WO2021189506A1 - 一种介电常数系列可调的低温共烧电介质材料及其制备方法 - Google Patents

一种介电常数系列可调的低温共烧电介质材料及其制备方法 Download PDF

Info

Publication number
WO2021189506A1
WO2021189506A1 PCT/CN2020/082252 CN2020082252W WO2021189506A1 WO 2021189506 A1 WO2021189506 A1 WO 2021189506A1 CN 2020082252 W CN2020082252 W CN 2020082252W WO 2021189506 A1 WO2021189506 A1 WO 2021189506A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
low
fired
silicon
dielectric material
Prior art date
Application number
PCT/CN2020/082252
Other languages
English (en)
French (fr)
Inventor
沓世我
王小舟
陈涛
刘芸
弗朗科姆·特里·詹姆士
付振晓
曹秀华
胡春元
Original Assignee
广东风华高新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东风华高新科技股份有限公司 filed Critical 广东风华高新科技股份有限公司
Priority to JP2021529074A priority Critical patent/JP7333147B2/ja
Priority to KR1020217015099A priority patent/KR102621058B1/ko
Priority to US17/246,742 priority patent/US20210309578A1/en
Publication of WO2021189506A1 publication Critical patent/WO2021189506A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics

Definitions

  • the invention belongs to the technical field of ceramic materials, and specifically relates to a low-temperature co-fired dielectric material with adjustable dielectric constant series and a preparation method thereof.
  • the research on zirconia in low-temperature co-fired ceramic materials mainly focuses on the glass-ceramic system, that is, zirconia is used as a nucleating agent to control the crystallization of glass.
  • zirconia is used as a nucleating agent to control the crystallization of glass.
  • the content of zirconia added is usually 1%-10%, and there is generally an optimal value. If it deviates from this optimal value, it will cause obvious performance degradation, so the dielectric constant of the sample is relatively single.
  • the glass/ceramic composite system the glass is mainly used to reduce the sintering temperature, and the ceramic material mainly determines the performance after sintering. I. Choi et al.
  • the main phase is prepared by the fusion-quenching method to co-fire, and the obtained sample has a dielectric constant of about 9 and a dielectric loss.
  • the dielectric constant of these products is relatively single, due to the high glass phase
  • the dielectric composition is too high, so that the entire material system cannot achieve continuous control of the dielectric constant.
  • the integrated module of low-temperature co-fired ceramic materials often contains materials with different dielectric constants.
  • This method has two main drawbacks: one is because of some volatile components in the glass, such as B 2 O 3 and Bi 2 O 3 make the obtained glass powder deviate from the originally designed composition, which leads to the performance of the final sample is not as good as expected; the other is that this method is not suitable for preparing all glasses, such as CaO- SiO 2 glass etc.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a low-temperature co-fired dielectric material with adjustable dielectric constant series and a preparation method thereof.
  • the technical solution adopted by the present invention is: a low-temperature co-fired dielectric material with adjustable dielectric constant series, the low-temperature co-fired dielectric material includes a main phase of zirconia and a silicon-based amorphous phase filler, so The weight ratio of the main phase of zirconia to the silicon-based amorphous phase filler is: the main phase of zirconia: the silicon-based amorphous phase filler is 40-65:35-60; the SiO 2 is in the silicon-based amorphous phase filler.
  • the weight percentage content in the phase filler is ⁇ 50%.
  • the dielectric constant of the low-temperature co-fired dielectric material composed of the main phase of zirconia and the silicon-based amorphous phase filler is enhanced, and the dielectric constant can be adjusted in the range of 7-12.
  • the low-temperature co-fired dielectric material contains the following components by weight percentage: ZrO 2 40%-65%, SiO 2 27.03%-46.3%, Na 2 O 0.27%-0.46%, K 2 O 1.23% ⁇ 2.11%, CaO 0.73% ⁇ 1.26% and B 2 O 3 5.73% ⁇ 9.83%.
  • This material system has similar sintering characteristics and can avoid defects such as spalling and warping during co-firing.
  • the main phase of zirconium oxide is crystalline or amorphous.
  • the dielectric constants of monoclinic ZrO 2 ( ⁇ 20) and amorphous ZrO 2 ( ⁇ 22) are close. Choosing either or both can achieve the regulation of the dielectric constant between 7 and 12.
  • the silicon-based amorphous phase filler is glass or a mixture of amorphous phases.
  • the use of silicon-based amorphous phase does not need to go through a high-temperature melting process, which can avoid the volatilization of B 2 O 3.
  • the weight percentage content of Al element in the silicon-based amorphous phase filler is less than or equal to 0.01%.
  • the particle size of the ZrO 2 is 0.5 ⁇ m-10 ⁇ m.
