrafluoroethylene, polymethylmethacrylate, cellulose, silk, and polymethylsilsesquioxane can be mentioned.
  • the inorganic solid particles include magnesium oxide, barium sulfate, calcium sulfate, magnesium sulfate, calcium carbonate, magnesium carbonate, talc, mica, kaolin, sericite, silica, aluminum silicate, magnesium silicate, and aluminum silicate.
  • Particles such as magnesium, calcium silicate, hydroxyapatite, zeolite, calcium dibasic phosphate, alumina, aluminum hydroxide, and boron silicate can be mentioned.
  • the inorganic solid component is an ultraviolet scattering agent, zinc oxide, zirconium oxide, titanium oxide and the like can be mentioned.
  • the inorganic solid component is a pigment, an inorganic red pigment such as iron oxide and iron titanate, an inorganic brown pigment such as ⁇ -iron oxide, an inorganic yellow pigment such as yellow iron oxide and ocher, and black Inorganic black pigments such as iron oxide and carbon black, inorganic purple pigments such as manganese violet and cobalt violet, inorganic green pigments such as chromium hydroxide, chromium oxide, cobalt oxide and cobalt titanate, and inorganic pigments such as dark blue and ultramarine. Examples thereof include bluish pigments, white pigments such as mica titanium, pigment-coated mica titanium, and titanium oxide, and pearl pigments such as synthetic gold mica.
  • an inorganic red pigment such as iron oxide and iron titanate
  • an inorganic brown pigment such as ⁇ -iron oxide
  • an inorganic yellow pigment such as yellow iron oxide and ocher
  • black Inorganic black pigments such as iron oxide and carbon black
  • inorganic purple pigments such as manganese violet
  • the content of the solid particles is usually 0.1 to 50% by mass, preferably 0.5 to 30% by mass, based on the total mass of the cosmetic composition.
  • the cosmetic composition may contain a surfactant, but since the cosmetic composition contains the cation-modified Daiyutan gum, the emulsification stability is improved, so that the interface
  • the content of the activator may be less than usual.
  • the content of the surfactant is 0.1 to 50% by mass with respect to the total mass of the cosmetic composition.
  • the content of the surfactant is 0.1 to 50% by mass.
  • the content of the surfactant may be, for example, 0.1% by mass or less, 0.01% by mass or less, and may not substantially contain the surfactant. good.
  • the content of the surfactant is preferably 10 to 40% by mass, preferably 10 to 20% by mass. Is more preferable.
  • the surfactant examples include a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant.
  • the surfactant may contain either an anionic surfactant, a nonionic surfactant, or an amphoteric surfactant. preferable. Further, it is more preferable that the surfactant contains a plurality of these types.
  • the combination of the cation-modified beef tongue gum and the surfactant makes the cosmetic composition even more excellent in dispersion stability.
  • the cosmetic composition has a function peculiar to the surfactant.
  • the composition has functions such as improvement of conditioning property for hair and improvement of foam quality.
  • cationic surfactant examples include alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylpyridium salt, alkyldimethylbenzylammonium salt, benzethonium chloride, and benzalkonium chloride.
  • anionic surfactant examples include alkyl (8 to 24 carbon atoms) sulfate, alkyl (8 to 24 carbon atoms) ether sulfate, alkyl (8 to 24 carbon atoms) benzene sulfonate, and alkyl (8 carbon atoms).
  • nonionic surfactant examples include alkanolamide, glycerin fatty acid ester, polyoxyalkylene alkyl ether, polyoxyalkylene glycol ether, polyoxyalkylene sorbitan fatty acid ester, sorbitan fatty acid ester, polyoxyalkylene sorbit fatty acid ester, and sorbit fatty acid ester.
  • examples thereof include castor oil derivatives, polyoxyalkylene-cured castor oil derivatives, alkyl polyglycosides, and polyglycerin fatty acid esters.
  • amphoteric surfactant examples include alkyl (8 to 24 carbon atoms) amidopropyl betaine, alkyl (8 to 24 carbon atoms) carboxybetaine, alkyl (8 to 24 carbon atoms) sulfobetaine, and alkyl (8 to 24 carbon atoms).
  • Hydroxysulfobetaine alkyl (8 to 24 carbons) amidopropyl hydroxysulfobetaine, alkyl (8 to 24 carbons) hydroxyphosphobetaine, alkyl (8 to 24 carbons) aminocarboxylate, alkyl (8 to 24 carbons) ) AmphoNa, alkyl (8 to 24 carbon atoms) amine oxide, alkyl (8 to 24 carbon atoms) phosphate ester containing tertiary nitrogen and quaternary nitrogen, and the like.
  • the cosmetic composition may contain other additives.
  • the additive include polyhydric alcohols that function as moisturizers such as glycerin and 1,3-butylene glycol, thickeners such as xanthan gum, antioxidants such as tocopherol and BHT, benzophenone derivatives, and paraaminobenzoic acid derivatives.
  • Ultraviolet absorbers such as methoxycinnamic acid derivatives, chelating agents such as edetates, amino acids such as arginine and glutamate, pH regulators, bactericides, preservatives, vitamins, anti-inflammatory agents, pigments, fragrances, foaming enhancement Examples include agents.
  • the cation-modified beef tongue gum according to the present embodiment is A cation-modified beef tongue gum in which a part of the hydroxyl group is substituted with a quaternary nitrogen-containing group represented by the chemical formula (1).
  • the amount of cation charge derived from the quaternary nitrogen-containing group is 0.3 to 0.8 meq / g.
  • R 1 and R 2 are alkyl groups having 1 to 3 carbon atoms
  • R 3 is an alkyl group having 1 to 24 carbon atoms
  • R 4 and R 5 are alkyl groups having 1 to 3 carbon atoms or hydrogen.
  • an atom, X - represents a monovalent anion
  • the dispersion stability of the liquid composition can be improved when the amount of cation charge is 0.3 to 0.8 meq / g.
  • R 4 and R 5 are hydrogen atoms.
  • the dispersion stability of the liquid composition can be further improved by making R 4 and R 5 hydrogen atoms.
  • R 3 is an alkyl group having 1 to 3 carbon atoms.
  • R 1 , R 2 and R 3 are methyl groups.
  • the dispersion stability of the liquid composition can be further improved by having R 1 , R 2 and R 3 being methyl groups.
  • dispersion stabilizer according to the present embodiment contains the above-mentioned cation-modified beef tongue gum.
  • the cosmetic composition according to the present embodiment contains the above-mentioned cation-modified beef tongue gum.
  • the cosmetic composition according to the present embodiment preferably contains a surfactant, and the surfactant contains either an anionic surfactant, an amphoteric surfactant, or a nonionic surfactant. ..
  • the surfactant contains any of an anionic surfactant, an amphoteric surfactant, or a nonionic surfactant, whereby the phase of the surfactant and the cationically modified dietangum. It has excellent solubility.
  • the cosmetic composition according to the present embodiment is preferably a cleaning cosmetic composition.
  • the cosmetic is excellent in quality when used as a cosmetic for cleaning.
  • the cation-modified daiyutan gum according to the present invention is not limited to the configuration of the above embodiment. Further, the cation-modified beef tongue gum according to the present invention is not limited by the above-mentioned effects.
  • the cation-modified daiyutan gum according to the present invention can be modified in various ways without departing from the gist of the present invention.
  • Example 1 1.55 g of sodium hydroxide was dissolved in 49.44 g of water, and 74.88 g of isopropanol was uniformly dissolved. Then, 30 g of Daiyu tan gum (KELCO-VIS DG, CP Kelco US, Inc.) was added while being dispersed. 6.0 g of glycidyltrimethylammonium chloride (hereinafter sometimes referred to as GTA, SY-GTA80, manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) was added, and the mixture was reacted at 50 to 55 ° C. for 4 hours. After completion of the reaction, the reaction was neutralized with 1.52 g of 50 mass% sulfuric acid.
  • GTA glycidyltrimethylammonium chloride
  • the reaction was filtered, washed by dispersing in 131.52 g of 60% isopropanol, and then filtered. The reaction was then washed by dispersing in 101.76 g of 75% isopropanol and then filtered. Further, by washing by dispersing in 72 g of 90% methanol, excess GTA was removed, and after drying, the desired cation-modified daiyutan gum was obtained. The amount of cation charge of the obtained cation-modified daiyutan gum was 0.443 meq / g. The results are shown in Table 1.
  • Examples 2 to 3 and Comparative Examples 1 to 2 Cationic-modified Daiyutan gums having different cation charge amounts were produced in the same manner as in Example 1 except that the GTA amount used for cation modification was set to the value shown in Table 1, and the cation charge amount was measured.
  • Example 3 The beef tongue gum used in Example 1 was used as Comparative Example 3, and its nitrogen content was measured.
  • the cation-modified daiyutan gum of Example 2 has a remarkable peak intensity around 1730 cm -1 as the first peak P1 as compared with the unmodified daiyutan gum of Comparative Example 3. A decrease was observed. In addition, a decrease in peak intensity was also observed in the peaks near 1250 cm -1 and the peaks near 1400 cm -1. On the other hand, no significant change was observed in the peak intensity of the peak near 1600 cm -1 as the second peak P2.
  • the ratio of the peak intensity of the first peak P1 to the peak intensity of the second peak P2 in the IR spectrum was calculated.
  • the measurement of the peak intensity ratio is based on a straight line passing through the high wavenumber side end (near 1770 cm -1 ) of the first peak and the low wavenumber side end ( near 1500 cm -1) of the second peak in the IR spectrum. As a line, the distance from the baseline to the peak top of each peak was compared.
  • the ratio of the peak intensities of Example 2 was 0.20.
  • the ratio of the peak intensities of Comparative Example 3 was 0.73.
  • Stable The scrubbing agent does not float near the liquid surface, and no scrubbing agent layer is observed on the liquid surface.
  • Unstable A scrubbing agent is floating near the liquid surface, and a layer of scrubbing agent is observed on the liquid surface.
