WO2024090012A1 - 炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、および炭素繊維束の製造方法 - Google Patents

炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、および炭素繊維束の製造方法 Download PDF

Info

Publication number
WO2024090012A1
WO2024090012A1 PCT/JP2023/031152 JP2023031152W WO2024090012A1 WO 2024090012 A1 WO2024090012 A1 WO 2024090012A1 JP 2023031152 W JP2023031152 W JP 2023031152W WO 2024090012 A1 WO2024090012 A1 WO 2024090012A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
fiber bundle
flame
ratio
peak intensity
Prior art date
Application number
PCT/JP2023/031152
Other languages
English (en)
French (fr)
Inventor
孝幸 四方
裕明 大門
潤 渡邉
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024090012A1 publication Critical patent/WO2024090012A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles

Definitions

  • the present invention relates to carbon fiber bundles, towpregs, carbon fiber reinforced composite materials and pressure vessels suitable for use in fiber reinforced plastics, as well as a method for manufacturing carbon fiber bundles.
  • Patent Document 1 improving the fracture toughness value is effective in that it is possible to achieve high tensile strength regardless of the state of the defect size.
  • Patent Document 1 In order to improve mechanical properties such as tensile strength and tensile modulus in a well-balanced manner, it is also important to eliminate the internal and external structural differences that exist in the cross section of a single fiber.
  • Methods proposed for improving performance while suppressing the difference in the internal and external structure of the cross section of a single fiber include, for example, a method of shortening the flame-stabilizing time by performing the flame-stabilizing in a liquid phase, thereby improving the performance of the carbon fiber, a method of increasing the flame-stabilizing temperature by adjusting the residence time in each furnace in a flame-stabilizing furnace composed of multiple furnaces to the density of the carbon fiber precursor fiber, and a method of adjusting the flame-stabilizing atmosphere (Patent Documents 2 to 4).
  • Patent Documents 3 and 4 the temperature control region for the flame-proofing process is divided into two or three zones, and the difference in the internal and external structure of the flame-proofed fiber is controlled by controlling the rate of increase in specific gravity relative to the flame-proofing time and controlling the flame-proofing temperature relative to the specific gravity.
  • the tensile modulus can be increased by orienting the structure that forms the fiber in the fiber axis direction. Therefore, methods proposed to improve the tensile modulus include a method of stretching during the coagulation process in the spinning process and a method of stretching during the flame-proofing process in the baking process (Patent Documents 5 and 6).
  • FRP filament winding (hereafter sometimes abbreviated as "FW") method and automated lamination method, which are methods for molding carbon fiber reinforced composite materials
  • FRP is manufactured using one or a limited number of tape-like unidirectional prepregs. If there is a large variation in the basis weight between the tape-like unidirectional prepregs, there is a problem that when the tape-like unidirectional prepregs are made into FRP, the total weight will vary and the thickness of each part will deviate from the designed thickness. This method can solve this problem.
  • Patent Document 1 only aims to improve the physical properties by controlling the single fiber fineness and the difference between the inner and outer structures, and by controlling the surface defects or the microstructure distribution of the carbon fiber, but does not aim to improve the variation in mass per unit length (g/m).
  • Patent documents 2 to 4 also focus on the heating temperature and time in the flame-resistant process to improve the quality of the carbon fiber, but do not focus on the draw ratio in the baking process and the spinning process, and do not attempt to improve the variation in mass per unit length (g/m).
  • Patent Document 5 instead of omitting steam stretching, the raw yarn is highly stretched in the solidification process to increase the degree of orientation and make it easier to express the tensile modulus.
  • the temperature control in the flame-proofing process does not control the amount of stretching, including the baking process, so there is a possibility that the mass per unit length (g/m) will fluctuate greatly.
  • Patent Document 6 high strand strength and elastic modulus are achieved through high elongation during the flame-resistant process, but this is limited to carbon fibers with small fineness, and the application of elongation and temperature control during the flame-resistant process to carbon fibers with large fineness is not intended.
  • Patent Document 7 uses a method for manufacturing a towpreg by combining multiple fiber bundles, but there is an issue that this method cannot be applied when processing a single fiber bundle.
  • the present invention has been made in consideration of the above, and aims to provide a carbon fiber bundle that has small variation in mass (g/m) per unit length in the fiber longitudinal direction, and has excellent resin-impregnated strand tensile strength and resin-impregnated strand tensile modulus.
  • the inventors have discovered a method for obtaining carbon fiber bundles that achieve both tensile strength and elastic modulus and a reduced variation in mass (g/m) per unit length in the longitudinal direction of the fibers to a level not previously attainable with carbon fiber bundles, by increasing the fineness of the carbon fiber precursor fibers to increase productivity, while improving control of the difference between the inner and outer structures of the single fibers and controlling the draw ratio in the spinning process and the flame-resistant treatment process, and have arrived at the present invention.
  • the carbon fiber bundle of the present invention has the following characteristics.
  • the average single fiber diameter d (unit: ⁇ m) of the carbon fiber is 6.0 or more and less than 8.0
  • the blackening thickness K (unit: ⁇ m) of the carbon fiber is 0.38 ⁇ d or more
  • the carbon fiber bundle according to (1) having a crystal orientation degree ⁇ of 79.5% or more.
  • a method for producing the carbon fiber bundle according to any one of (1) to (4) above comprising the steps of: subjecting a carbon fiber precursor fiber bundle having a single fiber fineness of 1.4 to 3.4 dtex to a flame-retardant treatment while drawing the same at a draw ratio of 1.30 to 3.00 to obtain a flame-retardant fiber bundle; and then heat-treating the flame-retardant fiber bundle at 1200 to 3000° C. in an inert atmosphere to obtain a carbon fiber bundle.
  • the flame-resistant treatment includes a two-stage treatment process, in which in a first flame-resistant treatment process, flame-resistant treatment is performed until a ratio of a peak intensity at 1,453 cm ⁇ 1 to a peak intensity at 1,370 cm ⁇ 1 in an infrared spectrum is in a range of 0.74 to 0.80, and in a second flame-resistant treatment process performed after the first flame-resistant treatment process, flame-resistant treatment is performed until a ratio of a peak intensity at 1,453 cm ⁇ 1 to a peak intensity at 1,370 cm ⁇ 1 in an infrared spectrum is in a range of 0.60 to 0.65 and a ratio of a peak intensity at 1,254 cm ⁇ 1 to a peak intensity at 1,370 cm ⁇ 1 in an infrared spectrum is in a range of 0.70 to 0.80, and the flame-resistant fiber bundle obtained through the flame-resistant treatment process is heat-treated at 1,200 to 3,000° C. in an inert atmosphere to obtain
  • the present invention even if carbon fiber bundles with high productivity and high fineness of carbon fiber precursor fiber bundles are used, by controlling the drawing process in the spinning process and the flame-proofing process, it is possible to obtain carbon fiber bundles that have excellent stability of fiber content during composite material molding, and that can produce high-performance carbon fiber reinforced composite materials that exhibit excellent tensile strength and tensile modulus.
  • the carbon fiber bundle of the present invention has a filament count of 6,000 or more, and preferably 12,000 or more.
  • productivity depends on the yarn speed and the number of filaments, so a large number of filaments allows the composite material to be manufactured efficiently.
  • a filament count of 6,000 or more is satisfactory from the viewpoint of productivity.
  • the number of filaments is preferably 36,000 or less.
  • the carbon fiber bundle of the present invention has a resin-impregnated strand tensile strength (sometimes simply abbreviated as "strand strength") of 4.5 GPa or more, preferably 5.3 GPa or more, and more preferably 5.5 GPa or more. If the strand strength is 4.5 GPa or more, there is the potential for good tensile strength to be exhibited when a composite material is manufactured using the carbon fiber bundle.
  • the strand strength is determined by the method described in the strand tensile test of carbon fiber bundles, which will be described later. There is no particular upper limit to the strand strength, but from the viewpoint of productivity, it is usually 6.5 GPa or less.
  • the carbon fiber bundle of the present invention has a resin-impregnated strand tensile modulus (sometimes simply abbreviated as "strand modulus") of 205 to 270 GPa, preferably 212 to 260 GPa, and more preferably 217 to 255 GPa.
  • a strand modulus of 205 to 270 GPa is preferable because it provides an excellent balance between strand modulus and strand strength, and in particular, by controlling the strand modulus to 212 to 260 GPa, a carbon fiber bundle with excellent strand strength is easily obtained.
  • the strand modulus is determined by the method described in the strand tensile test of carbon fiber bundles below.
  • the strand modulus can be controlled mainly by applying tension to the fiber bundle during any heat treatment process in the carbon fiber bundle manufacturing process, or by changing the carbonization temperature.
  • the coefficient of variation (%) (hereinafter sometimes simply referred to as "coefficient of variation of mass per unit length of carbon fiber bundle") expressed as the ratio of the standard deviation to the average value ([standard deviation]/[average value] x 100 (%)) is 0.00 to 0.5%.
  • the upper limit is preferably 0.4% or less, and more preferably 0.25% or less.
  • the lower limit of the coefficient of variation of mass per unit length of carbon fiber bundle is most preferably 0.00%, but from the viewpoint of productivity and practicality, a value of 0.05% or more and 0.5% or less will provide a good balance between cost and performance.
  • the coefficient of variation of the mass per unit length of the carbon fiber bundle is 0.5% or less, when a composite material is manufactured using the carbon fiber bundle, a good composite material with small variations in tensile strength from place to place can be obtained, and the amount of carbon fiber bundle used can be reduced.
  • the parameters related to the mass (g/m) per unit length of the carbon fiber bundle i.e., the mass (g/m) per unit length of the carbon fiber bundle and the coefficient of variation of the mass per unit length of the carbon fiber bundle, can be controlled by using the manufacturing method of the carbon fiber bundle of the present invention described below.
  • the carbon fiber bundle of the present invention has a fluff count at the time of unwinding of preferably 1.5 fluff pieces/m or less, more preferably 1.0 fluff pieces/m or less, and even more preferably 0.5 fluff pieces/m or less.
  • the fluff count at the time of unwinding of the carbon fiber bundle can be controlled by using the manufacturing method of the carbon fiber bundle of the present invention described later.
  • the ideal lower limit of the fluff count is 0.0 fluff pieces/m, but even if it is about 0.1 fluff pieces/m, no practical problems will occur.
  • the carbon fiber bundle of the present invention preferably has an average single fiber diameter d ( ⁇ m) of 6.0 ⁇ m or more, and more preferably 6.5 ⁇ m or more.
  • d average single fiber diameter
  • the average single fiber diameter d is 6.0 ⁇ m or more, it is satisfactory in terms of impregnation.
  • the average single fiber diameter d is preferably less than 8.0 ⁇ m.
  • the carbon fiber bundle of the present invention preferably has a blackening thickness K of the cross section of a single fiber that is 0.38 times or more the average single fiber diameter d, i.e., 0.38 x d or more, and more preferably 0.39 x d or more.
  • the blackening layer on the outer periphery of the cross section perpendicular to the fiber axis direction of the carbon fiber single fiber is an area with a high degree of orientation of the crystalline portion and a high tensile modulus of elasticity.
  • the blackening thickness K is 0.38 x d or more, the proportion of the blackened layer in the cross section of the single fiber is 94% or more, resulting in a uniform carbon fiber, which is satisfactory from the standpoint of quality.
  • the upper limit of K is 0.5 x d, at which the entire cross section of the single fiber becomes a blackened layer, but an upper limit of 0.45 x d is sufficient.
  • the carbon fiber bundle of the present invention preferably has a crystal orientation degree ⁇ of 79.5% or more, and more preferably 80.0% or more.
  • the strand modulus of carbon fiber can be improved by increasing the crystal orientation degree in the carbon fiber bundle. If the crystal orientation degree ⁇ is 79.5% or more, the strand modulus is satisfactory from the standpoint of quality. There is no particular upper limit, but it is practical to set it to 84% or less from the standpoint of the balance between production cost and performance.
  • these parameters can be controlled by using the carbon fiber bundle manufacturing method of the present invention described below.
  • the carbon fiber bundle of the present invention preferably has an average single fiber diameter d ( ⁇ m) of 6.0 or more and less than 8.0, a blackening thickness K of the single fiber cross section of 0.38 ⁇ d or more, and a crystal orientation degree ⁇ of 79.5% or more.
  • Rr when the ratio (Ri/Ro) of the crystallinity Ri of the inner layer of a single fiber to the crystallinity Ro of the outer layer of the single fiber determined by Raman spectroscopy is Rr (hereinafter, sometimes referred to as the "crystallinity inner/outer layer ratio Rr"), Rr is preferably 1.03 or less, more preferably 1.01 or less.
  • the crystallinity inner/outer layer ratio Rr is an index showing the degree of crystallinity distribution within the diameter of a single fiber. The more uniform the crystallinity in the cross section, the smaller the Rr, and the more non-uniform the crystallinity, the larger the value.
  • the carbon fiber When the crystallinity inner/outer layer ratio Rr is small, the carbon fiber can be made to be more uniform within the diameter and less prone to tensile stress concentration on the surface compared to conventional carbon fibers, and the strand strength can be improved. When the crystallinity inner/outer layer ratio Rr exceeds 1.03, stress concentration occurs on the surface layer, which may lead to a deterioration in the quality of the carbon fiber.
  • the lower limit of Rr is preferably 1.00 or more.
  • any means can be used to achieve the inner/outer layer crystallinity ratio Rr of the carbon fiber bundle as long as it is within the above-mentioned numerical range, but in particular, a method in which low stretching is performed in the spinning process, high stretching is performed in the baking process, and the initial flame-resistant process is performed at a low temperature is preferably used.
  • the carbon fiber bundle of the present invention has excellent stability in the mass (g/m) per unit length of the carbon fiber bundle, so when it is used to mold a composite material, a carbon fiber reinforced composite material with high tensile strength can be obtained. Furthermore, by using the carbon fiber bundle of the present invention, it becomes easier to obtain a carbon fiber reinforced composite material with high tensile strength and small variation in the mass (g/m) per unit length.