  • the specific surface area within the particle size range of ZrO 2 is suitable, and the preparation of low-temperature co-fired dielectric materials with adjustable dielectric constant series can be realized at this ratio. More preferably, the particle size of the ZrO 2 is 1 ⁇ m to 5 ⁇ m.
  • the silicon-based amorphous phase filler can be prepared by mixing various components, or can be prepared by a wet chemical method.
  • the preparation method of the silicon-based amorphous phase filler includes the following steps:
  • the composition of the glass prepared by the traditional melting-quenching method often deviates from the originally designed glass composition. This is mainly due to the volatilization of some volatile components in the glass during the high-temperature melting process, such as B 2 O 3 and Bi 2 O 3 .
  • the above method can be used to synthesize silicon-based amorphous phase fillers under low temperature conditions ( ⁇ 700°C), which can effectively inhibit the volatilization of these components, so that the synthesized silicon-based amorphous phase fillers are closer to the designed components.
  • the salts corresponding to other elements other than silicon involved in the preparation method of the silicon-based amorphous phase filler are preferably soluble salts, and may be nitrates, acetates, etc. of Na, K, Ca, and B.
  • the volume ratio of the ethyl orthosilicate, alcohol and deionized water is 1:5-15:1.
  • the object of the present invention is also to provide a preparation method of the low-temperature co-fired dielectric material with adjustable dielectric constant series, the preparation method includes the following steps: a silicon-based amorphous phase filler and a main phase of zirconia are mixed and ball milled in proportion 6-24 hours, and then sintered at 800-900°C to obtain the low-temperature co-fired ceramic material with adjustable dielectric constant series.
  • the present invention provides a low-temperature co-fired dielectric material with adjustable dielectric constant series.
  • the present invention controls the ratio of the main phase of zirconia and the silicon-based amorphous phase filler, and the dielectric of the obtained material is
  • the constant is continuously adjustable in a wide range of 7-12, and the dielectric loss can be as low as 0.1%@1MHz.
  • This material system can be sintered at 800-900°C, can be co-fired compatible with silver electrodes, and can be used as a low-temperature co-fired dielectric material.
  • Figure 1 shows the dielectric properties of the samples described in Examples 1 to 4 (@1MHz);
  • picture (a) is the cross-section of the dry-pressed green sheet of silver electrode and powder in Example 3 after being co-fired at 850°C.
  • the SEM picture (b) is the silver content at each point in the picture (a).
  • An embodiment of the preparation method of the low-temperature co-fired dielectric material of the present invention includes the following steps:
  • the dielectric properties of the low-temperature co-fired dielectric material prepared in this embodiment are shown in FIG. 1, the dielectric constant is 8.89@1MHz, and the dielectric loss is 0.0012@1MHz.
  • the low-temperature co-fired dielectric material described in this embodiment and the silver electrode are tightly bonded after being co-fired, and no delamination, warpage, etc. occur.
  • An embodiment of the preparation method of the low-temperature co-fired dielectric material of the present invention includes the following steps:
  • the dielectric properties of the low-temperature co-fired dielectric material prepared in this embodiment are shown in FIG. 1, the dielectric constant is 10.48@1MHz, and the dielectric loss is 0.0011@1MHz.
  • the low-temperature co-fired dielectric material described in this embodiment and the silver electrode are tightly bonded after being co-fired, and no delamination, warpage, etc. occur.
  • An embodiment of the preparation method of the low-temperature co-fired dielectric material of the present invention includes the following steps:
  • the dielectric properties of the low-temperature co-fired dielectric material prepared in this embodiment are shown in FIG. 1, the dielectric constant is 11.11@1MHz, and the dielectric loss is 0.0006@1MHz.
  • An embodiment of the preparation method of the low-temperature co-fired dielectric material of the present invention includes the following steps:
  • the dielectric properties of the low-temperature co-fired dielectric material prepared in this embodiment are shown in FIG. 1, and the dielectric loss is 0.0004@1MHz.
  • the low-temperature co-fired dielectric material described in this embodiment and the silver electrode are tightly bonded after being co-fired, and no delamination, warpage, etc. occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Insulating Materials (AREA)
  • Glass Compositions (AREA)

