WO2021192854A1 - 基板処理方法及び基板処理装置 - Google Patents

基板処理方法及び基板処理装置 Download PDF

Info

Publication number
WO2021192854A1
WO2021192854A1 PCT/JP2021/007940 JP2021007940W WO2021192854A1 WO 2021192854 A1 WO2021192854 A1 WO 2021192854A1 JP 2021007940 W JP2021007940 W JP 2021007940W WO 2021192854 A1 WO2021192854 A1 WO 2021192854A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
layer
substrate
peeling
wafer
Prior art date
Application number
PCT/JP2021/007940
Other languages
English (en)
French (fr)
Inventor
隼斗 田之上
陽平 山下
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2022509458A priority Critical patent/JPWO2021192854A1/ja
Priority to CN202180021036.6A priority patent/CN115335965A/zh
Priority to KR1020227036631A priority patent/KR20220158024A/ko
Priority to US17/907,217 priority patent/US20240087900A1/en
Publication of WO2021192854A1 publication Critical patent/WO2021192854A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques

Definitions

  • This disclosure relates to a substrate processing method and a substrate processing apparatus.
  • Patent Document 1 discloses a method for manufacturing a semiconductor device. Such a method for manufacturing a semiconductor device includes a heating step of irradiating a CO 2 laser from the back surface of the semiconductor substrate to locally heat the exfoliated oxide film, and in the exfoliated oxide film and / or the interface between the exfoliated oxide film and the semiconductor substrate. Includes a transfer step of causing peeling in the above to transfer the semiconductor element to the transfer destination substrate.
  • the technique according to the present disclosure appropriately peels the second substrate from the first substrate in the polymerized substrate in which the first substrate and the second substrate are joined.
  • One aspect of the present disclosure is a method for treating a polymerized substrate in which a first substrate and a second substrate are bonded, wherein a laser absorption layer is formed on the second substrate, and the laser absorption layer is formed.
  • the second substrate is formed by irradiating a laser beam in a pulse shape to form a peeling modification layer, accumulating stress inside the laser absorbing layer, and releasing the accumulated stress in a chain reaction. Including peeling.
  • the second substrate in a polymerized substrate in which a first substrate and a second substrate are bonded, the second substrate can be appropriately peeled from the first substrate.
  • laser lift-off is performed in which a GaN (gallium nitride) -based compound crystal layer (material layer) is peeled off from a sapphire substrate using laser light.
  • the sapphire substrate has transparency to short wavelength laser light (for example, UV light)
  • short wavelength laser light having a high absorption rate for the absorption layer is used.
  • laser light for example, UV light
  • the device layer formed on the surface of one substrate is transferred to another substrate.
  • Silicon substrates are generally transparent to laser light in the NIR (near infrared) region, but the absorption layer is also transparent to NIR laser light, which can damage the device layer. There is. Therefore, in order to perform laser lift-off in the semiconductor device manufacturing process, laser light in the FIR (far infrared) region is used.
  • a laser beam having a wavelength of FIR can be used, for example by a CO 2 laser.
  • the peeled oxide film as the absorption layer is irradiated with a CO 2 laser to cause peeling at the interface between the peeled oxide film and the substrate.
  • the frequency of the laser light to irradiate the absorption layer is set. It is necessary to increase the peak power by decreasing it.
  • the frequency of the laser beam is lowered in this way, the time required for peeling the entire surface of the substrate and the absorption layer increases, and the throughput required for transfer of the device layer decreases.
  • the frequency of the laser beam is not considered at all, and there is no suggestion thereof. Therefore, there is room for improvement in the conventional device layer transfer method.
  • the technique according to the present disclosure appropriately peels the second substrate from the first substrate in the polymerized substrate in which the first substrate and the second substrate are joined.
  • the wafer processing system as the substrate processing apparatus and the wafer processing method as the substrate processing method according to the present embodiment will be described with reference to the drawings.
  • elements having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
  • the polymerization wafer T as the polymerization substrate processed in the wafer processing according to the present embodiment includes a first wafer W1 as a first substrate and a second wafer W2 as a second substrate. And are joined to form.
  • the first wafer W1 the surface on the side bonded to the second wafer W2 is referred to as the front surface W1a
  • the surface opposite to the front surface W1a is referred to as the back surface W1b.
  • the surface on the side bonded to the first wafer W1 is referred to as the front surface W2a
  • the surface opposite to the front surface W2a is referred to as the back surface W2b.
  • the first wafer W1 is a semiconductor wafer such as a silicon substrate.
  • a device layer D1 including a plurality of devices is formed on the surface W1a of the first wafer W1.
  • a surface film F1 is further formed on the device layer D1 and is bonded to the second wafer W2 via the surface film F1.
  • Examples of the surface film F2 include an oxide film (SiO 2 film, TEOS film), a SiC film, a SiCN film, and an adhesive.
  • the device layer D1 and the surface film F1 may not be formed on the surface W1a.
  • the second wafer W2 is also a semiconductor wafer such as a silicon substrate.
  • a laser absorption layer P, a device layer D2, and a surface film F2 are laminated in this order from the surface W2a side on the surface W2a of the second wafer W2, and the first wafer is formed via the surface film F2. It is joined to W1.
  • the device layer D2 and the surface film F2 are the same as the device layer D1 and the surface film F1 of the first wafer W1, respectively.
  • the laser absorbing layer P include those capable of absorbing laser light (for example, CO 2 laser) as described later, for example, an oxide film (SiO 2 film, TEOS film) and the like.
  • the laser absorption layer P, the device layer D2, and the surface film F2 may not be formed on the surface W2a.
  • the laser absorption layer P is formed on the surface W1a of the first wafer W1 on which the device layer D1 and the surface film F1 are formed, and the device layer D1 is transferred to the second wafer W2 side.
  • the peripheral edge portion We of the second wafer W2 is chamfered, and the cross section of the peripheral edge portion We becomes thinner toward the tip thereof.
  • the back surface of the second wafer W2 formed in this way may be removed to make it thinner, and in this thinning process, a sharply pointed shape (so-called knife edge) is formed on the peripheral edge We. Shape).
  • chipping occurs at the peripheral edge We of the second wafer W2, and the second wafer W2 may be damaged. Therefore, before this thinning process, edge trim described later may be performed in which the peripheral edge portion We of the second wafer W2 is removed in advance.
  • the peripheral edge portion We is a portion that is removed in this edge trim, and is, for example, in the range of 0.5 mm to 3 mm in the radial direction from the outer end portion of the second wafer W2.
  • the above-mentioned laser lift-off processing as a wafer processing that is, the transfer processing of the device layer D2 to the first wafer W1 side, or the above-mentioned edge trim processing as a wafer processing. That is, the peripheral portion We of the second wafer W2 is removed.
  • the wafer processing system 1 has a configuration in which the loading / unloading block G1, the transport block G2, and the processing block G3 are integrally connected.
  • the carry-in / out block G1, the transport block G2, and the processing block G3 are arranged side by side in this order from the negative direction side of the X-axis.
  • cassettes Ct, Cw1 and Cw2 capable of accommodating a plurality of polymerization wafers T, a plurality of first wafers W1 and a plurality of second wafers W2 are carried in / out from the outside.
  • the carry-in / out block G1 is provided with a cassette mounting stand 10.
  • a plurality of, for example, three cassettes Ct, Cw1 and Cw2 can be freely mounted in a row on the cassette mounting table 10 in the Y-axis direction.
  • the number of cassettes Ct, Cw1 and Cw2 mounted on the cassette mounting table 10 is not limited to this embodiment and can be arbitrarily determined.
  • the transfer block G2 is provided with a wafer transfer device 20 adjacent to the cassette mounting table 10 on the X-axis positive direction side of the cassette mounting table 10.
  • the wafer transfer device 20 is configured to be movable on a transfer path 21 extending in the Y-axis direction.
  • the wafer transfer device 20 has, for example, two transfer arms 22 and 22 that hold and transfer the polymerized wafer T, the first wafer W1 and the second wafer W2.
  • Each transport arm 22 is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis.
  • the configuration of the transport arm 22 is not limited to this embodiment, and any configuration can be adopted.
  • the wafer transfer device 20 is configured to be able to transfer the polymerization wafer T, the first wafer W1 and the second wafer W2 to the cassettes Ct, Cw1, Cw2 of the cassette mounting table 10 and the transition device 30 described later. Has been done.
  • the transfer block G2 is provided with a transition device for delivering the polymerized wafer T, the first wafer W1 and the second wafer W2 adjacent to the wafer transfer device 20 on the X-axis positive direction side of the wafer transfer device 20. 30 is provided.
  • the processing block G3 includes a wafer transfer device 40, a peripheral edge removing device 50, a cleaning device 60, an internal laser irradiation device 70, and an interface laser irradiation device 80.
  • the wafer transfer device 40 is configured to be movable on a transfer path 41 extending in the X-axis direction. Further, the wafer transfer device 40 has, for example, two transfer arms 42 and 42 that hold and transfer the polymerized wafer T, the first wafer W1 and the second wafer W2. Each transport arm 42 is configured to be movable in the horizontal direction, the vertical direction, the horizontal axis, and the vertical axis. The configuration of the transport arm 42 is not limited to this embodiment, and any configuration can be adopted.
  • the wafer transfer device 40 refers to the layered wafer T, the first wafer W1 and the first wafer W1 and the first wafer W1 with respect to the transition device 30, the peripheral edge removing device 50, the cleaning device 60, the internal laser irradiation device 70, and the interface laser irradiation device 80. It is configured so that the wafer W2 of 2 can be conveyed.
  • the peripheral edge removing device 50 is provided on the Y-axis positive direction side of the wafer transfer device 40, and removes the peripheral edge portion We of the second wafer W2, that is, performs edge trim processing.
  • the cleaning device 60 is provided on the negative side of the Y-axis of the wafer transfer device 40, and cleans the polymerized wafer T after peeling or removing the peripheral portion We.
  • the internal laser irradiation device 70 as the second laser irradiation unit is provided on the Y-axis positive direction side of the wafer transfer device 40, and a laser beam (internal laser light, for example, a YAG laser) is provided inside the second wafer W2.
  • the interface laser irradiation device 80 is provided on the Y-axis negative direction side of the wafer transfer device 40, and laser light (interfacial laser light, for example, CO 2) is applied to the laser absorption layer P formed on the surface W2a of the second wafer W2. Laser) is irradiated.
  • laser light interfacial laser light, for example, CO 2
  • Laser is irradiated.
  • the configuration of the interface laser irradiation device 80 will be described later.
  • the above wafer processing system 1 is provided with a control device 90 as a control unit.
  • the control device 90 is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit stores a program that controls the processing of the polymerized wafer T in the wafer processing system 1. Further, the program storage unit also stores a program for controlling the operation of the drive system of the above-mentioned various processing devices and transfer devices to realize the wafer processing described later in the wafer processing system 1.
  • the program may be recorded on a computer-readable storage medium H and may be installed on the control device 90 from the storage medium H.
  • the wafer processing system 1 is configured as described above.
  • the laser lift-off processing of the polymerized wafer T described above that is, the transfer processing of the device layer D2 on the first wafer W1 and the second described above.
  • the edge trim processing of the wafer W2 of the above can be performed respectively.
  • the peripheral edge removing device 50 and the internal laser irradiation device 70 can be omitted.
  • the interface laser irradiation device 80 has a chuck 100 that holds the polymerized wafer T on the upper surface.
  • the chuck 100 attracts and holds a part or the entire surface of the back surface W1b of the first wafer W1.
  • the chuck 100 is provided with an elevating pin (not shown) for transferring the polymerized wafer T to and from the transport arm 42.
  • the elevating pin is configured to be elevating and lowering by inserting a through hole (not shown) formed through the chuck 100, and supports and elevates the polymerized wafer T from below.
  • the chuck 100 is supported by the slider table 102 via the air bearing 101.
  • a rotation mechanism 103 is provided on the lower surface side of the slider table 102.
  • the rotation mechanism 103 has, for example, a built-in motor as a drive source.
  • the chuck 100 is rotatably configured around the ⁇ axis (vertical axis) by the rotation mechanism 103 via the air bearing 101.
  • the slider table 102 is configured to be movable along a rail 105 provided on the base 106 and extending in the Y-axis direction by a moving mechanism 104 provided on the lower surface side thereof.
  • the drive source of the moving mechanism 104 is not particularly limited, but for example, a linear motor is used.
  • a laser irradiation unit 110 is provided above the chuck 100.
  • the laser irradiation unit 110 includes a laser head 111, an optical system 112, and a lens 113.
  • the laser head 111 oscillates the laser beam in a pulse shape.
  • the optical system 112 controls the intensity and position of the laser beam, or attenuates the laser beam to adjust the output.
  • the lens 113 is a cylindrical member, and irradiates the polymerized wafer T held by the chuck 100 with laser light.
  • the laser light is a pulsed CO 2 laser light
  • the laser light emitted from the laser irradiation unit 110 passes through the second wafer W2 and is irradiated to the laser absorption layer P.
  • the wavelength of the CO 2 laser light is, for example, 8.9 ⁇ m to 11 ⁇ m.
  • the lens 113 is configured to be able to move up and down by an elevating mechanism (not shown).
  • a transport pad 120 having a suction surface for sucking and holding the back surface W2b of the second wafer W2 is provided on the lower surface.
  • the transport pad 120 is configured to be able to move up and down by an elevating mechanism (not shown).
  • the transfer pad 120 transfers the second wafer W2 between the chuck 100 and the transfer arm 42. Specifically, after moving the chuck 100 to the lower side of the transfer pad 120 (the delivery position with the transfer arm 42), the transfer pad 120 is lowered to attract and hold the back surface W2b of the second wafer W2, and then the back surface W2b is sucked and held.
  • the transport pad 120 is raised again to peel off from the first wafer W1.
  • the peeled second wafer W2 is delivered from the transport pad 120 to the transport arm 42, and is carried out from the interface laser irradiation device 80.
  • the transfer pad 120 may be configured to invert the front and back surfaces of the wafer by an inversion mechanism (not shown).
  • the wafer processing performed by using the wafer processing system 1 configured as described above will be described.
  • a case where the laser lift-off process is performed in the wafer processing system 1, that is, a case where the device layer D2 of the second wafer W2 is transferred to the first wafer W1 will be described.
  • the first wafer W1 and the second wafer W2 are bonded to each other in an external bonding device (not shown) of the wafer processing system 1 to form a polymerized wafer T in advance.
  • the cassette Ct containing the plurality of polymerized wafers T is placed on the cassette mounting table 10 of the loading / unloading block G1.
  • the polymerized wafer T in the cassette Ct is taken out by the wafer transfer device 20.
  • the polymerized wafer T taken out from the cassette Ct is transferred to the wafer transfer device 40 via the transition device 30, and then transferred to the interface laser irradiation device 80.
  • the second wafer W2 is peeled from the first wafer W1 (laser trim-off processing).