  • Viscosity measurement conditions Subjecting the 0.25 mass% aqueous solution prior to addition of scrubbing agent to the rheometer (DHR-2, TA Instruments Japan Ltd.), flow curve measurement (temperature: 25 ° C.) 0.01s at - The viscosity at the shear rate of 1 was measured.
  • the aqueous solution containing Examples 1 to 3 had a high viscosity.
  • the viscosity of the aqueous solution containing Examples 1 to 3 was lower than the viscosity of the aqueous solution containing Comparative Example 3 (unmodified Daiyutan gum), which had insufficient dispersion stability. ..
  • the aqueous solution containing Example 3 had better dispersion stability than any of the aqueous solutions containing Comparative Examples 1 to 3.
  • the emulsified particle size (median size) of the obtained emulsion was measured with a laser diffraction / scattering type particle size distribution measuring device (Partica mini LA-350, manufactured by HORIBA, Ltd.) (dispersion medium: water). The results are shown in Table 3.
  • the cation-modified daiyutan gum having a cation charge amount of 0.3 to 0.8 meq / g in Examples 1 to 3 is a polysaccharide having very excellent dispersion stability. It turned out. Therefore, the cation-modified daiyutan gums of Examples 1 to 3 contribute to the dispersion stability of scrubbing agents, pigments, emulsified particles and the like in the field of cosmetics, for example, and contribute to the stabilization of dispersion of cosmetics, emulsions, beauty essences, gels, creams and facial cleansers. , Sunscreen, shampoo, treatment, body soap, etc. have been found to be useful.
  • the component (3) was placed in a 100 mL glass tall beaker, the dispersion liquid was added while stirring with a general-purpose stirrer (BL1200, manufactured by Shinto Kagaku Co., Ltd.), and then the beaker was immersed in a water bath at 85 ° C. After the liquid temperature reached 80 ° C., the mixture was stirred for 15 minutes, and a mixture of components (4) to (6) was further added. Next, the component (7) and the component (8) were added, and the mixture was cooled with water until the temperature reached about room temperature with stirring, and the component (3) was added so as to have a total weight of 50 g to prepare a scrub face wash.
  • BL1200 general-purpose stirrer
  • Stable The scrubbing agent does not settle and no scrubbing agent deposit layer is observed. Unstable: The scrubbing agent settles and a sedimentary layer of the scrubbing agent is observed.
  • the scrub cleanser (E-1 or E-2) containing Example 1 or Example 3 is considered to have high dispersion stability. It showed better dispersion stability than the scrub cleanser (E-3) containing cation-modified xanthan gum.
  • the component (3) was placed in a 200 mL glass tall beaker, the dispersion was added while stirring with a general-purpose stirrer (BL1200, manufactured by Shinto Kagaku Co., Ltd.), and then the mixture was stirred at room temperature for 30 minutes. Then, the components (4) to (6) were added in sequence, and the mixture was stirred for 5 minutes.
  • the component (7) was added to the obtained lotion and stirred at 300 rpm for 5 minutes to prepare a total of 105 g of oil-in lotion. 80 g of the obtained oil-in lotion was transferred to a 100 mL vial and allowed to stand in a thermostat at 50 ° C. (MIR-153, manufactured by Sanyo Electric Co., Ltd. (currently Panasonic Corporation)), and the state was observed 6 days later. Table 6 shows the results of evaluation based on the following evaluation criteria.
  • Stable Olive oil particles do not float and are not separated from the aqueous solution.
  • Unstable Olive oil particles have floated to form a layer separated from the aqueous solution.
  • the oil in lotions (F-1 to F-3) containing Examples 1 to 3 are unmodified Daiyutan gum (F-4) and cation-modified guar gum (F-6).
  • the dispersion stability was superior to that of the oil in lotion (F-5) containing cation-modified xanthan gum, which is said to have high dispersion stability.
  • Stable The scrubbing agent does not float near the liquid surface, and no scrubbing agent layer is observed on the liquid surface. Unstable: A scrubbing agent is floating near the liquid surface, and a layer of scrubbing agent is observed on the liquid surface. (Evaluation criteria for dispersion stability of calcium carbonate) Stable: Calcium carbonate does not settle near the bottom and no calcium carbonate layer is found on the bottom. Instability: Calcium carbonate has settled near the bottom, and a layer of calcium carbonate is observed at the bottom.
  • Stable Liquid paraffin does not float near the liquid surface, and no layer of liquid paraffin is observed on the liquid surface.
  • Unstable Liquid paraffin is floating near the liquid surface, and a layer of liquid paraffin is observed on the liquid surface.
  • the aqueous solutions (G-1 to G-3) containing Examples 1 to 3 are the low-density solid particles even after a long storage period (90 days). No levitation of scrubbing agent and low density oil agent was observed. In addition, no precipitation of calcium carbonate in the high density particles was observed. In other words, the aqueous solutions (G-1 to G-3) containing Examples 1 to 3 maintained a uniformly dispersed state of solid particles and emulsified particles for a long period of time. On the other hand, in the aqueous solutions (G-4 to G-6) containing Comparative Examples 1 to 3, floating of the scrubbing agent and liquid paraffin was observed, and layers of the scrubbing agent and liquid paraffin were observed on the liquid surface. Alternatively, a layer of calcium carbonate formed by sedimentation of calcium carbonate was observed.
  • the mixture was stirred at room temperature for 1 hour to obtain an aqueous solution having a polysaccharide concentration of 2.0% by mass.
  • 5 g of the aqueous solution was dispensed into four 15 mL conical tubes, and sodium lauryl sulfate (alkyl sulfate having 12 carbon atoms, Emar 0 manufactured by Kao Co., Ltd., 10% by mass based on the total mass of the composition) was placed in each conical tube.
  • Lauroyl sarcosine sodium 30% aqueous solution (acylated sarcosate having 12 carbon atoms, sarcosinate LN-30 manufactured by Nikko Chemicals Co., Ltd., 33.4% by mass based on the total mass of the composition), lauroyl methylalanine sodium 30% aqueous solution. (Acylated N-methyl- ⁇ -alanine salt having 12 carbon atoms, Alaninate LN-30 manufactured by Nikko Chemicals Co., Ltd., 33.4% by mass based on the total mass of the composition), or lauric acid, myristic acid, palmitin.
  • a 35% aqueous solution of potassium hydroxide containing an acid and glycerin ie, as an anionic surfactant, a long-chain carboxylic acid salt having 12 carbon atoms, a long-chain carboxylic acid salt having 14 carbon atoms, and a long-chain carboxylic acid salt having 16 carbon atoms.
  • An aqueous solution containing an acid salt Priory B-100 manufactured by Kao Co., Ltd., 28.6% by mass based on the total mass of the composition was added, and deionized water was further added to prepare a composition of 10 g.
  • homogenizer (HG-200, manufactured by Hsiangtai) was used to homogenize at 10,000 rpm for 1 to 2 minutes. The appearance of the obtained aqueous solution was observed and evaluated according to the following evaluation criteria. The results are shown in Table 8.
  • the aqueous solution (H-6) containing Comparative Example 3 was found to have a reduced viscosity when mixed with sodium lauryl sulfate, sodium lauroyl sarcosine, or sodium lauroyl methyl alanine, and sodium lauroyl sarcosine or sodium lauroyl methyl alanine was added. Aggregation was observed when mixed. From these results, it was found that the cation-modified daiyutan gums of Examples 1 to 3 had excellent compatibility with anionic surfactants.
  • the component (4) and the component (5) were added, and the mixture was stirred for 5 minutes. Further, the components (6) to (8) were added, and the mixture was stirred for 10 minutes to prepare a gel shampoo.
  • the appearance of the obtained gel shampoo was observed to confirm the presence or absence of agglomeration. Further, it was subjected to a rheometer (DHR-2, manufactured by TA Instruments Japan Co., Ltd.), and the viscosity at a shear rate of 10s-1 was measured by flow curve measurement (temperature: 25 ° C.).
  • the gel shampoo (I-1) containing Example 1 showed no aggregation and showed a high viscosity value.
  • the gel shampoo (I-2) containing Comparative Example 3 agglomerates when mixed with the components (6) to (8), and has a lower viscosity value than that of Example 1. Indicated. From these results, it was found that the gel shampoo containing Example 1 was more compatible with the anionic surfactant and the amphoteric surfactant than the gel shampoo containing Comparative Example 3. Further, in the scrub gel shampoo containing low specific density solid particles close to water, the scrub gel shampoo (I-1) containing Example 1 is more than the scrub gel shampoo (I-2) containing Comparative Example 3. It was found to be excellent in dispersion stability.
  • the mixture was stirred for 15 minutes, and the components (4) to (7) were further added and stirred for 5 minutes.
  • the body soap was prepared by water-cooling until it became near room temperature, adding the component (8), and then adding the component (1) so as to have a total weight of 50 g. The appearance of the obtained body soap was observed to confirm the presence or absence of aggregation. Further, it was subjected to a rheometer (DHR-2, manufactured by TA Instruments Japan Co., Ltd.), and the viscosity at a shear rate of 10s-1 was measured by flow curve measurement (temperature: 25 ° C.).
  • the body soap (J-1) containing Example 3 showed no aggregation and showed a high viscosity value.
  • the body soap (J-2) containing Comparative Example 3 aggregates when mixed with the components (4) to (7), and has a lower viscosity value than that of Example 3. showed that. From these results, it was found that the body soap containing Example 3 was more compatible with the anionic surfactant and the nonionic surfactant than the body soap containing Comparative Example 3. Further, in the scrub body soap containing high specific density solid particles, the scrub body soap (J-1) containing Example 3 has a higher dispersion stability than the scrub body soap (J-2) containing Comparative Example 3. It turned out to be excellent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

