WO2021187160A1 - 炭素繊維とその製造方法および炭素繊維複合材料 - Google Patents

炭素繊維とその製造方法および炭素繊維複合材料 Download PDF

Info

Publication number
WO2021187160A1
WO2021187160A1 PCT/JP2021/008661 JP2021008661W WO2021187160A1 WO 2021187160 A1 WO2021187160 A1 WO 2021187160A1 JP 2021008661 W JP2021008661 W JP 2021008661W WO 2021187160 A1 WO2021187160 A1 WO 2021187160A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
peak intensity
fibers
fiber
elongation
Prior art date
Application number
PCT/JP2021/008661
Other languages
English (en)
French (fr)
Inventor
田中文彦
須賀勇貴
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP21772130.7A priority Critical patent/EP4095293A1/en
Priority to US17/801,834 priority patent/US20230087492A1/en
Priority to JP2022508215A priority patent/JPWO2021187160A1/ja
Publication of WO2021187160A1 publication Critical patent/WO2021187160A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Definitions

  • the present invention relates to a carbon fiber having high elongation excellent in energy absorption, a manufacturing method for manufacturing the carbon fiber, and a carbon fiber composite material using the carbon fiber.
  • Polyacrylonitrile-based carbon fiber is a lightweight, high-strength, high elastic modulus material that is indispensable for reducing the weight of members.
  • the deformation of carbon fibers is characterized by elastic deformation without plastic deformation. Therefore, the carbon fiber has an advantage that the elongation region that can be used is larger than that of the metal having a large plastic deformation.
  • carbon fiber composite materials may be required to have both light weight and impact resistance.
  • the composition design of the resin used for the matrix and the sizing agent for changing the interface characteristics between the carbon fiber and the matrix resin are being studied.
  • Patent Document 1 carbon fibers having a maximum strand strength of 9.0 GPa (Example 8) are obtained by making the precursor fibers finer and reducing defects.
  • Patent Document 2 carbon fibers having a maximum strand strength of 8.0 GPa (Example 14) and an elongation of 2.60% (Comparative Examples 4 and 5) can be obtained by fineness of the precursor fiber and subsequent stretching. ing.
  • Patent Document 3 carbon fibers having a maximum strand strength of 8.4 GPa (Example 3) are obtained by increasing the fracture toughness value of the carbon fibers.
  • Patent Document 4 a carbon fiber having a maximum elongation of 2.68% (Example 15) is obtained by using a technique in which the strand strength does not easily decrease even if the single fiber diameter of the carbon fiber is increased.
  • high elongation is aimed at by adjusting manufacturing conditions such as polymer, silk reeling, and flame resistance, and carbon fibers having a maximum elongation of 2.36% (Example 1) are obtained.
  • carbon fibers having a maximum elongation of 2.60% (Example 4) are obtained by lowering the maximum temperature of the carbonization step with the aim of maximizing the elongation of the carbon fibers. There is.
  • Patent Document 7 describes that carbon fibers having high strength and high elongation can be obtained by adjusting the surface characteristics of the carbon fibers, the elongation of the carbon fibers is about 2.1%, which means that the carbon fibers have high strength. It was a general technical level of carbon fiber.
  • carbon fibers having a maximum elongation of 2.71% are obtained by adding boron to the polymer.
  • Patent Document 9 adds a modifier to the thermoplastic resin which is a matrix.
  • the single fiber diameter of the carbon fiber is small, the strain energy per single fiber is small, and the strand elastic modulus is high and the elongation is low, so that the impact resistance is sufficient in a bending stress field.
  • the strand elastic modulus is high and the elongation is low, so that the impact resistance is sufficient in a bending stress field.
  • the impact resistance is sufficient in a bending stress field.
  • Patent Document 2 has a problem that the diameter of a single fiber of carbon fiber is small, the strain energy per single fiber is small, and a satisfactory elongation is not obtained.
  • Patent Document 3 has a problem that a satisfactory elongation is not obtained, and because the strand elastic modulus is high, sufficient impact resistance cannot be ensured in a bending stress field.
  • Patent Document 5 could not secure sufficient impact resistance.
  • thermoplastic resin is designed for the impact resistance of the carbon fiber composite material, there is no mention of the mechanical properties of the carbon fiber itself.
  • An object of the present invention is to provide a carbon fiber capable of improving the impact resistance of a carbon fiber composite material.
  • the carbon fiber of the present invention has a strand elastic modulus of 240 to 300 GPa, an elongation of 2.65% or more, and a strain energy density of 95 J / mm 3 or more.
  • a method for manufacturing a carbon fiber of the present invention is a polyacrylonitrile-based carbon fiber precursor fiber, the peak intensity ratio of 1,453Cm -1 to the peak intensity of 1,370Cm -1 in the infrared spectra 0.98 ⁇
  • the impact resistance of the carbon fiber composite material can be improved.
  • the strain energy density is the area of the stress-strain curve obtained by the tensile property test of the resin-impregnated strand (hereinafter, may be abbreviated as strand).
  • Value is the strain energy density. Since the strain energy density of the carbon fiber is large, the impact resistance of the obtained carbon fiber composite material can be expected to be improved.
  • Carbon fiber of the present invention is the strain energy density is 95 J / mm 3 or more, preferably 100 J / mm 3 or more, more preferably 105 J / mm 3 or more, further preferably 110J / mm 3 or more. If the strain energy density is 95 J / mm 3 or more, energy absorption is often sufficient and there is no upper limit, but if it is 140 J / mm 3 , the value of energy absorption is saturated in balance with other characteristics. There are times when.
  • the strain energy density can be adjusted by controlling the carbon fiber production conditions so as to achieve both strand strength and elongation.
  • the carbon fiber of the present invention has a strand elastic modulus of 240 to 300 GPa, preferably 250 to 290 GPa, and more preferably 250 to 280 GPa.
  • the strand elastic modulus is an index showing the difficulty of deformation when a load is applied to the carbon fiber.
  • the strand elastic modulus of the carbon fiber can be evaluated according to the tensile test of the resin-impregnated strand described in JIS R7608: 2004.
  • the stress-strain curve of carbon fibers shows downward convex non-linearity, but in the present invention, the strand elastic modulus in the strain range of 0.1 to 0.6% is used.
  • the strand elastic modulus is 240 GPa or more, the strain energy density can be easily increased.
  • the strand elastic modulus When the strand elastic modulus is 300 GPa or less, the compressive strength of the carbon fiber is high and the energy absorption is high.
  • the strand elastic modulus can be controlled by the maximum temperature of the carbonization step, the heat treatment time at the maximum temperature, the rate of temperature rise, the stretching ratio, and the like.
  • the carbon fiber of the present invention has a strand strength of preferably 7.5 GPa or more, more preferably 7.8 GPa or more, and further preferably 8.0 GPa or more.
  • Strand strength is an index showing the difficulty of breaking when a load is applied to carbon fibers.
  • the strand strength of the carbon fiber can be evaluated according to the tensile test of the resin-impregnated strand described in JIS R7608: 2004. When the strand strength is 7.5 GPa or more, the strain energy density can be easily increased. There is no upper limit to the strand strength, but if it is 8.8 GPa, the strain energy density tends to be at a satisfactory level.
  • the strand strength can be controlled by manufacturing according to the carbon fiber manufacturing method described later, such as suppressing defects and improving the fracture toughness value.
  • the carbon fiber of the present invention has an elongation of 2.65% or more, preferably 2.75% or more, more preferably 2.85% or more, and further preferably 2.95% or more.
  • the elongation of the carbon fiber can be evaluated according to the tensile test of the resin-impregnated strand described in JIS R7608: 2004. It is difficult to measure the elongation of carbon fibers because the stress-strain curve shows non-linearity, but in this tensile test, the elongation is calculated by dividing the above-mentioned strand strength by the strand elastic modulus. When the elongation is 2.65% or more, the strain energy density can be easily increased. There is no upper limit to the elongation, but 3.20% is often sufficient to increase the strain energy density.
  • the elongation of the carbon fiber can be adjusted by controlling the production conditions of the carbon fiber so as to balance the strand strength and the strand elastic modulus.
  • the carbon fiber of the present invention has a single fiber diameter of preferably 4.0 ⁇ m or more, more preferably 4.5 ⁇ m or more, still more preferably 5.0 ⁇ m or more, and particularly preferably 5.3 ⁇ m or more. Since the breaking load per single fiber is determined from the strand strength and the cross-sectional area of the single fiber, the single fiber diameter affects the breaking load per single fiber. Further, the larger the diameter of the single fiber, the higher the compressive strength of the single fiber of the carbon fiber tends to be, and the larger the energy absorption tends to be. Therefore, if the diameter of the single fiber is 4.0 ⁇ m or more, energy absorption tends to be large.
  • the single fiber diameter of carbon fibers can be calculated from the total fineness, density and number of filaments of carbon fibers. When the number of filaments is unknown, carbon fibers are embedded in a resin, the cross section is observed with an optical microscope, the cross-sectional area of the single fibers is obtained by image processing, and the cross-sectional area is calculated as a circle-equivalent diameter. The fiber diameter can be evaluated. If the two measurement methods do not match, the former value is adopted.
  • the single fiber diameter can be controlled by the diameter of the precursor fiber and the draw ratio in the subsequent steps.
  • the carbon fiber of the present invention satisfies all of the above ranges in single fiber diameter, strand elastic modulus, elongation and strain energy density in order to enhance the impact resistance of the carbon fiber composite material.
  • the carbon fiber of the present invention has a total fineness of preferably 0.8 g / m or more, and more preferably 0.9 g / m or more.
  • the total fineness is the mass per 1 m of the fiber bundle of the carbon fiber, and is related to the single fiber diameter of the carbon fiber and the number of filaments. The higher the total fineness, the easier it is to increase the productivity of the carbon fiber composite material. Therefore, when the total fineness is 0.8 g / m or more, a carbon fiber composite material having excellent impact resistance can be obtained with good productivity. When the total fineness is 2.0 g / m or less, a carbon fiber composite material having an appropriate thickness can be obtained, and as a result, impact resistance can be enhanced, which is preferable.