Abstract

一种介电常数系列可调的低温共烧电介质材料,所述低温共烧电介质材料包含氧化锆主相和硅基非晶相填充料,所述氧化锆主相和硅基非晶相填充料的重量之比为:氧化锆主相:硅基非晶相填充料=40~65:35~60;所述SiO 2在所述硅基非晶相填充料中的重量百分含量≥50%。通过控制氧化锆主相和硅基非晶相填充料的比例,所得材料的介电常数在7~12较宽的范围内连续可调,而且介电损耗可低至0.1%@1MHz。该材料体系可在800~900℃烧结,能够与银电极兼容共烧,可以用作低温共烧电介质材料。还公开了所述介电常数系列可调的低温共烧电介质材料的制备方法。

Description

一种介电常数系列可调的低温共烧电介质材料及其制备方法 技术领域
本发明属于陶瓷材料技术领域,具体涉及一种介电常数系列可调的低温共烧电介质材料及其制备方法。
背景技术
随着半导体技术的发展,主动元件的封装已经得到了快速的发展。然而在实际器件应用中,被动元件(电容、电感等)的数量通常比主动元件要多十倍以上。如此大的被动原件的数量制约着器件的小型化发展。低温共烧陶瓷技术因其独特的三维立体结构,已经成为目前最有前景的被动元件封装技术。常用的低温共烧陶瓷材料主要基于微晶玻璃体系和玻璃/陶瓷复合体系。目前对于氧化锆在低温共烧陶瓷材料中的研究主要集中在微晶玻璃体系,即氧化锆作为成核剂来控制玻璃的晶化。对于不同组分的玻璃,加入的氧化锆的含量通常在1%~10%,而且一般存在最佳值。如果偏离这个最佳值,则会引起明显的性能退化,所以样品的介电常数相对单一。对于玻璃/陶瓷复合体系,其中的玻璃主要用来降低烧结温度,而陶瓷材料主要决定烧结后的性能。I.Choi等人曾尝试将ZrO 2作为陶瓷填充材料与钙铝硼硅酸盐玻璃主相(由熔融-淬火法制备主相共烧,所得的样品介电常数在9左右,而且介电损耗偏高(tanδ=0.006)。总的来说,尽管有研究者对氧化锆在低温共烧陶瓷中的应用做了一些研究和探索,但这些产品的介电常数相对单一,由于玻璃相的高介电成分太高,从而使整个材料系统无法实现介电常数可连续调控。在低温共烧陶瓷材料的集成模块中常包含不同介电常数的材料,如果这些材料都是基于不同的材料体系,那么在共烧时由于它们之间烧结特性的不同,往往会引发层裂、翘曲等缺陷。但如果能基于同一材料体系开发出介电常数系列可调的配方,则可以有效地避免这类问题。另外,目前基于玻璃/陶瓷复合的LTCC材料中,几乎所有的玻璃都是由熔融-淬火法制得。这种方法有两个主要的弊端:一是因为玻璃中一些易挥发的组分,比如B 2O 3和Bi 2O 3,使得到的玻璃粉与最初设计的组分有偏差,进而导致最终样 品性能不及预期效果;另一个是这种方法并不适用于制备所有玻璃,比如CaO-SiO 2玻璃等。
发明内容
本发明的目的在于克服现有技术存在的不足之处而提供一种介电常数系列可调的低温共烧电介质材料及其制备方法。
为实现上述目的,本发明采取的技术方案为:一种介电常数系列可调的低温共烧电介质材料,所述低温共烧电介质材料包含氧化锆主相和硅基非晶相填充料,所述氧化锆主相和硅基非晶相填充料的重量之比为:氧化锆主相:硅基非晶相填充料40~65:35~60;所述SiO 2在所述硅基非晶相填充料中的重量百分含量≥50%。
氧化锆主相和硅基非晶相填充料组成的低温共烧电介质材料介电常数可调性增强,可实现介电常数在7~12的调控。
优选地,所述低温共烧电介质材料包含以下重量百分含量的组分:ZrO 240%~65%、SiO 227.03%~46.33%、Na 2O 0.27%~0.46%、K 2O 1.23%~2.11%、CaO 0.73%~1.26%和B 2O 35.73%~9.83%。该材料体系具有相似的烧结特性,共烧时可以避免层裂、翘曲等缺陷。
优选地,所述氧化锆主相为晶态或者非晶态。单斜ZrO 2(~20)和非晶ZrO 2(~22)的介电常数接近,选择任意一种或两种都能实现介电常数在7~12的调控。