水酸基の一部が化学式(1)で表される第4級窒素含有基で置換されたカチオン変性ダイユータンガムであって、前記第4級窒素含有基由来のカチオン電荷量が0.3~0.8meq/gである、カチオン変性ダイユータンガム。

Description

分散安定性の向上に優れるカチオン変性ダイユータンガム 関連出願の相互参照
 本願は、日本国特願2020-054131号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。
 本発明は、多糖類に関し、より具体的には、カチオン変性されたダイユータンガムに関する。
 従来、多糖類は、食品、化粧品、及び工業用品などの各種製品の品質を向上させるために使用されている。かかる多糖類としては、例えば、キサンタンガム、タマリンドガム、及びフェヌグリークガムなどの天然の多糖類が挙げられる。
 また、特許文献1~4では、多糖類の機能を向上させるために、水酸基の一部が第4級窒素含有基で置換されることによってカチオン変性された多糖類が提案されている。また、カチオン変性された多糖類がシャンプーなどに含有された場合、毛髪を洗浄する際のきしみが抑制されるなどのコンディショニング性が向上することが記載されている。
 この他、不溶性の固体粒子を含有する液状組成物において、該固体粒子を該液状組成物中に均一に分散させるために、多糖類が使用される場合がある。例えば、化粧料組成物の場合、前記固体粒子としてのスクラブ剤を該化粧料組成物中に均一に分散させるために、多糖類が使用される場合がある。さらに、前記液状組成物が乳化組成物である場合、乳化粒子を該組成物中に均一に分散させるために、多糖類が使用される場合がある。
日本国特公昭47-20635号公報 日本国特許第4716110号公報 日本国特開2007-63446号公報 日本国特開2012-1676号公報
 しかしながら、従来の多糖類では、前記液状組成物中の前記固体粒子や前記乳化粒子が、安定して均一に分散しにくい場合がある。例えば、前記固体粒子が前記液状組成物の液面に浮上したり沈殿したりする場合がある。
 また、前記液状組成物が乳化組成物である場合、油性成分と水とが相分離を起こし、乳化粒子が均一に分散されない場合がある。
 よって、前記液状組成物の分散安定性を向上させ得る多糖類の提供は、求められ続けている。
 かかる事情の下、本発明者は、鋭意検討したところ、ダイユータンガムと呼ばれる多糖類がカチオン変性されることによって得られるカチオン変性ダイユータンガムが、特定のカチオン電荷量に調節された場合、前記液状組成物の分散安定性を向上させることを見出した。
 すなわち、本発明は、液状組成物の分散安定性を向上させることに優れた性質を有するカチオン変性ダイユータンガムを提供することを課題としている。
 本発明に係るカチオン変性ダイユータンガムは、
 水酸基の一部が化学式(1)で表される第4級窒素含有基で置換されたカチオン変性ダイユータンガムであって、
 前記第4級窒素含有基由来のカチオン電荷量が0.3~0.8meq/gである。
Figure JPOXMLDOC01-appb-C000002
(式中R及びRは炭素数1~3のアルキル基であり、Rは炭素数1~24のアルキル基であり、R及びRは炭素数1~3のアルキル基又は水素原子であり、Xは1価の陰イオンを示す)
 また、本発明に係るカチオン変性ダイユータンガムは、好ましくは、
 R及びRが水素原子である。
 また、本発明に係るカチオン変性ダイユータンガムは、好ましくは、
 Rが炭素数1~3のアルキル基である。
 また、本発明に係るカチオン変性ダイユータンガムは、好ましくは、
 R、R及びRがメチル基である。
 また、本発明に係る分散安定剤は、上記カチオン変性ダイユータンガムを含有する。
 また、本発明に係る化粧料組成物は、上記カチオン変性ダイユータンガムを含有する。
図1は、実施例2のカチオン変性ダイユータンガム(実線)及び比較例3の未変性ダイユータンガム(破線)それぞれのIRスペクトルを比較するものである。
 以下、一実施形態に係るカチオン変性ダイユータンガムについて説明する。
 本実施形態のカチオン変性ダイユータンガムは、その機能を発揮する上で、液状組成物に含有されて用いられることが好ましい。前記液状組成物は、固体粒子を分散させた分散液で構成されており、該分散液の分散媒に前記カチオン変性ダイユータンガムを溶解させた状態で含有している。前記液体組成物が前記カチオン変性ダイユータンガムを含有することによって、前記固体粒子が前記液状組成物中に安定して均一に分散し得る。
 また、前記分散媒は、油性成分と水とを含んで乳化されていてもよい。言い換えれば、前記液状組成物は乳化組成物であってもよい。この場合、前記液状組成物が前記カチオン変性ダイユータンガムを含有することによって、これに含まれる乳化粒子が微小なものとなり且つ安定して均一に分散した状態となる。
 なお、本明細書では、前記液状組成物中に前記固体粒子及び/又は前記乳化粒子が均一に安定して分散した状態の程度を分散安定性と称することがある。
 前記カチオン変性ダイユータンガムが前記固体粒子を含有する前記液状組成物に含有される上では、該カチオン変性ダイユータンガムを含む水溶液が特定の粘性を有していることが好ましい。具体的には、前記カチオン変性ダイユータンガムの濃度0.25質量%水溶液の粘度(温度25℃)が、せん断速度0.01s-1で、10,000~100,000mPa・sであることが好ましく、30,000~60,000mPa・sであることがより好ましい。これによって、前記固体粒子が、前記液状組成物中に均一に分散し得る。
 なお、前記粘度は、実施例に記載の方法で測定された値を意味するものとする。
 前記液状組成物が乳化組成物である場合、前記乳化組成物は、水中油(O/W)型であってもよく、油中水(W/O)型であってもよい。
 また、乳化粒子径(メジアン径)は、50μm以下であることが好ましく、40μm以下であることがより好ましい。これによって、前記乳化組成物の乳化安定性が向上し得る。
 なお、前記乳化粒子径は、実施例に記載の測定方法で測定された値を意味するものとする。
 本実施形態に係るカチオン変性ダイユータンガムは、ダイユータンガムに含まれる水酸基の一部が、化学式(1)で表される第4級窒素含有基で置換されたカチオン変性ダイユータンガムである。これによって、前記カチオン変性ダイユータンガムは、カチオン電荷を有するものとなる。
Figure JPOXMLDOC01-appb-C000003
 前記ダイユータンガムは、アルカリゲネス属が醗酵過程で菌体外に蓄積する多糖類である。前記ダイユータンガムの繰り返しユニットは、グルコース、グルクロン酸、グルコース、ラムノースで構成される主鎖と、ラムノース2糖で構成される側鎖とを有している。すなわち、前記ダイユータンガムは、これら6糖の繰り返しユニットを有する陰イオン性多糖類である。前記ダイユータンガムとしては、市販品を使用することができる。該市販品としては、例えば、KELCO-VIS DG(CP Kelco U.S., Inc.製)などが挙げられる。
 上記化学式(1)において、R及びRは炭素数1~3のアルキル基を示す。R及びRとしては、メチル基、エチル基、及びプロピル基が挙げられ、これらのなかでもメチル基が好ましい。また、R及びRは、同種の官能基であることが好ましい。なお、プロピル基は、n-プロピル基であっても、iso-プロピル基であってもよい。
 また、Rは炭素数1~24のアルキル基を示す。Rとしては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、及びデシル基などが挙げられる。これらのなかでもメチル基又はエチル基が好ましく、メチル基がより好ましい。また、Rは、R及びRと同種の官能基であることが好ましい。なお、これらのアルキル基は、直鎖状であっても分岐状であっても環状であってもよい。
 また、R及びRは炭素数1~3のアルキル基又は水素原子を示す。アルキル基の場合のR及びRとしては、メチル基、エチル基、及びプロピル基が挙げられる。R及びRとしては、メチル基又は水素原子が好ましく、水素原子がより好ましい。なお、プロピル基は、n-プロピル基であっても、iso-プロピル基であってもよい。
 また、Xは1価の陰イオンを示す。Xとしては、塩化物イオン、臭化物イオン、及びヨウ化物イオンなどのハロゲン化物イオン、硫酸メチルイオン、硫酸エチルイオンなどが挙げられる。これらのなかでもハロゲン化物イオンが好ましく、塩化物イオンがより好ましい。
 前記カチオン変性ダイユータンガムは、前記ダイユータンガムに、対応する構造を有するグリシジルトリアルキルアンモニウム塩、又は、3-ハロゲノ-2-ヒドロキシプロピルトリアルキルアンモニウム塩などを反応させることにより合成される。この場合、反応は適当な溶媒、好適には含水アルコール中において、アルカリ存在下で実施される。このような第4級窒素含有基の導入は、従来公知の方法に従って行うことができるが、必ずしもこれらに限定されるものではない。
 前記カチオン変性ダイユータンガムのカチオン電荷量は、0.3~0.8meq/gであることが重要であり、0.30~0.85meq/gであることが好ましく、0.44~0.7meq/gであることがより好ましく、0.44~0.62meq/gであることがさらに好ましい。前記カチオン電荷量が上記数値範囲であることによって、前記液状組成物の分散安定性が優れたものとなる。また、前記液状組成物の曳糸性が低下し、該液状組成物を容器などに充填する際の作業性が向上する。
 前記カチオン電荷量は、前記カチオン変性ダイユータンガム1gあたりに含まれる前記第4級窒素含有基由来の窒素分の当量数を意味するものとする。言い換えれば、前記カチオン電荷量は、下記数式(1)により算出される値を意味するものとする。また、数式(1)における第4級窒素含有基由来の窒素分は、ケルダール法(旧化粧品原料基準、一般試験方法、窒素定量法、第2法)により測定される値を意味するものとする。
 なお、前記ダイユータンガムには、通常、タンパク質由来の窒素分が含まれるため、前記カチオン変性ダイユータンガムの窒素分の測定に際しては、該タンパク質由来の窒素分を除く必要がある。すなわち、ケルダール法により測定される前記カチオン変性ダイユータンガムにおける前記第4級窒素含有基由来の窒素分は、カチオン変性後のダイユータンガムの窒素分の測定値から、カチオン変性前の前記ダイユータンガムの窒素分の測定値を差し引いた値が採用される。
 これについて、下記表1に示される実施例2及び比較例3の測定例によって具体的に説明する。前記カチオン変性ダイユータンガム(実施例2)の窒素分の測定値が1.66%であり、カチオン変性前の前記ダイユータンガム(比較例3)の窒素分の測定値が0.88%であるため、これらの測定値を下記数式(1)に代入すると、実施例2のカチオン変性ダイユータンガムのカチオン電荷量は、0.557(meq/g)と算出されることとなる。
Figure JPOXMLDOC01-appb-M000004
 また、前記カチオン電荷量の相違の他、本実施形態の前記カチオン変性ダイユータンガムは、前記ダイユータンガムとは異なるIRスペクトルを示す(図1)。具体的には、前記カチオン変性ダイユータンガムのIRスペクトルでは、前記ダイユータンガムのIRスペクトルと比較して、一部のピークにおいてピーク強度(ピーク高さ)の低下が認められる。特に、1730cm-1付近の第1のピークP1に、著しいピーク強度の低下が認められる。一方、第1のピークP1と隣り合う1600cm-1付近の第2のピークP2には、大きなピーク強度の低下は認められない。
 すなわち、前記カチオン変性ダイユータンガムは、IRスペクトルにおける第2のピークP2のピーク強度に対する第1のピークP1のピーク強度の比が、0.1~0.4である。これに対して、前記ダイユータンガムは、IRスペクトルにおける第2のピークP2のピーク強度に対する第1のピークP1のピーク強度の比が、0.5~1.0である。このように、前記カチオン変性ダイユータンガムは、前記ダイユータンガムに比べて、前記比が小さくなっている。
 なお、IRスペクトルは、実施例に記載の方法で測定されるものとする。また、前記ピーク強度の比は、実施例に記載の方法で算出される値を意味するものとする。
 本実施形態の前記カチオン変性ダイユータンガムは、上記のような液状組成物に対して優れた分散安定性を付与するための分散安定化剤として用いることが可能である。前記分散安定化剤は、例えば、食品、化粧品、及び工業用品などの製品であって、前記固体粒子及び/又は前記乳化粒子を含有するような製品に好適に用いられ得る。
 前記分散安定化剤の剤型は、特に限定されないが、粉末や顆粒などの固体状であってもよく、水溶液などの液体状であってもよい。前記分散安定化剤が固体状である場合、前記分散安定化剤の全体質量に対する前記カチオン変性ダイユータンガムの含有量は、通常0.1~100質量%である。また、前記分散安定化剤が液体状である場合、前記分散安定化剤中の前記カチオン変性ダイユータンガムの濃度は、通常0.1~10質量%である。