  • the total fineness can be controlled by adjusting the diameter of the single fiber or the number of filaments, but if the number of filaments is too large, uniform production becomes difficult and the strand strength tends to decrease.
  • the carbon fiber of the present invention preferably has a density of 1.75 to 1.85 g / cm 3 .
  • the lower limit of the density is more preferably 1.78 g / cm 3 .
  • the upper limit of the density is more preferably 1.83 g / cm 3 .
  • the density of carbon fibers can be controlled by the stretching ratio and the rate of temperature rise in the carbonization step.
  • polyacrylonitrile-based carbon fiber precursor fibers (hereinafter, may be abbreviated as precursor fibers) are converted into flame-resistant fibers in an oxidizing atmosphere at 200 to 310 ° C.
  • precursor fibers polyacrylonitrile-based carbon fiber precursor fibers
  • a method is known in which a carbonization step, a precarbonization step of precarbonizing in an inert atmosphere of 500 to 1,200 ° C., and a carbonization step of carbonizing in an inert atmosphere of 1,000 to 1,500 ° C. are performed. ing.
  • a polyacrylonitrile-based polymer is preferably used as a raw material for producing the precursor fiber.
  • the polyacrylonitrile-based polymer is a polymer that accounts for at least 90 to 100 mol% of the polymer to which acrylonitrile is applied.
  • the polyacrylonitrile-based polymer preferably contains a copolymer component from the viewpoint of improving the strand strength.
  • the monomer that can be used as the copolymerization component a monomer containing at least one carboxylic acid group or an amide group is preferably used from the viewpoint of promoting flame resistance.
  • the yarn-making step includes a spinning step in which a spinning solution is discharged from a spinneret into a coagulation bath by a dry-wet spinning method to spin, a water washing step in which the fibers obtained in the spinning step are washed and stretched in a water bath, and the water washing. It comprises a dry heat treatment step of drying and heat-treating the fibers obtained in the step, and preferably includes a steam stretching step of steam-stretching the fibers obtained in the dry heat treatment step, if necessary.
  • the spinning solution is obtained by dissolving the above-mentioned polyacrylonitrile-based polymer in a solvent in which polyacrylonitrile such as dimethyl sulfoxide, dimethylformamide and dimethylacetamide is soluble.
  • the coagulation bath contains a solvent such as dimethyl sulfoxide, dimethylformamide and dimethylacetamide used as a solvent for the spinning solution, and a so-called coagulation promoting component.
  • a solvent such as dimethyl sulfoxide, dimethylformamide and dimethylacetamide used as a solvent for the spinning solution
  • a so-called coagulation promoting component As the solidification promoting component, a component that does not dissolve the polyacrylonitrile-based polymer and is compatible with the solvent used in the spinning solution can be used. Specifically, it is preferable to use water as a coagulation promoting component.
  • the water washing bath in the water washing step it is preferable to use a water washing bath having a temperature of 30 to 98 ° C. and having a plurality of stages. Further, the stretching ratio in the washing step is preferably 2 to 6 times. Then, for the purpose of improving the strand strength, an oil agent made of silicone or the like is preferably applied to the fibers. As such a silicone oil agent, one containing amino-modified silicone is preferably used.
  • a known method can be used for the dry heat treatment step.
  • the drying temperature is exemplified by 100 to 200 ° C.
  • steam stretching is performed as necessary to obtain a precursor fiber suitable for obtaining the carbon fiber of the present invention.
  • the stretching ratio is preferably 2 to 6 times in pressurized steam.
  • the ratio of the peak intensity of 1,453Cm -1 to the peak intensity of 1,370Cm -1 in the infrared spectra 0. range of 70 to 0.75 and to control such that the ratio of the peak intensity of 1,254Cm -1 to the peak intensity of 1,370Cm -1 in the infrared spectrum is in the range of 0.50 to 0.65 Is preferable.
  • the peak of 1,453 cm -1 in the infrared spectrum is derived from an alkene and decreases as flame resistance progresses.
  • the peak of 1,370 cm -1 and the peak of 1,254 cm -1 are derived from the flame-resistant structure and increase as the flame-resistant structure progresses.
  • the ratio of the peak intensity of 1,453 cm -1 to the peak intensity of 1,370 cm -1 is about 0.63 to 0.69, and the present invention
  • the obtained flame-resistant fiber leaves more alkene-derived structures than usual.
  • the ratio of the peak intensity of 1,254 cm -1 to the peak intensity of 1,370 cm -1 decreases with the progress of flame resistance, and the initial decrease is particularly large, but depending on the flame resistance conditions, it may take longer.
  • the peak intensity ratio may not be 0.65 or less.
  • the amount of the copolymerization component contained in the polyacrylonitrile-based polymer constituting the precursor fiber is small, and the precursor fiber
  • the conditions may be set mainly focusing on the high degree of crystal orientation, the reduction of the single fiber fineness of the precursor fiber, and the increase of the flame resistance temperature in the latter half.
  • the oxidation step the ratio of the peak intensity of 1,453Cm -1 to the peak intensity of 1,370Cm -1 in the infrared spectra from 0.98 to 1.10 range and made up to 8-25 minutes
  • the first flame-resistant step which is preferably flame-resistant for 8 to 15 minutes, and the fibers obtained by the first flame-resistant step have a peak of 1,453 cm -1 with respect to a peak intensity of 1,370 cm -1 in the infrared spectrum.
  • the ratio range of 0.70 to 0.75 of intensity, and the ratio of 1,254Cm -1 peak intensity to the peak intensity of 1,370Cm -1 in the infrared spectra in the range of 0.50 to 0.65 It is preferable to carry out in two steps of the second flame resistance step of flame resistance for 5 to 14 minutes, preferably 5 to 10 minutes.
  • the flame resistance temperature in the first flame resistance step is preferably 200 to 250 ° C., more preferably 230 to 250 ° C. in order to control the above-mentioned infrared spectrum range.
  • the flame resistance temperature in the second flame resistance step is higher than that in the first flame resistance step.
  • the flame resistance temperature may be adjusted to be high, but the appropriate flame resistance temperature depends on the characteristics of the precursor fiber. It is preferable that the flame resistance temperature is preferably 280 to 310 ° C., more preferably 280 to 300 ° C., and even more preferably 285 to 295 ° C. in order to control the above-mentioned infrared spectrum range.
  • the flame resistance temperature does not have to be constant, and a multi-step temperature setting may be used. In order to increase the strand strength of the obtained carbon fiber, it is preferable that the flame resistance temperature is high and the flame resistance time is shortened.
  • flame resistance means that the precursor fiber is heat-treated at 200 to 310 ° C. in an oxygen-containing atmosphere.
  • the flame resistance time described here means the time during which the fibers stay in the flame resistance furnace.
  • the flame-resistant fiber means a fiber after the flame-resistant step and before the preliminary carbonization step.
  • the peak intensity described here is the absorbance at each wavelength after a small amount of flame-resistant fiber is sampled and the infrared spectrum is measured and the spectrum obtained by baseline correction is performed. Not performed. Further, the concentration of the sample when measuring the infrared spectrum is diluted with KBr so as to be 0.67% by mass. In this way, the infrared spectrum may be measured each time the flame resistance condition setting is changed, and the conditions may be examined according to a preferable manufacturing method described later. By appropriately controlling the infrared spectrum peak intensity ratio of the flame-resistant fiber, the strand strength of the obtained carbon fiber can be controlled.
  • the total processing time of the flameproofing step can be appropriately selected in the range of preferably 13 to 20 minutes.
  • the flame resistance of the obtained flame resistant fiber is preferably in the range of 1.28 to 1.32, more preferably 1.30 to 1.32.
  • the treatment time of the more preferable flame resistance step depends on the flame resistance temperature. If the specific gravity of the flame-resistant fiber is not 1.28 or more, the strand strength of the carbon fiber may decrease. If the specific gravity of the flame-resistant fiber is 1.32 or less, the strand strength can be increased.
  • the specific gravity of the flame-resistant fiber is controlled by the treatment time of the flame-resistant process and the flame-resistant temperature.
  • the timing for switching from the first flame resistance step to the second flame resistance step is preferably in the range of 1.21 to 1.23 for the specific gravity of the fiber.
  • the conditions of the flame resistance step are controlled with priority given to satisfying the range of the infrared spectrum intensity ratio.
  • the preferable range of the flame resistance treatment time and the flame resistance temperature varies depending on the characteristics of the precursor fiber and the copolymerization composition of the polyacrylonitrile-based polymer.
  • the obtained flame-resistant fiber is preferably subjected to 1. Heat treat until 5 to 1.8.
  • the draw ratio of the preliminary carbonization step is preferably 1.16 to 1.25.
  • the draw ratio in the precarbonization step is 1.16 or more, the strand elastic modulus tends to increase and the strand strength tends to increase.
  • the draw ratio in the preliminary carbonization step is 1.25 or less, the strand elastic modulus can be easily suppressed to 300 GPa or less.
  • the precarbonized fibers are placed in an inert atmosphere, preferably at a maximum temperature of 1,000 to 1,500 ° C., more preferably at a maximum temperature of 1,100 to 1,300 ° C., and even more preferably at a maximum temperature of 1,150 to 1, Carbonizes at 250 ° C.
  • the maximum temperature of the carbonization step is preferably low from the viewpoint of increasing the elongation of the obtained carbon fiber, but if it is too low, the strand strength may decrease, and it is preferable to set it in consideration of both.
  • the processing time X at the maximum temperature of the carbonization step is preferably 20 to 60 seconds, more preferably 20 to 38 seconds.
  • the processing time X at the maximum temperature of the carbonization step is the time required for the fiber to pass through the maximum temperature section in the carbonization furnace.
  • Carbonization furnaces often have multiple compartments controlled by a heater block to gradually increase the temperature. Each compartment is calculated as a constant temperature.