  • a polyacrylonitrile-based polymer refers to one in which acrylonitrile is the main component of the polymer skeleton.
  • the main component refers to a component that accounts for 90 to 100% by mass of the polymer skeleton.
  • the polyacrylonitrile-based polymer contains a copolymerization component from the viewpoint of smoothly carrying out the flame-retardant process described below and controlling it to high-quality carbon fiber.
  • monomers containing one or more carboxylic acid groups or amide groups are preferably used as monomers that can be used as copolymerization components.
  • monomers containing a carboxylic acid group include acrylic acid, methacrylic acid, itaconic acid, and their alkali metal salts and ammonium salts.
  • monomers containing an amide group include acrylamide.
  • the method for producing the polyacrylonitrile polymer can be selected from among known polymerization methods.
  • the spinning process includes a spinning process in which a spinning dope is discharged from a spinneret into a coagulation bath by the dry-wet spinning method and spun, a water washing process in which the fiber obtained in the spinning process is washed in a water bath, a water bath drawing process in which the fiber obtained in the water washing process is drawn in a water bath, and a dry heat treatment process in which the fiber obtained in the water bath drawing process is dry heat treated, and may include a steam drawing process in which the fiber obtained in the dry heat treatment process is steam drawn.
  • the spinning solution is prepared by dissolving the polyacrylonitrile polymer described above in a solvent in which polyacrylonitrile is soluble, such as dimethyl sulfoxide, dimethylformamide, or dimethylacetamide.
  • the coagulation bath preferably contains a solvent such as dimethyl sulfoxide, dimethylformamide, or dimethylacetamide used as the solvent for the spinning solution, and a coagulation-promoting component.
  • the coagulation-promoting component may be one that does not dissolve the polyacrylonitrile polymer and is compatible with the solvent used in the spinning solution. Specifically, it is preferable to use water as the coagulation-promoting component.
  • washing bath in the washing step it is preferable to use a multi-stage washing bath having a temperature of 30 to 98°C.
  • the stretching ratio in the water bath stretching process is preferably 2 to 6 times.
  • an oil made of silicone to the fiber bundle in order to prevent the single fibers from fusing together. It is preferable to use modified silicone as such a silicone oil, and it is preferable to use one that contains amino-modified silicone, which has high heat resistance.
  • drying temperature can be 100 to 200°C.
  • the number of filaments in the carbon fiber precursor fiber bundle is preferably 6,000 or more so as to match the number of filaments in the carbon fiber bundle, and more preferably 12,000 or more. There is no particular upper limit, but it is preferably 36,000 or less.
  • a spinneret with 6,000 or less spinneret holes, for example 300 to 6,000 spinneret holes, and to combine the carbon fiber precursor fiber bundles so that the carbon fiber bundle has 6,000 to 36,000 filaments.
  • the single fiber fineness of the carbon fiber precursor fiber bundle is preferably 1.4 to 3.4 dtex, more preferably 1.9 to 2.8 dtex, from the viewpoint of increasing strand strength and strand elastic modulus.
  • a single fiber fineness of 1.4 dtex or more is satisfactory from the viewpoint of productivity.
  • the single fiber fineness is preferably 3.4 dtex or less.
  • the degree of crystal orientation of the carbon fiber precursor fiber bundle is preferably 70.0 to 87.0%.
  • the lower limit is more preferably 80% or more.
  • the lower the degree of orientation of the carbon fiber precursor fiber bundle the higher the stretchability in the flame-resistant process. Therefore, if the degree of orientation of the carbon fiber precursor fiber bundle is 87.0% or less, it can be sufficiently stretched in the flame-resistant process, making it possible to improve the tensile modulus of the carbon fiber bundle and reduce the variation in the mass (g/m) per unit length of the carbon fiber bundle. More preferably, it is 85.0% or less. If it is less than 70%, the carbon fibers will have a low degree of orientation, which may lead to a decrease in the tensile modulus.
  • Any means can be used to achieve the degree of orientation of the carbon fiber bundles as long as it is within the aforementioned numerical range, but in particular, in the production of carbon fiber precursor fiber bundles, it is preferable to carry out only water bath drawing without steam drawing.
  • a carbon fiber precursor fiber bundle is subjected to a flame retardant process, a pre-carbonization process, and a carbonization process to obtain a carbon fiber bundle.
  • the draw ratio in the flame retardation process is the ratio of the speed of the carbon fiber flame retarded yarn bundle after the final flame retardation furnace to the speed of the carbon fiber precursor bundle before the first flame retardation furnace.
  • the draw ratios can be allocated, but in order to achieve both control of the difference in the internal and external structures, it is preferable to draw in the first flame retardation furnace.
  • the draw ratio can be allocated among the multiple yarn path passes that make up the flame-resistant furnace, it is preferable to draw in the first pass, and it is even more preferable to draw at least 80% of the draw ratio.
  • this peak intensity ratio is referred to as “IR peak intensity ratio A”) of the obtained flame-resistant fiber to be in the range of 0.60 to 0.65, and the ratio of the peak intensity at 1,254 cm ⁇ 1 to the peak intensity at 1,370 cm ⁇ 1 in the infrared spectrum ([peak intensity at 1,254 cm ⁇ 1 ]/[peak intensity at 1,370 cm ⁇ 1 ].
  • this peak intensity ratio is referred to as “IR peak intensity ratio B”) to be in the range of 0.70 to 0.80.
  • the peak at 1,453 cm ⁇ 1 in the infrared spectrum is derived from an alkene and decreases as the flame retardation progresses.
  • the peaks at 1,370 cm ⁇ 1 and 1,254 cm ⁇ 1 are peaks derived from a flame retardant structure (presumably a naphthyridine ring structure and a hydrogenated naphthyridine ring structure, respectively), and increase as the flame retardation progresses.
  • a flame retardant structure presumably a naphthyridine ring structure and a hydrogenated naphthyridine ring structure, respectively
  • the conditions of the flame retardant process are set so as to leave many alkenes.
  • the carbon fiber bundle of the present invention can be obtained by subjecting a flame retardant fiber bundle having such a structure to a preliminary carbonization process.
  • the IR peak intensity ratio B is 0.70 to 0.80.
  • the peak at 1,254 cm -1 is often seen in areas where flameproofing is insufficient, and if there are many of these structures, the fracture toughness value is likely to decrease.
  • This peak intensity ratio decreases as the flameproofing progresses, and the decrease is particularly large in the early stages, but depending on the flameproofing conditions, this peak intensity ratio may not become 0.80 or less even if the time is increased.
  • the conditions should be set with a focus on reducing the amount of copolymerization components contained in the polyacrylonitrile polymer that constitutes the carbon fiber precursor fiber bundle, reducing the fineness of the carbon fiber precursor fiber bundle, and increasing the flame-stabilization temperature in the latter half.
  • first flame-proofing step it is preferable to perform heat treatment until the IR peak intensity ratio A is in the range of 0.74 to 0.80 (first flame-proofing step), and then perform heat treatment (second flame-proofing step) preferably at a temperature higher than that of the first flame-proofing step, for a flame-proofing time of 5 to 25 minutes, preferably 5 to 15 minutes, until the IR peak intensity ratio A is in the range of 0.60 to 0.65 and the IR peak intensity ratio B is in the range of 0.70 to 0.80.
  • the flame-proofing temperature may be adjusted to a high value, but the appropriate flame-proofing temperature depends on the characteristics of the carbon fiber precursor fiber bundle.
  • the center temperature of the carbon fiber precursor fiber bundle is preferable to set to 250 to 300°C, more preferably 250 to 280°C, and even more preferably 250 to 270°C, in order to control it within the above-mentioned infrared spectrum range.
  • the flame-resistant temperature does not need to be constant, and may be set at multiple stages.
  • the treatment in the second or subsequent flame-resistant furnaces is called the second flame-resistant process. Note that in the present invention, there is no limit to the number of flame-resistant furnaces in which the second flame-resistant process is performed.
  • the flame-resistant temperature high and the flame-resistant time short.
  • the first flame-resistant process it is preferable to perform flame-resistant treatment at a flame-resistant temperature within the above-mentioned range for a flame-resistant time of preferably 20 to 50 minutes, more preferably 30 to 40 minutes.
  • the flame-resistant time mentioned here means the time the fiber bundle is retained in the flame-resistant furnace, and the flame-resistant fiber bundle means the fiber bundle after the flame-resistant process and before the preliminary carbonization process.
  • the peak intensity mentioned here means the absorbance at each wavelength after baseline correction of the spectrum obtained by sampling a small amount of the flame-resistant fiber and measuring the infrared spectrum, and no peak division is performed.
  • the sample concentration is diluted with potassium bromide (KBr) to 0.67 mass% and measured. In this way, the infrared spectrum is measured every time the flame-resistant condition settings are changed, and the conditions are examined according to the preferred manufacturing method described below.
  • the flame-retardant process refers to heat treating the carbon fiber precursor fiber bundles at 200 to 300°C in an oxygen-containing atmosphere.
  • the total processing time for the flame-proofing process can be appropriately selected from the range of 35 to 60 minutes, and more preferably from the range of 35 to 55 minutes.
  • the obtained flame-retardant fiber is preferably heat-treated in an inert atmosphere at a maximum temperature of 500 to 1,000°C.
  • the draw ratio in the preliminary carbonization step is preferably 1.00 to 1.20, and more preferably 1.03 to 1.10. In this temperature range, microstructural defects due to drawing are unlikely to occur, and if the draw ratio in the preliminary carbonization step is 1.00 or more, the formation reaction of the initial carbonization structure between molecules inside the fiber is promoted, and a dense fiber structure can be formed. As a result, the knot strength of the carbon fiber bundle can be increased. If the draw ratio in the preliminary carbonization step exceeds 1.20, high tension is applied to the pre-carbonized fiber bundle, which may cause fuzzing.
  • the specific gravity of the fiber bundle obtained through the preliminary carbonization process is preferably 1.5 to 1.8.
  • the pre-carbonized fiber bundle is carbonized in an inert atmosphere at a maximum temperature of 1,000 to 2,000°C. From the viewpoint of increasing the strand modulus, a higher maximum temperature is preferable for the carbonization process, but if it is too high, knot strength may decrease, so it is best to set the temperature taking both into consideration. A more preferable maximum temperature is 1,100 to 1,800°C, and an even more preferable maximum temperature is 1,200 to 1,600°C.
  • the carbon fiber bundle obtained as described above is preferably subjected to an electrolytic surface treatment.
  • oxygen-containing functional groups are introduced into the carbon fiber bundle.
  • electrolytic surface treatment in the present invention gas phase oxidation, liquid phase oxidation, and liquid phase electrolytic oxidation are used, but from the viewpoint of high productivity and enabling uniform treatment, liquid phase electrolytic oxidation is preferably used.
  • there are no particular restrictions on the method of liquid phase electrolytic oxidation there are no particular restrictions on the method of liquid phase electrolytic oxidation, and it may be performed by a known method.
  • the carbon fiber bundles obtained may be subjected to a sizing treatment in order to impart bundling properties to the bundles.
  • a sizing agent having good compatibility with the matrix resin used in the composite material may be appropriately selected according to the type of matrix resin used.
  • the amount of the sizing agent attached is preferably 0.2% by mass or more and 1.0% by mass or less.
  • the towpreg using the carbon fiber bundle of the present invention can be produced by a known method.
  • a towpreg production device equipped with a creel, kiss roll, nip roll, and winder can be used to coat one side of a carbon fiber bundle with an epoxy resin composition adjusted to a temperature of 20 to 60°C, and then the bundle can be passed through a nip roll to impregnate the inside of the reinforced fiber bundle with the epoxy resin composition, thereby obtaining a towpreg.
  • the towpreg bobbin can be wound up to 2,300 m on a paper tube so that it has an initial tension of 600 to 1,000 gf, a wind ratio of 6 to 10, and a cylindrical winding width of 230 to 260 mm.
  • a method of manufacturing a pressure vessel includes placing a 7.5 L polyethylene liner in a filament winding molding device and winding the towpregs around the entire liner.
  • a hoop layer at an angle of +89° to the axial direction of the liner and a hoop layer at an angle of -89° to the axial direction of the liner are wound to a thickness of 1.4 mm.
  • a helical layer at an angle of +20° to the axial direction of the liner and a helical layer at an angle of -20° to the axial direction of the liner are wound to a thickness of 2.2 mm.
  • a hoop layer at an angle of +89° to the axial direction of the liner and a hoop layer at an angle of -89° to the axial direction of the liner are wound to a thickness of 0.6 mm to obtain an intermediate body.
  • Another method for hardening is to rotate the intermediate body in a hardening oven and harden it at 150°C for 4 hours to obtain a pressure vessel.
  • the strand strength, strand modulus and elongation are determined according to the following procedure in accordance with the resin impregnated strand test method of JIS R7608:2004.
  • the strain range when calculating the strand modulus is 0.1 to 0.6%.
  • the carbon fiber bundle to be measured is embedded in resin, the cross section perpendicular to the fiber axis direction is polished, and the cross section is observed at a total of 1,000 times magnification using a 100x objective lens of an optical microscope.
  • the blackening thickness is measured from the cross-sectional microscope image of the polished surface.
  • the analysis is performed using image analysis software ImageJ. First, the black and white regions are divided in the single fiber cross-sectional image by binarization. The average value of the distribution is set as a threshold value for the brightness distribution in the single fiber cross-section, and binarization is performed.
  • the obtained binarized image is measured as the shortest distance from a point on the surface layer to the black to white lined region in the direction of the fiber diameter. This is measured for five points within the circumference of the same single fiber, and the average value is calculated as the blackening thickness K at that level.
  • the blackening layer ratio (%) which is the area of the blackening thickness portion relative to the area of the entire cross section perpendicular to the fiber axis direction of the carbon fiber single fiber, is calculated by image analysis.