 前記分散安定化剤は、その機能を発揮する限りにおいて、前記カチオン変性ダイユータンガム以外の添加剤を含有していてもよい。前記添加剤としては、例えば、キサンタンガムやローカストビーンガムなどの増粘剤、ステアリン酸マグネシウムなどの滑剤、塩化ナトリウムや塩化カリウムなどの金属塩、ブドウ糖やデキストリンなどの分散剤(粘度調整剤)が挙げられる。
 前記液状組成物は、前記カチオン変性ダイユータンガムを含有する化粧料組成物であることが好ましい。前記化粧料組成物の剤型は、特に限定されず、任意のものが採用可能である。具体的な剤型としては、化粧水、乳液、美容液、ジェル、クリーム、洗顔料、オイルインローション、サンスクリーン、シャンプー、トリートメント、ボディソープなどが挙げられる。これらの用途の中でも、前記化粧料組成物は、洗顔料、シャンプー、ボディソープ等の洗浄料に用いられることが好ましい。言い換えれば、前記化粧料組成物は、洗顔料、シャンプー、ボディソープ等に用いられる洗浄用化粧料組成物であることが好ましい。
 前記化粧料組成物の全体質量に対する前記カチオン変性ダイユータンガムの含有量は、通常0.05~5質量%であり、0.1~3質量%であることがより好ましい。これによって、前記化粧料組成物は、分散安定性に優れたものとなり、使用時のぬるつき感やべたつき感が抑制され、使用感が良好なものとなる。
 前記化粧料組成物に含有される前記液体成分の密度は、通常0.70~1.30(g/mL)である。
 前記化粧料組成物に含有され得る前記油性成分としては、毛髪、皮膚、爪などになじみ易い油性成分であることが好ましい。このような油性成分としては、例えば、脂肪酸、脂肪酸エステル、炭化水素油、及びシリコーン油が挙げられる。
 前記脂肪酸としては、炭素数8~22の脂肪酸であることが好ましく、炭素数12~18の脂肪酸であることがより好ましく、炭素数16~18の脂肪酸であることがさらに好ましい。このような炭素数の前記脂肪酸としては、カプリル酸(炭素数8)、ウンデシレン酸(炭素数11)、カプリン酸(炭素数10)、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、パルミチン酸(炭素数16)、ステアリン酸(炭素数18)、リノール酸(炭素数18)、リノレン酸(炭素数18)、イソステアリン酸(炭素数18)、オレイン酸(炭素数18)、エイコサペンタエン酸(炭素数20)、ベヘニン酸(炭素数22)、ドコサヘキサエン酸(炭素数22)などが挙げられる。
 前記脂肪酸エステルとしては、炭素数12~54の脂肪酸エステルであることが好ましく、炭素数14~50の脂肪酸エステルであることがより好ましく、炭素数16~46の脂肪酸エステルであることがさらに好ましい。このような炭素数の前記脂肪酸エステルとしては、オクタン酸セチル(炭素数24)、ラウリン酸エチル(炭素数14)、ラウリン酸ヘキシル(炭素数18)、ミリスチン酸イソプロピル(炭素数17)、ミリスチン酸オクチルドデシル(炭素数34)、ミリスチン酸ミリスチル(炭素数28)、ミリスチン酸-2-ヘキシルデシル(炭素数30)、トリミリスチン酸グリセリン(炭素数45)、パルミチン酸イソプロピル(炭素数19)、パルミチン酸2-エチルヘキシル(炭素数24)、パルミチン酸-2-ヘプチルウンデシル(炭素数36)、パルミチン酸-2-ヘキシルデシル(炭素数34)、ステアリン酸ブチル(炭素数22)、ステアリン酸イソセチル(炭素数34)、イソステアリン酸イソセチル(炭素数34)、12-ヒドロキシステアリン酸コレステリル(炭素数45)、トリイソステアリン酸トリメチロールプロパン(炭素数54)、オレイン酸デシル(炭素数28)、乳酸セチル(炭素数19)、乳酸ミリスチル(炭素数17)、2-エチルヘキサン酸セチル(炭素数24)、ジ-2-エチルヘキシル酸エチレングリコール(炭素数22)、トリ-2-エチルヘキシル酸トリメチロールプロパン(炭素数30)、トリ-2-エチルヘキシル酸グリセリン(炭素数27)、テトラ-2-エチルヘキシル酸ペンタエリスリトール(炭素数37)、セチル-2-エチルヘキサノエート(炭素数24)、アジピン酸ジイソブチル(炭素数14)、アジピン酸-2-ヘプチルウンデシル(炭素数42)、アジピン酸-2-ヘキシルデシル(炭素数38)、ジカプリン酸ネオペンチルグリコール(炭素数25)、リンゴ酸ジイソステアリル(炭素数40)、セバシン酸ジ-2-エチルヘキシル(炭素数26)、セバシン酸ジイソプロピル(炭素数16)、コハク酸-2-エチルヘキシル(炭素数20)、クエン酸トリエチル(炭素数12)、などが挙げられる。
 前記脂肪酸及び/又は前記脂肪酸エステルを複数含有する前記油性成分として、天然の油性成分が使用可能である。前記天然の油性成分としては、オリーブ油、ホホバ油、ヒマシ油、ミンク油、トール油、ヤシ油、パーム油などが挙げられる。
 前記炭化水素油としては、例えば、流動パラフィン、スクワラン、α-オレフィンオリゴマー、ワセリンなどが挙げられる。
 前記シリコーン油としては、例えば、ジメチルポリシロキサン、トリストリメチルシロキシメチルシラン、カプリリルメチコン、フェニルトリメチコン、テトラキストリメチルシロキシシラン、メチルフェニルポリシロキサン,メチルヘキシルポリシロキサン、メチルハイドロジェンポリシロキサン、ジメチルシロキサン・メチルフェニルシロキサン共重合体等の低粘度から高粘度の直鎖或いは分岐状のオルガノポリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、テトラメチルテトラハイドロジェンシクロテトラシロキサン、テトラメチルテトラフェニルシクロテトラシロキサン等の環状オルガノポリシロキサン、アミノ変性オルガノポリシロキサン、ピロリドン変性オルガノポリシロキサン、ピロリドンカルボン酸変性オルガノポリシロキサン、高重合度のガム状ジメチルポリシロキサン、ガム状アミノ変性オルガノポリシロキサン、ガム状のジメチルシロキサン・メチルフェニルシロキサン共重合体等のシリコーンゴム、及びシリコーンガムやゴムの環状オルガノポリシロキサン溶液、ステアロキシリコーンなどの高級アルコキシ変性シリコーン、高級脂肪酸変性シリコーン、アルキル変性シリコーン、長鎖アルキル変性シリコーン、アミノ酸変性シリコーン、フッ素変性シリコーンなどが挙げられる。
 前記油性成分の含有量は、前記化粧料組成物の全体質量に対して、通常0.1~90質量%であり、4~40質量%であることが好ましい。また、前記水の含有量は、前記化粧料組成物の全体質量に対して、通常10~99質量%であり、50~95質量%であることが好ましい。
 前記固体粒子は、前記液体成分に対する比重が1未満の低比重固体粒子と、前記液体成分に対する比重が1以上の高比重固体粒子とを含む。前記低比重固体粒子の比重は、0.01~0.99であることが好ましく、0.20~0.95であることがより好ましい。また、前記高比重固体粒子の比重は、1.01~20であることが好ましく、1.05~10であることがより好ましく、1.05~1.25であることがさらに好ましい。
 前記化粧料組成物に含有され得る前記固体粒子は、有機系固体粒子であってもよく、無機系固体粒子であってもよい。
 前記有機系固体粒子としては、例えば、固形パラフィン、セレシン、合成ワックス、カルナウバロウなどの固形脂、ポリ乳酸、ポリヒドロキシ酪酸、及びポリアクリル酸・アクリル酸エステル等のポリエステル、ナイロン等のポリアミド、ポリエチレン、ポリプロピレン、ポリウレタン、ビニル樹脂、テトラフルオロエチレン、ポリメチルメタクリレート、セルロース、シルク、及びポリメチルシルセスキオキサンなどのポリマー粒子が挙げられる。
 前記無機系固体粒子としては、例えば、酸化マグネシウム、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、タルク、マイカ、カオリン、セリサイト、シリカ、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウムマグネシウム、ケイ酸カルシウム、ヒドロキシアパタイト、ゼオライト、第二リン酸カルシウム、アルミナ、水酸化アルミニウム、及びチッ化ホウ素などの粒子が挙げられる。
 また、前記無機系固形成分が紫外線散乱剤である場合、酸化亜鉛、酸化ジルコニウム、酸化チタンなどが挙げられる。
 また、前記無機系固形成分が顔料である場合、酸化鉄、チタン酸鉄などの無機赤色系顔料、γ-酸化鉄などの無機褐色系顔料、黄酸化鉄、黄土などの無機黄色系顔料、黒酸化鉄、カーボンブラックなどの無機黒色系顔料、マンガンバイオレット、コバルトバイオレットなどの無機紫色系顔料、水酸化クロム、酸化クロム、酸化コバルト、チタン酸コバルトなどの無機緑色系顔料、紺青、群青等の無機青色系顔料、雲母チタンや顔料被覆雲母チタン、酸化チタンなどの白色顔料、合成金雲母などのパール顔料などが挙げられる。
 前記固体粒子の含有量は、前記化粧料組成物の全体質量に対して、通常0.1~50質量%であり、0.5~30質量%であることが好ましい。
 また、前記化粧料組成物は、界面活性剤を含有していてもよいが、前記化粧料組成物は前記カチオン変性ダイユータンガムを含有することによって乳化安定性が向上しているため、前記界面活性剤の含有量は、通常よりも少ない量であってもよい。一般的な化粧料組成物では、前記界面活性剤の含有量は、化粧料組成物の全体質量に対して、0.1~50質量%であるところ、本実施形態における前記化粧料組成物では、前記界面活性剤の含有量は、例えば、0.1質量%以下であってもよく、0.01質量%以下であってもよく、実質的に前記界面活性剤を含有していなくてもよい。なお、前記化粧料組成物に、前記界面活性剤に特有の機能を付与する上では、前記界面活性剤の含有量は、10~40質量%であることが好ましく、10~20質量%であることがより好ましい。
 前記界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、ノニオン性界面活性剤、及び両性界面活性剤が挙げられる。前記界面活性剤が前記カチオン変性ダイユータンガムと相溶性を示すという観点から、前記界面活性剤は、アニオン性界面活性剤、ノニオン性界面活性剤、又は両性界面活性剤のいずれかを含むことが好ましい。また、前記界面活性剤は、これらの複数種を含むことがより好ましい。前記カチオン変性ダイユータンガムと前記界面活性剤との組み合わせによって、前記化粧料組成物が、分散安定性に更に優れたものとなる。また、前記化粧料組成物は、前記界面活性剤に特有の機能を有するものとなる。例えば、前記洗浄用化粧料組成物の場合には、該組成物が、毛髪に対するコンディショニング性の向上や、泡の質の改善等の機能を有するものとなる。
 前記カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルピリジウム塩、アルキルジメチルベンジルアンモニウム塩、塩化ベンゼトニウム、塩化ベンザルコニウムなどが挙げられる。
 前記アニオン性界面活性剤としては、アルキル(炭素数8~24)硫酸塩、アルキル(炭素数8~24)エーテル硫酸塩、アルキル(炭素数8~24)ベンゼンスルホン酸塩、アルキル(炭素数8~24)リン酸塩、ポリオキシアルキレンアルキル(炭素数8~24)エーテルリン酸塩、アルキル(炭素数8~24)スルホコハク酸塩、ポリオキシアルキレンアルキル(炭素数8~24)エーテルスルホコハク酸塩、アシル(炭素数8~24)化アラニン塩、アシル(炭素数8~24)化N-メチル-β-アラニン塩、アシル(炭素数8~24)化グルタミン酸塩、アシル(炭素数8~24)化イセチオン酸塩、アシル(炭素数8~24)化サルコシン酸塩、アシル(炭素数8~24)化タウリン塩、アシル(炭素数8~24)化メチルタウリン塩、α-スルホ脂肪酸エステル塩、エーテルカルボン酸塩、ポリオキシアルキレン脂肪酸モノエタノールアミド硫酸塩、長鎖(炭素数8~24)カルボン酸塩などが挙げられる。
 前記ノニオン性界面活性剤としては、アルカノールアミド、グリセリン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレングリコールエーテル、ポリオキシアルキレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシアルキレンソルビット脂肪酸エステル、ソルビット脂肪酸エステル、ポリオキシアルキレングリセリン脂肪酸エステル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルフェニルエーテル、テトラポリオキシアルキレンエチレンジアミン縮合物類、ショ糖脂肪酸エステル、ポリオキシアルキレン脂肪酸アミド、ポリオキシアルキレングリコール脂肪酸エステル、ポリオキシアルキレンヒマシ油誘導体、ポリオキシアルキレン硬化ヒマシ油誘導体、アルキルポリグリコシド、ポリグリセリン脂肪酸エステルなどが挙げられる。