  • the shorter the treatment time at the maximum temperature the lower the strand elastic modulus can be controlled. Therefore, the treatment time X is preferably 60 seconds or less. When the processing time X is 20 seconds or more, a stable strand elastic modulus can be easily obtained.
  • the temperature rising rate Y in the carbonization step is preferably 0.40 to 1.1 ° C./sec, more preferably 0.40 to 1.0 ° C./sec, and even more preferably 0.40 to 0. 60 ° C./sec.
  • the rate of temperature rise in the carbonization step affects the strand strength because it affects the rate of desorption of the decomposed gas.
  • the temperature rising rate is a region in which the temperature of the compartment exceeds 1,000 ° C. when the fiber passes through a plurality of compartments controlled so that the temperature rises stepwise in the carbonization furnace. Is defined as the rate at which the fibers pass on average per second. Specifically, for example, suppose that it takes 100 seconds for the fiber to pass from entering the section having a temperature of 1,000 ° C.
  • the heating rate is 1.0 ° C./sec.
  • the rate of temperature rise is It becomes 1.0 ° C./sec.
  • the maximum temperature of the carbonization process is set to less than 1,100 ° C., the rate of temperature rise to the maximum temperature is utilized. That is, when the maximum temperature is 1,050 ° C., it takes 50 seconds for the fiber to pass from entering the section having a temperature of 1000 ° C. in the carbonization furnace to reaching the next section having a temperature of 1,050 ° C.
  • the heating rate becomes 1.0 ° C./sec.
  • the temperature of the first section in the carbonization furnace is preferably 1,000 ° C. or lower. If the rate of temperature rise is 0.40 ° C./sec or higher, the strand elastic modulus can be stably obtained. If the rate of temperature rise is within 1.1 ° C./sec, it is easy to suppress a decrease in strand strength.
  • the processing time X and the heating rate Y at the maximum temperature of the carbonization step are preferably in the range of 0.015X ⁇ Y ⁇ 0.015X + 0.6.
  • This formula was derived from the results of the inventor's study to increase the elongation of carbon fibers. By adjusting the treatment time X and the temperature rising rate Y, respectively, and adjusting to such a relationship, it is easy to increase the elongation of the carbon fibers.
  • the carbon fibers obtained as described above are preferably further subjected to electrolytic surface treatment, and oxygen-containing functional groups are introduced.
  • electrolytic surface treatment any of vapor phase oxidation, liquid phase oxidation and liquid phase electrolytic oxidation is used, but liquid phase electrolytic oxidation is preferably used from the viewpoint of high productivity and uniform treatment.
  • the method of liquid phase electrolytic oxidation is not particularly limited, and a known method may be used.
  • sizing treatment can be performed to impart focusing property to the obtained carbon fibers.
  • a sizing agent having good compatibility with the matrix resin can be appropriately selected according to the type of the matrix resin used for the carbon fiber composite material.
  • the carbon fiber composite material of the present invention includes the above-mentioned carbon fiber of the present invention and a matrix resin.
  • the carbon fiber preferably used in the present invention may be continuous fiber or discontinuous fiber.
  • the content of carbon fiber contained in the carbon fiber composite material is preferably 15 to 65% by volume.
  • the matrix resin used in the carbon fiber composite material of the present invention may be a thermosetting resin or a thermoplastic resin.
  • thermosetting resin examples include epoxy resin, vinyl ester resin, phenol resin, unsaturated polyester resin and the like. Any resin may be used as long as it causes a cross-linking reaction by heat to form at least a partial three-dimensional cross-linked structure.
  • a prepreg can be exemplified.
  • the form of the thermosetting resin in the prepreg it is necessary to crimp the prepregs to each other or to the mold at the time of laminating the prepregs, so that it is preferably in a semi-cured state having excellent tackiness.
  • an epoxy resin is preferable in consideration of the tackiness in the step of attaching the prepreg and the mechanical properties of the molded product.
  • Examples of the molding method of the carbon fiber composite material when using a thermosetting resin include a method of autoclaving a prepreg, a method of molding a preform such as a woven fabric by resin transfer molding, and a method of molding by filament winding. ..
  • the thermoplastic resin preferably used in the present invention is preferably at least one thermoplastic resin selected from the group consisting of polyolefin, polyamide, polyester, polycarbonate, and polyarylene sulfide. Polyamide and polyarylene sulfide are more preferable from the viewpoint of impact resistance of the obtained carbon fiber composite material.
  • the impact resistance of the carbon fiber composite material obtained without restrictions on the type of thermoplastic resin can be enhanced, so that a wide range of thermoplastic resins can be selected.
  • the carbon fiber bundle and the thermoplastic resin are integrated by a known method such as melt impregnation, melt kneading, and slurry impregnation, and then used as continuous fibers.
  • a known method such as melt impregnation, melt kneading, and slurry impregnation, and then used as continuous fibers.
  • it may be cut into a constant length of 1 to 50 mm with a device such as a pelletizer or a strand cutter and used as a discontinuous fiber.
  • the final carbon fiber composite material can be obtained by molding a continuous fiber tape or a discontinuous fiber base material composed of a carbon fiber bundle and a thermoplastic resin.
  • a known molding method such as press molding, injection molding, injection compression molding, compression molding, vacuum molding, and extrusion molding.
  • the method for measuring various physical property values used in the present invention is as follows.
  • Total fineness The carbon fiber to be measured is sampled for a length of 10 m, dried at 120 ° C. for 2 hours, and then the measured mass is divided by 10, to obtain the total fineness, which is the mass per 1 m.
  • ⁇ Density> The carbon fiber to be measured is allowed to dry at 120 ° C. for 2 hours before measurement.
  • a dry automatic density meter is used for density measurement, nitrogen is used as a measurement medium, a sample container is a 10 cc type, and the sample volume is adjusted to 3 to 6 cc in volume. The measurement is performed three times, and the average value is used. In this measurement, an Accupic 1330 dry automatic density meter manufactured by Shimadzu Corporation was used.
  • the strand strength, strand elastic modulus and elongation of the carbon fiber are determined according to the resin impregnated strand test method of JIS R7608: 2004 according to the following procedure.
  • As the curing conditions normal pressure, temperature 125 ° C., and time 30 minutes are used.
  • the strand strength, strand elastic modulus and elongation of 10 carbon fiber strands are measured, and the average value thereof is used.
  • the strain range when calculating the strand elastic modulus is 0.1 to 0.6%.
  • the carbon fibers to be tested are melt-kneaded with polyphenylene sulfide resin (“Trelina” (registered trademark) M2888 manufactured by Toray Industries, Inc.), which is a thermoplastic resin, so as to have a mass ratio of 30:70 and pelletized.
  • Telina registered trademark
  • M2888 manufactured by Toray Industries, Inc.
  • the obtained pellets are injection-molded to prepare an ISO type dumbbell test piece as a molded product.
  • Example 1 A coagulated yarn was obtained by a dry-wet spinning method in which a spinning solution containing a polyacrylonitrile-based copolymer and dimethyl sulfoxide as a solvent was once discharged into the air from a spinneret and introduced into a coagulation bath consisting of an aqueous solution of dimethyl sulfoxide.
  • the first flame resistance step is performed under the conditions of a flame resistance temperature of 250 ° C. and the flame resistance time of 11 minutes
  • the second flame resistance step is performed under the conditions of a flame resistance temperature of 280 ° C. and a flame resistance time of 6 minutes.
  • the carbon fiber precursor fiber bundle was subjected to flame resistance treatment while being stretched at a draw ratio of 1 in an air oven to obtain flame resistant fibers.
  • the ratio of the peak intensity of 1,453Cm -1 to the peak intensity of 1,370Cm -1 in the infrared spectrum of the fibers after the first oxidation step was 1.04.
  • the ratio of peak intensities of 1 was 0.61.
  • the obtained flame-resistant fiber was pre-carbonized at a draw ratio of 1.20 in a nitrogen atmosphere at a maximum temperature of 800 ° C. to obtain a pre-carbonized fiber.
  • the obtained preliminary carbonized fiber was carbonized in a nitrogen atmosphere at a maximum temperature of 1,200 ° C. and a drawing ratio of 0.950. At this time, the rate of temperature rise in the carbonization step was 0.45 ° C./sec.
  • Table 1 shows the physical characteristics of the obtained carbon fibers that have been subjected to surface treatment and sizing agent coating treatment to obtain the final carbon fibers.
  • Examples 2 to 11, Comparative Examples 1 to 7 Carbon fibers were obtained in the same manner as in Example 1 except that the draw ratio of the pre-carbonization step, the draw ratio of the carbonization step, the maximum temperature, the treatment time at the maximum temperature, and the rate of temperature rise were changed to those shown in Table 1. .. The obtained physical properties are shown in Table 1.
  • Example 1 except that the first flame resistance step uses the conditions of the flame resistance temperature of 240 ° C. and the flame resistance time of 82 minutes, and the second flame resistance step uses the conditions of the flame resistance temperature of 250 ° C. and the flame resistance time of 85 minutes. In the same manner as above, flame resistant fibers were obtained.
  • the ratio of the peak intensity of 1,453Cm -1 to the peak intensity of 1,370Cm -1 in the infrared spectrum of the fibers after the first oxidation step was 0.68.
  • the ratio of peak intensities of 1 was 0.56.
  • the obtained flame-resistant fiber was pre-carbonized at a draw ratio of 1.17 in a nitrogen atmosphere at a maximum temperature of 800 ° C. to obtain a pre-carbonized fiber.
  • the obtained preliminary carbonized fiber was carbonized in a nitrogen atmosphere at the maximum temperature shown in Table 1, the time thereof, and a draw ratio of 0.980. At this time, the rate of temperature rise in the carbonization step was 0.35 ° C./sec.
  • Table 1 shows the physical characteristics of the obtained carbon fibers that have been subjected to surface treatment and sizing agent coating treatment to obtain the final carbon fibers.
  • the carbon fiber of the present invention can obtain a carbon fiber composite material having high impact resistance and large energy absorption with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Fibers (AREA)