  • ⁇ Variation coefficient (%) of mass per unit length of carbon fiber bundle The coefficient of variation (%), which is the ratio of the standard deviation to the average value of the mass (g/m) per unit length of the carbon fiber bundle ([standard deviation]/[average value] ⁇ 100(%)), is measured as follows. The operation of cutting the carbon fiber bundle to a length of 1 m is repeated to prepare 10 carbon fiber bundle samples, and the mass (g) of each carbon fiber bundle sample is measured to obtain the mass per unit length (g/m). Next, the average value and standard deviation of the mass per unit length of all 10 samples are calculated, and the ratio of the standard deviation to the average value is calculated to obtain a value expressed as a percentage ([standard deviation]/[average value] ⁇ 100(%)).
  • ⁇ Crystalline orientation degree (%) of carbon fiber precursor fiber bundle and carbon fiber bundle> The degree of crystal orientation is measured as follows. A fiber bundle is cut into a length of 40 mm, and 20 mg is weighed out to obtain a sample. The fiber axis of the sample is aligned so as to be precisely parallel, and then the sample is adjusted to a uniform thickness of 1 mm using a sample adjustment tool. The sample is impregnated with a thin collodion liquid to prevent the shape from being distorted, and then fixed on the sample stage of a wide-angle X-ray diffraction measuring instrument (XRD-6100, manufactured by Shimadzu Corporation).
  • XRD-6100 wide-angle X-ray diffraction measuring instrument
  • the degree of crystal orientation (%) is calculated using the following formula.
  • Crystal orientation degree (%) [(180 - H) / 180] x 100
  • H is the half width.
  • Measurement depth sin ⁇ ⁇ e
  • e is the distance from the end of the long axis of the polished carbon fiber surface
  • is the inclination angle of the fiber.
  • the long axis length a of the polished carbon fiber surface is the length of the long side of a rectangle with the smallest area circumscribing the polished carbon fiber surface
  • the short axis length b is the length of the short side of the circumscribing rectangle.
  • a and c are the major axis length and minor axis length of the carbon fiber surface obtained by embedding the carbon fiber perpendicularly in the polished surface in epoxy resin, wet-polishing it, and polishing it.
  • the major axis length a of the polished carbon fiber surface is the length of the long side of the rectangle with the smallest area circumscribing the polished carbon fiber surface
  • the minor axis length b is the length of the short side of the circumscribing rectangle.
  • I 1480 /I 1580 was taken as the crystallinity parameter.
  • I 1350 , I 1480 , and I 1580 are respectively: I 1350 : Raman band intensity around 1,350 cm ⁇ 1 , I 1580 : Raman band intensity around 1,580 cm ⁇ 1 , I 1480 : the intensity of the valleys (appearing around 1,480 cm ⁇ 1 ) of the two Raman bands near 1,580 cm ⁇ 1 and 1,350 cm ⁇ 1 .
  • the crystallinity inner/outer layer ratio Rr is calculated as follows:
  • I 1480 /I 1580 in a region 0.5 to 2.0 ⁇ m deep from the surface is taken as Ro
  • I 1480 /I 1580 in a region within 0.5 ⁇ m from the center of the cross section of a single fiber is taken as Ri, and is calculated using the following formula.
  • the Raman band intensity is measured by connecting both ends of the measurement range of the obtained chart with a straight line, subtracting the background, and then fitting the two peaks so that the peaks are located at ⁇ 50 cm -1 between 1,350 cm -1 and 1,580 cm -1 , which are set as the reference wavenumbers, to determine the peak intensity of each peak.
  • the peak fitting function used is the Voigt function.
  • the intensity of the valleys of both peaks is obtained.
  • the measurement is performed once for each of five separate single fibers in the same carbon fiber bundle, and the simple average is used.
  • the measurement device used is a laser Raman spectrophotometer (JASCO NRS-3200), and the objective lens was 100x.
  • the beam diameter is 1 ⁇ m
  • the laser power is 2.5 to 3.2 mW
  • the wavelength is 532 nm
  • the measurement time is 120 seconds
  • the measurement range is 1,200 to 1,900 cm -1 .
  • IR peak intensity ratio A The ratio of the peak intensity at 1,453 cm ⁇ 1 to the peak intensity at 1,370 cm ⁇ 1 in the infrared spectrum
  • IR peak intensity ratio B the ratio of the peak intensity at 1,254 cm ⁇ 1 to the peak intensity at 1,370 cm ⁇ 1 in the infrared spectrum
  • the flame-resistant fiber to be measured is frozen and crushed, and 2 mg of the fiber is precisely weighed and collected.
  • the fiber is mixed well with 300 mg of potassium bromide (KBr), placed in a molding tool, and pressed at 40 MPa for 2 minutes using a press to prepare a tablet for measurement.
  • the tablet is set in a Fourier transform infrared spectrophotometer, and the spectrum is measured in the range of 1,000 to 2,000 cm ⁇ 1 .
  • background correction is performed by subtracting the minimum value in the range of 1,700 to 2,000 cm ⁇ 1 from each intensity so that the minimum value becomes 0.
  • a Paragon 1000 manufactured by PerkinElmer is used as the Fourier transform infrared spectrophotometer.
  • ⁇ Spreadability evaluation method (spreadability evaluation)> Two metal bars (stainless steel) with a diameter of 50 mm and a surface roughness Rmax of 0.3 ⁇ m are arranged vertically at intervals of 150 mm so that the carbon fiber bundle passes while contacting each metal bar at an angle of 0.3925 ⁇ (rad) ⁇ 0.04 ⁇ (rad), a total of 0.785 ⁇ (rad). The carbon fiber bundle is then hung on the metal bars, the unwinding tension from the package is set to 800 g, and the carbon fiber bundle is pulled by a driving roll at 4 m/min to pass the metal bars, and a CCD transmission type laser sensor/IG1500 manufactured by KEYENCE Co., Ltd.
  • the width of the carbon fiber bundle is measured at 120 points at 1 second intervals for 120 seconds continuously, and the coefficient of variation ([standard deviation]/[average value] x 100 (%)) is used as the spreadability.
  • the preferred range of spreading width is evaluated on a four-level scale based on the following criteria:
  • Coefficient of variation is less than 0.5%.
  • A Coefficient of variation is 0.5% or more and less than 1.0%.
  • B Coefficient of variation is 1.0% or more and less than 5%.
  • C Coefficient of variation is 5% or more.
  • the carbon fiber bundle was then hung on the metal bars, the unwinding tension from the package was set to 800 g, and the carbon fiber bundle was pulled by a driving roll at a speed of 4 m/min to pass the metal bar, and the number of fluffs per minute after passing the second metal bar was counted, and this was converted to per meter using the following formula to determine the process passability.
  • the process passability of the carbon fiber bundle was measured three times, and the arithmetic average value was determined as the process fluff number (pieces/m) of the carbon fiber bundle.
  • S The number of process fluff is 2.5 pieces/m or less.
  • C The number of process fluff is more than 5.0 pieces/m.
  • Example 1 A copolymer consisting of 99.5 mol % of acrylonitrile and 0.5 mol % of itaconic acid was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent to obtain a spinning solution containing a polyacrylonitrile-based copolymer.
  • the obtained spinning solution was once discharged from a spinneret into the air, and coagulated yarn was obtained by a dry-wet spinning method in which the obtained spinning solution was introduced into a coagulation bath consisting of an aqueous solution of 35 mass % dimethyl sulfoxide controlled at 3°C.
  • the solidified yarn was washed with water in the usual manner and then water bath drawn at a draw ratio of 3.5 times.
  • an amino-modified silicone-based silicone oil was applied to the fiber bundle after water bath drawing, and a drying and densification process was performed using a heated roller at 160°C.
  • a carbon fiber precursor fiber bundle with 12,000 filaments was obtained with a total draw ratio of 3.5 times.
  • the single fiber fineness of the obtained carbon fiber precursor fiber bundle was 2.1 dtex, and the degree of crystal orientation was 84.0%.
  • the first flame-resistant process was performed under conditions of a flame-resistant temperature of 240°C and a flame-resistant time of 29 minutes, in which the carbon fiber precursor fiber bundle was stretched in an oven in an air atmosphere at a draw ratio of 1.6
  • the second flame-resistant process was performed under conditions of a flame-resistant temperature of 263°C and a flame-resistant time of 14 minutes, in which the bundle was stretched at a draw ratio of 1.0 while being flame-resistant, to obtain the flame-resistant fiber bundle shown in Table 1.
  • the obtained flame-retardant fiber bundle was subjected to a pre-carbonization treatment while being stretched in a nitrogen atmosphere at a maximum temperature of 800°C to obtain a pre-carbonized fiber bundle.
  • the obtained pre-carbonized fiber bundle was subjected to a carbonization treatment while being stretched in a nitrogen atmosphere at a maximum temperature of 1,350°C.
  • the obtained carbon fiber bundle was subjected to an electrolytic surface treatment using an aqueous sulfuric acid solution as the electrolyte and an electrical quantity of 6 coulombs per gram of carbon fiber.
  • the carbon fiber subjected to this electrolytic surface treatment was then washed with water and dried in heated air at 150°C to remove water, after which a 10 mole adduct of bisphenol A ethylene oxide was applied as a sizing agent and heat-treated at a temperature of 210°C for 75 seconds to obtain a carbon fiber bundle.
  • the carbon fiber bundle produced under the above conditions had an average single fiber diameter d of 7.0 ⁇ m, a blackening thickness K of 2.5 ⁇ m, a crystal orientation degree ⁇ of 79.6%, a sizing agent adhesion amount of 0.6 mass%, a coefficient of variation of mass per unit length (g/m) of 0.25%, and a fluff count of 3.0 pieces/m when unwound.
  • Table 1 The results are shown in Table 1.
  • Example 2 A carbon fiber bundle was obtained in the same manner as in Example 1 except that in the flame-stabilizing step, the first flame-stabilizing step was performed at a flame-stabilizing temperature of 238°C and a flame-stabilizing time of 31 minutes, and the second flame-stabilizing step was performed at a flame-stabilizing temperature of 263°C and a flame-stabilizing time of 14 minutes to obtain a flame-stabilized fiber bundle.
  • Example 3 A carbon fiber bundle was obtained in the same manner as in Example 1 except that in the flame-stabilizing step, the first flame-stabilizing step was performed at a flame-stabilizing temperature of 235°C and a flame-stabilizing time of 37 minutes, and the second flame-stabilizing step was performed at a flame-stabilizing temperature of 263°C and a flame-stabilizing time of 14 minutes to obtain a flame-stabilized fiber bundle.
  • Example 4 A carbon fiber bundle was obtained in the same manner as in Example 1 except that in the flame-stabilizing step, the first flame-stabilizing step was performed at a flame-stabilizing temperature of 238°C and for a flame-stabilizing time of 31 minutes, and the second flame-stabilizing step was performed at a flame-stabilizing temperature of 268°C and for a flame-stabilizing time of 11 minutes to obtain a flame-stabilized fiber bundle.
  • Example 5 A carbon fiber bundle was obtained in the same manner as in Example 1 except that in the flame-stabilizing step, the first flame-stabilizing step was performed at a flame-stabilizing temperature of 235°C and a flame-stabilizing time of 37 minutes, and the second flame-stabilizing step was performed at a flame-stabilizing temperature of 268°C and a flame-stabilizing time of 11 minutes to obtain a flame-stabilized fiber bundle.
  • Example 6 A carbon fiber precursor fiber bundle having a single fiber fineness of 1.7 dtex and a crystal orientation degree of 87.0% was obtained in the same manner as in Example 1, except that the discharge amount of the spinning dope from the spinneret was changed.
  • the carbon fiber precursor fiber bundle was subjected to a flame-stabilization treatment in an oven in an air atmosphere while being stretched at a flame-stabilization temperature of 240°C, a flame-stabilization time of 29 minutes, and a draw ratio of 1.3 as a first flame-stabilization step, and then stretched at a flame-stabilization temperature of 263°C, a flame-stabilization time of 14 minutes, and a draw ratio of 1.0 as a second flame-stabilization step to obtain a flame-stabilized fiber bundle.
  • the obtained flame-stabilized fiber bundle was treated in the same manner as in Example 1 to obtain a carbon fiber bundle.
  • Example 7 A carbon fiber bundle was obtained in the same manner as in Example 6 except that in the flame-stabilizing step, the first flame-stabilizing step was performed at a flame-stabilizing temperature of 235°C and a flame-stabilizing time of 37 minutes, and the second flame-stabilizing step was performed at a flame-stabilizing temperature of 263°C and a flame-stabilizing time of 14 minutes to obtain a flame-stabilized fiber bundle.
  • Example 8 A carbon fiber bundle was obtained in the same manner as in Example 6 except that in the flame-stabilizing step, the first flame-stabilizing step was performed at a flame-stabilizing temperature of 235°C and a flame-stabilizing time of 37 minutes, and the second flame-stabilizing step was performed at a flame-stabilizing temperature of 268°C and a flame-stabilizing time of 11 minutes to obtain a flame-stabilized fiber bundle.
  • Example 1 A carbon fiber bundle was obtained in the same manner as in Example 1 except that in the flame-stabilizing step, a flame-stabilizing temperature of 243°C and a flame-stabilizing time of 24 minutes were set for the first flame-stabilizing step, and a flame-stabilizing temperature of 263°C and a flame-stabilizing time of 14 minutes were set for the second flame-stabilizing step to obtain a flame-stabilized fiber bundle.
  • Example 2 A carbon fiber bundle was obtained in the same manner as in Example 1 except that in the flame-stabilizing step, the first flame-stabilizing step was performed at a flame-stabilizing temperature of 247°C and a flame-stabilizing time of 19 minutes, and the second flame-stabilizing step was performed at a flame-stabilizing temperature of 268°C and a flame-stabilizing time of 14 minutes to obtain a flame-stabilized fiber bundle.
  • Example 3 A carbon fiber precursor fiber bundle having a single fiber fineness of 1.1 dtex and a crystal orientation degree of 89.0% was obtained in the same manner as in Example 1, except that the amount of the spinning dope discharged from the spinneret was changed, and after the drying and densifying treatment, the fiber bundle was stretched 3.7 times in pressurized steam to make the total spinning stretch ratio 13 times.
  • the carbon fiber precursor fiber bundle was subjected to a flame-stabilizing treatment while stretching in an oven in an air atmosphere at a flame-stabilizing temperature of 253°C, a flame-stabilizing time of 14 minutes, and a stretch ratio of 0.9 as a first flame-stabilizing step, and then stretched at a flame-stabilizing temperature of 263°C, a flame-stabilizing time of 14 minutes, and a stretch ratio of 1.0 as a second flame-stabilizing step to obtain a flame-stabilized fiber bundle.
  • the obtained flame-stabilized fiber bundle was treated in the same manner as in Example 1 to obtain a carbon fiber bundle.
  • the present invention controls the draw ratio in the spinning process and the flame-proofing process, and by treating the initial flame-proofing process at an appropriate temperature, it is possible to produce carbon fiber that has small variation in the mass (g/m) per unit length of the carbon fiber bundle and simultaneously satisfies excellent strand tensile strength and tensile modulus. Taking advantage of these characteristics, the carbon fiber bundle obtained by the present invention is suitable for use in aircraft, automobile, and ship parts, sports applications such as golf shafts and fishing rods, and general industrial applications such as pressure vessels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