优选地,所述硅基非晶相填充料为玻璃或者非晶相的混合物。选用硅基非晶相则不需要经过高温熔融过程,可以避免B 2O 3的挥发。
优选地,所述硅基非晶相填充料中,Na和K的原子比为:Na/K=1:2~4。在上述比值下可以减少介电损耗。
优选地,所述硅基非晶相填充料中Al元素的重量百分含量≤0.01%。
优选地,所述ZrO 2的颗粒尺寸为0.5μm~10μm。在ZrO 2的颗粒尺寸范围内 的比表面积合适,在该配比下能实现介电常数系列可调的低温共烧电介质材料的制备。更优选地,所述ZrO 2的颗粒尺寸为1μm~5μm。
所述硅基非晶相填充料可以由各组分的混合而成,也可以由湿化学法制备。优选地,所述硅基非晶相填充料的制备方法包括以下步骤:
S1:将正硅酸乙酯溶于酒精和去离子水的混合溶液中;
S2:调节溶液pH至1~3;
S3:加入玻璃粉元素对应的盐,在60~80℃加热并搅拌均匀;
S4:调节溶液pH至6~8使其凝胶,将凝胶烘干并在600~750℃煅烧,即得所述玻璃粉。
传统的熔融-淬火法制备的玻璃的组分往往会与最初设计的玻璃组分有偏差,这主要是由于玻璃中一些易挥发的组分在高温熔融过程中的挥发,比如B 2O 3和Bi 2O 3。采用上述方法可以在低温条件下(~700℃)合成硅基非晶相填充料,可有效抑制这些组分的挥发,使得合成的硅基非晶相填充料更接近设计的组分。
所述硅基非晶相填充料的制备方法中涉及的除硅以外其他元素对应的盐,优选可溶性盐,可以为Na、K、Ca、B的硝酸盐、醋酸盐等。
优选地,步骤S1中,所述正硅酸乙酯、酒精和去离子水的体积比为:1:5~15:1。
本发明的目的还在于提供所述介电常数系列可调的低温共烧电介质材料的制备方法,所述制备方法包括以下步骤:将硅基非晶相填充料和氧化锆主相按比例混合球磨6~24小时,然后在800~900℃下烧结,得所述介电常数系列可调的低温共烧陶瓷材料。
本发明的有益效果在于:本发明提供了一种介电常数系列可调的低温共烧电介质材料,本发明通过控制氧化锆主相和硅基非晶相填充料的比例,所得材料的介电常数在7~12较宽的范围内连续可调,而且介电损耗可低至0.1%@1MHz。该材料体系可在800~900℃烧结,能够与银电极兼容共烧,可以用作 低温共烧电介质材料。
附图说明
图1为实施例1~4所述样品的介电性能(@1MHz);
图2中,图(a)为实施例3中银电极与粉末干压成的生片在850℃共烧后的横截面的SEM图(b)为图(a)中各点位置的银含量。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
实施例1
本发明所述低温共烧电介质材料的制备方法的一种实施例,本实施例所述低温共烧电介质材料的制备方法包括以下步骤:
将9.3mL的正硅酸乙酯溶于酒精(100mL)和去离子水(9.3mL)的混合溶液中;为促进水解,加入硝酸调节溶液pH至1左右并搅拌;待溶液澄清后,加入0.07g NaNO 3、0.24g KNO 3、0.28g Ca(NO 3) 2·4H 2O和0.92g HBO 3溶液,剧烈搅拌并在75℃加热,然后加入氨水调节pH至7左右形成凝胶,所得凝胶烘干后在700℃煅烧2h,得硅基非晶相填充料;最后称量49.81%的ZrO 2(颗粒尺寸为5μm)和50.19%的硅基非晶相填充料进行球磨混料18小时,干燥后在7MPa下干压成片并在850℃烧结,得所述低温共烧陶瓷材料。
本实施例制得的低温共烧电介质材料的介电性能如图1所示,介电常数为8.89@1MHz,介电损耗为0.0012@1MHz。本实施例所述低温共烧电介质材料与银电极共烧后结合紧密,没有发生层裂、翘曲等现象。
实施例2
本发明所述低温共烧电介质材料的制备方法的一种实施例,本实施例所述低温共烧电介质材料的制备方法包括以下步骤:
将9.3mL的正硅酸乙酯溶于酒精(93mL)和去离子水(9.3mL)的混合溶液中;为促进水解,加入硝酸调节溶液pH至1左右并搅拌,待溶液澄清后,加入0.07g NaNO 3、0.24g KNO 3、0.28g Ca(NO 3) 2·4H 2O和0.92g HBO 3溶液,剧烈搅拌并在80℃加热;然后加入氨水调节pH至7左右形成凝胶,所得凝胶烘干后在700℃煅烧2h,得硅基非晶相填充料;最后称量55%的ZrO 2(颗粒尺寸为5μm)和45%的硅基非晶相填充料进行球磨混料15小时。干燥后在7MPa下干压成片并在850℃烧结,得所述低温共烧陶瓷材料。
本实施例制得的低温共烧电介质材料的介电性能如图1所示,介电常数为10.48@1MHz,介电损耗为0.0011@1MHz。本实施例所述低温共烧电介质材料与银电极共烧后结合紧密,没有发生层裂、翘曲等现象。
实施例3
本发明所述低温共烧电介质材料的制备方法的一种实施例,本实施例所述低温共烧电介质材料的制备方法包括以下步骤:
将9.3mL的正硅酸乙酯溶于酒精(100mL)和去离子水(9.3mL)的混合溶液中;为促进水解,加入硝酸调节溶液pH至1左右并搅拌;待溶液澄清后,加入0.07g NaNO 3、0.24g KNO 3、0.28g Ca(NO 3) 2·4H 2O和0.92g HBO 3溶液,剧烈搅拌并在60℃加热;然后加入氨水调节pH至7左右形成凝胶,所得凝胶烘干后在700℃煅烧2h,得硅基非晶相填充料;最后称量60%的ZrO 2(颗粒尺寸为5μm)和40%的硅基非晶相填充料进行球磨混料16小时,干燥后在7MPa下干压成片并在850℃烧结,得所述低温共烧陶瓷材料。
本实施例制得的低温共烧电介质材料的介电性能如图1所示,介电常数为11.11@1MHz,介电损耗为0.0006@1MHz。
为了验证该组分与银电极共烧的兼容性,我们用5%的聚乙烯醇缩丁醛(PVB)溶液对球磨后的氧化锆和玻璃的混合粉末进行造粒,然后在7MPa下干压成片,再在其表面涂上银电极,最后在850℃烧结。图2中,图(a)是银电极和生片共烧后横截面的SEM图,可以看到银电极和陶瓷结合紧密,没有脱层或者裂缝现象,图(b)显示银的含量在银电极/陶瓷界面处急剧下降,表明烧结过 程中没有发生扩散。
实施例4
本发明所述低温共烧电介质材料的制备方法的一种实施例,本实施例所述低温共烧电介质材料的制备方法包括以下步骤:
将9.3mL的正硅酸乙酯溶于酒精(100mL)和去离子水(9.3mL)的混合溶液中;为促进水解,加入硝酸调节溶液pH至1左右并搅拌;待溶液澄清后,加入0.07g NaNO 3、0.24g KNO 3、0.28g Ca(NO 3) 2·4H 2O和0.92g HBO 3溶液,剧烈搅拌并在60℃加热;然后加入氨水调节pH至7左右形成凝胶,所得凝胶烘干后在700℃煅烧2h,得硅基非晶相填充料;最后称量65%的ZrO 2(颗粒尺寸为5μm)和35%的硅基非晶相填充料进行球磨混料15小时,干燥后在7MPa下干压成片并在850℃烧结,得所述低温共烧陶瓷材料。
本实施例制得的低温共烧电介质材料的介电性能如图1所示,介电损耗为0.0004@1MHz。本实施例所述低温共烧电介质材料与银电极共烧后结合紧密,没有发生层裂、翘曲等现象。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种介电常数系列可调的低温共烧电介质材料,其特征在于,所述低温共烧电介质材料包含氧化锆主相和硅基非晶相填充料,所述氧化锆主相和硅基非晶相填充料的重量之比为:氧化锆主相:硅基非晶相填充料=40~65:35~60;所述SiO 2在所述硅基非晶相填充料中的重量百分含量≥50%。
  2. 如权利要求1所述介电常数系列可调的低温共烧电介质材料,其特征在于,所述低温共烧电介质材料包含以下重量百分含量的组分:ZrO 240%~65%、SiO 227.03%~46.33%、Na 2O 0.27%~0.46%、K 2O 1.23%~2.11%、CaO 0.73%~1.26%和B 2O 35.73%~9.83%。