Abstract

ストランド弾性率が240~300GPa、伸度2.65%以上、かつ歪みエネルギー密度が95J/mm3以上である炭素繊維。炭素繊維複合材料の耐衝撃性を改善できる炭素繊維を提供する。

Description

炭素繊維とその製造方法および炭素繊維複合材料
 本発明は、エネルギー吸収に優れる高伸度の炭素繊維とそれを製造する製造方法、およびそれを用いた炭素繊維複合材料に関するものである。
 ポリアクリロニトリル系炭素繊維は軽量かつ高強度・高弾性率の材料であり、部材の軽量化には欠かせない材料である。また、炭素繊維の変形は塑性変形がなく、弾性変形であることも特徴である。そのため、塑性変形の大きな金属より、炭素繊維は使用できる伸度領域が大きい利点がある。
 近年では、炭素繊維複合材料に軽量性と耐衝撃性の両立が要求される場合がある。この要求に対応するため、マトリックスに用いられる樹脂の組成設計や炭素繊維とマトリックス樹脂の界面特性を変化させるためのサイジング剤などが検討されている。
 炭素繊維のストランド強度またはストランド伸度向上の試みはこれまでも行われている。特許文献1では前駆体繊維を細繊度化して、欠陥を減少させることで最大でストランド強度9.0GPa(実施例8)の炭素繊維を得ている。特許文献2でも同様に前駆体繊維の細繊度化とその後の延伸により、最大でストランド強度8.0GPa(実施例14)、伸度2.60%(比較例4,5)の炭素繊維を得ている。特許文献3では炭素繊維の破壊靭性値を高めることにより最大でストランド強度8.4GPa(実施例3)の炭素繊維を得ている。特許文献4では炭素繊維の単繊維直径を大きくしてもストランド強度が低下しにくい技術を用いて、最大で伸度2.68%(実施例15)の炭素繊維を得ている。特許文献5では、ポリマー、製糸、耐炎化等の製造条件を調整することにより高伸度化を狙っており、最大で伸度2.36%(実施例1)の炭素繊維を得ている。特許文献6では、炭素繊維の伸度を最大化することを狙って、炭素化工程の最高温度を低下させるなどで、最大で伸度2.60%(実施例4)の炭素繊維を得ている。特許文献7では、炭素繊維の表面特性を調整することにより高強度・高伸度の炭素繊維を得ることを記載しているものの、炭素繊維の伸度は2.1%程度であり、高強度炭素繊維の一般的な技術レベルであった。特許文献8では、ポリマー中にホウ素を添加することなどで最大で伸度2.71%の炭素繊維(実施例4)を得ている。
 また、炭素繊維複合材料の耐衝撃性を高める検討として、特許文献9では、マトリックスである熱可塑性樹脂に改質剤を加えることを行っている。
特開平11-241230号公報 国際公開第2008-40963号 特開2017-137614号公報 国際公開97/45576号 特開2008-163537号公報 特開2005-256211号公報 特開2002-69754号公報 特開平11-152626号公報 特開2018-59087号公報
 しかしながら、従来の技術には次のような課題がある。
 特許文献1の技術では、炭素繊維の単繊維直径が小さく、単繊維あたりの歪みエネルギーは小さいことに加え、ストランド弾性率が高くて伸度が低いために曲げの応力場では十分に耐衝撃性を確保できていなかった。
 特許文献2の技術では、炭素繊維の単繊維直径が小さく、単繊維あたりの歪みエネルギーは小さいことに加え、満足な伸度は得られていない問題があった。
 特許文献3の技術では、満足な伸度は得られていない問題があり、かつ、ストランド弾性率が高いために曲げの応力場では十分に耐衝撃性を確保できていなかった。
 特許文献4の技術では、ストランド強度・伸度のレベルが不十分であり、十分な耐衝撃性を確保できていなかった。また、ストランド強度と伸度を両立することが想定されていなかった。
 特許文献5の技術では、十分な耐衝撃性を確保できていなかった。
 特許文献6の技術では、ストランド弾性率レベルが低すぎ、十分な耐衝撃性を確保できていなかった。
 特許文献7の技術では、伸度レベルが低すぎ、十分な耐衝撃性を確保できていなかった。
 特許文献8の技術では炭素繊維の伸度は高めているものの伸度が高いものについてはストランド強度が低く、歪みエネルギー密度の概念がなかったために、ストランド強度と伸度を両立することが想定されていなかった。このように、単繊維直径、ストランド弾性率、伸度、歪みエネルギー密度の全てを満足する炭素繊維はこれまでなかった。
 また、特許文献9では、炭素繊維複合材料の耐衝撃性に対して熱可塑性樹脂の組成設計を行っているものの、炭素繊維そのものの力学特性についての言及はなかった。
 本発明は、炭素繊維複合材料の耐衝撃性を改善できる炭素繊維を提供することを目的とする。
 上記の目的を達成するために、本発明の炭素繊維は、ストランド弾性率が240~300GPa、伸度2.65%以上、かつ歪みエネルギー密度が95J/mm以上である。
 また、本発明の炭素繊維の製造方法は、ポリアクリロニトリル系炭素繊維前駆体繊維を、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比が0.98~1.10の範囲となるまで8~25分間耐炎化する第1耐炎化工程と、該第1耐炎化工程で得られた繊維を赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比が0.70~0.75の範囲、かつ、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,254cm-1のピーク強度の比が0.50~0.65の範囲となるまで5~14分間耐炎化する第2耐炎化工程と、該第2耐炎化工程で得られた繊維を最高温度500~1,200℃の不活性雰囲気中で延伸倍率を1.16~1.25として予備炭素化する予備炭素化工程と、該予備炭素化工程で得られた繊維を最高温度1,000~1,500℃、最高温度の処理時間が20~60秒、昇温速度が0.40~1.1℃/秒の不活性雰囲気中で炭素化する炭素化工程と、該炭素化工程で得られた繊維を電解表面処理して炭素繊維を得る工程とを含むものである。
 本発明の炭素繊維を用いることにより、炭素繊維複合材料の耐衝撃性を改善できる。
 発明者らは、炭素繊維複合材料の耐衝撃性を改善するにあたって、炭素繊維の歪みエネルギー密度に着目した。歪みエネルギー密度とは、樹脂含浸ストランド(以下、ストランドと略記することがある)の引張特性試験により得られる応力-歪み曲線の面積である。しかし、非線形性を正確に算出することは困難であることから、本発明では上述のストランド強度(MPa=J/mm)と伸度(-)の積を2で除して求めた近似的な値を歪みエネルギー密度とする。炭素繊維の歪みエネルギー密度が大きいことで、得られる炭素繊維複合材料の耐衝撃性の向上が期待できる。
 本発明の炭素繊維は歪みエネルギー密度が95J/mm以上であり、好ましくは100J/mm以上であり、より好ましくは105J/mm以上であり、さらに好ましくは110J/mm以上である。歪みエネルギー密度が95J/mm以上であれば、エネルギー吸収が十分であることが多く、上限はないが、140J/mmもあれば、他の特性とのバランスでエネルギー吸収の価値は飽和していることがある。歪みエネルギー密度は、ストランド強度と伸度を両立するように炭素繊維の製造条件を制御することで、調整することができる。
 本発明の炭素繊維は、ストランド弾性率が240~300GPaであり、好ましくは250~290GPaであり、より好ましくは250~280GPaである。ストランド弾性率は、炭素繊維に荷重がかかったときの変形のしにくさを示す指標である。炭素繊維のストランド弾性率は、JIS R7608:2004に記載の、樹脂含浸ストランドの引張試験に従って評価することができる。炭素繊維の応力-歪み曲線は下に凸の非線形性を示すが、本発明においては歪み範囲0.1~0.6%の範囲でのストランド弾性率を用いる。ストランド弾性率が240GPa以上であれば歪みエネルギー密度を高めやすい。ストランド弾性率が300GPa以下であれば炭素繊維の圧縮強度が高く、エネルギー吸収が高い。ストランド弾性率は、炭素化工程の最高温度、最高温度の熱処理時間、昇温速度、延伸比などにより制御できる。