本発明は、炭素繊維束の単位長さあたりの質量(g/m)の変動が小さく、優れた樹脂含浸ストランド引張強度および引張弾性率を有する炭素繊維束を提供することを課題としている。 かかる課題を解決するために、樹脂含浸ストランド強度が4.5~6.5GPa、樹脂含浸ストランド弾性率が205~270GPa、フィラメント数が6,000~36,000本であり、炭素繊維束の単位長さあたりの質量(g/m)の標準偏差と平均値との比で表される変動係数が0.00~0.5%である炭素繊維束を提供する。

Description

炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、および炭素繊維束の製造方法
 本発明は、繊維強化プラスチックに用いるに適した炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、ならびに炭素繊維束の製造方法に関するものである。
 炭素繊維は、環境問題の高まりから複合材料の強化繊維として、その用途が各種方面に益々拡がり、更なる高性能・高品位化が強く求められている。炭素繊維の力学特性を高めることは圧力容器などの部材の軽量化に寄与するため、引張強度、引張弾性率といった力学特性を高めることが重要であり、それと同時に最終部材の品質を安定させる観点から毛羽を少なくすることや目付の変動が少ないといった炭素繊維の品位の高さも重要な課題となっている。炭素繊維のような脆性材料においては、グリフィスの式に従って欠陥サイズを小さくするか、破壊靱性値を高めることで、例えば引張強度を高めることができる。特に破壊靱性値の改善は、欠陥サイズの状態に依存せずに高引張強度化が可能である点で有効である(特許文献1)。引張強度、引張弾性率といった力学特性をバランス良く高めるためには、単繊維断面に存在する内外構造差を解消することも重要となる。
 単繊維断面の内外構造差を抑制しつつ性能を向上する方法として例えば、耐炎化において液相中で耐炎化を行うことにより耐炎化時間を短時間化し炭素繊維の高性能化をする方法や、複数個の炉から構成される耐炎化炉において各炉の滞留時間を炭素繊維前駆体繊維の密度に併せて、耐炎化温度を高温化させる方法、耐炎化雰囲気を調整する方法が提案されている(特許文献2~4)。
 特許文献3、4では、耐炎化工程の温度制御領域を2~3区にし、耐炎化時間に対する比重増加率を制御や、比重に対する耐炎化温度の制御により、耐炎化繊維の内外構造差制御を行っている。引張弾性率は繊維を形成する構造を繊維軸方向へ配向させることで高めることができる。そのため、引張弾性率を向上させる方法として、製糸工程における凝固工程で延伸する手法や、焼成工程における耐炎化工程で延伸する手法が提案されている(特許文献5、6)。
 さらに、炭素繊維の機械的性能を安定的にコンポジットに反映させるためには炭素繊維の目付変動を抑制する必要がある。例えばトウプレグ目付を安定させる方法として、含浸前に繊維束ごとの目付を測定し、繊維目付が指定の範囲に入るよう繊維束を組み合わせてトウプレグを製造する手法が提案されている(特許文献7)。
 炭素繊維強化複合材料の成形方法であるフィラメントワインディング(以下、「FW」と略することがある)法や自動積層法では、1本または限られた数のテープ状の一方向プリプレグを用いてFRPを製造するため、テープ状の一方向プリプレグ間の目付のばらつきが大きいと、テープ状の一方向プリプレグをFRPとした時の総重量がばらつくこと、各部位の厚みが設計厚みからずれること、という問題があるがこれを解決することができる。
国際公開第97/45576号 特開2004-300600号公報 特開2006-283225号公報 特開2017-66580号公報 特開2009-079343号公報 国際公開第2008/063886号 特表2022-519335号公報
 しかしながら、特許文献1では、単繊維繊度および内外構造差を制御し、炭素繊維の表面欠陥制御あるいは微細構造分布制御による物性改善を図るのみであって、単位長さあたりの質量(g/m)の変動の改善を図ったものではなかった。
 特許文献2~4でも、耐炎化工程での加熱温度、時間に着目して炭素繊維品質を向上させてはいるが、焼成工程と製糸工程の延伸比に着目はしておらず、単位長さあたりの質量(g/m)の変動の改善を図ったものではなかった。
 特許文献5では、スチーム延伸を省略する代わりに凝固工程で高延伸して原糸の配向度を高めて引張弾性率を発現しやすくしているが、耐炎化工程の温度制御は焼成工程を含めて延伸量を制御していないため、単位長さあたりの質量(g/m)の変動が大きくなる可能性がある。
 特許文献6では、耐炎化工程での高延伸により高いストランド強度・弾性率を発現しているが、繊度が小さい炭素繊維にとどまっており、繊度が大きい炭素繊維への耐炎化工程での延伸、そして温度制御の適用は意図されていない。
 また、特許文献7では、複数の繊維束を組み合わせてトウプレグを製造する手法を用いているが、一つの繊維束を用いて加工する場合には適用できない課題がある。
 本発明は、上記を鑑みてなされたものであり、繊維長手方向での単位長さあたりの質量(g/m)の変動が小さく、優れた樹脂含浸ストランド引張強度および樹脂含浸ストランド引張弾性率を有する炭素繊維束を提供することを目的とする。
 本発明者らは、炭素繊維前駆体繊維の繊度を増加させて生産性を上げつつ、単繊維の内外構造差制御の向上、製糸工程と耐炎化工程の延伸比の制御により、従前の炭素繊維束では達し得なかった水準まで引張強度・弾性率と繊維長手方向での単位長さあたりの質量(g/m)変動の低減を両立する炭素繊維束を得る方法を見出し、本発明に至った。
 上記の目的を達成するため、本発明の炭素繊維束は、次の特徴を有するものである。
(1)樹脂含浸ストランド引張強度が4.5~6.5GPaであり、樹脂含浸ストランド引張弾性率が205~270GPaであり、フィラメント数が6,000~36,000本であり、炭素繊維束の単位長さあたりの質量(g/m)の標準偏差と平均値との比で表される変動係数([標準偏差]/[平均値]×100(%))が0.00~0.5%である炭素繊維束。
(2)前記炭素繊維の平均単繊維径d(単位:μm)が6.0以上、8.0未満であり、かつ、
炭素繊維の黒化厚みK(単位:μm)が0.38×d以上であり、かつ、
結晶配向度Πが79.5%以上である(1)に記載の炭素繊維束。
(3)ラマン分光により求められる単繊維の内層の結晶性Riと外層の結晶性Roとの比(Ri/Ro)をRrとしたとき、Rrが1.03以下である(1)または(2)に記載の炭素繊維束。
(4)炭素繊維束の巻き出し時の毛羽数が1.5個/m以下である(1)~(3)のいずれかに記載の炭素繊維束。
(5)(1)~(4)のいずれかに記載の炭素繊維束を用いたトウプレグ。
(6)(1)~(4)のいずれかに記載の炭素繊維束を用いた炭素繊維強化複合材料。
(7)(1)~(4)のいずれかに記載の炭素繊維束を用いた圧力容器。
(8)前記(1)~(4)のいずれかに記載の炭素繊維束を製造する製造方法であって、単繊維繊度1.4~3.4dtexの炭素繊維前駆体繊維束を延伸比1.30~3.00で延伸しながら耐炎化処理して耐炎化繊維束を得た後、該耐炎化繊維束を不活性雰囲気中で1200~3000℃で熱処理をして炭素繊維束を得る、炭素繊維束の製造方法。
(9)前記耐炎化処理は、二段階の処理工程を含み、第1の耐炎化工程では、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比が0.74~0.80の範囲となるまで耐炎化処理し、第1の耐炎化工程よりも後に行われる第2の耐炎化工程では、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比を0.60~0.65の範囲、かつ、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,254cm-1ピーク強度の比が0.70~0.80の範囲となるまで耐炎化処理を行い、該耐炎化処理工程を経て得られた耐炎化繊維束を不活性雰囲気中で1,200~3,000℃で熱処理をして炭素繊維束を得る、(8)に記載の炭素繊維束の製造方法。
 本発明によれば、炭素繊維前駆体繊維束の繊度が大きく生産性が高い炭素繊維束を用いても、製糸工程と耐炎化工程の延伸を制御することで複合材料成形時の繊維含有率の安定性に優れ、かつ優れた引張強度と引張弾性率を発現する高性能な炭素繊維強化複合材料を得ることができる、炭素繊維束が得られる。
 本発明の炭素繊維束は、フィラメント数が6,000本以上であり、12,000本以上であることが好ましい。FW法で複合材料を製造するときに、生産性は糸速とフィラメント数に依存するため、フィラメント数が多いことで複合材料を効率良く製造することができる。フィラメント数が6,000本以上であれば生産性の観点で満足できる。フィラメント数の上限は特に限定されないが、フィラメント数が多いほど延伸工程中での糸束内外の延伸ムラによる単位長さあたりの質量(g/m)のバラつきが生じやすくなる。そのため、フィラメント数は36,000本以下が好ましい。
 本発明の炭素繊維束は、樹脂含浸ストランド引張強度(単に、「ストランド強度」とも略記することがある。)が4.5GPa以上であり、好ましくは5.3GPa以上であり、より好ましくは5.5GPa以上である。ストランド強度が4.5GPa以上であれば、炭素繊維束を用いて複合材料を製造した際に良好な引張強度を発現するポテンシャルを有する。なお、ストランド強度は、後述する炭素繊維束のストランド引張試験に記載の方法により求められる。ストランド強度の上限については特に限定されないが、生産性の観点から通常6.5GPa以下である。
 本発明の炭素繊維束は、樹脂含浸ストランド引張弾性率(単に、「ストランド弾性率」とも略記することがある。)が205~270GPaであり、好ましくは212~260GPaであり、より好ましくは217~255GPaである。ストランド弾性率が205~270GPaであれば、ストランド弾性率とストランド強度のバランスに優れるために好ましく、特に、ストランド弾性率を212~260GPaに制御することで、ストランド強度の優れた炭素繊維束が得られやすい。なお、ストランド弾性率は、後述する炭素繊維束のストランド引張試験に記載の方法により求められる。ストランド弾性率は、主に炭素繊維束の製造工程におけるいずれかの熱処理過程で繊維束に張力を付与するか、炭素化温度を変えることにより制御できる。
 また、本発明の炭素繊維束は、炭素繊維束の単位長さあたりの質量(長さ1mあたりの質量(g)。単位は、g/m)を求めたとき、その標準偏差と平均値との比([標準偏差]/[平均値]×100(%))で表される変動係数(%)(以下、単に「炭素繊維束単位長さあたりの質量の変動係数」と記載することもある)が0.00~0.5%である。上限として好ましくは0.4%以下、更に好ましくは0.25%以下である。炭素繊維束単位長さあたりの質量の変動係数の下限として最も好ましくは0.00%であるが、生産性や実用性の観点から、0.05%以上0.5%以下であれば、コストと性能のバランスがとれたものとできる。
 FW成形によって圧力容器を作製する際、同じストランド強度の炭素繊維であっても応力負担のバラツキの中で一番単位長さあたりの質量(g/m)が低いところに応力集中し、破壊が始まりやすいため、炭素繊維束単位長さあたりの質量の変動係数が大きい場合、平均ストランド強度が高くとも、想定される強度利用率見合いで炭素繊維束の使用量を増やさざるを得ない。そのため、例えば炭素繊維束を圧力容器用に用いた場合、タンクの質量増に繋がってしまうが、炭素繊維束単位長さあたりの質量の変動係数を抑えることで、炭素繊維束の使用量を抑えることができ、複合材料のより軽量化を達成することができる。
 炭素繊維束単位長さあたりの質量の変動係数が0.5%以下であれば、炭素繊維束を用いて複合材料を製造した際に、場所による引張強度のバラツキが小さい良好な複合材料を得ることが出来、炭素繊維束の使用量を抑えることができる。なお、炭素繊維束の単位長さあたりの質量(g/m)にかかるパラメータ、すなわち、炭素繊維束の単位長さあたりの質量(g/m)、及び炭素繊維束単位長さあたりの質量の変動係数は、後述する本発明の炭素繊維束の製造方法を用いることにより制御することができる。