  3. 如权利要求1或2所述介电常数系列可调的低温共烧电介质材料,其特征在于,所述氧化锆主相为晶态或者非晶态。
  4. 如权利要求1或2所述介电常数系列可调的低温共烧电介质材料,其特征在于,所述硅基非晶相填充料为玻璃或者非晶相的混合物。
  5. 如权利要求2所述介电常数系列可调的低温共烧电介质材料,其特征在于,所述硅基非晶相填充料中,Na和K的原子比为:Na/K=1:2~4。
  6. 如权利要求2所述介电常数系列可调的低温共烧电介质材料,其特征在于,所述硅基非晶相填充料中Al元素的重量百分含量≤0.01%。
  7. 如权利要求2所述介电常数系列可调的低温共烧电介质材料,其特征在于,所述ZrO 2的颗粒尺寸为0.5μm~10μm;优选地,所述ZrO 2的颗粒尺寸为1μm~5μm。
  8. 如权利要求1所述介电常数系列可调的低温共烧电介质材料,其特征在于,所述硅基非晶相填充料的制备方法包括以下步骤:
    S1:将正硅酸乙酯溶于酒精和去离子水的混合溶液中;
    S2:调节溶液pH至1~3;
    S3:加入玻璃粉元素对应的盐,在60~80℃加热并搅拌均匀;
    S4:调节溶液pH至6~8使其凝胶,将凝胶烘干并在600~750℃煅烧,即得所述玻璃粉。
  9. 如权利要求1所述介电常数系列可调的低温共烧电介质材料,其特征在于,步骤S1中,所述正硅酸乙酯、酒精和去离子水的体积比为:1:5~15:1。
  10. 如权利要求1~9中任一项所述介电常数系列可调的低温共烧电介质材料的制备方法,其特征在于,包括以下步骤:将硅基非晶相填充料和氧化锆主相按比例混合球磨6~24小时,然后在800~900℃下烧结,得所述介电常数系列可调的低温共烧陶瓷材料。
PCT/CN2020/082252 2020-03-25 2020-03-31 一种介电常数系列可调的低温共烧电介质材料及其制备方法 WO2021189506A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021529074A JP7333147B2 (ja) 2020-03-25 2020-03-31 誘電率段階調整可能な低温共焼結誘電体材料及びその製造方法
KR1020217015099A KR102621058B1 (ko) 2020-03-25 2020-03-31 유전상수 계열 조절이 가능한 저온 동시 소성 유전체 재료 및 이의 제조 방법
US17/246,742 US20210309578A1 (en) 2020-03-25 2021-05-03 Low temperature co-fired dielectric material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010221314.XA CN111302792B (zh) 2020-03-25 2020-03-25 一种介电常数系列可调的低温共烧电介质材料及其制备方法
CN202010221314.X 2020-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/246,742 Continuation-In-Part US20210309578A1 (en) 2020-03-25 2021-05-03 Low temperature co-fired dielectric material and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2021189506A1 true WO2021189506A1 (zh) 2021-09-30