 本発明の炭素繊維は、ストランド強度が好ましくは7.5GPa以上であり、より好ましくは7.8GPa以上であり、さらに好ましくは8.0GPa以上である。ストランド強度は、炭素繊維に荷重がかかったときの破断しにくさを示す指標である。炭素繊維のストランド強度は、JIS R7608:2004に記載の、樹脂含浸ストランドの引張試験に従って評価することができる。ストランド強度が7.5GPa以上であれば歪みエネルギー密度を高めやすい。ストランド強度に上限はないが8.8GPaもあれば歪みエネルギー密度が満足できるレベルとなりやすい。ストランド強度は、欠陥抑制や破壊靭性値の改善など、後述する炭素繊維の製造方法に従って製造することにより制御できる。
 本発明の炭素繊維は、伸度が2.65%以上であり、好ましくは2.75%以上であり、より好ましくは2.85%以上であり、さらに好ましくは2.95%以上である。炭素繊維の伸度は、JIS R7608:2004に記載の、樹脂含浸ストランドの引張試験に従って評価することができる。炭素繊維は、応力-歪み曲線が非線形性を示すために伸度の測定は難しいが、本引張試験では、上述のストランド強度をストランド弾性率で除することで、伸度を算出する。伸度が2.65%以上であれば、歪みエネルギー密度を高めやすい。伸度に上限はないが、3.20%もあれば歪みエネルギー密度を高めることに十分であることが多い。炭素繊維の伸度は、ストランド強度とストランド弾性率のバランスを両立するように炭素繊維の製造条件を制御することで、調整することができる。
 本発明の炭素繊維は、単繊維直径が好ましくは4.0μm以上であり、より好ましくは4.5μm以上であり、さらに好ましくは5.0μm以上であり、特に好ましくは5.3μm以上である。ストランド強度と単繊維断面積から単繊維あたりの破断荷重が決まるため、単繊維直径は単繊維あたりの破断荷重に影響する。また、単繊維直径が大きいほど炭素繊維の単繊維圧縮強度が高い傾向があり、エネルギー吸収が大きくなりやすい。そのため、単繊維直径は4.0μm以上であれば、エネルギー吸収が大きくなりやすい。単繊維直径の上限としては7.5μmもあれば、十分な耐衝撃性を確保できることが多い。炭素繊維の単繊維直径は、炭素繊維の総繊度、密度およびフィラメント数から計算することができる。また、フィラメント数が不明の場合には、炭素繊維を樹脂包埋して横断面を光学顕微鏡で観察し、画像処理で単繊維の断面積を求め、それを円相当直径として算出して、単繊維直径を評価することができる。両者の測定法が一致しない場合は前者の値を採用する。単繊維直径は、前駆体繊維の直径とその後の工程における延伸比によって制御できる。
 本発明の炭素繊維は、単繊維直径、ストランド弾性率、伸度および歪みエネルギー密度の全てが上記の範囲を満足することが、炭素繊維複合材料の耐衝撃性を高める点で重要である。
 本発明の炭素繊維は、総繊度が好ましくは0.8g/m以上であり、より好ましくは0.9g/m以上である。総繊度は、炭素繊維の繊維束1mあたりの質量のことであり、炭素繊維の単繊維直径とフィラメント数に関連する。総繊度が高いほど炭素繊維複合材料の生産性が高めやすい。そのため、総繊度が0.8g/m以上であれば、優れた耐衝撃性の炭素繊維複合材料を生産性良く得ることができる。総繊度が2.0g/m以下であれば、適切な厚みの炭素繊維複合材料を得ることができ、結果として耐衝撃性を高めることができるので好ましい。総繊度は、単繊維直径またはフィラメント数を調整することで制御できるが、フィラメント数が多すぎると、均一な製造が困難となって、ストランド強度が低下しやすい傾向がある。
 本発明の炭素繊維は、密度が好ましくは1.75~1.85g/cmである。炭素繊維の密度が大きいほど緻密な微細構造となっており、ストランド強度が大きくなりやすい。そのため、密度は1.75g/cm以上であればエネルギー吸収が満足できるレベルとなりやすく、1.85g/cm以下であれば伸度が高く、エネルギー吸収が高く維持しやすい。密度の下限は、より好ましくは1.78g/cmである。密度の上限は、より好ましくは1.83g/cmである。炭素繊維の密度は、炭素化工程における延伸比や昇温速度により制御できる。
 次に、本発明の炭素繊維を得るのに好適な炭素繊維の製造方法について述べる。
 炭素繊維の工業的な製造方法としては、ポリアクリロニトリル系炭素繊維前駆体繊維(以下、前駆体繊維と略記することがある)を200~310℃の酸化性雰囲気下で耐炎化繊維へ転換する耐炎化工程、500~1,200℃の不活性雰囲気下で予備炭素化する予備炭素化工程、1,000~1,500℃の不活性雰囲気下で炭素化する炭素化工程を経る方法が知られている。
 前駆体繊維の製造に供する原料としては好ましくはポリアクリロニトリル系重合体を用いる。なお、本発明においてポリアクリロニトリル系重合体とは、少なくともアクリロニトリルがかかる重合体の90~100モル%を占める重合体である。前駆体繊維の製造において、ポリアクリロニトリル系重合体は、ストランド強度向上の観点から、好ましくは共重合成分を含む。共重合成分として使用可能な単量体としては、耐炎化を促進する観点から、カルボン酸基またはアミド基を1種以上含有する単量体が好ましく用いられる。
 前駆体繊維を製造するにあたり、製糸方法は乾湿式紡糸法および湿式紡糸法のいずれを用いてもよいが、得られる炭素繊維のストランド強度に有利な乾湿式紡糸法を用いるのが好ましい。製糸工程は、乾湿式紡糸法により紡糸口金から凝固浴に紡糸溶液を吐出させて紡糸する紡糸工程と、該紡糸工程で得られた繊維を水浴中で洗浄しつつ延伸する水洗工程と、該水洗工程で得られた繊維を乾燥熱処理する乾燥熱処理工程からなり、必要に応じて、該乾燥熱処理工程で得られた繊維をスチーム延伸するスチーム延伸工程を含むことが好ましい。なお、各工程の順序を適宜入れ替えることも可能である。紡糸溶液は、前記したポリアクリロニトリル系重合体を、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどのポリアクリロニトリルが可溶な溶媒に溶解したものである。
 前記凝固浴には、紡糸溶液の溶媒として用いたジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどの溶媒と、いわゆる凝固促進成分を含ませることが好ましい。凝固促進成分としては、前記ポリアクリロニトリル系重合体を溶解せず、かつ紡糸溶液に用いる溶媒と相溶性があるものを使用することができる。具体的には、凝固促進成分として水を使用することが好ましい。
 前記水洗工程における水洗浴としては、温度が30~98℃の複数段からなる水洗浴を用いることが好ましい。また、水洗工程における延伸倍率は、2~6倍であることが好ましい。その後、ストランド強度を向上する目的から、繊維にシリコーン等からなる油剤を好ましくは付与する。かかるシリコーン油剤は、好ましくはアミノ変性シリコーンを含有するものを用いる。
 乾燥熱処理工程は、公知の方法を利用することができる。例えば、乾燥温度は100~200℃が例示される。
 前記した水洗工程、乾燥熱処理工程の後、必要に応じ、スチーム延伸を行うことにより、本発明の炭素繊維を得るのに好適な前駆体繊維が得られる。スチーム延伸は、加圧スチーム中において、延伸倍率は好ましくは2~6倍である。
 炭素繊維のストランド強度を高めるためには、耐炎化工程において、得られた耐炎化繊維が、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比が0.70~0.75の範囲、かつ、赤外スペクトルの1,370cm-1のピーク強度に対する1,254cm-1のピーク強度の比が0.50~0.65の範囲になるように制御するのが好ましい。赤外スペクトルにおける1,453cm-1のピークはアルケン由来であり、耐炎化の進行とともに減少していく。1,370cm-1のピークと1,254cm-1のピークは耐炎化構造に由来するピークであり、耐炎化の進行とともに増加していく。なお、比重が1.35の標準的な耐炎化繊維は、1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比が、0.63~0.69程度であり、本発明の耐炎化工程においては、得られた耐炎化繊維がアルケン由来の構造を通常よりも多く残すことが好ましいことを示している。1,370cm-1のピーク強度に対する1,254cm-1のピーク強度の比は耐炎化の進行とともに減少していき、特に初期の減少が大きいが、耐炎化条件次第では、時間を増やしてもかかるピーク強度比が0.65以下とならないこともある。