  • This processing position is a position where the laser beam can be irradiated from the laser irradiation unit 110 to the polymerized wafer T (laser absorption layer P).
  • the laser beam L (CO 2 laser beam) is pulsedly irradiated from the laser irradiation unit 110 toward the back surface W2b of the second wafer W2.
  • the laser beam L passes through the second wafer W2 from the back surface W2b side of the second wafer W2 and is absorbed by the laser absorption layer P.
  • stress is generated inside the laser absorption layer P that has absorbed the laser light L.
  • the stress accumulation layer formed by the irradiation of the laser beam and serving as the base point for peeling of the second wafer W2 (the base point for transfer of the device layer D2) may be referred to as “peeling modified layer M1”. ..
  • the laser beam L irradiated to the laser absorption layer P absorbs almost all the energy due to the formation of the peeling modification layer M1 and does not reach the device layer D2. Therefore, it is possible to prevent the device layer D2 from being damaged.
  • the laser light L irradiated to the laser absorption layer P is controlled to an output that does not separate the second wafer W2 and the laser absorption layer P by the irradiation of the laser light L.
  • the peak power is lowered by increasing the frequency of the laser beam L, and the peeling modified layer is prevented from peeling between the second wafer W2 and the laser absorbing layer P by the irradiation of the laser beam L.
  • the peeling modification layer M1 is formed. More specifically, for example, the laser absorption layer P is gasified by irradiation with laser light to eliminate the escape place of the generated gas as described above, so that compressive stress is accumulated as the peeling modification layer M1. Further, for example, heat is generated in the laser absorption layer P due to the absorption of laser light, and the difference in thermal expansion coefficient between the laser absorption layer P and the second wafer W2 or the device layer D2 causes shear stress as the peeling modification layer M1.
  • the rotation mechanism 103 rotates the chuck 100 (polymerized wafer T), and the moving mechanism 104 moves the chuck 100 in the Y-axis direction. Then, the laser beam L is irradiated to the laser absorption layer P from the inside to the outside in the radial direction, and as a result, is spirally irradiated from the inside to the outside.
  • the black arrow shown in FIG. 6 indicates the rotation direction of the chuck 100.
  • the formation interval of the adjacent peeling and modifying layer M1 in other words, the pulse interval (frequency) of the laser beam L, is peeled off in the adjacent peeling and modifying layer M1 due to the impact generated during the formation of the peeling and modifying layer M1. Is controlled at intervals that do not occur.
  • the adjacent peeling and modifying layers M1 are formed so as not to overlap each other in a plan view. Further, at this time, it is preferable that the adjacent peeling and modifying layers M1 are formed in close proximity to each other.
  • the laser beam L may be irradiated concentrically in an annular shape.
  • the rotation of the chuck 100 and the Y direction of the chuck 100 are alternately performed, it is better to irradiate the laser beam L in a spiral shape as described above to shorten the irradiation time and improve the throughput. Can be done.
  • the chuck 100 is rotated when irradiating the laser absorption layer P with the laser beam L, but the lens 113 may be moved to rotate the lens 113 relative to the chuck 100. .. Further, although the chuck 100 is moved in the Y-axis direction, the lens 113 may be moved in the Y-axis direction. Furthermore, the formation direction of the peeling modification layer M1 is not limited to the radial inside to the outside of the laser absorption layer P, and may be formed from the radial outside to the inside.
  • non-peeled region R1 The region where M1 is formed (hereinafter, referred to as “non-peeled region R1”) is sequentially formed from the radial inside to the outside of the laser absorption layer P. In the unpeeled region R1, the stress generated in the formation of each peeled modified layer M1 is accumulated as described above.
  • the forming position of the peeling reforming layer M1 is near the end of the second wafer W2, in other words, the first wafer.
  • the boundary Ad between the bonding region Ac where the W1 and the second wafer W2 are bonded and the unbonded region Ae on the radial outer side of the bonding region Ac is reached.
  • the boundary Ad may be, for example, a joint end portion formed by joining the first wafer W1 and the second wafer W2, or for example, the first wafer W1 and the second wafer W2. It may be intentionally formed by removing the bonding interface of the wafer.
  • the unbonded region Ae is a region outside the boundary Ad in the radial direction, for example, a region in which the bonding strength between the first wafer W1 and the second wafer W2 is intentionally lost due to removal of the bonding interface or the like. It may be, for example, simply a region outside the radial direction of the bonding region Ac in which the first wafer W1 and the second wafer W2 are actually bonded.
  • the formation position of the peeling modified layer M1 reaches the boundary Ad
  • the stress accumulated as the peeling modified layer M1 is released to the formation space of the unbonded region Ae, that is, to the outside of the polymerized wafer T.
  • the thickness direction of the laser absorbing layer P that is, the laser absorption A force acts in the peeling direction between the layer P and the second wafer W2
  • the laser absorbing layer P and the second wafer W2 are peeled off.
  • the laser absorption layer P and the second wafer W2 are peeled off in the vicinity of the boundary Ad, the laser absorption layer P and the second wafer W2 are affected by the force acting in the thickness direction of the laser absorption layer P due to the peeling.
  • the peeling of the wafer W2 proceeds inward in the radial direction of the laser absorption layer P.
  • the peeling that has progressed inward in the radial direction reaches the adjacent peeling modification layer M1. That is, the laser absorption layer P and the second wafer W2 are peeled off at the positions where the adjacent peeling and modifying layers M1 are formed.
  • the laser absorption layer P and the second wafer W2 are repeatedly peeled off, the stress is released, and the peeling progresses inward in the radial direction in a chained manner.
  • the peeling region R2 is sequentially formed from the radial outer side to the inner side of the laser absorption layer P.
  • the entire surface of the second wafer W2 is peeled off from the laser absorption layer P (first wafer W1), so that the device layer D2 of the second wafer W2 is transferred to the first wafer W1 side. ..
  • the peak of the laser beam L is prevented so as not to cause peeling of the laser absorbing layer P and the second wafer W2.
  • Power (frequency) is controlled.
  • the laser absorption layer P and the second wafer W2 are not formed because the peeling modified layer M1 (hereinafter referred to as "starting point modified layer M1s") serving as the starting point of peeling is formed in the vicinity of the boundary Ad.
  • starting point modified layer M1s serving as the starting point of peeling
  • the chuck 100 is then moved to the delivery position by the moving mechanism 104.
  • the transfer pad 120 sucks and holds the back surface W2b of the second wafer W2 as shown in FIG. 9 (a), and then raises the transfer pad 120 as shown in FIG. 9 (b).
  • the second wafer W2 is peeled from the laser absorption layer P (first wafer W1).
  • the second wafer W2 can be peeled from the laser absorption layer P without applying a large load. can.
  • the peeled second wafer W2 is delivered from the transfer pad 120 to the transfer arm 42 of the wafer transfer device 40, and is transferred to the cassette Cw2 of the cassette mounting table 10.
  • the surface W2a of the second wafer W2 carried out from the interface laser irradiation device 80 may be cleaned by the cleaning device 60 before being conveyed to the cassette Cw2.
  • the first wafer W1 held by the chuck 100 is delivered to the transfer arm 42 of the wafer transfer device 40 via the elevating pin, and is transferred to the cleaning device 60.
  • the cleaning device 60 the surface of the laser absorption layer P, which is the peeling surface, is scrubbed.
  • the back surface W1b of the first wafer W1 may be cleaned together with the front surface of the laser absorption layer P.
  • the first wafer W1 that has undergone all the processing related to the transfer of the device layer D2 to the first wafer W1 is transferred to the cassette Cw1 of the cassette mounting table 10 by the wafer transfer device 20 via the transition device 30. Will be done. In this way, a series of wafer processing in the wafer processing system 1 is completed.
  • the output of the laser beam L irradiated by the interface laser irradiation device 80 is controlled to a peak power that does not cause peeling of the laser absorption layer P and the second wafer W2. That is, since it is not necessary to reduce the frequency of the laser beam L when the laser absorption layer P and the second wafer W2 are peeled off, the decrease in the throughput required for the transfer of the device layer D2 to the first wafer W1 is suppressed. Further, even when the peak power of the laser beam L is reduced in this way, the laser absorption layer P and the second wafer are appropriately released by releasing the stress accumulated by the formation of the peeling modification layer M1. W2 peeling can be generated.
  • the stress is released by forming the peeling modification layer M1 in the vicinity of the boundary Ad as the starting modification layer M1s, and the laser absorption layer P and the second wafer W2 are peeled in a chained manner.
  • the method of starting the peeling is not limited to this.
  • the starting point modified layer M1s which is the base point of peeling outside the unpeeled region R1 formed in the laser absorbing layer P
  • the laser absorbing layer P and the second wafer W2 are chained. Peeling may be initiated.
  • the starting point modification layer M1s is formed with a high peak power (low frequency) at which the laser absorption layer P and the second wafer W2 are peeled off by irradiation with the laser beam L.
  • the compressive stress is released, and then the peeling of the laser absorption layer P and the second wafer W2 proceeds in a chain reaction.
  • the unpeeled region R1 can be formed by the same method as in the above embodiment. Therefore, it is possible to suppress a decrease in the throughput required for transferring the device layer D2 to the first wafer W1.
  • the starting point modified layer M1s can be formed prior to the formation of the unpeeled region R1. That is, the laser absorption layer P and the second wafer W2 are peeled off in advance by forming the starting point modified layer M1s, and then the formation position of the peeling modified layer M1 as the unpeeled region R1 is set to the starting point modified layer M1s. Upon reaching the formation position, the compressive stress is released in the starting point modified layer M1s, and the progress of chain peeling can be started.
  • the interval of irradiating the laser beam L that is, the interval of the pulses constant.
  • the relative rotation speed of the chuck 100 with respect to the laser irradiation unit 110 is larger than the outer diameter in the radial direction. The inside of the direction is larger.
  • the laser beams L may overlap.
  • the laser absorption layer P and the second wafer W2 cannot be properly separated from each other at the central portion, or the laser beam L causes missing light, which affects the device layer D2. There is a risk of giving.
  • the peeling region R2 naturally extends due to the release of stress.
  • the formation of the peeling modification layer M1 may be omitted as long as it is formed. Even when the peeling modification layer M1 is not formed in the central portion of the laser absorption layer P in this way, the peeling is extended by the action of the peeling (stress release) proceeding from the outside in the radial direction, and the laser is also formed in the central portion.
  • the absorption layer P and the second wafer W2 can be peeled off.
  • the frequency of the laser beam L is reduced on the inner side in the radial direction in which the relative rotation speed of the chuck 100 with respect to the laser irradiation unit 110 (lens 113) is large, and the frequency of the laser light L is on the outer side in the radial direction.
  • the relative irradiation interval of the laser beam L to the laser absorption layer P may be controlled to be substantially constant.
  • the frequency is changed in this way, if the frequency of the laser beam L is changed in the laser oscillator of the laser head 111, the pulse waveform of the laser beam L also changes. Therefore, complicated adjustment is required in consideration of the output of the laser beam L and the pulse waveform, and it is difficult to control the process of laser processing.
  • the frequency of the laser beam L is controlled by using an acousto-optic modulator.
  • the laser irradiation unit 110 includes a laser head 111, an optical system 112, and a lens 113.
  • the laser head 111 has a laser oscillator 130 that oscillates a laser beam in a pulse shape.
  • the frequency of the laser light oscillated from the laser oscillator 130 is the highest frequency that can be controlled by the acousto-optic modulator 131 described later.
  • the laser head 111 may have other equipment of the laser oscillator 130, for example, an amplifier.
  • the optical system 112 adjusts the output of the laser beam by attenuating the acousto-optic modulator (AOM) 131 as an optical element that diverts the laser beam from the laser oscillator 130 in different directions and the laser beam from the laser oscillator 130. It has an attenuator 132 as an attenuator.
  • the acousto-optic modulator 131 and the attenuator 132 are provided in this order from the laser oscillator 130 side.
  • the acousto-optic modulator 131 is an optical modulator that electrically controls the intensity and position of laser light at high speed. As shown in FIG. 12, the acousto-optic modulator 131 directs the laser beam L1 in different directions by applying a voltage to change the refractive index of the laser beam L1 when the laser beam L1 from the laser oscillator 130 is incident. Convert to. Specifically, the change angle of the laser beam L1 can be controlled by adjusting the voltage. In the present embodiment, for example, the laser light L1 is redirected in two different directions, the laser light L2 in one direction is irradiated to the laser absorption layer P, and the laser light L3 in the other direction is not irradiated to the laser absorption layer P. By controlling the conversion of the laser beams L2 and L3, the frequency of the laser beam L2 irradiated on the laser absorption layer P can be adjusted.
  • the frequency of the laser beam L2 irradiated to the laser absorption layer P can be adjusted by thinning out the pulse of the laser beam L1 using the acousto-optic modulator 131. For example, if the conversion ratio of the laser light L2 and the laser light L3 with respect to the laser light L1 is set to 100: 0 at a certain timing, the laser light L1 becomes the laser light L2 as it is and is irradiated to the laser absorption layer P.
  • the frequency of the laser beam L2 converted by the acousto-optic modulator 131 shown in FIG. 13 (b) can be adjusted with respect to the frequency of the laser beam L1 from the laser oscillator 130 shown in FIG. 13 (a). can.
  • the frequency of the laser beam L1 is the highest frequency that can be controlled by the acousto-optic modulator 131, the frequency of the laser beam L2 can be arbitrarily adjusted.
  • the horizontal axis of FIG. 13 indicates time, and the vertical axis indicates the intensity of the laser beam L2. That is, the density in the graph of FIG. 13 indicates the frequency of the laser beam L2.
  • the frequency of the laser light L1 oscillated from the laser oscillator 130 is not changed, the pulse waveform of the laser light L1 does not change, and the pulse waveform of the laser light L2 can be the same as the pulse waveform of the laser light L1. Therefore, the frequency of the laser beam L2 can be easily adjusted, the conventional complicated adjustment as described above becomes unnecessary, and the process control of the laser processing becomes easy.
  • the acousto-optic modulator 131 is used as the optical element, but the present invention is not limited to this.
  • an electro-optical modulator (EOM) may be used as the optical element.
  • an optical deflector such as an acoustic optical deflector (AOD) or an electro-optical deflector (EOD) may be used.
  • the energy required for peeling is set to 400 ⁇ J on each of the radial outer side and inner side of the laser absorption layer P.
  • the required frequency of the laser beam L2 on the radial outer side of the laser absorption layer P is 100 kHz, and the required frequency of the laser beam on the inner side is 50 kHz.
  • the frequency of the laser beam L1 from the laser oscillator 130 is 100 kHz, and the output is 40 W.
  • the pulse of the laser beam L1 from the laser oscillator 130 is not thinned out in the acousto-optic modulator 131 with respect to the radial outside of the laser absorption layer P.