 本発明の炭素繊維束は、巻き出し時の毛羽数が好ましくは1.5個/m以下であり、より好ましくは1.0個/m以下であり、更に好ましくは0.5個/m以下である。FW成形によって圧力容器を作製する際、工程にあるアイレットや金属バーとの擦過により毛羽が生じ、その毛羽や溜まった毛羽を巻き混んで成形すると破壊起点となるため想定よりも低いタンク強度となる。工程毛羽の発生を抑えることで引張強度が良好な複合材料を得ることができる。なお、炭素繊維束の巻き出し時の毛羽数は、後述する本発明の炭素繊維束の製造方法を用いることにより制御することができる。なお、毛羽数の下限としては、0.0個/mが理想であるが、0.1個/mの程度であっても実用上の問題を生じることはない。
 本発明の炭素繊維束は、平均単繊維径d(μm)が好ましくは6.0μm以上であり、6.5μm以上であることがより好ましい。FW法やトウプレグ化で複合材料を製造するときに、含浸性は単繊維直径に依存するため、単繊維直径が大きいことで複合材料を効率良く製造することができる。平均単繊維径dが6.0μm以上であれば、含浸性の観点で満足できる。平均単繊維径dの上限は特に限定されないが、単繊維直径が大きいほど耐炎化工程で形成される二重構造性の悪化が顕著になる。そのため、平均単繊維径dは8.0μm未満が好ましい。
 本発明の炭素繊維束は、単繊維断面の黒化厚みKが好ましくは、前記平均単繊維径dの0.38倍以上、すなわち0.38×d以上であり、0.39×d以上がより好ましい。炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化層は結晶部分の配向度が高く、引張弾性率が高い領域である。この黒化厚みKを厚くできるほど、平均単繊維繊度を大きくした場合に内外構造差を抑制しやすい。炭素繊維のストランド強度、ストランド弾性率は内外構造差が抑制されると向上するため、黒化厚みKが大きいことで炭素繊維の品質を向上させることができる。
 黒化厚みKが0.38×d以上であれば、黒化層が単繊維断面に占める割合が94%以上と均一な炭素繊維となり、品質の観点で満足できる。かかるKの上限は単繊維断面が全て黒化層となる0.5×dであるが、0.45×dを上限とすれば十分である。
 本発明の炭素繊維束は、結晶配向度Πが好ましくは79.5%以上であり、80.0%以上がより好ましい。炭素繊維のストランド弾性率は炭素繊維束中の結晶配向度を増加させることで向上させることができる。結晶配向度Πが79.5%以上であれば、ストランド弾性率は品質の観点で満足できる。上限としては特に制限はないが、製造コストと性能のバランスの観点から84%以下とすることが実用的である。
 なお、かかるパラメータは、後述する本発明の炭素繊維束の製造方法を用いることにより制御することができる。
 本発明の炭素繊維束は、平均単繊維径d(μm)が6.0以上8.0未満であり、単繊維断面の黒化厚みKが0.38×d以上であり、結晶配向度Πが79.5%以上であることが好ましい。これら3つのパラメータを同時に満たすことにより、特に優れた引張強度を有する複合材料を得ることができる。
 本発明の炭素繊維束は、ラマン分光により求められる単繊維の内層の結晶性Riと外層の結晶性Roとの比(Ri/Ro)をRr(以下、「結晶性の内外層比Rr」と記載することもある)としたとき、Rrが好ましくは1.03以下であり、より好ましくは、1.01以下である。結晶性の内外層比Rrとは、単繊維径内の結晶性の分布の程度を示す指標である。断面における結晶性が均一であるほど、Rrは小さくなり、結晶性が不均一であると値は大きくなる。結晶性の内外層比Rrが小さい場合には、従来の炭素繊維に比べて径内がより均一であり表面に引張応力が集中しにくい炭素繊維とすることができ、ストランド強度を向上させることができる。結晶性の内外層比Rrが1.03を超える場合には、表層での応力集中が生じ炭素繊維の品質低下を招く恐れがある。Rrの下限としては、1.00以上とすることが好ましい。
 かかる炭素繊維束の結晶性の内外層比Rrの達成手段は、前記した数値範囲で達成できればどのような手段も採用することができるが、特に、製糸工程での低延伸と焼成工程での高延伸とともに耐炎化工程初期を低温で行う手法が好ましく用いられる。
 本発明の炭素繊維束は、炭素繊維束の単位長さあたりの質量(g/m)の安定性に優れるため、複合材料の成形に供したとき、引張強度が高い炭素繊維強化複合材料を得ることができる。また、本発明の炭素繊維束を用いることにより、引張強度が高く、かつ、単位長さあたりの質量(g/m)のバラツキが小さい炭素繊維強化複合材料が得られやすくなる。
 次に、本発明の炭素繊維束を得るのに好適な炭素繊維束の製造方法について、より具体的に例を挙げて、述べる。
 炭素繊維前駆体繊維束の製造に供する原料としてはポリアクリロニトリル系重合体を用いることが好ましい。なお、本発明においてポリアクリロニトリル系重合体とは、アクリロニトリルが重合体骨格の主構成成分となっているものをいう。主構成成分とは、重合体骨格の90~100質量%を占める構成成分のことをいう。炭素繊維前駆体繊維束の製造において、ポリアクリロニトリル系重合体は、後述する耐炎化工程を円滑に進め、また、高品位な炭素繊維に制御する観点等から、共重合成分を含むことが好ましい。
 共重合成分として使用可能な単量体としては、耐炎化を促進する観点から、カルボン酸基またはアミド基を1種以上含有する単量体が好ましく用いられる。例えば、カルボン酸基を含有する単量体としては、アクリル酸、メタクリル酸、イタコン酸およびそれらのアルカリ金属塩、およびアンモニウム塩等が挙げられる。また、アミド基を含有する単量体としては、アクリルアミド等が挙げられる。
 炭素繊維前駆体繊維束の製造において、ポリアクリロニトリル系重合体の製造方法としては、公知の重合方法の中から選択することができる。
 炭素繊維前駆体繊維束を製造するにあたり、製糸方法は乾湿式紡糸法および湿式紡糸法のいずれを用いてもよいが、得られる炭素繊維束の結節強度に有利な乾湿式紡糸法を用いることが好ましい。製糸工程は、乾湿式紡糸法により紡糸口金から凝固浴に紡糸原液を吐出させ紡糸する紡糸工程と、該紡糸工程で得られた繊維を水浴中で洗浄する水洗工程と、該水洗工程で得られた繊維を水浴中で延伸する水浴延伸工程と、該水浴延伸工程で得られた繊維を乾燥熱処理する乾燥熱処理工程からなり、必要に応じて、該乾燥熱処理工程で得られた繊維をスチーム延伸するスチーム延伸工程を含んでもよい。また、必要に応じて、炭素繊維束のフィラメント数に一致するように合糸工程を含むことが好ましい。なお、各工程の順序を適宜入れ替えることも可能である。
 紡糸原液は、前記したポリアクリロニトリル系重合体を、ジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどのポリアクリロニトリルが可溶な溶媒に溶解したものである。
 前記凝固浴には、紡糸原液の溶媒として用いたジメチルスルホキシド、ジメチルホルムアミドおよびジメチルアセトアミドなどの溶媒と、凝固促進成分を含ませることが好ましい。凝固促進成分としては、前記ポリアクリロニトリル系重合体を溶解せず、かつ紡糸溶液に用いる溶媒と相溶性があるものを使用することができる。具体的には、凝固促進成分として水を使用することが好ましい。
 前記水洗工程における水洗浴としては、温度が30~98℃の複数段からなる水洗浴を用いることが好ましい。
 また、水浴延伸工程における延伸倍率は、2~6倍であることが好ましい。
 水浴延伸工程の後、単繊維同士の融着を防止する目的から、繊維束にシリコーンからなる油剤を付与することが好ましい。かかるシリコーン油剤は、変性されたシリコーンを用いることが好ましく、耐熱性の高いアミノ変性シリコーンを含有するものを用いることが好ましい。
 乾燥熱処理工程は、公知の方法を利用することができる。例えば、乾燥温度は100~200℃が例示される。
 前記した水洗工程、水浴延伸工程、油剤付与工程、乾燥熱処理工程を行って、本発明の炭素繊維束を得るのに好適な炭素繊維前駆体繊維束が得られる。なおここで、乾燥熱処理工程のあとにスチーム延伸を行うことは差し支えないが、炭素繊維前駆体繊維束の単位長さあたりの質量(g/m)がバラつくことがある。
 炭素繊維前駆体繊維束のフィラメント数は、炭素繊維束のフィラメント数に一致するように6,000本以上であることが好ましく、12,000本以上であることがより好ましい。上限としては、特に制限はないが、36,000本以下であることが好ましい。炭素繊維束のフィラメント数と一致していることで炭素繊維束内の単繊維間の空隙、いわゆる糸割れがなくなりやすく、炭素繊維前駆体繊維束のフィラメント数が多いほど、炭素繊維束の物性バラツキが低減できやすい。このため、口金ホール数としては6,000以下の、例えば口金ホール数が300~6,000の、口金を用い、炭素繊維束としてはフィラメント数が6,000~36,000本となるように炭素繊維前駆体繊維束を合糸することが好ましい。
 尚、炭素繊維前駆体繊維束の単繊維繊度は、ストランド強度、ストランド弾性率を高める観点から1.4~3.4dtexが好ましく、1.9~2.8dtexがより好ましい。1.4dtex以上であれば生産性の観点で満足できる。単繊維繊度の上限は特に限定されないが、単繊維繊度が大きいほど耐炎化工程での内外構造差が制御しづらいため、炭素繊維の品質低下が生じやすくなる。そのため、単繊維繊度は3.4dtex以下が好ましい。
 また、炭素繊維前駆体繊維束の結晶配向度は好ましくは70.0~87.0%である。下限はより好ましくは80%以上である。炭素繊維前駆体繊維束の配向度が低いほど、耐炎化工程での延伸性を高めることができる。このため、炭素繊維前駆体繊維束の配向度が87.0%以下であれば、十分に耐炎化工程で延伸することができ、炭素繊維束の引張弾性率向上や炭素繊維束の単位長さあたりの質量(g/m)のバラツキを低減することが可能となる。より好ましくは85.0%以下である。70%未満である場合には、炭素繊維が低配向度となり引張弾性率低下を招く恐れがある。
 かかる炭素繊維束の配向度の達成手段は前述した数値範囲で達成できればどのような手段も採用することができるが、特に、炭素繊維前駆体繊維束の製造において、スチーム延伸を実施せずに水浴延伸のみを実施することが好ましく用いられる。
 炭素繊維束を製造する方法において、炭素繊維前駆体繊維束を耐炎化工程、予備炭素化工程、および炭素化工程に供することにより、炭素繊維束を得る。
 炭素繊維のストランド強度とストランド弾性率を高め、炭素繊維束の単位長さあたりの質量(g/m)のバラツキを低減するために、炭素繊維前駆体繊維束を耐炎化工程に供する際に、好ましくは延伸比1.30~3.00で延伸しながら耐炎化処理を制御することが良い。さらに好ましい延伸比は1.60~2.40である。耐炎化工程で延伸することにより5秒から1,200秒の長時間で3倍以下の低延伸をすることになるため延伸に十分な時間をかけることができ、単位長さあたりの質量(g/m)のバラツキが増加しにくい。本発明において、耐炎化工程の延伸比とは第1耐炎化炉前での炭素繊維前駆体束の速度に対する最終耐炎化炉後の炭素繊維耐炎化糸束の速度の比である。耐炎化炉が複数ある場合は延伸比を割り振ることができるが、内外構造差の制御と両立するために、第1耐炎化炉で延伸することが好ましい。また、耐炎化炉を構成する複数の糸道パスにおいて、延伸比を割り振ることができる場合、第1パスで延伸することが好ましく、少なくとも延伸比の80%以上を延伸することがより好ましい。
 炭素繊維のストランド強度とストランド弾性率を高めるために、炭素繊維前駆体繊維束を耐炎化工程に供する際に、得られた耐炎化繊維が、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比([1,453cm-1のピーク強度]/[1,370cm-1のピーク強度]。このピーク強度の比を便宜的に、「IRピーク強度比A」と称する)が0.60~0.65の範囲、かつ、赤外スペクトルの1,370cm-1のピーク強度に対する1,254cm-1のピーク強度の比([1,254cm-1のピーク強度]/[1,370cm-1のピーク強度]。このピーク強度の比を便宜的に、「IRピーク強度比B」と称する)が0.70~0.80の範囲になるように制御することが良い。