 この2つのピーク強度比を目的の範囲内で両立させるためには、基本的には、前駆体繊維を構成するポリアクリロニトリル系重合体に含まれる共重合成分の量が少ないこと、前駆体繊維の結晶配向度が高いこと、前駆体繊維の単繊維繊度を小さくすること、および耐炎化温度を後半に高くすることに主に注目して条件設定すればよい。具体的には、耐炎化工程を、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比が0.98~1.10の範囲となるまで8~25分間、好ましくは8~15分耐炎化する第1耐炎化工程と、該第1耐炎化工程により得られた繊維を、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比を0.70~0.75の範囲、かつ、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,254cm-1ピーク強度の比が0.50~0.65の範囲となるまで5~14分、好ましくは5~10分耐炎化する第2耐炎化工程の2段で行うことが好ましい。
 第1耐炎化工程における耐炎化温度は、好ましくは200~250℃、より好ましくは230~250℃になるようにすることが、上述の赤外スペクトルの範囲に制御するために好ましい。
 第2耐炎化工程における耐炎化温度は、第1耐炎化工程よりも高い温度で行う。第2耐炎化工程の耐炎化時間を短くするためには耐炎化温度を高く調整すればよいが、適切な耐炎化温度は前駆体繊維の特性に依存する。耐炎化温度が好ましくは280~310℃、より好ましくは280~300℃、さらに好ましくは285~295℃になるようにすることが、上述の赤外スペクトルの範囲に制御するために好ましい。耐炎化温度は一定である必要はなく、多段階の温度設定でも構わない。得られる炭素繊維のストランド強度を高めるためには、耐炎化温度は高く、耐炎化時間を短くすることが好ましい。
 なお、本発明において、耐炎化とは、前駆体繊維を酸素含有雰囲気で200~310℃で熱処理することを言う。
 ここで述べる耐炎化時間とは耐炎化炉内に繊維が滞留している時間を意味する。耐炎化繊維とは、耐炎化工程後、予備炭素化工程前の繊維を意味する。また、ここで述べるピーク強度とは、耐炎化繊維を少量サンプリングして赤外スペクトルを測定して得られたスペクトルをベースライン補正した後の各波長における吸光度のことであり、特にピーク分割などは行わない。また、赤外スペクトルを測定する際の試料の濃度は0.67質量%となるようにKBrで希釈して測定する。このように、耐炎化条件設定を変更するたびに赤外スペクトルを測定して、後述の好ましい製造方法にしたがって条件検討すればよい。耐炎化繊維の赤外スペクトルピーク強度比を適切に制御することで、得られる炭素繊維のストランド強度を制御することができる。
 耐炎化工程のトータルの処理時間は、好ましくは13~20分の範囲で適宜選択することができる。また、得られる炭素繊維のストランド強度を向上させる目的から、得られる耐炎化繊維の比重が好ましくは1.28~1.32、より好ましくは1.30~1.32の範囲となるように耐炎化の処理時間を設定する。より好ましい耐炎化工程の処理時間は耐炎化温度に依存する。耐炎化繊維の比重は1.28以上なければ炭素繊維のストランド強度が低下することがある。耐炎化繊維の比重が1.32以下であればストランド強度を高めることができる。耐炎化繊維の比重は耐炎化工程の処理時間と耐炎化温度により制御する。また、第1耐炎化工程から第2耐炎化工程に切り替えるタイミングは、繊維の比重が1.21~1.23の範囲とすることが好ましくい。この際も前記赤外スペクトル強度比の範囲を満たすことを優先して耐炎化工程の条件を制御する。これらの耐炎化の処理時間や耐炎化温度の好ましい範囲は前駆体繊維の特性やポリアクリロニトリル系重合体の共重合組成によって変化する。
 耐炎化工程で得られた繊維束を予備炭素化する予備炭素化工程においては、得られた耐炎化繊維を、不活性雰囲気中、最高温度500~1,200℃において、比重が好ましくは1.5~1.8になるまで熱処理する。予備炭素化工程の延伸倍率は好ましくは1.16~1.25である。予備炭素化工程の延伸倍率が1.16以上であればストランド弾性率が高まりやすく、ストランド強度を高めやすい。予備炭素化工程の延伸倍率が1.25以下であるとストランド弾性率を300GPa以下に抑制しやすい。
 予備炭素化された繊維を不活性雰囲気中、好ましくは最高温度1,000~1,500℃、より好ましくは最高温度1,100~1,300℃、さらに好ましくは最高温度1,150~1,250℃で炭素化する。炭素化工程の最高温度は、得られる炭素繊維の伸度を高める観点からは、低い方が好ましいが、低すぎるとストランド強度が低下する場合があり、両者を勘案して設定することが好ましい。
 また、炭素化工程の最高温度における処理時間Xは、好ましくは20~60秒であり、より好ましくは20~38秒である。炭素化工程の最高温度における処理時間Xとは、炭素化炉内の最高温度の区画を繊維が通過するのに要する時間のことである。炭素化炉はヒーターブロックで段階的に温度が上昇していくように制御された複数の区画を有することが多い。それぞれの区画は一定温度とみなして計算する。最高温度における処理時間が短いほどストランド弾性率を低く制御できるため、処理時間Xは60秒以内が好ましい。処理時間Xが20秒以上であれば安定したストランド弾性率が得られやすい。
 炭素化工程での昇温速度Yは好ましくは0.40~1.1℃/秒であり、より好ましくは0.40~1.0℃/秒であり、さらに好ましくは0.40~0.60℃/秒である。炭素化工程の昇温速度は、分解ガスの脱離速度に影響するためにストランド強度に影響する。本発明において、昇温速度とは、炭素化炉内の段階的に温度が上昇していくように制御された複数の区画を繊維が通過するにあたって、区画の温度が1,000℃を超える領域を、平均して1秒あたり何℃の速度で繊維が通過するかと定義する。具体的には、例えば、繊維が炭素化炉内の温度1,000℃の区画に入ってから、その次の1,100℃の区画に到達するまでを100秒かけて通過したとすれば、昇温速度は1.0℃/秒になる。別の例では、繊維が炭素化炉内の温度950℃の区画に入ってから、その次の1,150℃の区画に到達するまでを200秒かけて通過したとすれば、昇温速度は1.0℃/秒になる。また、炭素化工程の最高温度を1,100℃未満に設定する場合は、最高温度までの昇温速度を活用する。すなわち、最高温度が1,050℃の場合、繊維が炭素化炉内の温度1000℃の区画に入ってから、その次の1,050℃の区画に到達するまでを50秒かけて通過したとすれば、昇温速度は1.0℃/秒になる。なお、炭素化炉内の最初の区画の温度は好ましくは1,000℃以下である。かかる昇温速度は0.40℃/秒以上であればストランド弾性率が安定して得られやすい。昇温速度が、1.1℃/秒以内であればストランド強度の低下を抑制しやすい。
 炭素化工程の最高温度の処理時間Xと昇温速度Yは、好ましくは0.015X≦Y≦0.015X+0.6の範囲である。この式は、炭素繊維の伸度を高めるための発明者の検討結果から導出されたものである。処理時間Xと昇温速度Yをそれぞれ調整して、かかる関係に調整することで、炭素繊維の伸度を高めやすい。
 以上のようにして得られた炭素繊維は、好ましくはさらに電解表面処理が施され、酸素含有官能基が導入される。電解表面処理については、気相酸化、液相酸化および液相電解酸化のいずれもが用いられるが、生産性が高く、均一処理ができるという観点から、好ましくは液相電解酸化が用いられる。本発明において、液相電解酸化の方法については特に制約はなく、公知の方法で行えばよい。
 かかる電解表面処理の後、得られた炭素繊維に集束性を付与するため、サイジング処理をすることもできる。サイジング剤には、炭素繊維複合材料に使用されるマトリックス樹脂の種類に応じて、マトリックス樹脂との相溶性の良いサイジング剤を適宜選択することができる。
 次に、本発明の炭素繊維複合材料について述べる。本発明の炭素繊維複合材料は、上述した本発明の炭素繊維とマトリックス樹脂とを含む。
 本発明に好適に用いられる炭素繊維は、連続繊維であっても不連続繊維であっても良い。また、炭素繊維複合材料中に含まれる炭素繊維の含有量は好ましくは15~65体積%である。
 本発明の炭素繊維複合材料に用いられるマトリックス樹脂は、熱硬化性樹脂であっても熱可塑性樹脂であっても良い。