 前記両性界面活性剤としては、アルキル(炭素数8~24)アミドプロピルベタイン、アルキル(炭素数8~24)カルボキシベタイン、アルキル(炭素数8~24)スルホベタイン、アルキル(炭素数8~24)ヒドロキシスルホベタイン、アルキル(炭素数8~24)アミドプロピルヒドロキシスルホベタイン、アルキル(炭素数8~24)ヒドロキシホスホベタイン、アルキル(炭素数8~24)アミノカルボン酸塩、アルキル(炭素数8~24)アンホNa、アルキル(炭素数8~24)アミンオキシド、第3級窒素及び第4級窒素を含むアルキル(炭素数8~24)リン酸エステルなどが挙げられる。
 さらに、前記化粧料組成物は、その他の添加剤を含有していてもよい。前記添加剤としては、グリセリンや1,3-ブチレングリコールなどの保湿剤などとして機能する多価アルコール、キサンタンガムなどの増粘剤、トコフェロールやBHTなどの酸化防止剤、ベンゾフェノン誘導体、パラアミノ安息香酸誘導体やメトキシ桂皮酸誘導体などの紫外線吸収剤、エデト酸塩などのキレート剤、アルギニンやグルタミン酸などのアミノ酸類、pH調整剤、殺菌剤、防腐剤、ビタミン類、抗炎症剤、色素、香料、起泡増進剤などが挙げられる。
 上記のように、本実施形態に係るカチオン変性ダイユータンガムは、
 水酸基の一部が化学式(1)で表される第4級窒素含有基で置換されたカチオン変性ダイユータンガムであって、
 前記第4級窒素含有基由来のカチオン電荷量が0.3~0.8meq/gである。
Figure JPOXMLDOC01-appb-C000005
(式中R及びRは炭素数1~3のアルキル基であり、Rは炭素数1~24のアルキル基であり、R及びRは炭素数1~3のアルキル基又は水素原子であり、Xは1価の陰イオンを示す)
 斯かる構成によれば、カチオン電荷量が0.3~0.8meq/gであることによって、液状組成物の分散安定性を向上させることができる。
 また、本実施形態に係るカチオン変性ダイユータンガムは、好ましくは、
 R及びRが水素原子である。
 斯かる構成によれば、R及びRが水素原子であることによって、液状組成物の分散安定性をより向上させることができる。
 また、本実施形態に係るカチオン変性ダイユータンガムは、好ましくは、
 Rが炭素数1~3のアルキル基である。
 斯かる構成によれば、Rが炭素数1~3のアルキル基であることによって、液状組成物の分散安定性をさらに向上させることができる。
 また、本実施形態に係るカチオン変性ダイユータンガムは、好ましくは、
 R、R及びRがメチル基である。
 斯かる構成によれば、R、R及びRがメチル基であることによって、液状組成物の分散安定性をより一層向上させることができる。
 また、本実施形態に係る分散安定剤は、上記カチオン変性ダイユータンガムを含有する。
 斯かる構成によれば、上記カチオン変性ダイユータンガムを含有することによって、固体粒子を含む液状組成物や乳化組成物に含有された場合に、これら組成物に優れた分散安定性を付与することができる。
 また、本実施形態に係る化粧料組成物は、上記カチオン変性ダイユータンガムを含有する。
 斯かる構成によれば、上記カチオン変性ダイユータンガムを含有することによって、優れた分散安定性を有するものとなる。
 また、本実施形態に係る化粧料組成物は、好ましくは、界面活性剤を含み、該界面活性剤が、アニオン性界面活性剤、両性界面活性剤、又はノニオン性界面活性剤のいずれかを含む。
 斯かる構成によれば、界面活性剤が、アニオン性界面活性剤、両性界面活性剤、又はノニオン性界面活性剤のいずれかを含むことによって、該界面活性剤とカチオン変性ダイユータンガムとの相溶性に優れたものとなる。
 また、本実施形態に係る化粧料組成物は、好ましくは、洗浄用化粧料組成物である。
 斯かる構成によれば、前記カチオン変性ダイユータンガムを含むため、洗浄用途の化粧料に用いられた場合に、該化粧料が品質に優れたものとなる。
 以上のように、例示として一実施形態を示したが、本発明に係るカチオン変性ダイユータンガムは、上記実施形態の構成に限定されるものではない。また、本発明に係るカチオン変性ダイユータンガムは、上記した作用効果により限定されるものでもない。本発明に係るカチオン変性ダイユータンガムは、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 以下、実施例により本発明をさらに説明するが、本発明は、これらに限定されるものではない。
[実施例1]
 水49.44gに水酸化ナトリウム1.55gを溶解し、イソプロパノール74.88gを均一に溶解した。次いで、ダイユータンガム(KELCO-VIS DG、CP Kelco U.S., Inc.製)30gを分散させながら加えた。グリシジルトリメチルアンモニウムクロリド(以下、GTAと呼ぶ場合がある。SY-GTA80、阪本薬品工業株式会社製)6.0gを加え、50~55℃で4時間反応させた。反応終了後、50質量%硫酸1.52gで中和した。反応物をろ過し、60%イソプロパノール131.52gに分散させることにより洗浄後、ろ過した。次いで、反応物を75%イソプロパノール101.76gに分散させることにより洗浄後、ろ過した。さらに、90%メタノール72gに分散させることにより洗浄することによって、余分なGTAを除去し、乾燥後、目的のカチオン変性ダイユータンガムを得た。得られたカチオン変性ダイユータンガムのカチオン電荷量は0.443meq/gであった。結果を表1に示した。
[実施例2~3及び比較例1~2]
 カチオン変性に使用するGTA量を表1に示す値とした以外は、実施例1と同様にして、カチオン電荷量の異なるカチオン変性ダイユータンガムを製造し、そのカチオン電荷量を測定した。
[比較例3]
 実施例1で用いたダイユータンガムを比較例3とし、その窒素分を測定した。
Figure JPOXMLDOC01-appb-T000006
 表1に示したように、GTA量が増えるにしたがって、カチオン変性ダイユータンガムの窒素分及びカチオン電荷量が上昇した。すなわち、GTA量を変化させることによって、カチオン変性ダイユータンガムのカチオン電荷量を調節することが可能であることがわかった。
[カチオン変性ダイユータンガムのFT-IR測定]
 フーリエ変換赤外分光光度計(FT/IR-4600、日本分光株式会社製、ATR法)を用い、実施例2及び比較例3(未変性のダイユータンガム)のIRスペクトルを測定した。これらを比較するスペクトルデータを図1に示した。
 図1に示したように、実施例2のカチオン変性ダイユータンガムは、比較例3の未変性のダイユータンガムと比較して、第1のピークP1としての1730cm-1付近のピーク強度の著しい低下が認められた。また、1250cm-1付近のピーク及び1400cm-1付近のピークも同様にピーク強度の低下が認められた。これに対して、第2のピークP2としての1600cm-1付近のピークのピーク強度には、大きな変化が認められなかった。
 また、IRスペクトルにおける第2のピークP2のピーク強度に対する第1のピークP1のピーク強度の比を算出した。
 ピーク強度の比の測定は、IRスペクトルにおいて、第1のピークの高波数側端(1770cm-1付近)と、第2のピークの低波数側端(1500cm-1付近)とを通る直線をベースラインとし、該ベースラインから各ピークのピークトップまでの距離を比較した。
 実施例2の当該ピーク強度の比は、0.20であった。これに対して、比較例3の当該ピーク強度の比は、0.73であった。
[評価A:固体粒子の分散安定性の評価]
 実施例1~3及び比較例1~2のカチオン変性ダイユータンガム、並びに、比較例3のダイユータンガム及びカチオン変性キサンタンガム(ラボールガムCX、DSP五協フード&ケミカル株式会社製)を用いて、多糖類濃度0.25質量%水溶液を調製し、これらに固体粒子としてのスクラブ剤を分散させることにより分散安定性を評価した。また、0.25質量%水溶液の粘度測定を、下記測定条件にて行った。
 具体的には、200mLガラスビーカーに脱イオン水99.65gを入れ、汎用撹拌機(BL1200、新東科学株式会社製)にて撹拌しながら各多糖類0.25gとメチルパラベン0.10gとを加えた。室温で1時間撹拌し、0.25質量%水溶液を得た。100mLバイアル瓶に各0.25質量%水溶液80gとスクラブ剤(合成ワックス(有機系固体粒子)、比重0.95、Synscrub164GRS、Micro Powders,Inc製)4gを入れ、上下に振とうし、スクラブ剤を均一に分散させた。得られた分散液を50℃の恒温器(MIR-153、三洋電機株式会社(現パナソニック株式会社)製)に入れ、24時間静置した後の様子を観察し、下記評価基準にて評価した。この結果を表2に示した。
(分散安定性の評価基準)
  安定:液面付近にスクラブ剤が浮上せず、液面にスクラブ剤の層が認められない。
  不安定:液面付近にスクラブ剤が浮上しており、液面にスクラブ剤の層が認められる。
(粘度測定条件)
 スクラブ剤を加える前の0.25質量%水溶液をレオメータ(DHR-2、ティー・エイ・インスツルメント・ジャパン株式会社製)に供し、フローカーブ測定(温度:25℃)にて0.01s-1のせん断速度における粘度を測定した。
Figure JPOXMLDOC01-appb-T000007
 表2に示したように、実施例1~3を含有する水溶液(A-1~A-3)では、低比重固体粒子のスクラブ剤が全く浮上せず、スクラブ剤の分散状態が均一に保持されていた。これに対して、比較例1~3を含有する水溶液(A-4~A-6)又はカチオン変性キサンタンガムを含有する水溶液(A-7)では、スクラブ剤が浮上し、液面にスクラブ剤の層が認められた。
 一般的に、静置状態に近い低せん断領域(0.01s-1)で粘度が高いほど、スクラブ剤のような固体粒子の分散安定性は高くなると考えられる。このため、実施例1~3を含有する水溶液は粘度が高いものと推測された。しかしながら、意外なことに、実施例1~3を含有する水溶液の粘度は、分散安定性が不十分であった比較例3(未変性のダイユータンガム)を含有する水溶液の粘度よりも低かった。特に、実施例3を含有する水溶液では、比較例1~3を含有する水溶液のいずれよりも粘度が低いにも関わらず、分散安定性は良好であった。このことから、実施例1~3のカチオン変性ダイユータンガムは、粘度に関係なく、非常に優れた分散安定性を示すことがわかった。
 よって、実施例1~3のカチオン変性ダイユータンガムは、カチオン変性キサンタンガムよりも、分散安定性に優れることが分かった。
[評価B:乳化粒子の分散安定性の評価]
 実施例1~3及び比較例1~2のカチオン変性ダイユータンガム、並びに、比較例3のダイユータンガムを用いて、多糖類濃度0.25質量%、油性成分濃度40質量%の乳液を調製し、乳化粒子の分散安定性を評価した。
 具体的には、300mLガラストールビーカーに脱イオン水100gを入れ、汎用撹拌機(BL1200、新東科学株式会社製)にて撹拌しながら、各多糖類0.5gを加えた。室温で1時間撹拌した後、流動パラフィン80gとメチルパラベン0.2gとを加え、さらに計200gとなるように脱イオン水を加えた後、汎用撹拌機にて1000rpm程度の撹拌(予備乳化)を5分行った後、ホモジナイザー(TKロボミックス、撹拌部:T.K.ホモミクサーMARK II 2.5型、プライミクス株式会社製)にて8000rpmの撹拌(乳化)を5分行った。
 得られた乳液の乳化粒子径(メジアン径)をレーザ回折/散乱式粒子径分布測定装置(Partica mini LA-350、株式会社堀場製作所製)にて測定した(分散媒:水)。この結果を表3に示した。
Figure JPOXMLDOC01-appb-T000008
 表3に示したように、実施例1~3を含有する乳液(B-1~B-3)では、乳化粒子が50μm未満となり、比較例1~3を含有する乳液(B-4~B-6)に比べて乳化粒子が小さくなった。このことから、実施例1~3のカチオン変性ダイユータンガムは、乳化粒子の分散安定性についても、比較例1~3のカチオン変性ダイユータンガムに比べて優れていることが分かった。また、乳化粒子を小さくすることができることから、乳化組成物を調製する際に、界面活性剤量を低減できることが期待できる。さらに、分散安定性に優れていることから、その乳化組成物の安定性(乳化安定性)も非常に高いことが予想される。
[評価C:曳糸性の評価]
 実施例1~3及び比較例1~2のカチオン変性ダイユータンガム、並びに、比較例3のダイユータンガムを用いて、多糖類濃度0.5質量%水溶液の曳糸性を評価した。
 具体的には、200mLガラスビーカーに脱イオン水98.0gを入れ、汎用撹拌機(BL1200、新東科学株式会社製)にて撹拌しながら、各多糖類2.0gを加えた。室温で1時間撹拌し、2.0質量%水溶液を得た。100mLガラスビーカーに2.0質量%水溶液12.5gと脱イオン水37.5gを入れ、汎用攪拌機にて室温で10分間撹拌して均一に混合し、0.5質量%水溶液を得た。各0.5質量%水溶液25gを直径60mmのプラスチックディッシュに入れ、水溶液の表面にクリープメータ(RE2-33005S、株式会社山電製)のプランジャー(直径8mm)を接触させ、5mm/secの速度でプランジャーと水溶液を引き離した。その時の溶液が切れるまでの時間を測定した。その時間を下記式にて計算し、5回の平均値を曳糸性とした。この結果を表4に示す。
 