 赤外スペクトルにおける1,453cm-1のピークはアルケン由来であり、耐炎化の進行とともに減少していく。1,370cm-1のピークと1,254cm-1のピークは耐炎化構造(それぞれナフチリジン環および水素化ナフチリジン環構造と考えられる。)に由来するピークであり、耐炎化の進行とともに増加していく。耐炎化工程においては、ポリアクリロニトリルに由来するピークをなるべく減少させて炭化収率を高めるようにすることが一般的であるが、本発明ではあえて多くのアルケンを残すように、耐炎化工程の条件を設定する。このような構造を有する耐炎化繊維束を予備炭素化工程に供することにより、本発明の炭素繊維束が得られる。
 さらに、IRピーク強度比Bが0.70~0.80となるように耐炎化条件を設定するのが重要である。1,254cm-1のピークは耐炎化が不十分な部分で多く見られ、この構造が多いと、破壊靭性値が低下しやすい。かかるピーク強度比は耐炎化の進行とともに減少していき、特に初期の減少が大きいが、耐炎化条件次第では、時間を増やしてもかかるピーク強度比が0.80以下とならないこともある。
 この2つのピーク強度比を目的の範囲内で両立させるためには、炭素繊維前駆体繊維束を構成するポリアクリロニトリル系重合体に含まれる共重合成分の量が少ないこと、炭素繊維前駆体繊維束の繊度を小さくすること、および耐炎化温度を後半に高くすることに主に注目して条件設定すれば良い。
 具体的には、IRピーク強度比Aが0.74~0.80の範囲となるまで熱処理し(第1耐炎化工程)、続いて、好ましくは第1耐炎化工程よりも高い温度で、IRピーク強度比Aが0.60~0.65の範囲、かつ、IRピーク強度比Bが0.70~0.80の範囲となるまで耐炎化時間を5~25分、好ましくは5~15分として熱処理(第2耐炎化工程)することが良い。第2耐炎化工程の耐炎化時間を短くするためには耐炎化温度を高く調整すればよいが、適切な耐炎化温度は炭素繊維前駆体繊維束の特性に依存する。炭素繊維前駆体繊維束の中心温度が好ましくは250~300℃、より好ましくは250~280℃、さらに好ましくは250~270℃になるようにすることが、上述の赤外スペクトルの範囲に制御するために好ましい。
 耐炎化温度は一定である必要はなく、多段階の温度設定でも構わない。耐炎化炉が3つ以上ある場合には、2つめ以降の耐炎化炉で処理することを第2耐炎化工程と呼ぶ。なお、本発明において第2耐炎化工程を行う耐炎化炉数に制限は無い。得られる炭素繊維束の結節強度を高めるためには、耐炎化温度は高く、耐炎化時間を短くすることが好ましい。第1耐炎化工程は、耐炎化時間が好ましくは20~50分、より好ましくは30~40分で、上述の範囲となるような耐炎化温度で耐炎化することが好ましい。
 ここで述べる耐炎化時間とは耐炎化炉内に繊維束が滞留している時間を意味し、耐炎化繊維束とは、耐炎化工程後、予備炭素化工程前の繊維束を意味する。また、ここで述べるピーク強度とは、耐炎化繊維を少量サンプリングして赤外スペクトルを測定して得られたスペクトルをベースライン補正した後の各波長における吸光度のことであり、特にピーク分割などは行わない。また、試料の濃度は0.67質量%となるように臭化カリウム(KBr)で希釈して測定する。このように、耐炎化条件設定を変更するたびに赤外スペクトルを測定して、後述の好ましい製造方法にしたがって条件検討すればよい。耐炎化繊維の赤外スペクトルピーク強度比を適切に制御することで、得られる炭素繊維束の内外構造差と破壊靭性値を制御することができる。
 本発明において、耐炎化工程とは、炭素繊維前駆体繊維束を、酸素を含む雰囲気で200~300℃で熱処理することをいう。
 耐炎化工程のトータルの処理時間は、好ましくは35~60分の範囲で適宜選択することができる。より好ましくは35~55分の範囲で選択するのがよい。
 耐炎化工程で得られた繊維束を予備炭素化する予備炭素化工程においては、得られた耐炎化繊維を、不活性雰囲気中、最高温度500~1,000℃において、熱処理することが好ましい。予備炭素化工程の延伸倍率は好ましくは1.00~1.20であり、より好ましくは1.03~1.10である。かかる温度領域では、延伸による微細構造の欠陥が生じにくく、予備炭素化工程の延伸倍率が1.00以上であれば繊維内部の分子間の炭素化初期構造の形成反応を促進し、緻密な繊維構造を形成することができる。そのため、結果として炭素繊維束の結節強度を高めることができる。予備炭素化工程の延伸倍率が1.20を超えると予備炭素化繊維束に高い張力がかかって毛羽を生成する場合がある。
 予備炭素化工程を経て得られる繊維束の比重は1.5~1.8とすることが好ましい。
 予備炭素化された繊維束を不活性雰囲気中、最高温度1,000~2,000℃において炭素化する。炭素化工程の最高温度は、ストランド弾性率を高める観点からは、高い方が好ましいが、高すぎると結節強度が低下する場合があるため、両者を勘案して設定するのが良い。より好ましい最高温度は1,100~1,800℃であり、さらに好ましい最高温度は、1,200~1,600℃である。
 以上のようにして得られた炭素繊維束は、電解表面処理が施されることが好ましい。電解表面処理が施されることにより、炭素繊維束に酸素含有官能基が導入される。本発明における電解表面処理については、気相酸化、液相酸化および液相電解酸化が用いられるが、生産性が高く、均一処理ができるという観点から、液相電解酸化が好ましく用いられる。本発明において、液相電解酸化の方法については特に制約はなく、公知の方法で行えばよい。
 かかる電解処理の後、得られた炭素繊維束に集束性を付与するため、サイジング処理をすることもできる。サイジング剤には、複合材料に使用されるマトリックス樹脂の種類に応じて、マトリックス樹脂との相溶性の良いサイジング剤を適宜選択することができる。
サイジング剤付着量は0.2質量%以上1.0質量%以下が好ましい。
 本発明の炭素繊維束を用いたトウプレグの作製工程は、公知の方法を利用することができる。例えば、クリール、キスロール、ニップロール、ワインダーを備えたトウプレグ製造装置を用いて、炭素繊維束の片面に、20~60℃の温度に調整したエポキシ樹脂組成物を塗工した後、ニップロールを通過させることで該エポキシ樹脂組成物を強化繊維束内部まで含浸してトウプレグを得ることができる。この時、トウプレグのボビンは、初期張力を600~1,000gf、ワインド比を6~10として、巻き幅が230~260mmの円筒型となるよう、2,300mを紙管に巻き取ればよい。
 さらに、トウプレグを用いた炭素繊維強化複合材料の作製工程は、公知の方法を利用することができる。例えば、圧力容器の作製方法としては、フィラメントワインディング成形装置に、7.5Lのポリエチレン製ライナーを設置し、トウプレグをライナー全体に巻きつける。第1層として、ライナーの軸方向に対して+89°の角度をなすフープ層およびライナーの軸方向に対して-89°の角度をなすフープ層を、その厚みが1.4mmとなるように巻き付ける。次に、第2層として、ライナーの軸方向に対して+20°の角度をなすヘリカル層およびライナーの軸方向に対して-20°をなすヘリカル層を、その厚みが2.2mmとなるように巻き付ける。さらに、第3層として、ライナーの軸方向に対して+89°の角度をなすフープ層およびライナーの軸方向に対して-89°をなすフープ層を、その厚みが0.6mmとなるように巻き付け、中間体を得る方法を挙げることができる。また、硬化させる方法として、当該中間体を硬化炉中で回転させながら、150℃にて4時間硬化させ、圧力容器を得る方法を挙げることができる。
 本発明において用いられる各種物性値の測定方法は、次のとおりである。
 <炭素繊維束のストランド引張試験>
 ストランド強度、ストランド弾性率および伸度は、JIS R7608:2004の樹脂含浸ストランド試験法に従い、次の手順に従い求める。樹脂処方としては、“セロキサイド”(登録商標)2021P(ダイセル社製)/3フッ化ホウ素モノエチルアミン(東京化成工業(株)製)/アセトン=100/3/4(質量部)を用い、硬化条件としては、常圧、温度125℃、時間30分を用いる。炭素繊維のストランド7本を測定し、その平均値をストランド強度、ストランド弾性率および伸度とする。なお、ストランド弾性率を算出する際の歪み範囲は0.1~0.6%とする。
 <炭素繊維束の平均単繊維径d>
 測定する多数本の炭素繊維フィラメントからなる炭素繊維束について、単位長さ当たりの質量A(g/m)および密度B(g/cm)を求める。測定する炭素繊維束のフィラメント数をCとし、炭素繊維の平均単繊維径d(μm)を、下記式で算出を行う。
炭素繊維の平均単繊維径d(μm)=(1/π×(A/(B/C)))(1/2)×2×10
 <炭素繊維単繊維の繊維軸方向に垂直な断面の外周部の黒化厚みKおよび黒化層比率>
 測定を行う炭素繊維束を樹脂中に包埋し、繊維軸方向と垂直な横断面を研磨し、該断面を光学顕微鏡の100倍の対物レンズを用い合計1,000倍で観察する。研磨面の断面顕微鏡画像から黒化厚みを測定する。解析は画像解析ソフトウェアImageJを用いて行う。まず、単繊維断面像において、黒と白の領域分割を二値化によって行う。単繊維断面内の輝度分布に対し、分布の平均値を閾値として設定し、二値化を行う。得られた二値化像を、繊維直径の方向に対し、表層の一点から、黒から白への線入り領域までの最短距離として測定する。これを同一単繊維の周内5点に対して測定し、平均値をその水準における黒化厚みKとして算出する。また、画像解析により炭素繊維単繊維の繊維軸方向に垂直な断面全体の面積に対する黒化厚み部分の面積である黒化層比率(%)を算出する。
 <炭素繊維束単位長さあたりの質量の変動係数(%)>
 炭素繊維束の単位長さあたりの質量(g/m)の標準偏差と平均値との比([標準偏差]/[平均値]×100(%))で表される変動係数(%)は、次のように測定する。炭素繊維束を長さ1mで切断する操作を繰り返し、10本の炭素繊維束の試料を準備し、それぞれの炭素繊維束の試料の質量(g)を測定し、単位長さあたりの質量(g/m)とする。次いで、全10試料の単位長さあたりの質量の平均値および標準偏差を求め、平均値に対する標準偏差の比をとり、百分率で示される値を求める([標準偏差]/[平均値]×100(%))。
 <炭素繊維前駆体繊維束および炭素繊維束の結晶配向度(%)>
 結晶配向度は、次のように測定する。繊維束を40mm長に切断して、20mgを精秤して試料を採取し、試料繊維軸が正確に平行になるようにそろえた後、試料調整用治具を用いて幅1mmの厚さが均一な試料繊維束に整える。薄いコロジオン液を含浸させて形態が崩れないように固定した後、広角X線回折測定器(XRD-6100。(株)島津製作所製)の試料台に固定する。X線源として、Niフィルターで単色化されたCuのKα線を用い、次式を用いて結晶配向度(%)を求める。なお、炭素繊維前駆体繊維束においては、2θ=17°付近に観察される回折の最高強度を含む子午線方向のプロフィールの広がりの半価幅(H゜)を用い、炭素繊維束においては、2θ=25~26°付近に観察される回折の最高強度を含む子午線方向のプロフィールの広がりの半価幅(H゜)を用いる。
結晶配向度(%)=[(180-H)/180]×100
ここで、Hは前記の半価幅。
 <ラマン分光法により求められる炭素繊維の単繊維の内層の結晶性Riと外層の結晶性Roとの比Rr(結晶性の内外層比Rr)>
 ラマン分光法による結晶性分布の測定方法は次の通りである。炭素繊維を、エポキシ樹脂にて包埋した後、湿式研磨した後、これを観察した。用いたラマンマイクロプローブのスポット径は、約1μmであり、位置分解能を更に上げるために炭素繊維を傾斜させて研磨した。研磨面の傾斜角度は繊維軸に対して3°である。なお、炭素繊維束を傾斜研磨しているため、測定位置と対応する表面からの深さは次のように求められる。なお、炭素繊維の繊維軸に直交する断面が円である場合、研磨面は楕円となる。