  • the frequency of the laser beam L2 irradiated on the laser absorption layer P can be set to 100 kHz, which is the same as the frequency of the laser beam L1.
  • the output of the laser beam L2 is 40 W, which is the same as the output of the laser beam L1.
  • the pulse of the laser beam L1 from the laser oscillator 130 is drawn for half a minute in the acousto-optic modulator 131 toward the radial inside of the laser absorption layer P.
  • the frequency of the laser beam L2 irradiated on the laser absorption layer P can be set to 50 kHz, which is half the frequency of the laser beam L1.
  • the output of the laser light L2 becomes 20 W, which is half of the output of the laser light L1.
  • the rotation speed of the chuck 100 is controlled so that the pulse interval becomes constant according to the frequency of the laser beam L2 and the irradiation position. Then, at the central portion of the laser absorption layer P, the maximum rotation speed of the chuck 100 is maintained, and the acousto-optic modulator 131 adjusts the frequency of the laser beam L2 in accordance with the maximum rotation speed.
  • laser processing can be performed while maintaining the high rotation speed of the chuck 100 and the high frequency of the laser beam L2 to the maximum, and high-throughput laser processing can be realized.
  • the frequency of the laser light L1 from the laser oscillator 130 is not changed, the pulse waveform of the laser light L1 does not change, and the pulse waveform of the laser light L2 can be the same as the pulse waveform of the laser light L1. Therefore, the frequency of the laser beam L2 can be easily adjusted, and continuous seamless processing becomes possible. As a result, the process control of the laser processing becomes easy, and a stable process can be realized.
  • the output of the laser beam L1 from the laser oscillator 130 was 40 W, it was not necessary to adjust the output for the energy of 400 ⁇ J required for peeling.
  • the output of the laser beam L1 may be attenuated by 20% in the attenuator 132 to adjust the output.
  • the acousto-optic modulator 131 is provided on the upstream side of the attenuator 132 inside the optical system 112, but the installation location is not limited to this.
  • the acousto-optic modulator 131 may be provided inside the optical system 112 on the downstream side of the attenuator 132.
  • the acousto-optic modulator 131 may be provided inside the laser head 111 on the downstream side of the laser oscillator 130.
  • the acousto-optic modulator 131 may be provided at two or more locations at the above installation positions.
  • the output can be finely adjusted with the attenuator 132.
  • the output of the laser beam L1 oscillated from the laser oscillator 130 may vary depending on the individual difference of the laser oscillator 130. In the attenuator 132, such output variation can be adjusted. Further, when the output of the laser beam L1 from the laser oscillator 130 is monitored over time, the attenuator 132 can be feedback-controlled to adjust the output. From the viewpoint of finely adjusting the output of the laser beam L2 with the attenuator 132, the acousto-optic modulator 131 is preferably provided on the upstream side of the attenuator 132 as shown in FIG.
  • the attenuator 132 may be omitted in the laser irradiation unit 110 of the above embodiment.
  • the output of the laser beam L2 can be adjusted by the acousto-optic modulator 131 instead of the attenuator 132.
  • the conversion rate of the laser light L2 and the laser light L3 with respect to the laser light L1 is determined in the acoustic optical modulator 131. If it is set to 80:20, the output of the laser beam L2 can be set to 40 W.
  • the peeling and modifying layer M1 in which the bonding strength between the second wafer W2 and the laser absorbing layer P is reduced is formed on the laser absorbing layer P, and the peeling and modifying layer M1 is used as a base point for the second peeling and modifying layer M1.
  • Wafer W2 and laser absorption layer P were peeled off.
  • a region in which the laser beam is not irradiated in the plane of the laser absorption layer P and the bonding strength is not lowered hereinafter, referred to as “unformed region R3”) is formed. If this happens, the second wafer W2 and the laser absorption layer P may not be properly peeled off.
  • a part (silicon piece) of the second wafer W2 is formed on the surface of the laser absorption layer P after peeling. May remain.
  • the peeling modified layer M1 non-peeling region R1 so as to reduce the formation area of the unformed region R3 in the plane of the laser absorption layer P.
  • the laser irradiation type for the laser absorption layer P may be controlled to reduce the unformed region R3. That is, the laser irradiation type may be, for example, a quadrangle.
  • the region in which the bonding strength with the second wafer W2 is reduced in the plane of the laser absorption layer P increases, and as a result, the laser absorption layer P increases. And the second wafer W2 can be appropriately peeled off.
  • the laser absorption layer P, the device layer D2, and the surface film F2 are laminated in this order on the surface W2a of the second wafer W2, but the second wafer W2 and the laser absorption layer P As shown in FIG. 18A, a peeling promoting layer P2 may be further formed between them.
  • the peeling promoting layer P2 has transparency to laser light (CO 2 laser), and the adhesion to the second wafer W2 (silicon) is at least the adhesion to the laser absorbing layer P (SiO 2 ). Smaller ones, such as silicon nitride (SiN), are selected.
  • the laser beam L (CO 2 laser) is directed toward the back surface W2b of the second wafer W2.
  • Light is irradiated in a pulse shape.
  • the laser beam L passes through the second wafer W2 and the peeling promoting layer P2 from the back surface W2b side of the second wafer W2 and is absorbed by the laser absorbing layer P.
  • the peeling modification layer M1 is formed inside the laser absorbing layer P that has absorbed the laser light L.
  • the stress generated by the irradiation of the laser beam L usually stays at the irradiation position of the laser beam L (inside the laser absorption layer) as shown in the above embodiment to form the peeling modification layer M1.
  • the peeling promoting layer P2 is formed as in the present embodiment, the adhesion between the peeling promoting layer P2 and the second wafer W2 is smaller than the adhesion between the peeling promoting layer P2 and the laser absorbing layer P. Therefore, as shown in FIG. 18C, the generated stress permeates the peeling promoting layer P2 and is accumulated at the interface between the peeling promoting layer P2 and the second wafer W2.
  • the stress generated by irradiating the laser beam L moves and accumulates at the interface between the peeling promoting layer P2 and the second wafer W2, which can stay more stably, thereby causing the peeling promoting layer.
  • the bonding strength between P2 and the second wafer W2 is reduced.
  • the peeling promoting layer P2 and the second wafer W2 can be appropriately peeled after that. Further, at this time, since the adhesion between the peeling promoting layer P2 and the second wafer W2 is low, a part of the second wafer W2 may remain on the surface of the peeling promoting layer P2 after peeling as shown in FIG. , Appropriately suppressed. Furthermore, in the present embodiment, since the laser beam L is absorbed by the laser absorbing layer P, the exposed surface after peeling, that is, the surface W2a of the second wafer W2 and the surface of the peeling promoting layer P2 are damaged. Remaining is more appropriately suppressed.
  • the film thickness of the peeling promoting layer P2 is thinner than that of the laser absorbing layer P. It is preferably about 1/10 of the film thickness.
  • the second wafer W2 is the laser absorbing layer via the peeling promoting layer P2. Since it is peeled from P, a part of the second wafer W2 does not remain on the surface of the laser absorption layer P after peeling as shown in FIG. That is, this can protect the surface W2a of the second wafer W2 and suppress the roughness of the peeled surface.
  • the peeling promoting layer P2 used has low adhesion to the second wafer W2 (silicon), but the peeling promoting layer P2 is not limited to this, for example, the second wafer.
  • Wafer W2 (silicon) and a wafer having a coefficient of thermal expansion different from that of the wafer W2 (silicon) may be used.
  • the amount of deformation due to heat generated by irradiation of the laser absorption layer P with the laser beam L differs between the second wafer W2 and the peeling promotion layer P2, whereby the interface between the second wafer W2 and the peeling promotion layer P2 A shearing force is generated, and the second wafer W2 and the peeling promoting layer P2 can be peeled off.
  • the peeling of the second wafer W2 and the peeling promoting layer P2 is promoted by releasing the compressive stress generated by the irradiation of the laser beam and accumulated as the peeling reforming layer M1.
  • the stress generated in this way may cause the laminated wafer T to warp.
  • the polymerized wafer T may be pressed from above when the laser absorption layer P is irradiated with the laser beam L.
  • the central portion of the polymerized wafer T may be pressed by the pressing member 200 as shown in FIG.
  • a laser irradiation process that is, an unpeeled region R1 is formed in advance in the central portion of the laser absorption layer P, which is the pressing range by the pressing member 200.
  • the unpeeled region R1 is then pressed by the pressing member 200.
  • the unpeeled region R1 may be formed from the outer side in the radial direction to the inner side. That is, first, the unpeeled region R1 is formed from the outer peripheral portion to the central portion of the laser absorption layer P. At this time, the outer peripheral side end portion, which is the formation start position of the unpeeled region R1, is determined slightly radially inward from the outer peripheral side end portion of the laser absorption layer P, and the stress is not released. After forming the unpeeled region R1, the unpeeled region R1 is then pressed by the pressing member 200. After that, with the unpeeled region R1 pressed by the pressing member 200, the formation position of the unpeeled region R1 reaches the outer peripheral end of the laser absorption layer P.
  • chain peeling is started by forming the starting point modifying layer M1s on the radial outer side of the second wafer W2. At this time, since the central portion of the polymerized wafer T is suppressed by the pressing member 200, warpage of the polymerized wafer T is suppressed.
  • the end portion of the pressing member 200 is configured to be rotatable together with the polymerized wafer T.
  • the peripheral edge portion We of the polymerized wafer T may be pressed by the pressing member 200 as shown in FIG.
  • a laser irradiation process that is, a peeling region R2 is formed in advance on the outer peripheral portion of the laser absorption layer P, which is the pressing range by the pressing member 200. After forming the peeling region R2, the peeling region R2 is then pressed by the pressing member 200.
  • the unpeeled region R1 is started from the inside to the outside in the radial direction at the central portion of the laser absorption layer P. Then, when the formed region of the unpeeled region R1 reaches the peeled region R2, the chain peeling of the second wafer W2 is started. At this time, since the outer peripheral portion of the polymerized wafer T is suppressed by the pressing member 200, warpage of the polymerized wafer T is suppressed.
  • a reflective film R may be provided between the laser absorption layer P and the device layer D2 as shown in FIG. That is, the reflective film R is formed on the surface of the laser absorbing layer P opposite to the incident surface of the laser beam L.
  • a material having a high reflectance to the laser beam L and a high melting point for example, a metal film is used.
  • the device layer D2 is a layer having a function and is different from the reflective film R.
  • the laser light L emitted from the laser irradiation unit 110 passes through the second wafer W2 and is almost completely absorbed by the laser absorption layer P, but even if there is a laser light L that cannot be completely absorbed. , Reflected by the reflective film R. As a result, the laser beam L does not reach the device layer D2, and it is possible to reliably suppress the device layer D2 from being damaged.
  • the laser light L reflected by the reflective film R is absorbed by the laser absorbing layer P. Therefore, the peeling efficiency of the second wafer W2 can be improved.
  • the wafer processing system 1 performs the laser lift-off processing of the polymerized wafer T, that is, the transfer processing of the device layer D2 on the first wafer W1, has been described.
  • the wafer processing system In No. 1 the edge trim processing of the second wafer W2 can be performed.
  • the edge trim of the second wafer W2 is performed in the wafer processing system 1 will be described.
  • the polymerized wafer T is taken out by the wafer transfer device 20 from the cassette Ct placed on the cassette mounting table 10 of the carry-in / out block G1, and is delivered to the wafer transfer device 40 via the transition device 30, and then for internal use. It is conveyed to the laser irradiation device 70.
  • the inside of the second wafer W2 is irradiated with the laser light L2 (YAG laser light), and the peripheral portion We is removed in the edge trim described later.
  • a peripheral modification layer M2 serving as a base point is formed. Cracks C2 extend from the peripheral modified layer M2 in the thickness direction of the second wafer W2. The upper end portion and the lower end portion of the crack C2 reach, for example, the back surface W2b and the front surface W2a of the second wafer W2, respectively.
  • the polymerized wafer T in which the peripheral modification layer M2 is formed inside the second wafer W2 is then transferred by the wafer transfer device 40 to the interface laser irradiation device 80.
  • the bonding strength between the laser absorbing layer P and the second wafer W2 at the peripheral edge portion We as the removal target of the second wafer W2 is lowered.
  • the laser absorption layer P is irradiated with the laser beam L (CO 2 laser)
  • the peripheral modification layer M2 formed by the internal laser irradiation device 70 is more radial than the peripheral modification layer M2.
  • a peeling modified layer M1 (non-peeling region R1) is formed on the outside.
  • the chuck 100 (polymerized wafer T) is rotated by the rotation mechanism 103, and the chuck 100 is moved in the Y-axis direction by the moving mechanism 104. Then, the laser beam L is irradiated to the laser absorption layer P from the inside to the outside in the radial direction, and as a result, is spirally irradiated from the inside to the outside.
  • the polymerized wafer T for which the laser absorption layer P and the second wafer W2 on the peripheral edge We have been peeled off is then conveyed to the peripheral edge removing device 50 by the wafer transfer device 40.
  • the peripheral edge portion We of the second wafer W2 is removed (edge trim) from the peripheral edge modifying layer M2 and the crack C2 as the base points of the polymerized wafer T. ..
  • the edge trimming method in the peripheral edge removing device 50 can be arbitrarily selected. At this time, when the peripheral portion We are removed, the bonding strength between the second wafer W2 and the laser absorption layer P is lowered due to the formation of the peeling modification layer M1, so that the peripheral portion We can be easily removed. ..
  • the polymerized wafer T from which the peripheral portion We of the second wafer W2 has been removed is then transferred to the cleaning device 60 by the wafer transfer device 40.
  • the cleaning device 60 scrubbing of the polymerized wafer T is performed.
  • the polymerized wafer T that has been subjected to all the processing is carried out from the cleaning device 60 by the wafer transfer device 40, and is transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 20 via the transition device 30. In this way, a series of wafer processing in the wafer processing system 1 is completed.
  • the technique according to the present disclosure it is possible to reduce the bonding strength between the second wafer W2 and the laser absorption layer P at the peripheral edge portion We in the interface laser irradiation device 80, thereby removing the peripheral edge.
  • the peripheral portion We can be appropriately removed, that is, edge trimming can be performed.
  • the processing order of the polymerized wafer T by the internal laser irradiation device 70 and the interface laser irradiation device 80 is not limited to the above embodiment, and the peripheral portion We is peeled off in the interface laser irradiation device 80. After that, the peripheral modification layer M2 may be formed in the internal laser irradiation device 70.
  • D2 Device layer L Laser light M1 Detachment modification layer M1s Origin modification layer P Laser absorption layer T Polymerized wafer W1 First wafer W2 Second wafer W2a Front surface W2b Back surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Element Separation (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