  曳糸性(mm)= 溶液が切れるまでの時間(sec)×速度(5mm/sec)
 
Figure JPOXMLDOC01-appb-T000009
 表4に示したように、実施例1~3を含有する水溶液(C-1~C-3)及び比較例1~2を含有する水溶液(C-4~C-5)では、比較例3を含有する水溶液(C-6)に比べて曳糸性が低下した。さらに、実施例1~3を含有する水溶液では、比較例1~2を含有する水溶液に比べて曳糸性がより低下した。
 曳糸性が強い場合、チューブなどの容器に充填する工程で、シール部分に組成物が付着し、これがシール不良や液洩れの原因となるおそれがあるため、充填時に組成物が糸を曳かずに素早く切れることが求められている。
 この点、実施例1~3のカチオン変性ダイユータンガムは、曳糸性が低いため、製品の製造性を向上させることができることが分かった。
[評価D:透明性の評価]
 また、上記と同様に調製したカチオン変性ダイユータンガム0.5質量%水溶液、及び、同様に調製した未変性のダイユータンガム0.5質量%水溶液を、1cm長のディスポーザブルセルに入れ、分光光度計(U-2910、株式会社日立ハイテクノロジーズ製)にて600nmの透過率を測定した。
 その結果、実施例1~3のカチオン変性ダイユータンガムを含有する水溶液は、比較例3の未変性のダイユータンガムを含有する水溶液に比べて、透過率が向上しており、濁りの少ない良好な外観であった。
 従って、実施例1~3のカチオン変性ダイユータンガムは、製品の着色を抑制することができ、特に化粧料組成物に好適に用いられ得ることが分かった。
 以上の評価結果を小括すると、実施例1~3におけるカチオン電荷量0.3~0.8meq/gのカチオン変性ダイユータンガムは、非常に分散安定性に優れた性質を有する多糖類であることが分かった。従って、実施例1~3のカチオン変性ダイユータンガムは、例えば化粧品分野では、スクラブ剤、顔料、乳化粒子などの分散安定に寄与して、化粧水、乳液、美容液、ジェル、クリーム、洗顔料、サンスクリーン、シャンプー、トリートメント、ボディソープなどへの用途に有用であることが分かった。
 次に、カチオン電荷量0.3~0.8meq/gのカチオン変性ダイユータンガムが発揮する分散安定性を、いくつかの剤型の化粧料組成物において確認することとした。
[評価E:スクラブ洗顔料での固体粒子の分散安定性の評価]
 実施例1、3のカチオン変性ダイユータンガム、及び、カチオン変性キサンタンガム(ラボールガムCX、DSP五協フード&ケミカル株式会社製)を用いて、表5に示した配合のスクラブ洗顔料を調製した。なお、スクラブ剤としてのポリ乳酸(有機系固体粒子)の比重は1.25であった。
 具体的には、30mLガラスビーカーに表5に示す成分(1)を入れ、さらに成分(2)を加え均一に混合し、分散液を得た。100mLガラストールビーカーに成分(3)を入れ、汎用撹拌機(BL1200、新東科学株式会社製)にて撹拌しながら前記分散液を加えた後、ビーカーを85℃の水浴に浸漬した。液温が80℃に達温後15分間撹拌し、さらに成分(4)~(6)の混合物を加えた。次いで成分(7)と成分(8)とを加え、撹拌しながら室温付近になるまで水冷し、計50gとなるよう成分(3)を加え、スクラブ洗顔料を調製した。得られたスクラブ洗顔料10gを10mLネジ口試験管に入れて50℃の恒温器(MIR-153、三洋電機株式会社(現パナソニック株式会社)製)に静置し、3日後に様子を観察した。下記評価基準にて評価した結果を表8に示した。
(スクラブ洗顔の分散安定性の評価基準)
  安定:スクラブ剤が沈降せず、スクラブ剤の堆積層が認められない。
  不安定:スクラブ剤が沈降し、スクラブ剤の堆積層が認められる。
Figure JPOXMLDOC01-appb-T000010
 表5に示したように、高比重固体粒子を含むスクラブ洗顔料において、実施例1又は実施例3を含有するスクラブ洗浄料(E-1又はE-2)は、分散安定性が高いとされるカチオン変性キサンタンガムを含有するスクラブ洗浄料(E-3)よりも優れた分散安定性を示した。
[評価F:オイルインローションでの乳化粒子の分散安定性の評価]
 実施例1~3及び比較例3、並びに、カチオン変性キサンタンガム(ラボールガムCX、DSP五協フード&ケミカル株式会社製)及びカチオン変性グアーガム(ラボールガムCG-M、DSP五協フード&ケミカル株式会社製)を用いて、表6に示した配合のオイルインローションを調製した。
 具体的には、30mLガラスビーカーに表6に示した成分(1)を入れ、さらに成分(2)を加え均一に混合し、分散液を得た。200mLガラストールビーカーに成分(3)を入れ、汎用撹拌機(BL1200、新東科学株式会社製)にて撹拌しながら前記分散液を加えた後、室温で30分間撹拌した。次いで、成分(4)~(6)を順次加え、5分間撹拌した。得られたローションに成分(7)を加えて300rpmにて5分間撹拌し、計105gのオイルインローションを調製した。得られたオイルインローション80gを100mLバイアル瓶に移して50℃の恒温器(MIR-153、三洋電機株式会社(現パナソニック株式会社)製)に静置し、6日後に様子を観察した。下記評価基準にて評価した結果を表6に示した。
(オイルインローションの分散安定性の評価基準)
  安定:オリーブ油粒子が浮上せず、水溶液と分離していない。
  不安定:オリーブ油粒子が浮上し、水溶液と分離した層を形成している。
Figure JPOXMLDOC01-appb-T000011
 表6に示したように、実施例1~3を含有するオイルインローション(F-1~F-3)は、未変性のダイユータンガム(F-4)やカチオン変性グアーガム(F-6)、分散安定性が高いとされるカチオン変性キサンタンガムを含有するオイルインローション(F-5)よりも優れた分散安定性を示した。
[評価G:固体粒子及び油滴(乳化粒子)の長期分散安定性の評価]
 実施例1~3及び比較例1~2のカチオン変性ダイユータンガム、並びに、比較例3のダイユータンガムを用いて、多糖類濃度0.25質量%水溶液を調製し、これらに固体粒子としてのスクラブ剤(評価Aで用いた合成ワックス(有機系固体粒子))及び炭酸カルシウム(無機系固体粒子)、並びに、油滴として流動パラフィン(炭化水素油)を分散させることにより分散安定性を評価した。
 具体的には、200mLガラスビーカーに脱イオン水99.65gを入れ、汎用撹拌機(BL1200、新東科学株式会社製)にて撹拌しながら各多糖類0.25gとメチルパラベン0.10gとを加えた。室温で1時間撹拌し、各多糖類の0.25質量%水溶液を得た。10mLバイアル瓶に各0.25質量%水溶液8gとスクラブ剤(合成ワックス(有機系固体粒子)、比重0.95、Synscrub164GRS、Micro Powders,Inc製)、炭酸カルシウム(比重2.71、ナカライテスク株式会社製)、流動パラフィン(比重0.86~0.89、ナカライテスク株式会社製)0.4gをそれぞれ加え、上下に振とうし、固形粒子または油滴を均一に分散させた。得られた分散液を50℃の恒温器(MIR-153、三洋電機株式会社(現パナソニック株式会社)製)に入れ、90日静置した後の様子を観察し、下記評価基準にて評価した。この結果を表7に示した。
(スクラブ剤の分散安定性の評価基準)
  安定:液面付近にスクラブ剤が浮上せず、液面にスクラブ剤の層が認められない。
  不安定:液面付近にスクラブ剤が浮上しており、液面にスクラブ剤の層が認められる。
(炭酸カルシウムの分散安定性の評価基準)
  安定:底付近に炭酸カルシウムが沈降せず、底に炭酸カルシウムの層が認められない。
  不安定:底付近に炭酸カルシウムが沈降しており、底に炭酸カルシウムの層が認められる。
(流動パラフィンの分散安定性の評価基準)
  安定:液面付近に流動パラフィンが浮上せず、液面に流動パラフィンの層が認められない。
  不安定:液面付近に流動パラフィンが浮上しており、液面に流動パラフィンの層が認められる。
Figure JPOXMLDOC01-appb-T000012
 表7に示したように、実施例1~3を含有する水溶液(G-1~G-3)は、長期間(90日間)の保管期間を経た後であっても、低比重固体粒子のスクラブ剤及び低比重油剤の浮上が認められなかった。また、高比重粒子の炭酸カルシウムの沈降が認められなかった。言い換えれば、実施例1~3を含有する水溶液(G-1~G-3)は、固体粒子及び乳化粒子の均一な分散状態が長期間保持されていた。
 これに対して、比較例1~3を含有する水溶液(G-4~G-6)は、スクラブ剤及び流動パラフィンの浮上が認められ、液面にスクラブ剤及び流動パラフィンの層が認められ、又は、炭酸カルシウムが沈降して形成された炭酸カルシウムの層が認められた。
[評価H:アニオン性界面活性剤との相溶性の評価]
 実施例1~3及び比較例1~2のカチオン変性ダイユータンガム、並びに、比較例3のダイユータンガムを用いて、アニオン性界面活性剤を含む組成物を調製し、各多糖類とアニオン性界面活性剤との相溶性を評価した。また、これらの粘性を下記の測定により評価した。