Family

ID=71158920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082252 WO2021189506A1 (zh) 2020-03-25 2020-03-31 一种介电常数系列可调的低温共烧电介质材料及其制备方法

Country Status (5)

Country Link
US (1) US20210309578A1 (zh)
JP (1) JP7333147B2 (zh)
KR (1) KR102621058B1 (zh)
CN (1) CN111302792B (zh)
WO (1) WO2021189506A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057878A1 (en) * 2007-11-01 2009-05-07 Korea Institute Of Science And Technology Low fired dielectric ceramic composition with high strength and high q-value
JP2010132540A (ja) * 2008-12-05 2010-06-17 Korea Inst Of Science & Technology 低温焼成用低誘電率セラミック誘電体組成物及び低誘電率セラミック誘電体
KR20110082850A (ko) * 2010-01-12 2011-07-20 한국과학기술연구원 결정성 보로실리케이트계 유리프리트 및 이를 포함하는 저온 동시소성용 저유전율 유전체 세라믹 조성물
CN102633500A (zh) * 2012-04-18 2012-08-15 同济大学 一种介电可调的低温共烧陶瓷材料及其制备方法
CN110256060A (zh) * 2019-07-09 2019-09-20 嘉兴佳利电子有限公司 一种高频低介电常数低温共烧陶瓷材料以及制备方法
CN110436894A (zh) * 2019-06-27 2019-11-12 深圳顺络电子股份有限公司 一种低介电常数ltcc材料及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020270A (ja) 2001-07-04 2003-01-24 Taiyo Yuden Co Ltd 結晶化ガラス系低温焼結誘電体材料組成物
JP2003146744A (ja) 2001-11-13 2003-05-21 Ngk Insulators Ltd 低温焼成用誘電体磁器の比誘電率の管理方法、低温焼成用誘電体磁器および電子部品
KR101050990B1 (ko) 2003-01-24 2011-07-21 우베 고산 가부시키가이샤 유전체 세라믹 조성물, 유전체 세라믹 및 이를 사용한 적층세라믹 부품
JP2005035870A (ja) 2003-07-01 2005-02-10 Ngk Spark Plug Co Ltd 低温焼成誘電体磁器及びその製造方法
US20060162844A1 (en) * 2005-01-26 2006-07-27 Needes Christopher R Multi-component LTCC substrate with a core of high dielectric constant ceramic material and processes for the development thereof
US7241712B2 (en) * 2005-02-28 2007-07-10 National Taiwan University Technology Low-temperature sintered barium titanate microwave dielectric ceramic material
JP4780995B2 (ja) 2005-04-01 2011-09-28 京セラ株式会社 ガラスセラミック焼結体およびそれを用いた配線基板
CN100564308C (zh) * 2007-06-25 2009-12-02 南京工业大学 高频低损耗低温共烧陶瓷生料带及其制备方法
CN100522875C (zh) 2007-09-27 2009-08-05 同济大学 介电可调低温共烧复合微波陶瓷材料及其制备方法
CN101224984B (zh) * 2008-01-30 2010-06-02 浙江大学 溶胶-凝胶法低温合成超细ZnO-SiO2微波介质陶瓷粉体
KR20090117412A (ko) * 2008-05-09 2009-11-12 강릉원주대학교산학협력단 고품질계수 저유전율 유리-세라믹 조성물
KR101169566B1 (ko) * 2009-12-29 2012-07-31 한국세라믹기술원 저온동시소성세라믹스의 소성방법
CN101857375B (zh) * 2010-05-11 2011-12-28 清华大学 一种介电常数可调的低温共烧玻璃陶瓷复合材料及其制备方法
KR20120046390A (ko) * 2010-11-02 2012-05-10 임욱 저온 소성용 세라믹 조성물 및 이를 이용한 고반사율을 갖는 led 패키지용 세라믹 제조 방법
CN104744034B (zh) * 2013-12-27 2017-06-06 比亚迪股份有限公司 组合物和玻璃陶瓷复合材料及其骨架的制备方法和应用
CN103803968B (zh) 2014-01-09 2015-10-28 深圳顺络电子股份有限公司 一种中低介电常数低温共烧陶瓷材料及其制备方法
TWI648240B (zh) 2017-10-27 2019-01-21 信昌電子陶瓷股份有限公司 Low dielectric constant dielectric porcelain powder composition which is ultra-low temperature sintered in a reducing atmosphere and Preparation method and temperature-compensated multilayer ceramic capacitor thereof
CN108218406B (zh) * 2018-01-19 2020-12-25 北京元六鸿远电子科技股份有限公司 低介电常数低损耗的低温共烧陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057878A1 (en) * 2007-11-01 2009-05-07 Korea Institute Of Science And Technology Low fired dielectric ceramic composition with high strength and high q-value
JP2010132540A (ja) * 2008-12-05 2010-06-17 Korea Inst Of Science & Technology 低温焼成用低誘電率セラミック誘電体組成物及び低誘電率セラミック誘電体
KR20110082850A (ko) * 2010-01-12 2011-07-20 한국과학기술연구원 결정성 보로실리케이트계 유리프리트 및 이를 포함하는 저온 동시소성용 저유전율 유전체 세라믹 조성물
CN102633500A (zh) * 2012-04-18 2012-08-15 同济大学 一种介电可调的低温共烧陶瓷材料及其制备方法
CN110436894A (zh) * 2019-06-27 2019-11-12 深圳顺络电子股份有限公司 一种低介电常数ltcc材料及其制备方法
CN110256060A (zh) * 2019-07-09 2019-09-20 嘉兴佳利电子有限公司 一种高频低介电常数低温共烧陶瓷材料以及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GONG XUE-WEI: "Research on Thermal Properties of Glass/ceramic Composite Substrate Materials of LTCC", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 1 January 2013 (2013-01-01), pages 1 - 76, XP055853179 *