 本発明に好適に用いられる熱硬化性樹脂としては、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂等が挙げられる。熱により架橋反応を起こし、少なくとも部分的な三次元架橋構造を形成する樹脂であればよい。
 また、炭素繊維複合材料を形成する成形基材としては、プリプレグを例示できる。プリプレグの中における熱硬化性樹脂の形態としては、プリプレグ積層時にプリプレグ同士や型に圧着する必要があることから、タック性に優れる半硬化状態であることが好ましい。中でも、プリプレグを貼り付ける工程におけるタック性、および成形品としたときの力学特性を考慮するとエポキシ樹脂が好ましい。
 熱硬化性樹脂を用いる場合の炭素繊維複合材料の成形法としては、プリプレグをオートクレーブ成形する方法、織物などのプリフォームをレジントランスファーモールディングで成形する方法、およびフィラメントワインディングで成形する方法などが挙げられる。
 本発明に好適に用いられる熱可塑性樹脂は、ポリオレフィン、ポリアミド、ポリエステル、ポリカーボネート、ポリアリーレンスルフィドからなる群より選択される少なくとも1種の熱可塑性樹脂であることが好ましい。得られる炭素繊維複合材料の耐衝撃性の観点からはポリアミドおよびポリアリーレンスルフィドがより好ましい。本発明の炭素繊維と組み合わせることで、熱可塑性樹脂種類の制約なく得られる炭素繊維複合材料の耐衝撃性を高めることができるので熱可塑性樹脂は幅広く選択できる。
 熱可塑性樹脂を用いる場合の炭素繊維複合材料の成形においては、炭素繊維束と熱可塑性樹脂とを溶融含浸、溶融混練、スラリー含浸などの公知の方法で一体化した後、連続繊維のまま用いても構わないし、ペレタイザーやストランドカッターなどの装置で1~50mmの一定長に切断して不連続繊維として用いても構わない。
 炭素繊維束と熱可塑性樹脂からなる連続繊維テープや不連続繊維基材を成形して、最終的な炭素繊維複合材料を得ることができる。例えば、プレス成形、射出成形、射出圧縮成形、圧縮成形、真空成形、押出成形など公知の成形方法で製造することが例示できる。
 本発明において用いられる各種物性値の測定方法は、次のとおりである。
 <総繊度>
 測定する炭素繊維について、長さ10m分をサンプリングし、120℃で2時間絶乾させた後に測定した質量を10で除することにより、1mあたりの質量である総繊度を求める。
 <密度>
 測定する炭素繊維について、120℃で2時間絶乾させてから測定する。密度の測定には乾式自動密度計を用い、測定媒体として窒素、試料容器は10ccタイプを用い、試料量は体積で3~6ccになるように調整する。測定は3回行い、その平均値を用いる。なお、本測定では、株式会社島津製作所製アキュピック1330形乾式自動密度計を用いた。
 <単繊維直径>
 得られた総繊度と密度および測定に用いた炭素繊維のフィラメント数から算出する。
 <ストランド強度、ストランド弾性率、伸度>
 炭素繊維のストランド強度、ストランド弾性率および伸度は、JIS R7608:2004の樹脂含浸ストランド試験法に従い、次の手順に従い求める。樹脂処方としては、“セロキサイド”(登録商標)2021P(ダイセル化学工業社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いる。炭素繊維のストランド10本のストランド強度、ストランド弾性率および伸度を測定し、その平均値を用いる。なお、ストランド弾性率を算出する際の歪み範囲は0.1~0.6%とする。
 <歪みエネルギー密度>
 歪みエネルギー密度は以下の式で算出する。
歪みエネルギー密度(J/mm)=ストランド強度(GPa)×1,000×伸度(%)/100/2。
 <炭素繊維複合材料の耐衝撃性>
 供試する炭素繊維を熱可塑性樹脂であるポリフェニレンサルファイド樹脂(東レ(株)製“トレリナ”(登録商標)M2888)と質量比で30:70となるように溶融混練してペレット化する。得られたペレットを射出成形し、成形品としてのISO型ダンベル試験片を作製する。ISO型ダンベル試験片の平行部を切り出し、株式会社東京試験機製C1-4-01型試験機を用い、ISO 179(2010)に準拠してVノッチ付きシャルピー衝撃試験を実施し、衝撃強度(kJ/m)を算出し、耐衝撃性を以下の指標で評価して判定する。
1:衝撃強度が13kJ/m以上
2:衝撃強度が12kJ/m以上13kJ/m未満
3:衝撃強度が11kJ/m以上12kJ/m未満
4:衝撃強度が11kJ/m未満
 以下、本発明を実施例に基づき詳細に説明するが、本発明はこれらに限定されるものではない。
 [実施例1]
 ポリアクリロニトリル系共重合体および溶媒としてジメチルスルホキシドを含む紡糸溶液を、紡糸口金から一旦空気中に吐出し、ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。
 この凝固糸条を、常法により水洗した後、2槽の温水浴中で、3.5倍の延伸を行った。続いて、この水浴延伸後の繊維束に対して、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の加熱ローラーを用いて、乾燥緻密化処理を行った。単繊維本数1,2000本としてから、加圧スチーム中で3.7倍延伸することにより、製糸全延伸倍率を13倍とし、その後交絡処理を行って、結晶配向度93%、単繊維本数1,2000本の炭素繊維前駆体繊維束を得た。炭素繊維前駆体繊維束の単繊維繊度は0.7dtexであった。
 次に、第1耐炎化工程を耐炎化温度250℃、耐炎化時間11分の条件を用いて、第2耐炎化工程を耐炎化温度280℃、耐炎化時間6分の条件を用いて、空気雰囲気のオーブン中で炭素繊維前駆体繊維束を延伸比1で延伸しながら耐炎化処理し、耐炎化繊維を得た。
 第1耐炎化工程後の繊維の赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比は、1.04であった。第2耐炎化工程後の繊維の赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比は0.70、1,370cm-1のピーク強度に対する1,254cm-1のピーク強度の比は0.61であった。
 得られた耐炎化繊維を、最高温度800℃の窒素雰囲気中において、延伸比1.20で予備炭素化処理を行い、予備炭素化繊維を得た。得られた予備炭素化繊維を、窒素雰囲気中において、最高温度1,200℃、延伸比0.950で炭素化処理を行った。このとき炭素化工程の昇温速度は0.45℃/秒であった。得られた炭素繊維に表面処理およびサイジング剤塗布処理を行って最終的な炭素繊維としたものの物性を表1に示す。
 [実施例2~11、比較例1~7]
 予備炭素化工程の延伸比、炭素化工程の延伸比・最高温度・最高温度での処理時間・昇温速度を表1に示すものに変更した以外は実施例1と同様に炭素繊維を得た。得られた物性を表1に示す。
 [参考例1~3]
 第1耐炎化工程を耐炎化温度240℃、耐炎化時間82分の条件を用いて、第2耐炎化工程を耐炎化温度250℃、耐炎化時間85分の条件を用いた以外は実施例1と同様にして耐炎化繊維を得た。
 第1耐炎化工程後の繊維の赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比は、0.68であった。第2耐炎化工程後の繊維の赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比は0.50、1,370cm-1のピーク強度に対する1,254cm-1のピーク強度の比は0.56であった。
 得られた耐炎化繊維を、最高温度800℃の窒素雰囲気中において、延伸比1.17で予備炭素化処理を行い、予備炭素化繊維を得た。得られた予備炭素化繊維を、窒素雰囲気中において、表1に示す最高温度とその時間、延伸比0.980で炭素化処理を行った。このとき炭素化工程の昇温速度は0.35℃/秒であった。得られた炭素繊維に表面処理およびサイジング剤塗布処理を行って最終的な炭素繊維としたものの物性を表1に示す。一般的にストランド弾性率を調整するときに用いられる、炭素化工程の最高温度を変更したのみではストランド強度には大きな変化はなく、ストランド強度レベルが高いレベルにあるときは本実施例で示した予備炭素化工程および炭素化工程の条件を細かく調整する必要があることがわかった。
Figure JPOXMLDOC01-appb-T000001
 本発明の炭素繊維は、耐衝撃性が高く、エネルギー吸収の大きな炭素繊維複合材料を高い生産性で得ることができる。