第1の基板と第2の基板が接合された重合基板の処理方法であって、前記第2の基板にはレーザ吸収層が形成され、前記レーザ吸収層に対して、レーザ光をパルス状に照射して剥離改質層を形成し、前記レーザ吸収層の内部に応力を蓄積することと、蓄積された前記応力を連鎖的に解放し、前記第2の基板を剥離することと、を含む。

Description

基板処理方法及び基板処理装置
 本開示は、基板処理方法及び基板処理装置に関する。
 特許文献1には、半導体装置の製造方法が開示されている。かかる半導体装置の製造方法は、半導体基板の裏面よりCOレーザを照射して剥離酸化膜を局所的に加熱する加熱工程と、剥離酸化膜中、及び/又は剥離酸化膜と半導体基板との界面において剥離を生じさせて、半導体素子を転写先基板に転写させる転写工程と、を含む。
日本国 特開2007-220749号公報
 本開示にかかる技術は、第1の基板と第2の基板が接合された重合基板において、第2の基板を第1の基板から適切に剥離する。
 本開示の一態様は、第1の基板と第2の基板が接合された重合基板の処理方法であって、前記第2の基板にはレーザ吸収層が形成され、前記レーザ吸収層に対して、レーザ光をパルス状に照射して剥離改質層を形成し、前記レーザ吸収層の内部に応力を蓄積することと、蓄積された前記応力を連鎖的に解放し、前記第2の基板を剥離することと、を含む。
 本開示によれば、第1の基板と第2の基板が接合された重合基板において、第2の基板を第1の基板から適切に剥離することができる。
ウェハ処理システムで処理される重合ウェハの一例を示す側面図である。 ウェハ処理システムの構成の概略を模式的に示す平面図である。 界面用レーザ照射装置の構成の概略を示す側面図である。 界面用レーザ照射装置の構成の概略を示す平面図である。 本実施形態にかかる剥離改質層を形成する様子を示す説明図である。 本実施形態にかかる剥離改質層の形成例を示す平面図である。 本実施形態にかかるウェハ処理の流れを示す説明図である。 本実施形態にかかる剥離改質層の他の形成例を示す平面図である。 本実施形態にかかる第2のウェハの剥離の様子を示す説明図である。 本実施形態にかかる剥離改質層の他の形成例を示す平面図である。 他の実施形態にかかるレーザ照射部の構成の概略を模式的に示す説明図である。 他の実施形態において音響光学変調器でレーザ光の周波数を変更する様子を示す説明図である。 他の実施形態において音響光学変調器でレーザ光の周波数を変更する様子を示す説明図である。 他の実施形態にかかるレーザ照射部の構成の概略を模式的に示す説明図である。 他の実施形態にかかるレーザ照射部の構成の概略を模式的に示す説明図である。 本実施形態において形成された剥離改質層の様子を示す説明図である。 本実施形態にかかる剥離改質層の他の形成例を示す平面図である。 本実施形態にかかる第2のウェハの他の剥離例を示す説明図である。 第2のウェハの押圧の様子を示す説明図である。 第2のウェハの押圧の様子を示す説明図である。 他の実施形態における重合ウェハの構成の概略を示す側面図である。 本実施形態にかかるエッジトリム処理の流れを示す説明図である。
 近年、LEDの製造プロセスにおいては、レーザ光を用いてサファイア基板からGaN(窒化ガリウム)系化合物結晶層(材料層)を剥離する、いわゆるレーザリフトオフが行われている。このようにレーザリフトオフが行われる背景には、サファイア基板が短波長のレーザ光(例えばUV光)に対して透過性を有するため、吸収層に対して吸収率の高い短波長のレーザ光を使用することができ、レーザ光についても選択の幅が広いことが挙げられる。
 一方、半導体デバイスの製造プロセスにおいては、一の基板(半導体などのシリコン基板)の表面に形成されたデバイス層を他の基板に転写することが行われる。シリコン基板は、一般的にNIR(近赤外線)の領域のレーザ光に対しては透過性を有するが、吸収層もNIRのレーザ光に対して透過性を有するため、デバイス層が損傷を被るおそれがある。そこで、半導体デバイスの製造プロセスにおいてレーザリフトオフを行うためには、FIR(遠赤外線)の領域のレーザ光を使用する。
 一般的には、例えばCOレーザにより、FIRの波長のレーザ光を使用することができる。上述した特許文献1に記載の方法では、吸収層としての剥離酸化膜にCOレーザを照射することで、剥離酸化膜と基板の界面において剥離を生じさせている。
 ここで、発明者らが鋭意検討したところ、単に吸収層に対してレーザ光(COレーザ)を照射しただけでは、基板と剥離酸化膜(デバイス層)の剥離が生じない、すなわち適切に転写を行えない場合があることが分かった。すなわち、剥離の発生要因が、レーザ光のエネルギー量ではなく、ピークパワー(照射されるレーザ光の最大強度)であることを見出した。ピークパワーは、例えばレーザ光の周波数を低下させることにより高くすることができる。
 以上のように、特許文献1に記載される方法のようにレーザ光の照射により基板と吸収層(デバイス層)の剥離を発生させるためには、例えば当該吸収層に照射するレーザ光の周波数を低下させることにより、ピークパワーを高くする必要がある。しかしながら、例えばこのようにレーザ光の周波数を低下させた場合、基板と吸収層の全面を剥離するために要する時間が増加し、デバイス層の転写にかかるスループットが低下する。そして、特許文献1の方法では、レーザ光の周波数については全く考慮されておらず、その示唆もない。したがって、従来のデバイス層の転写方法には改善の余地がある。
 本開示にかかる技術は、第1の基板と第2の基板が接合された重合基板において、第2の基板を第1の基板から適切に剥離する。以下、本実施形態にかかる基板処理装置としてのウェハ処理システム、及び基板処理方法としてのウェハ処理方法ついて、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
 図1に示すように、本実施形態にかかるウェハ処理において処理される重合基板としての重合ウェハTは、第1の基板としての第1のウェハW1と第2の基板としての第2のウェハW2とが接合されて形成されている。以下、第1のウェハW1において、第2のウェハW2に接合される側の面を表面W1aといい、表面W1aと反対側の面を裏面W1bという。同様に、第2のウェハW2において、第1のウェハW1に接合される側の面を表面W2aといい、表面W2aと反対側の面を裏面W2bという。
 第1のウェハW1は、例えばシリコン基板等の半導体ウェハである。第1のウェハW1の表面W1aには、複数のデバイスを含むデバイス層D1が形成されている。デバイス層D1にはさらに表面膜F1が形成され、当該表面膜F1を介して第2のウェハW2と接合されている。表面膜F2としては、例えば酸化膜(SiO膜、TEOS膜)、SiC膜、SiCN膜又は接着剤などが挙げられる。なお、表面W1aには、デバイス層D1と表面膜F1が形成されていない場合もある。
 第2のウェハW2も、例えばシリコン基板等の半導体ウェハである。第2のウェハW2の表面W2aには、レーザ吸収層P、デバイス層D2、及び表面膜F2が表面W2a側からこの順で積層して形成されており、表面膜F2を介して第1のウェハW1と接合されている。デバイス層D2、表面膜F2はそれぞれ、第1のウェハW1のデバイス層D1、表面膜F1と同様である。レーザ吸収層Pとしては、後述するようにレーザ光(例えばCOレーザ)を吸収することができるもの、例えば酸化膜(SiO膜、TEOS膜)などが挙げられる。また、表面W2aには、レーザ吸収層P、デバイス層D2及び表面膜F2が形成されていない場合もある。この場合、レーザ吸収層Pはデバイス層D1及び表面膜F1が形成された第1のウェハW1の表面W1aに形成され、当該デバイス層D1が第2のウェハW2側に転写される。
 第2のウェハW2の周縁部Weは面取り加工がされており、周縁部Weの断面はその先端に向かって厚みが小さくなっている。半導体デバイスの製造プロセスにおいては、このように形成された第2のウェハW2の裏面を除去して薄化する場合があり、この薄化処理においては周縁部Weに鋭く尖った形状(いわゆるナイフエッジ形状)になるおそれがある。そうすると、第2のウェハW2の周縁部Weでチッピングが発生し、第2のウェハW2が損傷を被るおそれがある。そこで、この薄化処理前に予め第2のウェハW2の周縁部Weを除去する、後述のエッジトリムが行われる場合がある。周縁部Weはこのエッジトリムにおいて除去される部分であり、例えば第2のウェハW2の外端部から径方向に0.5mm~3mmの範囲である。
 本実施形態にかかる後述のウェハ処理システム1では、ウェハ処理としての前述のレーザリフトオフ処理、すなわちデバイス層D2の第1のウェハW1側への転写処理、又は、ウェハ処理としての前述のエッジトリム処理、すなわち第2のウェハW2の周縁部Weの除去処理が行われる。
 図2に示すようにウェハ処理システム1は、搬入出ブロックG1、搬送ブロックG2、及び処理ブロックG3を一体に接続した構成を有している。搬入出ブロックG1、搬送ブロックG2及び処理ブロックG3は、X軸負方向側からこの順に並べて配置されている。
 搬入出ブロックG1は、例えば外部との間で複数の重合ウェハT、複数の第1のウェハW1、複数の第2のウェハW2をそれぞれ収容可能なカセットCt、Cw1、Cw2がそれぞれ搬入出される。搬入出ブロックG1には、カセット載置台10が設けられている。図示の例では、カセット載置台10には、複数、例えば3つのカセットCt、Cw1、Cw2をY軸方向に一列に載置自在になっている。なお、カセット載置台10に載置されるカセットCt、Cw1、Cw2の個数は、本実施形態に限定されず、任意に決定することができる。
 搬送ブロックG2には、カセット載置台10のX軸正方向側において、当該カセット載置台10に隣接してウェハ搬送装置20が設けられている。ウェハ搬送装置20は、Y軸方向に延伸する搬送路21上を移動自在に構成されている。また、ウェハ搬送装置20は、重合ウェハT、第1のウェハW1及び第2のウェハW2を保持して搬送する、例えば2つの搬送アーム22、22を有している。各搬送アーム22は、水平方向、鉛直方向、水平軸回り及び鉛直軸回りに移動自在に構成されている。なお、搬送アーム22の構成は本実施形態に限定されず、任意の構成を取り得る。そして、ウェハ搬送装置20は、カセット載置台10のカセットCt、Cw1、Cw2、及び後述するトランジション装置30に対して、重合ウェハT、第1のウェハW1及び第2のウェハW2を搬送可能に構成されている。
 搬送ブロックG2には、ウェハ搬送装置20のX軸正方向側において、当該ウェハ搬送装置20に隣接して、重合ウェハT、第1のウェハW1及び第2のウェハW2の受け渡すためのトランジション装置30が設けられている。
 処理ブロックG3は、ウェハ搬送装置40、周縁除去装置50、洗浄装置60、内部用レーザ照射装置70、及び界面用レーザ照射装置80を有している。
 ウェハ搬送装置40は、X軸方向に延伸する搬送路41上を移動自在に構成されている。また、ウェハ搬送装置40は、重合ウェハT、第1のウェハW1及び第2のウェハW2を保持して搬送する、例えば2つの搬送アーム42、42を有している。各搬送アーム42は、水平方向、鉛直方向、水平軸回り及び鉛直軸回りに移動自在に構成されている。なお、搬送アーム42の構成は本実施形態に限定されず、任意の構成を取り得る。そして、ウェハ搬送装置40は、トランジション装置30、周縁除去装置50、洗浄装置60、内部用レーザ照射装置70、及び界面用レーザ照射装置80に対して、重合ウェハT、第1のウェハW1及び第2のウェハW2を搬送可能に構成されている。
 周縁除去装置50は、ウェハ搬送装置40のY軸正方向側に設けられ、第2のウェハW2の周縁部Weの除去、すなわちエッジトリム処理を行う。洗浄装置60は、ウェハ搬送装置40のY軸負方向側に設けられ、剥離後、または周縁部Weの除去後の重合ウェハTの洗浄を行う。第2のレーザ照射部としての内部用レーザ照射装置70は、ウェハ搬送装置40のY軸正方向側に設けられ、第2のウェハW2の内部にレーザ光(内部用レーザ光、例えばYAGレーザ)を照射し、周縁部Weの剥離の基点となる後述の周縁改質層M2を形成する。界面用レーザ照射装置80は、ウェハ搬送装置40のY軸負方向側に設けられ、第2のウェハW2の表面W2aに形成されたレーザ吸収層Pにレーザ光(界面用レーザ光、例えばCOレーザ)を照射する。なお、界面用レーザ照射装置80の構成は後述する。
 以上のウェハ処理システム1には、制御部としての制御装置90が設けられている。制御装置90は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ウェハ処理システム1における重合ウェハTの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、ウェハ処理システム1における後述のウェハ処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御装置90にインストールされたものであってもよい。
 ウェハ処理システム1は以上のように構成されており、ウェハ処理システム1においては、上述の重合ウェハTのレーザリフトオフ処理、すなわち第1のウェハW1に対するデバイス層D2の転写処理と、上述の第2のウェハW2のエッジトリム処理をそれぞれ行うことができる。なお、例えばウェハ処理システム1において第2のウェハW2のエッジトリム処理を行わない場合には、周縁除去装置50及び内部用レーザ照射装置70を省略できる。