 測定深さ=sinθ×e
ここで、eは研磨して得た炭素繊維面の長軸における端からの距離であり、θは繊維の傾斜角である。また、a、bをそれぞれ、研磨して得た炭素繊維面における長軸の長さと短軸の長さとした場合、sinθ=b/aと表しうる。なお、研磨して得た炭素繊維面における長軸の長さaとは、研磨して得た炭素繊維面に外接する最小面積の長方形における長辺の長さであり、また短軸の長さbとは、該外接長方形の短辺の長さである。炭素繊維の繊維軸に直交する断面が円ではない場合、測定位置と対応する表面からの深さは次のように求める。
 測定深さ=e×c/a
ここで、a、cは、それぞれ、炭素繊維をエポキシ樹脂にて研磨面に垂直に包埋した後、湿式研磨した後、研磨して得た炭素繊維面における長軸の長さと短軸の長さ。なお、研磨して得た炭素繊維面における長軸の長さaとは、研磨して得た炭素繊維面に外接する最小面積の長方形の長辺の長さ、また短軸の長さbとは、該外接長方形の短辺の長さである。
 また、ラマンバンドのパラメ一タとしては、次のものを求め、I1480/I1580を結晶性のパラメ一夕とした。ここで、I1350、I1480、I1580はそれぞれ、
1350:1,350cm-1付近のラマンバンド強度、
1580:1,580cm-1付近のラマンバンド強度、
1480:1,580cm-1付近と1,350cm-1付近の2つのラマンバンドの谷部分(およそ1,480cm-1付近に現れる)の強度、である。
 結晶性の内外層比Rrは、次のようにして求める。
 単繊維断面において、表面からの深さが0.5~2.0μmの領域のI1480/I1580をRo、単繊維断面の中心から0.5μm以内の領域のI1480/I1580をRiとし、次式により求める。
 Rr=Ri/Ro。
 ラマンバンド強度の測定は得られたチャートの測定範囲両端を直線で結びバックグラウンドを差し引いたのち、2つあるピーク波数を基準波数とした1,350cm-1と1,580cm-1の±50cm-1にピークがくるようにピークフィッティングし、それぞれのピークのピーク強度を決定する。ピークフィッティング関数はフォークト関数を用いた。また、両ピークの谷部分の強度を求める。測定は同一炭素繊維束内の別々の単繊維5本に対し、各一回行い、その単純平均を用いる。測定装置はレーザーラマン分光光度計(日本分光NRS-3200)を用い、対物レンズ:100倍を用いた。ビーム径:1μm、レーザーパワー:2.5~3.2mW、波長:532nm、測定時間:120秒、測定範囲:1,200~1,900cm-1とする。
 <炭素繊維束の巻き出し時の毛羽数>
 炭素繊維束のボビンをクリールに設置し、張力1.6mN/dtex下、5m/分のローラーで引き取ってワインダーで巻き取る。このとき、クリールとローラーの間に発生する毛羽を1分間カウントする。
炭素繊維束の巻き出し時の毛羽数(個/m)=毛羽のカウント数(個)/5(m)。
 <赤外スペクトルの強度比>
 赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比(IRピーク強度比A)と、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,254cm-1ピーク強度の比(IRピーク強度比B)は以下の方法で算出する。
 測定に供する耐炎化繊維を、凍結粉砕後に2mgを精秤して採取し、それを臭化カリウム(KBr)300mgと良く混合して、成形用治具に入れ、プレス機を用いて40MPaで2分間加圧することで測定用錠剤を作製する。この錠剤をフーリエ変換赤外分光光度計にセットし、1,000~2,000cm-1の範囲でスペクトルを測定する。なお、バックグラウンド補正は、1,700~2,000cm-1の範囲における最小値が0になるようにその最小値を各強度から差し引くことで行う。なお、上記フーリエ変換赤外分光光度計として、パーキンエルマー製Paragon1000を用いる。
 <拡がり性の評価方法(拡がり性評価)>
 直径が50mm、表面粗さRmaxが0.3μmである金属バー(ステンレス製)2本を、150mm間隔、かつ、炭素繊維束が各金属バーに0.3925π(rad)±0.04π(rad)、合計で0.785π(rad)の角度で接触しながら通過するように上下方向に配置する。そして、金属バーに炭素繊維束を掛け渡し、パッケージからの解舒張力を800gに設定し、駆動ロールで4m/分で牽引して金属バーを通過させ、2本目の金属バーを通過後15mm箇所に(株)KEYENCE製CCD透過型レーザーセンサ/IG1500を設置し、炭素繊維束の幅を120秒連続して1秒間隔で120点測定し、その変動係数([標準偏差]/[平均値]×100(%))をもって拡がり性とする。
 本発明において、下記の基準で拡がり幅の好ましい範囲を4段階で評価する。
 S: 変動係数が0.5%より小さい
 A: 変動係数が0.5%以上かつ1.0%未満
 B: 変動係数が1.0%以上かつ5%未満
 C: 変動係数が5%以上。
 <炭素繊維束の工程通過性(工程通過性(毛羽))>
 直径が50mm、表面粗さRmaxが0.3μmである金属バー(ステンレス製)2本を、150mm間隔、かつ、炭素繊維束が各金属バーに0.3925π(rad)±0.04π(rad)、合計で0.785π(rad)の角度で接触しながら通過するように上下方向に配置した。そして、金属バーに炭素繊維束を掛け渡し、パッケージからの解舒張力を800gに設定し、駆動ロールで4m/分の速度で炭素繊維束を牽引して前記の金属バーを通過させ、2本目の金属バーを通過後の1分間あたりの毛羽数をカウントし、これを下記式で1mあたりに換算し、工程通過性とする。炭素繊維束の工程通過性の測定は3回行い、その算術平均値を炭素繊維束の工程毛羽数(個/m)とする。
 炭素繊維束の工程毛羽数(個/m)=毛羽のカウント数(個)/4(m)
 S: 工程毛羽数が2.5個/m以下
 A: 工程毛羽数が2.5個/mを超え、かつ、3.5個/m以下
 B: 工程毛羽数が3.5個/mを超え、かつ、5.0個/m以下
 C: 工程毛羽数が5.0個/mを超える
 (実施例1)
 アクリロニトリル99.5mol%とイタコン酸0.5mol%からなる共重合体を、ジメチルスルホキシドを溶媒として溶液重合法により重合させ、ポリアクリロニトリル系共重合体を含む紡糸溶液を得た。得られた紡糸溶液を紡糸口金から一旦空気中に吐出し、3℃に制御した35質量%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固糸条を得た。
 この凝固糸条を、常法により水洗し、延伸倍率3.5倍の水浴延伸を行った。続いて、この水浴延伸後の繊維束に対して、アミノ変性シリコーン系シリコーン油剤を付与し、160℃の加熱ローラーを用いて、乾燥緻密化処理を行った。製糸全延伸倍率を3.5倍としてフィラメント数12,000本の炭素繊維前駆体繊維束を得た。得られた炭素繊維前駆体繊維束の単繊維繊度は2.1dtexであり、結晶配向度は84.0%であった。
 次に、第1耐炎化工程を耐炎化温度240℃、耐炎化時間29分の条件を用いて、空気雰囲気のオーブン中で炭素繊維前駆体繊維束を延伸比1.6で延伸し、第2耐炎化工程を耐炎化温度263℃、耐炎化時間14分の条件を用いて、延伸比1.0で延伸しながら耐炎化処理し、表1に示す耐炎化繊維束を得た。
 得られた耐炎化繊維束を、最高温度800℃の窒素雰囲気中において、延伸しながら予備炭素化処理を行い、予備炭素化繊維束を得た。得られた予備炭素化繊維束を、窒素雰囲気中において、最高温度1,350℃、延伸しながら炭素化処理を行った。得られた炭素繊維束に硫酸水溶液を電解液として、電気量を炭素繊維1g当たり6クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の加熱空気中で水の除去を目的とした乾燥し、その後、ビスフェノールAエチレンオキシド10モル付加物をサイジング剤として付与し、温度210℃で75秒間熱処理をして炭素繊維束を得た。上述の条件で作製した炭素繊維束の平均単繊維径dは7.0μm、黒化厚みKが2.5μm、結晶配向度Πは79.6%、サイジング剤付着量は0.6質量%、単位長さあたりの質量(g/m)の変動係数が0.25%、巻き出し時の毛羽数は3.0個/mであった。結果を表1に示す。
 (実施例2)
 耐炎化工程において第1耐炎化工程を耐炎化温度238℃、耐炎化時間31分とし、第2耐炎化工程を耐炎化温度263℃、耐炎化時間分14分として耐炎化繊維束を得た以外は実施例1と同様の方法で、炭素繊維束を得た。
 (実施例3)
 耐炎化工程において第1耐炎化工程を耐炎化温度235℃、耐炎化時間37分とし、第2耐炎化工程を耐炎化温度263℃、耐炎化時間分14分として耐炎化繊維束を得た以外は実施例1と同様の方法で、炭素繊維束を得た。
 (実施例4)
 耐炎化工程において第1耐炎化工程を耐炎化温度238℃、耐炎化時間31分とし、第2耐炎化工程を耐炎化温度268℃、耐炎化時間分11分として耐炎化繊維束を得た以外は実施例1と同様の方法で、炭素繊維束を得た。
 (実施例5)
 耐炎化工程において第1耐炎化工程を耐炎化温度235℃、耐炎化時間37分とし、第2耐炎化工程を耐炎化温度268℃、耐炎化時間分11分として耐炎化繊維束を得た以外は実施例1と同様の方法で、炭素繊維束を得た。
 (実施例6)
 紡糸原液の口金からの吐出量を変更した以外は実施例1と同様の方法で、単繊維繊度1.7dtex、結晶配向度87.0%の炭素繊維前駆体繊維束を得た。次いで、該炭素繊維前駆体繊維束に対して、空気雰囲気のオーブン中で、第1耐炎化工程として耐炎化温度240℃、耐炎化時間29分、延伸比1.3で延伸しながら耐炎化処理し、続いて第2耐炎化工程として耐炎化温度263℃、耐炎化時間分14分、延伸比1.0で延伸して耐炎化繊維束を得た。得られた耐炎化繊維束を実施例1と同様の方法で処理を行い、炭素繊維束を得た。
 (実施例7)
 耐炎化工程において第1耐炎化工程を耐炎化温度235℃、耐炎化時間37分とし、第2耐炎化工程を耐炎化温度263℃、耐炎化時間分14分として耐炎化繊維束を得た以外は実施例6と同様の方法で、炭素繊維束を得た。
 (実施例8)
 耐炎化工程において第1耐炎化工程を耐炎化温度235℃、耐炎化時間37分とし、第2耐炎化工程を耐炎化温度268℃、耐炎化時間分11分として耐炎化繊維束を得た以外は実施例6と同様の方法で、炭素繊維束を得た。
 (比較例1)
 耐炎化工程において第1耐炎化工程を耐炎化温度243℃、耐炎化時間24分の条件とし、第2耐炎化工程を耐炎化温度263℃、耐炎化時間分14分として耐炎化繊維束を得た以外は実施例1と同様の方法で、炭素繊維束を得た。
 (比較例2)
 耐炎化工程において第1耐炎化工程を耐炎化温度247℃、耐炎化時間19分とし、第2耐炎化工程を耐炎化温度268℃、耐炎化時間分14分として耐炎化繊維束を得た以外は実施例1と同様の方法で、炭素繊維束を得た。
 (比較例3)
 紡糸原液の口金からの吐出量を変更し、また、乾燥緻密化処理後に、加圧スチーム中で3.7倍の延伸を行って製糸全延伸倍率を13倍とした以外は実施例1と同様の方法で、単繊維繊度1.1dtex、結晶配向度89.0%の炭素繊維前駆体繊維束を得た。次いで、該炭素繊維前駆体繊維束に対して、空気雰囲気のオーブン中で、第1耐炎化工程として耐炎化温度253℃、耐炎化時間14分、延伸比0.9で延伸しながら耐炎化処理し、続いて第2耐炎化工程として耐炎化温度263℃、耐炎化時間分14分、延伸比1.0で延伸して耐炎化処理して耐炎化繊維束を得た。得られた耐炎化繊維束を実施例1と同様の方法で処理を行い、炭素繊維束を得た。
Figure JPOXMLDOC01-appb-T000001
 本発明は、製糸工程と耐炎化工程での延伸比を制御するとともに、耐炎化初期を適切な温度で処理することにより、炭素繊維束の単位長さあたりの質量(g/m)のバラツキが小さく、かつ、優れたストランド引張強度と引張弾性率を同時に満足する炭素繊維を製造することができる。本発明で得られる炭素繊維束は、かかる特徴を活かし、航空機・自動車・船舶部材や、ゴルフシャフトや釣竿等のスポーツ用途および圧力容器などの一般産業用途に好適に用いられる。