Claims (9)

  1. ストランド弾性率が240~300GPa、伸度2.65%以上、かつ歪みエネルギー密度が95J/mm以上である炭素繊維。
  2. 単繊維直径が4.0μm以上である、請求項1に記載の炭素繊維。
  3. 単繊維直径が5.0μm以上である、請求項2に記載の炭素繊維。
  4. 伸度が2.75%以上である、請求項1~3のいずれかに記載の炭素繊維。
  5. 伸度が2.85%以上である、請求項4に記載の炭素繊維。
  6. ストランド強度が7.5GPa以上である、請求項1~5のいずれかに記載の炭素繊維。
  7. 歪みエネルギー密度が100J/mm以上である、請求項1~6のいずれかに記載の炭素繊維。
  8. ポリアクリロニトリル系炭素繊維前駆体繊維を、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比が0.98~1.10の範囲となるまで8~25分間耐炎化する第1耐炎化工程と、
    該第1耐炎化工程で得られた繊維を赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比が0.70~0.75の範囲、かつ、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,254cm-1のピーク強度の比が0.50~0.65の範囲となるまで5~14分間耐炎化する第2耐炎化工程と、
    該第2耐炎化工程で得られた繊維を最高温度500~1,200℃の不活性雰囲気中で延伸倍率を1.16~1.25として予備炭素化する予備炭素化工程と、
    該予備炭素化工程で得られた繊維を最高温度1,000~1,500℃の不活性雰囲気中で、最高温度における処理時間Xが20~60秒、かつ昇温速度Yが0.40~1.1℃/秒の条件で炭素化する炭素化工程と、
    該炭素化工程で得られた繊維を電解表面処理して炭素繊維を得る工程とを含む炭素繊維の製造方法。
  9. 請求項1~7のいずれかに記載の炭素繊維とマトリックス樹脂とを含む、炭素繊維複合材料。
PCT/JP2021/008661 2020-03-19 2021-03-05 炭素繊維とその製造方法および炭素繊維複合材料 WO2021187160A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21772130.7A EP4095293A1 (en) 2020-03-19 2021-03-05 Carbon fiber, manufacturing method therefor, and carbon fiber composite material
US17/801,834 US20230087492A1 (en) 2020-03-19 2021-03-05 Carbon fiber, manufacturing method thereof, and carbon fiber composite material
JP2022508215A JPWO2021187160A1 (ja) 2020-03-19 2021-03-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-049017 2020-03-19
JP2020049017 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021187160A1 true WO2021187160A1 (ja) 2021-09-23

Family

ID=77768213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008661 WO2021187160A1 (ja) 2020-03-19 2021-03-05 炭素繊維とその製造方法および炭素繊維複合材料

Country Status (4)

Country Link
US (1) US20230087492A1 (ja)
EP (1) EP4095293A1 (ja)
JP (1) JPWO2021187160A1 (ja)
WO (1) WO2021187160A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045576A1 (fr) 1996-05-24 1997-12-04 Toray Industries, Inc. Fibre de carbone, fibre acrylique, et leur procede de production
JPH11152626A (ja) 1997-11-18 1999-06-08 Toray Ind Inc 炭素繊維およびその製造方法
JPH11241230A (ja) 1997-12-11 1999-09-07 Toray Ind Inc 炭素繊維、炭素繊維用前駆体繊維、複合材料および炭素繊 維の製造方法
JP2002069754A (ja) 2000-08-31 2002-03-08 Toho Tenax Co Ltd 高強度・高伸度炭素繊維及びその成形材料
JP2004197278A (ja) * 2002-12-19 2004-07-15 Toho Tenax Co Ltd 炭素繊維の製造方法
JP2004211240A (ja) * 2002-12-27 2004-07-29 Mitsubishi Rayon Co Ltd 炭素繊維、炭素繊維用アクリロニトリル系前駆体繊維、およびそれらの製造方法
JP2005256211A (ja) 2004-03-11 2005-09-22 Toray Ind Inc 炭素繊維およびその製造方法
WO2008040963A1 (en) 2006-10-02 2008-04-10 Hexcel Composites Limited Composite materials with improved performance
JP2008163537A (ja) 2006-12-04 2008-07-17 Toho Tenax Co Ltd 炭素繊維の製造方法
WO2015133514A1 (ja) * 2014-03-06 2015-09-11 東レ株式会社 炭素繊維およびその製造方法
JP2017137614A (ja) 2016-01-28 2017-08-10 東レ株式会社 炭素繊維束およびその製造方法
JP2018059087A (ja) 2016-09-29 2018-04-12 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045576A1 (fr) 1996-05-24 1997-12-04 Toray Industries, Inc. Fibre de carbone, fibre acrylique, et leur procede de production
JPH11152626A (ja) 1997-11-18 1999-06-08 Toray Ind Inc 炭素繊維およびその製造方法
JPH11241230A (ja) 1997-12-11 1999-09-07 Toray Ind Inc 炭素繊維、炭素繊維用前駆体繊維、複合材料および炭素繊 維の製造方法
JP2002069754A (ja) 2000-08-31 2002-03-08 Toho Tenax Co Ltd 高強度・高伸度炭素繊維及びその成形材料
JP2004197278A (ja) * 2002-12-19 2004-07-15 Toho Tenax Co Ltd 炭素繊維の製造方法
JP2004211240A (ja) * 2002-12-27 2004-07-29 Mitsubishi Rayon Co Ltd 炭素繊維、炭素繊維用アクリロニトリル系前駆体繊維、およびそれらの製造方法
JP2005256211A (ja) 2004-03-11 2005-09-22 Toray Ind Inc 炭素繊維およびその製造方法
WO2008040963A1 (en) 2006-10-02 2008-04-10 Hexcel Composites Limited Composite materials with improved performance
JP2008163537A (ja) 2006-12-04 2008-07-17 Toho Tenax Co Ltd 炭素繊維の製造方法
WO2015133514A1 (ja) * 2014-03-06 2015-09-11 東レ株式会社 炭素繊維およびその製造方法
JP2017137614A (ja) 2016-01-28 2017-08-10 東レ株式会社 炭素繊維束およびその製造方法
JP2018059087A (ja) 2016-09-29 2018-04-12 東レ株式会社 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料

Also Published As

Publication number Publication date
JPWO2021187160A1 (ja) 2021-09-23
US20230087492A1 (en) 2023-03-23
EP4095293A1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
CN102086538B (zh) 碳纤维
KR101841407B1 (ko) 탄소 섬유 다발 및 그 제조 방법
KR101813433B1 (ko) 탄소 섬유속 및 탄소 섬유의 제조 방법
KR101656976B1 (ko) 탄소 섬유속 및 탄소 섬유속의 제조 방법
KR101467620B1 (ko) 탄소섬유의 제조방법 및 탄소섬유용 전구체 섬유
JP5691366B2 (ja) 炭素繊維の製造方法
CN109154109B (zh) 碳纤维束及其制造方法
JP2008308776A (ja) ポリアクリロニトリル系前駆体繊維の製造方法、炭素繊維の製造方法、および炭素繊維
JP2003073932A (ja) 炭素繊維
JP5907321B1 (ja) 炭素繊維束およびその製造方法
JP2008163537A (ja) 炭素繊維の製造方法
JP4662450B2 (ja) 炭素繊維の製造方法
CN111945251A (zh) 超高强度中等模量聚丙烯腈基碳纤维及其制备方法
JP2011213773A (ja) ポリアクリロニトリル系重合体、および炭素繊維
JP2014141762A (ja) 炭素繊維束およびその製造方法
WO2021187160A1 (ja) 炭素繊維とその製造方法および炭素繊維複合材料
KR101909892B1 (ko) 탄소섬유용 폴리아크릴로니트릴계 전구체 섬유의 제조방법 및 탄소섬유의 제조방법
JPH01306619A (ja) 高強度高弾性率炭素繊維
KR102197333B1 (ko) 폴리아크릴로니트릴계 내염화 섬유, 탄소섬유 및 그의 제조방법
JP2008308777A (ja) 炭素繊維、炭素繊維製造用ポリアクリロニトリル系前駆体繊維の製造方法
JP6304046B2 (ja) 炭素繊維束およびその製造方法
JP7343538B2 (ja) 炭素繊維及びその製造方法
JP2011213774A (ja) 炭素繊維製造用ポリアクリロニトリルおよびポリアクリロニトリル系前駆体繊維および炭素繊維の製造方法。
Wangxi et al. Comparative study on preparing carbon fibers based on PAN precursors with different comonomers
WO2024090012A1 (ja) 炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、および炭素繊維束の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508215

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021772130

Country of ref document: EP

Effective date: 20220823

NENP Non-entry into the national phase

Ref country code: DE