 次に、上述した界面用レーザ照射装置80について説明する。
 図3及び図4に示すように界面用レーザ照射装置80は、重合ウェハTを上面で保持する、チャック100を有している。チャック100は、第1のウェハW1の裏面W1bの一部、又は全面を吸着保持する。チャック100には、搬送アーム42との間で重合ウェハTの受け渡しを行うための昇降ピン(図示せず)が設けられている。昇降ピンは、チャック100を貫通して形成された貫通孔(図示せず)を挿通して昇降自在に構成されており、重合ウェハTを下方から支持して昇降させる。
 チャック100は、エアベアリング101を介して、スライダテーブル102に支持されている。スライダテーブル102の下面側には、回転機構103が設けられている。回転機構103は、駆動源として例えばモータを内蔵している。チャック100は、回転機構103によってエアベアリング101を介して、θ軸(鉛直軸)回りに回転自在に構成されている。スライダテーブル102は、その下面側に設けられた移動機構104によって、基台106に設けられY軸方向に延伸するレール105に沿って移動可能に構成されている。なお、移動機構104の駆動源は特に限定されるものではないが、例えばリニアモータが用いられる。
 チャック100の上方には、レーザ照射部110が設けられている。レーザ照射部110は、レーザヘッド111、光学系112、及びレンズ113を有している。レーザヘッド111は、レーザ光をパルス状に発振する。光学系112は、レーザ光の強度や位置を制御し、あるいはレーザ光を減衰させて出力を調整する。レンズ113は筒状の部材であり、チャック100に保持された重合ウェハTにレーザ光を照射する。本実施形態ではレーザ光はパルス状のCOレーザ光であり、レーザ照射部110から発せられたレーザ光は第2のウェハW2を透過し、レーザ吸収層Pに照射される。なお、COレーザ光の波長は、例えば8.9μm~11μmである。また、レンズ113は、昇降機構(図示せず)によって昇降自在に構成されている。
 また、チャック100の上方には、下面に第2のウェハW2の裏面W2bを吸着保持するための吸着面を有する搬送パッド120が設けられている。搬送パッド120は、昇降機構(図示せず)によって昇降自在に構成されている。搬送パッド120は、チャック100と搬送アーム42との間で第2のウェハW2を搬送する。具体的には、チャック100を搬送パッド120の下方(搬送アーム42との受渡位置)まで移動させた後、搬送パッド120を下降させて第2のウェハW2の裏面W2bを吸着保持し、その後、搬送パッド120を再度上昇させて第1のウェハW1から剥離する。剥離された第2のウェハW2は、搬送パッド120から搬送アーム42に受け渡され、界面用レーザ照射装置80から搬出される。なお、搬送パッド120は、反転機構(図示せず)により、ウェハの表裏面を反転させるように構成されていてもよい。
 次に、以上のように構成されたウェハ処理システム1を用いて行われるウェハ処理について説明する。なお、以下の説明では、ウェハ処理システム1においてレーザリフトオフ処理を行う場合、すなわち第2のウェハW2のデバイス層D2を第1のウェハW1に転写する場合を説明する。なお、本実施形態では、ウェハ処理システム1の外部の接合装置(図示せず)において、第1のウェハW1と第2のウェハW2が接合され、予め重合ウェハTが形成されている。
 先ず、複数の重合ウェハTを収納したカセットCtが、搬入出ブロックG1のカセット載置台10に載置される。次に、ウェハ搬送装置20によりカセットCt内の重合ウェハTが取り出される。カセットCtから取り出された重合ウェハTは、トランジション装置30を介してウェハ搬送装置40に受け渡された後、界面用レーザ照射装置80に搬送される。界面用レーザ照射装置80では、第2のウェハW2が第1のウェハW1から剥離(レーザトリムオフ処理)される。
 具体的には、搬送アーム42から昇降ピンを介してチャック100に吸着保持された重合ウェハTは、先ず、移動機構104によって処理位置に移動される。この処理位置は、レーザ照射部110から重合ウェハT(レーザ吸収層P)にレーザ光を照射できる位置である。
 次に、図5及び図6に示すようにレーザ照射部110から第2のウェハW2の裏面W2bに向けてレーザ光L(COレーザ光)をパルス状に照射する。この際、レーザ光Lは、第2のウェハW2の裏面W2b側から当該第2のウェハW2を透過し、レーザ吸収層Pにおいて吸収される。そして、このレーザ光Lを吸収したレーザ吸収層Pの内部には応力が発生する。以下、このようにレーザ光の照射により形成された、第2のウェハW2の剥離の基点(デバイス層D2の転写の基点)となる応力の蓄積層を「剥離改質層M1」という場合がある。なお、レーザ吸収層Pに照射されたレーザ光Lは剥離改質層M1の形成によりほぼすべてのエネルギーが吸収され、デバイス層D2に到達することがない。このため、デバイス層D2がダメージを被るのを抑制することができる。
 ここで、レーザ吸収層Pに照射されるレーザ光Lは、当該レーザ光Lの照射により第2のウェハW2とレーザ吸収層Pとを剥離させない出力に制御される。換言すれば、例えばレーザ光Lの周波数を上げることによりピークパワーを低下させ、当該レーザ光Lの照射によっては第2のウェハW2とレーザ吸収層Pの剥離が発生しないように、剥離改質層M1を形成する。
 このようにレーザ光Lの照射により第2のウェハW2とレーザ吸収層Pの剥離を発生させず、発生した応力の逃げ場をなくすことで、レーザ吸収層Pの内部には発生した応力が蓄積され、これにより剥離改質層M1が形成される。より具体的には、例えばレーザ光の照射によりレーザ吸収層Pをガス化し、上述のように発生したガスの逃げ場をなくすことにより、剥離改質層M1として圧縮応力が蓄積される。また例えば、レーザ光の吸収によりレーザ吸収層Pに熱が発生し、レーザ吸収層Pと第2のウェハW2、またはデバイス層D2との熱膨張係数の差により、剥離改質層M1としてせん断応力が蓄積される。なお、このように第2のウェハW2とレーザ吸収層Pの剥離を発生させずに、レーザ光の照射により発生した応力を蓄積することで、剥離改質層M1の形成位置においてはレーザ吸収層Pと第2のウェハW2の接合強度が低下する。
 また、レーザ吸収層Pにレーザ光Lを照射する際、回転機構103によってチャック100(重合ウェハT)を回転させるとともに、移動機構104によってチャック100をY軸方向に移動させる。そうすると、レーザ光Lは、レーザ吸収層Pに対して径方向内側から外側に向けて照射され、その結果、内側から外側に螺旋状に照射される。なお、図6に示す黒塗り矢印はチャック100の回転方向を示している。
 ここで、隣接する剥離改質層M1の形成間隔、換言すればレーザ光Lのパルス間隔(周波数)は、当該剥離改質層M1の形成に際して生じる衝撃により、隣接する剥離改質層M1において剥離が発生しない間隔に制御する。具体的には、例えば図7(a)に示すように、隣接する剥離改質層M1が、平面視において相互に重ならないように形成されることが好ましい。またこの時、隣接する剥離改質層M1は相互に近接して形成されることが好ましい。
 なお、図8に示すようにレーザ吸収層Pにおいて、レーザ光Lは同心円状に環状に照射してもよい。但し、この場合、チャック100の回転とチャック100のY方向が交互に行われるため、上述したようにレーザ光Lを螺旋状に照射した方が、照射時間を短時間にしてスループットを向上させることができる。
 また、本実施形態ではレーザ吸収層Pにレーザ光Lを照射するにあたり、チャック100を回転させたが、レンズ113を移動させて、チャック100に対してレンズ113を相対的に回転させてもよい。また、チャック100をY軸方向に移動させたが、レンズ113をY軸方向に移動させてもよい。また更に、剥離改質層M1の形成方向は、レーザ吸収層Pの径方向内側から外側に限られず、径方向外側から内側に向けて形成してもよい。
 このようにして複数の剥離改質層M1を連続的に形成すると、図7(a)に示したように、第2のウェハW2とレーザ吸収層Pの剥離が発生せずに剥離改質層M1が形成された領域(以下、「未剥離領域R1」という。)が、レーザ吸収層Pの径方向内側から外側に向けて順次形成される。未剥離領域R1においては、上述のようにそれぞれの剥離改質層M1の形成において発生した応力が蓄積されている。
 未剥離領域R1の形成を継続していくと、図7(b)に示すように、剥離改質層M1の形成位置が第2のウェハW2の端部近傍、換言すれば、第1のウェハW1と第2のウェハW2とが接合された接合領域Acと、当該接合領域Acの径方向外側の未接合領域Aeとの境界Adに到達する。なお、ここで境界Adとは、例えば第1のウェハW1と第2のウェハW2との接合により形成された接合端部であってもよいし、例えば第1のウェハW1と第2のウェハW2の接合界面の除去等により意図的に形成されたものであってもよい。すなわち未接合領域Aeとは、境界Adの径方向外側の領域であって、例えば接合界面の除去等により意図的に第1のウェハW1と第2のウェハW2の接合強度がなくされた領域であってもよいし、例えば単に第1のウェハW1と第2のウェハW2とが実際に接合された接合領域Acの径方向外側の領域であってもよい。
 剥離改質層M1の形成位置が境界Adに到達すると、当該剥離改質層M1として蓄積された応力が、未接合領域Aeの形成空間、すなわち重合ウェハTの外部へと解放される。蓄積された応力が解放されると、図7(b)に示したように、境界Adの近傍に形成された剥離改質層M1の形成位置においてはレーザ吸収層Pの厚み方向、すなわちレーザ吸収層Pと第2のウェハW2の剥離方向に力が作用し、レーザ吸収層Pと第2のウェハW2の剥離が発生する。
 続いて、境界Adの近傍においてレーザ吸収層Pと第2のウェハW2が剥離されると、かかる剥離によりレーザ吸収層Pの厚み方向に作用する力の影響で、レーザ吸収層Pと第2のウェハW2の剥離がレーザ吸収層Pの径方向内側へと進行する。そして、径方向内側に進行した剥離は、隣接する剥離改質層M1へと到達する。すなわち、隣接する剥離改質層M1の形成位置においてレーザ吸収層Pと第2のウェハW2の剥離が発生する。
 隣接する剥離改質層M1の形成位置において剥離が発生すると、当該剥離改質層M1として蓄積された応力が解放される。これにより当該剥離改質層M1の形成位置においてレーザ吸収層Pの厚み方向に力が作用し、レーザ吸収層Pと第2のウェハW2の剥離が、更に径方向内側へと進行する。
 そして、このように連鎖的にレーザ吸収層Pと第2のウェハW2の剥離、応力の解放、径方向内側への剥離の進展、が繰り返されることにより、図7(c)に示すように、剥離領域R2がレーザ吸収層Pの径方向外側から内側に向けて順次形成される。そして、第2のウェハW2の全面が、レーザ吸収層P(第1のウェハW1)から剥離されることで、第2のウェハW2のデバイス層D2が第1のウェハW1側へと転写される。
 本実施形態によれば、未剥離領域R1の形成、すなわち剥離改質層M1の連続的な形成においては、レーザ吸収層Pと第2のウェハW2の剥離を発生させないようにレーザ光Lのピークパワー(周波数)が制御される。そして、レーザ吸収層Pと第2のウェハW2は、境界Adの近傍に剥離の起点となる剥離改質層M1(以下、「起点改質層M1s」という。)が形成されることにより、未剥離領域R1の剥離改質層M1を基点として剥離が自然進行する。これにより、レーザ吸収層Pと第2のウェハW2の剥離においてレーザ光Lの周波数を低下させる必要がないため、デバイス層D2の転写処理にかかる時間を短縮され、すなわちスループットの低下が抑制される。また、このようにレーザ光Lのピークパワーを上昇させる必要がないため、デバイス層D2の転写処理にかかるエネルギー効率を向上させることができる。
 第2のウェハW2の全面がレーザ吸収層Pから剥離されると、次に、移動機構104によってチャック100を受渡位置に移動させる。受渡位置においては、図9(a)に示すように搬送パッド120で第2のウェハW2の裏面W2bを吸着保持し、その後、図9(b)に示すように搬送パッド120を上昇させることで、レーザ吸収層P(第1のウェハW1)から第2のウェハW2を剥離する。この際、上述したようにレーザ吸収層Pと第2のウェハW2の界面には剥離が生じているので、大きな荷重をかけることなく、レーザ吸収層Pから第2のウェハW2を剥離することができる。
 剥離された第2のウェハW2は、搬送パッド120からウェハ搬送装置40の搬送アーム42に受け渡され、カセット載置台10のカセットCw2に搬送される。なお、界面用レーザ照射装置80から搬出された第2のウェハW2は、カセットCw2に搬送される前に洗浄装置60において表面W2aが洗浄されてもよい。
 一方、チャック100に保持されている第1のウェハW1は、昇降ピンを介してウェハ搬送装置40の搬送アーム42に受け渡され、洗浄装置60に搬送される。洗浄装置60では、剥離面であるレーザ吸収層Pの表面がスクラブ洗浄される。なお、洗浄装置60では、レーザ吸収層Pの表面と共に、第1のウェハW1の裏面W1bが洗浄されてもよい。
 その後、デバイス層D2の第1のウェハW1への転写にかかるすべての処理が施された第1のウェハW1は、トランジション装置30を介してウェハ搬送装置20によりカセット載置台10のカセットCw1に搬送される。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。