Also Published As

Publication number Publication date
JP7333147B2 (ja) 2023-08-24
KR102621058B1 (ko) 2024-01-04
US20210309578A1 (en) 2021-10-07
CN111302792B (zh) 2021-06-22
CN111302792A (zh) 2020-06-19
KR20210122226A (ko) 2021-10-08
JP2022529860A (ja) 2022-06-27

Similar Documents

Publication Publication Date Title
WO2018010633A1 (zh) 一种cbs系ltcc材料及其制备方法
CN109721250B (zh) 用低熔点玻璃粉制备发光玻璃陶瓷的方法
US20200123059A1 (en) Boron aluminum silicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and preparation methods thereof
US10501367B2 (en) Ceramics and glass ceramics exhibiting low or negative thermal expansion
WO2009086724A1 (zh) 低温共烧陶瓷粉及其专用原料与应用
EP0163200A2 (en) Low expansion ceramic material
EP2543646A1 (en) Luminous nano-glass-ceramics used as white led source and preparing method of luminous nano-glass-ceramics
CN112194483B (zh) 一种高强度钙镁钛系微波介质陶瓷材料及其制备方法
CN102531580A (zh) 一种利用铝硅复合氧化物包覆纳米钛酸锶钡介质储能材料及其制备方法
CN108947257A (zh) 一种堇青石基微晶玻璃材料及其制备方法
CN113582667B (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN114394827A (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
JP3737773B2 (ja) 誘電体セラミック組成物
Wei et al. Structure and sintering behavior of BaO–SrO–B2O3–SiO2 sealing glass for Al2O3 ceramic substrates
CN101585660B (zh) 一种半导体钝化封装用铅硅铝系玻璃粉的制备方法
WO2021189506A1 (zh) 一种介电常数系列可调的低温共烧电介质材料及其制备方法
CN103395994A (zh) 一种低温共烧陶瓷材料及其制备方法
CN103936284B (zh) 玻璃料组合物、玻璃料糊剂组合物以及电气元件
CN110128133B (zh) 钛酸钡钙基无铅压电陶瓷及其制备方法
CN108997006B (zh) 一种低热膨胀ltcc基板材料及其制备方法
CN114835480A (zh) 一种超低介电常数且近零谐振频率温度系数的堇青石系微波介电材料及其制备方法
CN113683404A (zh) 一种低温共烧陶瓷粉体材料及其制备方法和应用
JPH0557229B2 (zh)
CN112661508A (zh) 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN112266238A (zh) 一种微波器件用的低介电常数陶瓷材料及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021529074

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20927339

Country of ref document: EP

Kind code of ref document: A1