 具体的には、100mLガラスビーカーに脱イオン水29.4gを入れ、汎用撹拌機(BL1200、新東科学株式会社製)にて撹拌しながら各多糖類0.6gを加えた。室温で1時間撹拌し、多糖類の濃度が2.0質量%の水溶液を得た。4つの15mLコニカルチューブに前記水溶液5gを分取し、各コニカルチューブに、ラウリル硫酸ナトリウム(炭素数12のアルキル硫酸塩、花王株式会社製エマール0、組成物の総質量に対して10質量%)、ラウロイルサルコシンナトリウム30%水溶液(炭素数12のアシル化サルコシン酸塩、日光ケミカルズ株式会社製サルコシネートLN-30、組成物の総質量に対して33.4質量%)、ラウロイルメチルアラニンナトリウム30%水溶液(炭素数12のアシル化N-メチル-β-アラニン塩、日光ケミカルズ株式会社製アラニネートLN-30、組成物の総質量に対して33.4質量%)、又は、ラウリン酸、ミリスチン酸、パルミチン酸、及びグリセリンを含む水酸化カリウムの35%水溶液(すなわち、アニオン性界面活性剤として、炭素数12の長鎖カルボン酸塩、炭素数14の長鎖カルボン酸塩、炭素数16の長鎖カルボン酸塩を含む水溶液、花王株式会社製プライオリーB-100、組成物の総質量に対して28.6質量%)を加え、さらに脱イオン水を加え、10gの組成物とした。スパチュラで混合後、ホモジナイザー(HG-200、Hsiangtai製)を用いて10,000rpmで1~2分均一化した。得られた水溶液の外観を観察し、下記評価基準にて評価した。この結果を表8に示した。
(アニオン性界面活性剤との相溶性の評価基準)
  良好な相溶性有:凝集が認められず、且つ、粘度残存率が70%以上である。
  相溶性有:凝集は認められないが、粘度残存率が70%未満である。
  相溶性無:凝集が認められる。
(粘度残存率)
  粘度残存率は下記式にて算出した。
Figure JPOXMLDOC01-appb-M000013
(粘度測定条件)
 界面活性剤を添加した場合と添加しなかった場合の水溶液をレオメータ(DHR-2、ティー・エイ・インスツルメント・ジャパン株式会社製)に供し、フローカーブ測定(温度:25℃)にて10s-1のせん断速度における粘度を測定した。
Figure JPOXMLDOC01-appb-T000014
 表8に示したように、実施例1~3を含有する水溶液(H-1~H-3)は、4種のアニオン性界面活性剤と混合した場合、凝集が認められず、また、粘度が保持されていた。
 これに対して、比較例1を含有する水溶液(H-4)は、ラウロイルメチルアラニンナトリウムと混合した場合に粘度の大きな低下が認められた。また、比較例2を含有する水溶液(H-5)は、ラウリル硫酸ナトリウムと混合した場合に凝集が認められた。また、比較例3を含有する水溶液(H-6)は、ラウリル硫酸ナトリウム、ラウロイルサルコシンナトリウム、又はラウロイルメチルアラニンナトリウムと混合した場合に粘度の低下が認められ、ラウロイルサルコシンナトリウム又はラウロイルメチルアラニンナトリウムを混合した場合には凝集が認められた。
 これらの結果から、実施例1~3のカチオン変性ダイユータンガムは、アニオン性界面活性剤との相溶性に優れることが分かった。
 次に、カチオン電荷量0.3~0.8meq/gの本発明のカチオン変性ダイユータンガムを用いて、いくつかの剤型の化粧料組成物を調製し、該カチオン変性ダイユータンガムと界面活性剤との相溶性、及び、化粧料組成物の分散安定性を評価した。
[評価I:ジェルシャンプーにおける界面活性剤との相溶性及び固体粒子の分散安定性の評価]
 実施例1のカチオン変性ダイユータンガム及び比較例3のダイユータンガムを用いて、表9に示した配合のジェルシャンプーを調製した。なお、スクラブ剤として用いたカルナウバロウ(有機系固体粒子)の比重は0.99であった。
 具体的には、100mLガラスビーカーに表9に示す成分(1)を入れ、汎用撹拌機(BL1200、新東科学株式会社製)にて撹拌しながら成分(2)を加えた後、室温で10分間撹拌し、さらに成分(3)を加え室温で20分撹拌した。次いで成分(4)と成分(5)とを加え、5分撹拌した。さらに、成分(6)~(8)を加え、10分撹拌しジェルシャンプーを調製した。得られたジェルシャンプーの外観を観察し、凝集の有無を確認した。また、レオメータ(DHR-2、ティー・エイ・インスツルメント・ジャパン株式会社製)に供し、フローカーブ測定(温度:25℃)にて10s-1のせん断速度における粘度を測定した。さらに、10mLバイアル瓶に得られたジェルシャンプー8gとスクラブ剤(カルナウバロウ、比重0.99、NATURESCRUB C20、Micro Powders,Inc製)0.5gを加え、上下に振とうし、スクラブジェルシャンプー中のスクラブ剤を均一に分散させた。得られたスクラブジェルシャンプーを40℃の恒温器(MIR-153、三洋電機株式会社(現パナソニック株式会社)製)に静置し、1日後に様子を観察した。下記評価基準にて評価した結果を表9に示した。
(ジェルシャンプーにおける界面活性剤との相溶性の評価基準)
  良好な相溶性有:凝集が認められない。
  相溶性無:凝集が認められる。
(スクラブジェルシャンプーの分散安定性の評価基準)
  安定:スクラブ剤の沈降又は浮上が認められず、液面又は底付近にスクラブ剤の層が認められない。
  不安定:スクラブ剤の沈降又は浮上が認められ、液面又は底付近にスクラブ剤の層が認められる。
Figure JPOXMLDOC01-appb-T000015
 表9に示したように、実施例1を含有するジェルシャンプー(I-1)は、凝集が認められず且つ高い粘度値を示した。
 これに対し、比較例3を含有するジェルシャンプー(I-2)は、成分(6)~(8)と混合したときに凝集が生じ、また、実施例1に比べて粘度値が低い値を示した。
 これらの結果から、実施例1を含有するジェルシャンプーは、比較例3を含有するジェルシャンプーよりも、アニオン性界面活性剤及び両性界面活性剤との相溶性に優れることがわかった。
 また、水に近い低比重固体粒子を含有するスクラブジェルシャンプーにおいて、実施例1を含有するスクラブジェルシャンプー(I-1)は、比較例3を含有するスクラブジェルシャンプー(I-2)よりも、分散安定性に優れることがわかった。
[評価J:ボディソープでの界面活性剤との相溶性及び固体粒子の分散安定性の評価]
 実施例3のカチオン変性ダイユータンガム及び比較例3のダイユータンガムを用いて、表10に示した配合のボディソープを調製した。なお、スクラブ剤として用いたポリヒドロキシ酪酸(有機系固体粒子)の比重は1.25であった。
 具体的には、100mLガラスビーカーに表10に示す成分(1)を入れ、汎用撹拌機(BL1200、新東科学株式会社製)にて撹拌しながら成分(2)と成分(3)を加えた後、ビーカーを83℃の水浴に浸漬した。液温が80℃に達温後15分間撹拌し、さらに成分(4)~(7)を加え5分撹拌した。次いで室温付近になるまで水冷し、成分(8)を加えた後、計50gとなるよう成分(1)を加え、ボディソープを調製した。得られたボディソープの外観を観察し、凝集の有無を確認した。また、レオメータ(DHR-2、ティー・エイ・インスツルメント・ジャパン株式会社製)に供し、フローカーブ測定(温度:25℃)にて10s-1のせん断速度における粘度を測定した。さらに、10mLバイアル瓶に得られたボディソープ8gとスクラブ剤(ポリヒドロキシ酪酸、比重1.25、BIOSCRUB 50PC、Micro Powders,Inc製)0.5gを加え、上下に振とうし、スクラブボディソープ中のスクラブ剤を均一に分散させた。得られたスクラブボディソープを40℃の恒温器(MIR-153、三洋電機株式会社(現パナソニック株式会社)製)に静置し、1日後に様子を観察した。下記評価基準にて評価した結果を表10に示した。
(ボディソープにおける界面活性剤との相溶性の評価基準)
  良好な相溶性有:凝集が認められない。
  相溶性無:凝集が認められる。
(スクラブボディソープの分散安定性の評価基準)
  安定:スクラブ剤の沈降が認められず、スクラブ剤の堆積層が認められない。
  不安定:スクラブ剤の沈降が認められ、スクラブ剤の堆積層が認められる。
Figure JPOXMLDOC01-appb-T000016
 表10に示したように、実施例3を含有するボディソープ(J-1)は、凝集が認められず且つ高い粘度値を示した。
 これに対して、比較例3を含有するボディソープ(J-2)は、成分(4)~(7)と混合したときに凝集が生じ、また、実施例3に比べて粘度値が低い値を示した。
 これらの結果から、実施例3を含有するボディソープは、比較例3を含有するボディソープよりも、アニオン性界面活性剤及びノニオン性界面活性剤との相溶性に優れることがわかった。
 また、高比重固体粒子を含有するスクラブボディソープにおいて、実施例3を含有するスクラブボディソープ(J-1)は、比較例3を含有するスクラブボディソープ(J-2)よりも分散安定性に優れることがわかった。
P1:第1のピーク、P2:第2のピーク