 以上の実施形態によれば、界面用レーザ照射装置80において照射されるレーザ光Lの出力が、レーザ吸収層Pと第2のウェハW2の剥離を発生させないピークパワーに制御される。すなわち、レーザ吸収層Pと第2のウェハW2の剥離に際してレーザ光Lの周波数を低下させる必要がないため、デバイス層D2の第1のウェハW1への転写にかかるスループットの低下が抑制される。また、このようにレーザ光Lのピークパワーを低下させた場合であっても、剥離改質層M1の形成により蓄積された応力を解放することで、適切にレーザ吸収層Pと第2のウェハW2の剥離を発生させることができる。
 なお、以上の実施形態においては、起点改質層M1sとして境界Adの近傍に剥離改質層M1を形成することにより応力を開放し、レーザ吸収層Pと第2のウェハW2の連鎖的な剥離を開始したが、剥離の開始方法はこれに限定されるものではない。
 具体的には、例えばレーザ吸収層Pに形成された未剥離領域R1の外側において、剥離の基点となる起点改質層M1sを形成することにより、レーザ吸収層Pと第2のウェハW2の連鎖的な剥離を開始してもよい。この時、起点改質層M1sは、レーザ光Lの照射によりレーザ吸収層Pと第2のウェハW2の剥離が発生する高ピークパワー(低周波数)で形成する。このようにレーザ光Lの照射により剥離を発生させることで圧縮応力が解放され、その後、連鎖的にレーザ吸収層Pと第2のウェハW2の剥離が進行する。そして、このように起点改質層M1sの形成にかかるピークパワーを上昇させるために周波数を低下させた場合であっても、未剥離領域R1は上記実施形態と同様の方法により形成することができるため、デバイス層D2の第1のウェハW1への転写にかかるスループットの低下を抑制することができる。
 なおこの場合、未剥離領域R1の形成に先立って起点改質層M1sを形成することができる。すなわち、起点改質層M1sの形成によりレーザ吸収層Pと第2のウェハW2を予め剥離させることにより、その後、未剥離領域R1としての剥離改質層M1の形成位置が起点改質層M1sの形成位置に到達することで、当該起点改質層M1sにおいて圧縮応力が解放され、連鎖的な剥離の進行を開始することができる。
 ここで、レーザ吸収層Pと第2のウェハW2の剥離を面内で均一にするためには、レーザ光Lを照射する間隔、すなわちパルスの間隔を一定にするのが好ましい。しかしながら、上述のようにレーザ光Lの照射に際してチャック100(重合ウェハT)を回転させた場合、チャック100のレーザ照射部110(レンズ113)に対する相対的な回転速度は、径方向外側よりも径方向内側の方が大きくなる。すなわち、チャック100の回転速度が一定である場合であっても、レーザ光Lの照射位置が径方向内側である場合には、レーザ光Lの間隔が小さくなり、レーザ吸収層Pの中心部ではレーザ光Lが重なる場合があり得る。そして、このようにレーザ光Lが重なると、中心部においてレーザ吸収層Pと第2のウェハW2の剥離を適切にできなくなったり、レーザ光Lの抜け光が発生してデバイス層D2に影響を与えたりするおそれがある。
 そこで本実施形態では、第2のウェハW2とレーザ吸収層Pの剥離に際して、図10に示すように、レーザ吸収層Pの中心部Pcにおいては、応力の解放により剥離領域R2が自然に伸展して形成される範囲で剥離改質層M1の形成を省略してもよい。このようにレーザ吸収層Pの中心部に剥離改質層M1を形成しない場合であっても、径方向外側から進行する剥離(応力解放)の作用により剥離が伸展し、当該中心部においてもレーザ吸収層Pと第2のウェハW2を剥離することができる。
 また本実施形態では、チャック100のレーザ照射部110(レンズ113)に対する相対的な回転速度が大きくなる径方向内側においてはレーザ光Lの周波数を小さくし、径方向外側においてはレーザ光Lの周波数を大きくすることで、レーザ吸収層Pへのレーザ光Lの相対的な照射間隔を略一定に制御してもよい。ただし、このように周波数を変化させる場合において、レーザヘッド111のレーザ発振器においてレーザ光Lの周波数を変更すると、当該レーザ光Lのパルス波形も変わる。したがって、レーザ光Lの出力やパルス波形を考慮した複雑な調整が必要となり、レーザ処理のプロセス制御が難しい。
 そこで本実施形態においては、音響光学変調器を用いてレーザ光Lの周波数を制御する。上述したようにレーザ照射部110は、レーザヘッド111、光学系112、及びレンズ113を有している。
 図11に示すようにレーザヘッド111は、レーザ光をパルス状に発振するレーザ発振器130を有している。レーザ発振器130から発振されるレーザ光の周波数は、後述する音響光学変調器131が制御できる最高周波数である。なお、レーザヘッド111は、レーザ発振器130の他の機器、例えば増幅器などを有していてもよい。
 光学系112は、レーザ発振器130からのレーザ光を異なる方向に変向させる光学素子としての音響光学変調器(AOM)131と、レーザ発振器130からのレーザ光を減衰させ、レーザ光の出力を調整する減衰器としてのアッテネータ132とを有している。音響光学変調器131とアッテネータ132は、レーザ発振器130側からこの順で設けられている。
 音響光学変調器131は、レーザ光の強度や位置を電気的に高速で制御する光学変調器である。図12に示すように音響光学変調器131は、レーザ発振器130からのレーザ光L1が入射した際、電圧を印加してレーザ光L1の屈折率を変化させることで、当該レーザ光L1を異なる方向に変向させる。具体的には電圧を調整することで、レーザ光L1の変更角度を制御することができる。本実施形態では、例えばレーザ光L1を2つの異なる方向に変向させ、一方向のレーザ光L2はレーザ吸収層Pに照射され、他方向のレーザ光L3はレーザ吸収層Pに照射されない。このレーザ光L2、L3の変向を制御することで、レーザ吸収層Pに照射されるレーザ光L2の周波数を調整することができる。
 かかる場合、音響光学変調器131を用いてレーザ光L1のパルスを間引くことによって、レーザ吸収層Pに照射されるレーザ光L2の周波数を調整することができる。例えば、あるタイミングにおいて、レーザ光L1に対するレーザ光L2とレーザ光L3の変向率を100:0にすれば、レーザ光L1がそのままレーザ光L2となってレーザ吸収層Pに照射される。一方、別のタイミングにおいて、レーザ光L1に対するレーザ光L2とレーザ光L3の変向率を0:100にすれば、レーザ光L2は0(ゼロ)となり、レーザ吸収層Pにレーザ光L2は照射されない。かかる場合、図13(a)に示すレーザ発振器130からのレーザ光L1の周波数に対して、図13(b)に示す音響光学変調器131で変向したレーザ光L2の周波数を調整することができる。また、上述したようにレーザ光L1の周波数は、音響光学変調器131が制御できる最高周波数であるため、レーザ光L2の周波数を任意に調整することができる。なお、図13の横軸は時間を示し、縦軸はレーザ光L2の強度を示す。すなわち、図13のグラフ中の密度がレーザ光L2の周波数を示す。
 しかもこの場合、レーザ発振器130から発振されるレーザ光L1の周波数を変更しないので、レーザ光L1のパルス波形は変わらず、レーザ光L2のパルス波形もレーザ光L1のパルス波形と同じにできる。したがって、レーザ光L2の周波数を容易に調整することができ、上述したような従来の複雑な調整は不要となり、レーザ処理のプロセス制御が容易となる。
 なお、本実施形態では光学素子として音響光学変調器131を用いたが、これに限定されない。例えば光学素子として、電気光学変調器(EOM)を用いてもよい。また、音響光学偏向器(AOD)や電気光学偏向器(EOD)などの光学偏向器を用いてもよい。
 次に、レーザ照射部210からレーザ吸収層Pにレーザ光L2を照射する際の、当該レーザ光L2の制御方法について説明する。上述したように、レーザ光L2の照射位置がレーザ吸収層Pの径方向外側にある場合には周波数を大きくし、レーザ光L2の照射位置が内側にある場合に周波数を小さくする。
 以下、具体例を用いて説明する。なお、この具体例における数値は一例であって、本開示がこの数値に限定されるものではない。例えば、レーザ吸収層Pの径方向外側と内側のそれぞれにおいて、剥離に必要なエネルギーを400μJとする。レーザ吸収層Pの径方向外側におけるレーザ光L2の必要周波数を100kHzとし、内側におけるレーザ光の必要周波数を50kHzとする。レーザ発振器130からのレーザ光L1の周波数は100kHz、出力は40Wとする。
 かかる場合、レーザ吸収層Pの径方向外側に対しては、音響光学変調器131においてレーザ発振器130からのレーザ光L1のパルスを間引かない。そうすると、レーザ吸収層Pに照射されるレーザ光L2の周波数は、レーザ光L1の周波数と同じ100kHzにすることができる。また、レーザ光L2の出力もレーザ光L1の出力と同じ40Wになる。そして、レーザ光L2のエネルギーは400μJ(=40W/100kHz)となり、剥離を適切に行うことができる。
 一方、レーザ吸収層Pの径方向内側に対しては、音響光学変調器131においてレーザ発振器130からのレーザ光L1のパルスを半分間引く。そうすると、レーザ吸収層Pに照射されるレーザ光L2の周波数は、レーザ光L1の周波数の半分である50kHzにすることができる。また、このレーザ光L1の間引きにより、レーザ光L2の出力もレーザ光L1の出力の半分である20Wになる。そして、レーザ光L2のエネルギーは400μJ(=20W/50kHz)となり、剥離を適切に行うことができる。
 このようにレーザ光L2の周波数と照射位置に応じて、パルスの間隔が一定になるように、チャック100の回転速度を制御する。そして、レーザ吸収層Pの中心部では、チャック100の最高回転速度を維持し、音響光学変調器131が当該最高回転速度にかわせて、レーザ光L2の周波数を調整する。これにより、チャック100の高回転速度、レーザ光L2の高周波数を最大限維持したレーザ処理を行うことができ、高スループットのレーザ処理を実現することができる。
 しかもこの場合、レーザ発振器130からのレーザ光L1の周波数を変更しないので、レーザ光L1のパルス波形は変わらず、レーザ光L2のパルス波形もレーザ光L1のパルス波形と同じにできる。したがって、レーザ光L2の周波数を容易に調整することができ、連続したシームレスな加工が可能となる。その結果、レーザ処理のプロセス制御が容易となり、安定したプロセスを実現することができる。
 なお、本実施形態では、レーザ発振器130からのレーザ光L1の出力が40Wであったため、剥離に必要なエネルギー400μJに対して出力の調整は不要であった。この点、例えばレーザ光L1の出力が50Wであった場合には、アッテネータ132においてレーザ光L1の出力を20%減衰させて出力を調整すればよい。
 以上の実施形態のレーザ照射部210では、音響光学変調器131は光学系112の内部においてアッテネータ132の上流側に設けられていたが、設置場所はこれに限定されない。例えば、図14に示すように音響光学変調器131は光学系112の内部においてアッテネータ132の下流側に設けられていてもよい。あるいは例えば、図15に示すように音響光学変調器131はレーザヘッド111の内部においてレーザ発振器130の下流側に設けられていてもよい。さらに、音響光学変調器131は上記設置位置に2箇所以上に設けられていてもよい。
 なお、レーザ照射部110では、音響光学変調器131でレーザ光L2の周波数と出力を調整した後、アッテネータ132で出力を微調整することが可能である。ここで、レーザ発振器130から発振されるレーザ光L1の出力は、レーザ発振器130の個体差によってばらつく場合がある。アッテネータ132では、このような出力のばらつきを調整することができる。また、レーザ発振器130からのレーザ光L1の出力を経時的にモニターする場合、アッテネータ132をフィードバック制御して出力を調整することができる。そして、このようにアッテネータ132でレーザ光L2の出力を微調整するという観点からは、音響光学変調器131は、図11に示したようにアッテネータ132の上流側に設けられるのが好ましい。
 以上の実施形態のレーザ照射部110において、アッテネータ132を省略してもよい。例えばレーザ光L2の出力調整は、アッテネータ132に代えて、音響光学変調器131で調整することができる。例えばレーザ光L1の出力が50Wであって、剥離に必要なレーザ光L2の出力が40Wである場合、音響光学変調器131において、レーザ光L1に対するレーザ光L2とレーザ光L3の変向率を80:20にすれば、レーザ光L2の出力を40Wにすることができる。
 なお、以上の実施形態においてはレーザ吸収層Pに第2のウェハW2とレーザ吸収層Pの接合強度が低下された剥離改質層M1を形成し、当該剥離改質層M1を基点として第2のウェハW2とレーザ吸収層Pの剥離を行った。しかしながら、例えば図16(a)に示すようにレーザ吸収層Pの面内においてレーザ光が照射されず、接合強度が低下されていない領域(以下、「未形成領域R3」という。)が形成されてしまった場合、第2のウェハW2とレーザ吸収層Pの剥離を適切に行えない場合がある。具体的には、例えば図16(b)に示すように接合強度が低下されていない未形成領域R3において、剥離後のレーザ吸収層Pの表面に第2のウェハW2の一部(シリコン片)が残ってしまうおそれがある。
 そこで本実施形態では、レーザ吸収層Pの面内において未形成領域R3の形成面積を減少させるように、剥離改質層M1(未剥離領域R1)を形成することが望ましい。具体的には、例えば図17(a)に示すように剥離改質層M1の形成位置を制御し、1つの剥離改質層M1に隣接する他の剥離改質層M1の数を増やすことにより、未形成領域R3を減少できる。また例えば、図17(b)に示すようにレーザ吸収層Pに対するレーザ照射形を制御して、未形成領域R3を減少してもよい。すなわち、レーザ照射形は例えば四角形であってもよい。そして、このように未形成領域R3の面積を減少させることにより、レーザ吸収層Pの面内における第2のウェハW2との接合強度が低下された領域が増加し、その結果、レーザ吸収層Pと第2のウェハW2の剥離を適切に行うことができる。
 なお、以上の実施形態において第2のウェハW2の表面W2aにはレーザ吸収層P、デバイス層D2、及び表面膜F2がこの順に積層されていたが、第2のウェハW2とレーザ吸収層Pの間には、図18(a)に示すように剥離促進層P2が更に形成されていてもよい。剥離促進層P2としては、レーザ光(COレーザ)に対して透過性を有し、第2のウェハW2(シリコン)との密着性が、少なくともレーザ吸収層P(SiO)との密着性よりも小さいもの、例えば窒化ケイ素(SiN)が選択される。
 図18(b)に示すように、剥離促進層P2が形成された重合ウェハTにおけるデバイス層D2の転写に際しては、先ず、第2のウェハW2の裏面W2bに向けてレーザ光L(COレーザ光)をパルス状に照射する。この際、レーザ光Lは、第2のウェハW2の裏面W2b側から当該第2のウェハW2、及び剥離促進層P2を透過し、レーザ吸収層Pにおいて吸収される。そして、このレーザ光Lを吸収したレーザ吸収層Pの内部に剥離改質層M1が形成される。
 ここで、レーザ光Lの照射により発生した応力は、通常、上記実施形態に示したようにレーザ光Lの照射位置(レーザ吸収層の内部)に留まり、剥離改質層M1を形成する。しかしながら、本実施形態のように剥離促進層P2が形成されている場合、剥離促進層P2と第2のウェハW2との密着性が剥離促進層P2とレーザ吸収層Pとの密着性よりも小さいため、図18(c)に示すように、発生した応力が剥離促進層P2を透過して剥離促進層P2と第2のウェハW2の界面に蓄積される。換言すれば、レーザ光Lを照射することで発生した応力は、より安定して滞留することができる剥離促進層P2と第2のウェハW2の界面に移動して蓄積され、これにより剥離促進層P2と第2のウェハW2接合強度が低下する。
 そして、このように剥離促進層P2と第2のウェハW2の接合強度が低下するため、その後、剥離促進層P2と第2のウェハW2の剥離を適切に行うことができる。またこの時、剥離促進層P2と第2のウェハW2の密着性が低いため、図16に示したように剥離後の剥離促進層P2の表面に第2のウェハW2の一部が残ることが、適切に抑制される。また更に、本実施形態においてはレーザ光Lが吸収されるのはレーザ吸収層Pであるため、剥離後の露出表面、すなわち第2のウェハW2の表面W2aや剥離促進層P2の表面にダメージが残ることがより適切に抑制される。
 なお、このように剥離促進層P2と第2のウェハW2の界面で適切に剥離を行う場合、レーザ光の照射により発生したガスが剥離促進層P2を透過する必要がある。しかしながら、剥離促進層P2の膜厚が大きい場合、発生したガスが適切に剥離促進層P2を透過せず、剥離促進層P2とレーザ吸収層Pの界面で剥離が発生する場合がある。そこで、剥離促進層P2と第2のウェハW2の界面で適切に剥離を行うため、剥離促進層P2の膜厚はレーザ吸収層Pに対して薄く、具体的には、例えばレーザ吸収層Pの膜厚の10分の1程度であることが好ましい。このように剥離促進層P2の膜厚を小さくすることにより、発生したガスが適切に剥離促進層P2を透過し、第2のウェハW2を剥離促進層P2から剥離することができる。
 ただし、剥離促進層P2の膜厚が大きく、剥離促進層P2とレーザ吸収層Pの界面で剥離が発生する場合であっても、第2のウェハW2は剥離促進層P2を介してレーザ吸収層Pから剥離されるため、図16に示したように第2のウェハW2の一部が、剥離後のレーザ吸収層Pの表面に残ることはない。すなわち、これにより第2のウェハW2の表面W2aを保護し、剥離面の荒れを抑制することができる。
 なお、上記例においては剥離促進層P2として第2のウェハW2(シリコン)との密着性が低いものを使用したが、剥離促進層P2に使用されるものはこれに限定されず、例えば第2のウェハW2(シリコン)と熱膨張係数の異なるものを使用してもよい。かかる場合、レーザ吸収層Pに対するレーザ光Lの照射で生じる熱による変形量が、第2のウェハW2と剥離促進層P2で異なり、これにより、第2のウェハW2と剥離促進層P2の界面にせん断力が生じ、第2のウェハW2と剥離促進層P2を剥離することができる。
 なお、以上の実施形態においては、レーザ光の照射により発生し、剥離改質層M1として蓄積された圧縮応力の解放により第2のウェハW2と剥離促進層P2の剥離を進行させたが、このように発生した応力により、重合ウェハTに反りが生じるおそれがある。このように重合ウェハTに反りが生じた場合、ウェハ処理を適切に行うことができなくなる場合がある。そこで、この重合ウェハTの反りを抑制するため、レーザ吸収層Pに対するレーザ光Lの照射が行われる際に、重合ウェハTを上方から押圧するようにしてもよい。
 例えば、重合ウェハTが上凸形状に変形するように反りが生じる場合、図19に示すように、重合ウェハTの中心部を押圧部材200により押圧するようにしてもよい。具体的には、第2のウェハW2の剥離に際しては、先ず、押圧部材200による押圧範囲であるレーザ吸収層Pの中心部に、予めレーザ照射加工、すなわち未剥離領域R1を形成する。未剥離領域R1を形成すると、次に、当該未剥離領域R1を押圧部材200により押圧する。そしてその後、押圧部材200により未剥離領域R1が押圧された状態で、当該未剥離領域R1の形成位置がレーザ吸収層Pの外周側端部に到達すると、これにより第2のウェハW2の連鎖的な剥離が開始される。この時、重合ウェハTの中心部が押圧部材200により抑えられているため、重合ウェハTに反りが生じるのが抑制される。
 なお、未剥離領域R1は径方向外側から内側に向けて形成されてもよい。すなわち、先ず、レーザ吸収層Pの外周部から中心部に向けて未剥離領域R1を形成する。この時、未剥離領域R1の形成開始位置である外周側端部はレーザ吸収層Pの外周側端部から若干径方向内側に決定し、応力の解放は行わない。未剥離領域R1を形成すると、次に、当該未剥離領域R1を押圧部材200により押圧する。そしてその後、押圧部材200により未剥離領域R1が押圧された状態で、未剥離領域R1の形成位置がレーザ吸収層Pの外周側端部に到達する。その後、第2のウェハW2の径方向外側に起点改質層M1sを形成することで連鎖的な剥離が開始される。この時、重合ウェハTの中心部が押圧部材200により抑えられているため、重合ウェハTに反りが生じるのが抑制される。
 なお、レーザ光Lの照射に際しては重合ウェハTを回転させるため、押圧部材200の端部は重合ウェハTと共に回転可能に構成されることが望ましい。
 また例えば、重合ウェハTが下凸形状に変形するように反りが生じる場合、図20に示すように、重合ウェハTの周縁部Weを押圧部材200により押圧するようにしてもよい。具体的には、第2のウェハW2の剥離に際しては、先ず、押圧部材200による押圧範囲であるレーザ吸収層Pの外周部に、予めレーザ照射加工、すなわち剥離領域R2を形成する。剥離領域R2を形成すると、次に、当該剥離領域R2を押圧部材200により押圧する。そしてその後、押圧部材200により剥離領域R2が押圧された状態で、レーザ吸収層Pの中心部において未剥離領域R1を径方向内側から外側に向けて開始する。そして、未剥離領域R1の形成領域が剥離領域R2に到達すると、これにより第2のウェハW2の連鎖的な剥離が開始される。この時、重合ウェハTの外周部分が押圧部材200により抑えられているため、重合ウェハTに反りが生じるのが抑制される。
 なお、以上の実施形態で処理される重合ウェハTにおいて、図21に示すようにレーザ吸収層Pとデバイス層D2の間には、反射膜Rが設けられていてもよい。すなわち反射膜Rは、レーザ吸収層Pにおいて、レーザ光Lの入射面と反対側の面に形成されている。反射膜Rには、レーザ光Lに対する反射率が高く、融点が高い材料、例えば金属膜が用いられる。なお、デバイス層D2は機能を有する層であり、反射膜Rとは異なるものである。
 かかる場合、レーザ照射部110から発せられたレーザ光Lは、第2のウェハW2を透過し、レーザ吸収層Pにおいてほぼすべて吸収されるが、吸収しきれなかったレーザ光Lが存在したとしても、反射膜Rで反射される。その結果、レーザ光Lがデバイス層D2に到達することがなく、デバイス層D2がダメージを被るのを確実に抑制することができる。
 また、反射膜Rで反射したレーザ光Lは、レーザ吸収層Pに吸収される。したがって、第2のウェハW2の剥離効率を向上させることができる。
 なお、以上の実施形態においてはウェハ処理システム1において重合ウェハTのレーザリフトオフ処理、すなわち第1のウェハW1に対するデバイス層D2の転写処理を行う場合について説明したが、上述のように、ウェハ処理システム1においては第2のウェハW2のエッジトリム処理を行うことができる。以下、ウェハ処理システム1において第2のウェハW2のエッジトリムを行う場合について説明する。
 先ず、搬入出ブロックG1のカセット載置台10に載置されたカセットCtから重合ウェハTがウェハ搬送装置20により取り出され、トランジション装置30を介してウェハ搬送装置40に受け渡された後、内部用レーザ照射装置70に搬送される。
 内部用レーザ照射装置70では、図22(a)に示すように第2のウェハW2の内部にレーザ光L2(YAGレーザ光)を照射し、後述のエッジトリムにおいて周縁部Weを除去する際の基点となる周縁改質層M2を形成する。周縁改質層M2からは、第2のウェハW2の厚み方向にクラックC2が伸展する。クラックC2の上端部、及び下端部は、それぞれ例えば第2のウェハW2の裏面W2b、及び表面W2aに到達させる。第2のウェハW2の内部に周縁改質層M2が形成された重合ウェハTは、次に、ウェハ搬送装置40により界面用レーザ照射装置80に搬送される。
 界面用レーザ照射装置80において重合ウェハTは、第2のウェハW2の除去対象としての周縁部Weにおけるレーザ吸収層Pと第2のウェハW2の接合強度が低下される。具体的には、図22(b)に示すようにレーザ吸収層Pにレーザ光L(COレーザ)を照射し、内部用レーザ照射装置70で形成された周縁改質層M2よりも径方向外側において剥離改質層M1(未剥離領域R1)を形成する。
 なお、剥離改質層M1(未剥離領域R1)の形成に際しては、回転機構103によってチャック100(重合ウェハT)を回転させるとともに、移動機構104によってチャック100をY軸方向に移動させる。そうすると、レーザ光Lは、レーザ吸収層Pに対して径方向内側から外側に向けて照射され、その結果、内側から外側に螺旋状に照射される。
 剥離改質層M1の形成を継続し、当該剥離改質層M1の形成位置が第2のウェハW2の端部近傍、すなわち境界Adに到達すると、図22(c)に示すように、レーザ吸収層Pの径方向外側から内側に向けての連鎖的な剥離が開始する。ここで、本実施形態においては剥離改質層M1が周縁改質層M2(クラックC2)よりも径方向外側のみに形成されているため、レーザ吸収層Pと第2のウェハW2の剥離は周縁部Weのみにおいて、すなわち、周縁改質層M2よりも径方向外側のみにおいて進行する。
 周縁部Weにおけるレーザ吸収層Pと第2のウェハW2の剥離が完了した重合ウェハTは、次に、ウェハ搬送装置40によって周縁除去装置50に搬送される。
 周縁除去装置50において重合ウェハTは、図22(d)に示すように、周縁改質層M2、及びクラックC2を基点に、第2のウェハW2の周縁部Weが除去される(エッジトリム)。なお、周縁除去装置50におけるエッジトリム方法は任意に選択することができる。この時、周縁部Weの除去に際しては剥離改質層M1の形成により第2のウェハW2とレーザ吸収層Pの接合強度が低下しているため、周縁部Weの除去を容易に行うことができる。
 第2のウェハW2の周縁部Weが除去された重合ウェハTは、次に、ウェハ搬送装置40により洗浄装置60に搬送される。洗浄装置60では、重合ウェハTのスクラブ洗浄が行われる。その後、すべての処理が施された重合ウェハTは、ウェハ搬送装置40により洗浄装置60から搬出され、トランジション装置30を介してウェハ搬送装置20によりカセット載置台10のカセットCtに搬送される。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。
 以上のように、本開示にかかる技術によれば、界面用レーザ照射装置80において周縁部Weにおける第2のウェハW2とレーザ吸収層Pの接合強度を低下させることができ、これにより、周縁除去装置50において適切に周縁部Weの除去、すなわちエッジトリムを行うことができる。
 なお、内部用レーザ照射装置70、及び界面用レーザ照射装置80による重合ウェハTの処理順序は上記実施形態に限定されるものではなく、界面用レーザ照射装置80において周縁部Weの剥離が行われた後、内部用レーザ照射装置70において周縁改質層M2が形成されてもよい。
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
  D2  デバイス層
  L   レーザ光
  M1  剥離改質層
  M1s 起点改質層
  P   レーザ吸収層
  T   重合ウェハ
  W1  第1のウェハ
  W2  第2のウェハ
  W2a 表面
  W2b 裏面
 