Claims (6)

  1.  水酸基の一部が化学式(1)で表される第4級窒素含有基で置換されたカチオン変性ダイユータンガムであって、
     前記第4級窒素含有基由来のカチオン電荷量が0.3~0.8meq/gである、カチオン変性ダイユータンガム。
    Figure JPOXMLDOC01-appb-C000001
    (式中R及びRは炭素数1~3のアルキル基であり、Rは炭素数1~24のアルキル基であり、R及びRは炭素数1~3のアルキル基又は水素原子であり、Xは1価の陰イオンを示す)
  2.  R及びRが水素原子である、請求項1に記載のカチオン変性ダイユータンガム。
  3.  Rが炭素数1~3のアルキル基である、請求項1又は2に記載のカチオン変性ダイユータンガム。
  4.  R、R及びRがメチル基である、請求項1乃至3のいずれか1項に記載のカチオン変性ダイユータンガム。
  5.  請求項1乃至4のいずれか1項に記載のカチオン変性ダイユータンガムを含有する、分散安定化剤。
  6.  請求項1乃至4のいずれか1項に記載のカチオン変性ダイユータンガムを含有する、化粧料組成物。
PCT/JP2021/012095 2020-03-25 2021-03-24 分散安定性の向上に優れるカチオン変性ダイユータンガム WO2021193674A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510574A JPWO2021193674A1 (ja) 2020-03-25 2021-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020054131 2020-03-25
JP2020-054131 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021193674A1 true WO2021193674A1 (ja) 2021-09-30

Family

ID=77890682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012095 WO2021193674A1 (ja) 2020-03-25 2021-03-24 分散安定性の向上に優れるカチオン変性ダイユータンガム

Country Status (2)

Country Link
JP (1) JPWO2021193674A1 (ja)
WO (1) WO2021193674A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220411590A1 (en) * 2021-06-29 2022-12-29 National Tsing Hua University Nanonetwork with controlled chirality and manufacturing method thereof
JP7454979B2 (ja) 2020-03-25 2024-03-25 Mp五協フード&ケミカル株式会社 コアセルベートの形成に優れるカチオン変性ダイユータンガム

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149573A (ja) * 2002-10-28 2004-05-27 Toho Chem Ind Co Ltd カチオン変性多糖類及び該物質を含む組成物
JP2006321869A (ja) * 2005-05-18 2006-11-30 Toho Chem Ind Co Ltd カチオン変性トラガントガム及び該物質を含む化粧料組成物
JP2006335871A (ja) * 2005-06-02 2006-12-14 Toho Chem Ind Co Ltd カチオン変性寒天及び該物質を含む化粧料組成物
JP2007009092A (ja) * 2005-06-30 2007-01-18 Toho Chem Ind Co Ltd カチオン変性ジェランガム及び該物質を含む化粧料組成物
JP2007039477A (ja) * 2005-07-29 2007-02-15 Toho Chem Ind Co Ltd カチオン変性カラヤガム及び該物質を含む化粧料組成物
JP2007063479A (ja) * 2005-09-01 2007-03-15 Toho Chem Ind Co Ltd カチオン変性アラビアガム及び該物質を含む化粧料組成物
JP2007063446A (ja) * 2005-08-31 2007-03-15 Toho Chem Ind Co Ltd カチオン変性キサンタンガム及び該物質を含む化粧料組成物
JP2007099785A (ja) * 2005-09-30 2007-04-19 Toho Chem Ind Co Ltd カチオン変性ペクチン及び該物質を含む化粧料組成物
JP2011513507A (ja) * 2008-02-15 2011-04-28 ザ プロクター アンド ギャンブル カンパニー 細菌セルロースネットワーク含有外部構造化システムを含む液体洗剤組成物
JP2012001676A (ja) * 2010-06-18 2012-01-05 Dsp Gokyo Food & Chemical Co Ltd 貯蔵安定性に優れたカチオン変性キサンタンガム
JP2014152206A (ja) * 2013-02-06 2014-08-25 Dsp Gokyo Food & Chemical Co Ltd 水系組成物及びその製造方法
JP2015040182A (ja) * 2013-08-21 2015-03-02 ライオン株式会社 歯磨剤組成物
JP2017178742A (ja) * 2016-03-31 2017-10-05 東邦化学工業株式会社 アルキル変性デュータンガムを含有する水硬性組成物用増粘剤
JP2019514891A (ja) * 2016-04-25 2019-06-06 ロレアル メイク落としの特性を有する低刺激の洗浄組成物

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149573A (ja) * 2002-10-28 2004-05-27 Toho Chem Ind Co Ltd カチオン変性多糖類及び該物質を含む組成物
JP2006321869A (ja) * 2005-05-18 2006-11-30 Toho Chem Ind Co Ltd カチオン変性トラガントガム及び該物質を含む化粧料組成物
JP2006335871A (ja) * 2005-06-02 2006-12-14 Toho Chem Ind Co Ltd カチオン変性寒天及び該物質を含む化粧料組成物
JP2007009092A (ja) * 2005-06-30 2007-01-18 Toho Chem Ind Co Ltd カチオン変性ジェランガム及び該物質を含む化粧料組成物
JP2007039477A (ja) * 2005-07-29 2007-02-15 Toho Chem Ind Co Ltd カチオン変性カラヤガム及び該物質を含む化粧料組成物
JP2007063446A (ja) * 2005-08-31 2007-03-15 Toho Chem Ind Co Ltd カチオン変性キサンタンガム及び該物質を含む化粧料組成物
JP2007063479A (ja) * 2005-09-01 2007-03-15 Toho Chem Ind Co Ltd カチオン変性アラビアガム及び該物質を含む化粧料組成物
JP2007099785A (ja) * 2005-09-30 2007-04-19 Toho Chem Ind Co Ltd カチオン変性ペクチン及び該物質を含む化粧料組成物
JP2011513507A (ja) * 2008-02-15 2011-04-28 ザ プロクター アンド ギャンブル カンパニー 細菌セルロースネットワーク含有外部構造化システムを含む液体洗剤組成物
JP2012001676A (ja) * 2010-06-18 2012-01-05 Dsp Gokyo Food & Chemical Co Ltd 貯蔵安定性に優れたカチオン変性キサンタンガム
JP2014152206A (ja) * 2013-02-06 2014-08-25 Dsp Gokyo Food & Chemical Co Ltd 水系組成物及びその製造方法
JP2015040182A (ja) * 2013-08-21 2015-03-02 ライオン株式会社 歯磨剤組成物
JP2017178742A (ja) * 2016-03-31 2017-10-05 東邦化学工業株式会社 アルキル変性デュータンガムを含有する水硬性組成物用増粘剤
JP2019514891A (ja) * 2016-04-25 2019-06-06 ロレアル メイク落としの特性を有する低刺激の洗浄組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"LUBRIZOL LIFE SCIENCE, KELCO-CARE(TM) Diutan Gum", LUBRIZOL LIFE SCIENCE, 2019, pages 1,2, Retrieved from the Internet <URL:https://www.expocosmeticavirtual2020.com/public/images/Lubrizol/Lubrizol_Kelco-Care_Diutan_Gum-Brochure.pdf> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454979B2 (ja) 2020-03-25 2024-03-25 Mp五協フード&ケミカル株式会社 コアセルベートの形成に優れるカチオン変性ダイユータンガム
US20220411590A1 (en) * 2021-06-29 2022-12-29 National Tsing Hua University Nanonetwork with controlled chirality and manufacturing method thereof
US11827751B2 (en) * 2021-06-29 2023-11-28 National Tsing Hua University Nanonetwork with controlled chirality and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2021193674A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP4276169B2 (ja) 粉末含有水中油型乳化組成物
JP4322124B2 (ja) 気泡含有化粧料の気泡安定化方法
JPWO2006028012A1 (ja) 化粧料およびその製造方法
WO2021193674A1 (ja) 分散安定性の向上に優れるカチオン変性ダイユータンガム
US8080239B2 (en) Cosmetic
EP1847262B1 (en) Cosmetic
JP4236064B2 (ja) 低結晶性のセルロース微粒子を含む化粧料組成物
JP2008069115A (ja) 化粧料製造用組成物、化粧料および含水化粧料の製造方法
EP3357480B1 (en) Microemulsion-type cosmetic and method for manufacturing same
JP2008007442A (ja) 化粧料
JP2010138074A (ja) 水系分散体及び水系化粧料
JP5523652B2 (ja) ゲル状化粧料及びその製造方法
JP3524501B2 (ja) 化粧料
JP4494795B2 (ja) シリコーンオイル配合乳化物化粧料組成物の安定化方法。
JP2012051872A (ja) 皮膚化粧料
CN105030569B (zh) 分散组合物及化妆料
JP4902212B2 (ja) 化粧料組成物およびその製造方法
TWI400092B (zh) 水中油型乳化化粧料
JP2000169353A (ja) 日焼け止め化粧料
JP2015224223A (ja) 水中油型乳化化粧料
KR20000022959A (ko) 외용 조성물
JP2018035127A (ja) 水中油型化粧料
JP2008088104A (ja) W/o/w型乳化物及び外用剤及び化粧料
JP7454979B2 (ja) コアセルベートの形成に優れるカチオン変性ダイユータンガム
JP4183422B2 (ja) 外用剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775592

Country of ref document: EP

Kind code of ref document: A1