Claims (26)

  1. 第1の基板と第2の基板が接合された重合基板の処理方法であって、
    前記第2の基板にはレーザ吸収層が形成され、
    前記レーザ吸収層に対して、レーザ光をパルス状に照射して剥離改質層を形成し、前記レーザ吸収層の内部に応力を蓄積することと、
    蓄積された前記応力を連鎖的に解放し、前記第2の基板を剥離することと、を含む、基板処理方法。
  2. 前記剥離改質層の形成時においては前記レーザ吸収層と前記第2の基板の剥離を発生させない、請求項1に記載の基板処理方法。
  3. 前記応力の連鎖的な解放の起点となる起点改質層を形成することを含む、請求項1または2に記載の基板処理方法。
  4. 前記起点改質層は、前記第1の基板と前記第2の基板が接合された接合領域の端部において前記レーザ吸収層の内部に形成され、
    前記起点改質層の形成時においては、当該起点改質層の形成により生じる応力を、前記接合領域の径方向側の領域である未接合領域に解放することで、前記レーザ吸収層と前記第2の基板に剥離を発生させ、
    前記連鎖的な応力の解放は、前記剥離改質層の形成により蓄積された前記応力を、前記起点改質層の形成による剥離領域に解放することで開始する、請求項3に記載の基板処理方法。
  5. 起点改質層の形成時においては、レーザ光の照射により前記レーザ吸収層と前記第2の基板の剥離を発生させ、
    前記連鎖的な応力の解放は、前記剥離改質層の形成により蓄積された前記応力を、前記起点改質層の形成による剥離領域に解放することで開始する、請求項1~3のいずれか一項に記載の基板処理方法。
  6. 前記起点改質層を、前記剥離改質層よりも径方向外側に形成する、請求項4または5に記載の基板処理方法。
  7. 前記第2の基板の除去対象の周縁部と、前記第2の基板の中央部の境界に沿って周縁改質層を形成することを含み、
    前記剥離改質層を、前記周縁改質層よりも径方向外側に形成する、請求項1~6のいずれか一項に記載の基板処理方法。
  8. 前記剥離改質層を前記レーザ吸収層の中心部においては形成しない、請求項1~7のいずれか一項に記載の基板処理方法。
  9. 前記剥離改質層の形成位置、及び/又は、前記剥離改質層の形成時における前記レーザ光の照射形を制御することにより、前記レーザ吸収層に対する前記剥離改質層の形成面積を増加させる、請求項1~8のいずれか一項に記載の基板処理方法。
  10. 前記第2の基板と前記レーザ吸収層の間には前記第2の基板の剥離を促進する剥離促進層が更に形成されている、請求項1~9のいずれか一項に記載の基板処理方法。
  11. 前記レーザ吸収層に前記レーザ光を照射する際、レーザ発振器から光学素子に向けてパルス状のレーザ光を発振し、前記光学素子においてレーザ光の周波数を調整する、請求項1~10のいずれか一項に記載の基板処理方法。
  12. 前記レーザ発振器からのレーザ光の周波数は、前記光学素子が制御できる最高周波数である、請求項11に記載の基板処理方法。
  13. 前記レーザ吸収層に前記レーザ光を照射する際、減衰器において前記レーザ発振器からのレーザ光を減衰させる、請求項11又は12に記載の基板処理方法。
  14. 第1の基板と第2の基板が接合された重合基板を処理する装置であって、
    前記第2の基板にはレーザ吸収層が形成され、
    前記第2の基板の前記レーザ吸収層に対してレーザ光をパルス状に照射するレーザ照射部と、
    前記レーザ照射部の動作を制御する制御部と、を有し、
    前記制御部は、
    前記レーザ光の照射により剥離改質層を形成して前記レーザ吸収層の内部に応力を蓄積した後、
    蓄積された前記応力の連鎖的な解放により前記第2の基板を剥離するように、前記レーザ照射部の動作を制御する、基板処理装置。
  15. 前記制御部は、前記剥離改質層の形成時においては前記レーザ吸収層と前記第2の基板の剥離を発生させないように、前記レーザ光の出力を制御する、請求項14に記載の基板処理装置。
  16. 前記制御部は、前記応力の連鎖的な解放の起点となる起点改質層を形成するように、前記レーザ照射部の動作を制御する、請求項14または15に記載の基板処理装置。
  17. 前記制御部は、
    前記起点改質層を、前記第1の基板と前記第2の基板が接合された接合領域の端部において前記レーザ吸収層の内部に形成し、
    当該起点改質層の形成時においては、当該起点改質層の形成により生じる応力を、前記接合領域の径方向側の領域である未接合領域に解放することで、前記レーザ吸収層と前記第2の基板に剥離を発生させ、
    前記連鎖的な応力の解放を、前記剥離改質層の形成により蓄積された前記応力を、前記起点改質層の形成による剥離領域に解放することで開始するように、前記レーザ照射部の動作を制御する、請求項16に記載の基板処理装置。
  18. 前記制御部は、
    前記起点改質層の形成時においては、レーザ光の照射により前記レーザ吸収層と前記第2の基板の剥離が発生するように、前記レーザ光の出力を制御するとともに、
    前記連鎖的な応力の解放を、前記剥離改質層の形成により蓄積された前記応力を、前記起点改質層の形成による剥離領域に解放することで開始するように、前記レーザ照射部の動作を制御する、請求項16に記載の基板処理装置。
  19. 前記制御部は、
    前記起点改質層を、前記剥離改質層よりも径方向外側に形成するように、前記レーザ照射部の動作を制御する請求項17または18に記載の基板処理装置。
  20. 前記第2の基板の除去対象の周縁部と、前記第2の基板の中央部の境界に沿って周縁改質層を形成する第2のレーザ照射部を有し、
    前記制御部は、前記剥離改質層を、前記周縁改質層よりも径方向外側に形成するように、前記レーザ照射部の動作を制御する請求項14~19のいずれか一項に記載の基板処理装置。
  21. 前記制御部は、前記剥離改質層を前記レーザ吸収層の中心部においては形成しないように、前記レーザ照射部の動作を制御する、請求項14~20のいずれか一項に記載の基板処理装置。
  22. 前記制御部は、前記レーザ吸収層に対する前記剥離改質層の形成面積を増加させるように、前記剥離改質層の形成位置、及び/又は、前記剥離改質層の形成時における前記レーザ光の照射形を制御する、請求項14~21のいずれか一項に記載の基板処理装置。
  23. 前記第2の基板と前記レーザ吸収層の間には前記第2の基板の剥離を促進する剥離促進層が更に形成されている、請求項14~22のいずれか一項に記載の基板処理装置。
  24. 前記レーザ照射部を制御する制御部を有し、
    前記レーザ照射部は、
    レーザ光をパルス状に発振するレーザ発振器と、
    前記レーザ発振器からのレーザ光を異なる方向に変向させる光学素子と、を有し、
    前記制御部は、前記光学素子を制御して、前記レーザ吸収層に照射されるレーザ光の周波数を調整する、請求項14~23のいずれか一項に記載の基板処理装置。
  25. 前記レーザ発振器からのレーザ光の周波数は、前記変向が制御できる最高周波数である、請求項24に記載の基板処理装置。
  26. 前記レーザ照射部は、前記レーザ発振器からのレーザ光を減衰させる減衰器を有する、請求項24又は25に記載の基板処理装置。
     
PCT/JP2021/007940 2020-03-24 2021-03-02 基板処理方法及び基板処理装置 WO2021192854A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022509458A JPWO2021192854A1 (ja) 2020-03-24 2021-03-02
CN202180021036.6A CN115335965A (zh) 2020-03-24 2021-03-02 基板处理方法和基板处理装置
KR1020227036631A KR20220158024A (ko) 2020-03-24 2021-03-02 기판 처리 방법 및 기판 처리 장치
US17/907,217 US20240087900A1 (en) 2020-03-24 2021-03-02 Substrate processing method and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-053183 2020-03-24
JP2020053183 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021192854A1 true WO2021192854A1 (ja) 2021-09-30

Family

ID=77892476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007940 WO2021192854A1 (ja) 2020-03-24 2021-03-02 基板処理方法及び基板処理装置

Country Status (6)

Country Link
US (1) US20240087900A1 (ja)
JP (1) JPWO2021192854A1 (ja)
KR (1) KR20220158024A (ja)
CN (1) CN115335965A (ja)
TW (1) TW202205398A (ja)
WO (1) WO2021192854A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024191A1 (ja) * 2022-07-27 2024-02-01 東京エレクトロン株式会社 基板処理システム、基板処理方法及びデバイス構造
WO2024034197A1 (ja) * 2022-08-09 2024-02-15 東京エレクトロン株式会社 基板処理装置及び基板処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125929A (ja) * 1996-08-27 1998-05-15 Seiko Epson Corp 剥離方法
JP2007165848A (ja) * 2005-11-16 2007-06-28 Denso Corp 半導体チップの製造方法
JP2008503877A (ja) * 2004-06-18 2008-02-07 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 複数のレーザビームスポットを使用する半導体構造加工
JP2018117060A (ja) * 2017-01-19 2018-07-26 株式会社ブイ・テクノロジー 剥離基板及びレーザリフトオフ方法
JP2018207009A (ja) * 2017-06-07 2018-12-27 株式会社ディスコ 被加工物の加工方法
WO2019208298A1 (ja) * 2018-04-27 2019-10-31 東京エレクトロン株式会社 基板処理システム及び基板処理方法
WO2020017599A1 (ja) * 2018-07-19 2020-01-23 東京エレクトロン株式会社 基板処理システム及び基板処理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220749A (ja) 2006-02-14 2007-08-30 Seiko Epson Corp 半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10125929A (ja) * 1996-08-27 1998-05-15 Seiko Epson Corp 剥離方法
JP2008503877A (ja) * 2004-06-18 2008-02-07 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド 複数のレーザビームスポットを使用する半導体構造加工
JP2007165848A (ja) * 2005-11-16 2007-06-28 Denso Corp 半導体チップの製造方法
JP2018117060A (ja) * 2017-01-19 2018-07-26 株式会社ブイ・テクノロジー 剥離基板及びレーザリフトオフ方法
JP2018207009A (ja) * 2017-06-07 2018-12-27 株式会社ディスコ 被加工物の加工方法
WO2019208298A1 (ja) * 2018-04-27 2019-10-31 東京エレクトロン株式会社 基板処理システム及び基板処理方法
WO2020017599A1 (ja) * 2018-07-19 2020-01-23 東京エレクトロン株式会社 基板処理システム及び基板処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024191A1 (ja) * 2022-07-27 2024-02-01 東京エレクトロン株式会社 基板処理システム、基板処理方法及びデバイス構造
WO2024034197A1 (ja) * 2022-08-09 2024-02-15 東京エレクトロン株式会社 基板処理装置及び基板処理方法

Also Published As

Publication number Publication date
US20240087900A1 (en) 2024-03-14
KR20220158024A (ko) 2022-11-29
TW202205398A (zh) 2022-02-01
CN115335965A (zh) 2022-11-11
JPWO2021192854A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
WO2021192853A1 (ja) 基板処理方法及び基板処理装置
JP7304433B2 (ja) 基板処理方法及び基板処理装置
JP5766530B2 (ja) 光デバイスウエーハの加工方法
JP7149393B2 (ja) 基板処理システム及び基板処理方法
WO2021192854A1 (ja) 基板処理方法及び基板処理装置
JP7386077B2 (ja) 基板処理装置及び基板処理方法
JP2006156456A (ja) フィルム剥離方法およびフィルム剥離装置
WO2020213478A1 (ja) 処理装置及び処理方法
TW202314842A (zh) 處理方法及處理系統
WO2024034197A1 (ja) 基板処理装置及び基板処理方法
WO2024024191A1 (ja) 基板処理システム、基板処理方法及びデバイス構造
JP7308292B2 (ja) 基板処理装置及び基板処理方法
JP2022091504A (ja) レーザ照射システム、基板処理装置及び基板処理方法
JP2021068869A (ja) 基板処理方法及び基板処理システム
JP7354420B2 (ja) 基板処理方法及び基板処理装置
WO2022153886A1 (ja) 基板処理装置、基板処理方法及び基板製造方法
US20240128086A1 (en) Method of processing wafer
WO2022153894A1 (ja) 基板処理装置及び基板処理方法
WO2022153895A1 (ja) 基板処理装置及び基板処理方法
WO2021084934A1 (ja) 基板処理方法及び基板処理システム
JP2021012950A (ja) 支持体剥離方法及び支持体剥離システム
JP2019009274A (ja) ウェーハの加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509458

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227036631

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776227

Country of ref document: EP

Kind code of ref document: A1