Claims (9)

  1. 樹脂含浸ストランド引張強度が4.5~6.5GPaであり、樹脂含浸ストランド引張弾性率が205~270GPaであり、フィラメント数が6,000~36,000本であり、炭素繊維束の単位長さあたりの質量(g/m)の標準偏差と平均値との比で表される変動係数([標準偏差]/[平均値]×100(%))が0.00~0.5%である炭素繊維束。
  2. 前記炭素繊維の平均単繊維径d(単位:μm)が6.0μm以上、8.0μm未満であり、かつ、
    炭素繊維の黒化厚みK(単位:μm)が0.38×d以上であり、かつ、
    結晶配向度Πが79.5%以上である請求項1に記載の炭素繊維束。
  3. ラマン分光法により求められる単繊維の内層の結晶性Riと外層の結晶性Roとの比(Ri/Ro)をRrとしたとき、Rrが1.03以下である請求項1または2に記載の炭素繊維束。
  4. 炭素繊維束の巻き出し時の毛羽数が1.5個/m以下である請求項1または2に記載の炭素繊維束。
  5. 請求項1または2に記載の炭素繊維束を用いたトウプレグ。
  6. 請求項1または2に記載の炭素繊維束を用いた炭素繊維強化複合材料。
  7. 請求項1または2に記載の炭素繊維束を用いた圧力容器。
  8. 請求項1または2に記載の炭素繊維束を製造する製造方法であって、単繊維繊度1.4~3.4dtexの炭素繊維前駆体繊維束を延伸比1.30~3.00で延伸しながら耐炎化処理して耐炎化繊維束を得た後、該耐炎化繊維束を不活性雰囲気中で1,200~3,000℃で熱処理をして炭素繊維束を得る、炭素繊維束の製造方法。
  9. 前記耐炎化処理は、二段階の処理工程を含み、第1の耐炎化工程では、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比が0.74~0.80の範囲となるまで耐炎化処理し、第1の耐炎化工程よりも後に行われる第2の耐炎化工程では、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,453cm-1のピーク強度の比を0.60~0.65の範囲、かつ、赤外スペクトルにおける1,370cm-1のピーク強度に対する1,254cm-1ピーク強度の比が0.70~0.80の範囲となるまで耐炎化処理を行い、該耐炎化処理を経て得られた耐炎化繊維束を不活性雰囲気中で1,200~3,000℃で熱処理をして炭素繊維束を得る、請求項8に記載の炭素繊維束の製造方法。
PCT/JP2023/031152 2022-10-24 2023-08-29 炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、および炭素繊維束の製造方法 WO2024090012A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022169746 2022-10-24
JP2022-169746 2022-10-24

Publications (1)

Publication Number Publication Date
WO2024090012A1 true WO2024090012A1 (ja) 2024-05-02

Family

ID=90830450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031152 WO2024090012A1 (ja) 2022-10-24 2023-08-29 炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、および炭素繊維束の製造方法

Country Status (1)

Country Link
WO (1) WO2024090012A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112854A (ja) * 1997-06-19 1999-01-19 Toray Ind Inc アクリル系炭素繊維用前駆体繊維およびその製造方法
WO2000077282A1 (fr) * 1999-06-15 2000-12-21 Mitsubishi Rayon Co., Ltd. Fil acrylique utilise comme precurseur de fibre de carbone epaisse et procede de fabrication de ce film
JP2002266173A (ja) * 2001-03-09 2002-09-18 Mitsubishi Rayon Co Ltd 炭素繊維および炭素繊維強化複合材料
JP2008214795A (ja) * 2007-03-02 2008-09-18 Toray Ind Inc 炭素繊維前駆体繊維束およびその製造方法
WO2019087766A1 (ja) * 2017-10-31 2019-05-09 東レ株式会社 炭素繊維束およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112854A (ja) * 1997-06-19 1999-01-19 Toray Ind Inc アクリル系炭素繊維用前駆体繊維およびその製造方法
WO2000077282A1 (fr) * 1999-06-15 2000-12-21 Mitsubishi Rayon Co., Ltd. Fil acrylique utilise comme precurseur de fibre de carbone epaisse et procede de fabrication de ce film
JP2002266173A (ja) * 2001-03-09 2002-09-18 Mitsubishi Rayon Co Ltd 炭素繊維および炭素繊維強化複合材料
JP2008214795A (ja) * 2007-03-02 2008-09-18 Toray Ind Inc 炭素繊維前駆体繊維束およびその製造方法
WO2019087766A1 (ja) * 2017-10-31 2019-05-09 東レ株式会社 炭素繊維束およびその製造方法

Similar Documents

Publication Publication Date Title
KR101146843B1 (ko) 탄소 섬유 전구체 섬유 및 탄소 섬유와 그 제조 방법
JP4957251B2 (ja) 炭素繊維、炭素繊維製造用ポリアクリロニトリル系前駆体繊維の製造方法、および、炭素繊維の製造方法
JP6950526B2 (ja) 炭素繊維束およびその製造方法
JP4910729B2 (ja) 炭素繊維前駆体繊維の製造方法、炭素繊維およびその製造方法
WO2008047745A1 (fr) Polymère de polyacrylonitrile, procédé de production du polymère, procédé de production d'une fibre de précurseur pour fibre de carbone, fibre de carbone et procédé de production de la fibre de carbone
JP6020201B2 (ja) 炭素繊維束およびその製造方法
CN112368432B (zh) 碳纤维及其制造方法
JP6888260B2 (ja) 炭素繊維束およびその製造方法
CN111263834B (zh) 碳纤维束及其制造方法
WO2019172247A1 (ja) 炭素繊維束およびその製造方法
US11760861B2 (en) Carbon fiber bundle, manufacturing method therefor, prepreg, and carbon fiber-reinforced composite material
JP6020202B2 (ja) 炭素繊維束およびその製造方法
WO2024090012A1 (ja) 炭素繊維束、トウプレグ、炭素繊維強化複合材料および圧力容器、および炭素繊維束の製造方法
RU2784511C2 (ru) Пучок углеродного волокна, способ его производства, препрег и армированный углеродным волокном композитный материал
US20240229304A9 (en) Carbon fiber bundle and production method for same
JP2004060126A (ja) 炭素繊維及びその製造方法
JP2008308777A (ja) 炭素繊維、炭素繊維製造用ポリアクリロニトリル系前駆体繊維の製造方法
JP2004156161A (ja) ポリアクリロニトリル系炭素繊維及びその製造方法
WO2024195301A1 (ja) 炭素繊維束、プリプレグおよび炭素繊維強化複合材料
JP2024119732A (ja) 炭素繊維束、トウプレグ、炭素繊維強化複合材料、圧力容器および炭素繊維束の製造方法
WO2023090310A1 (ja) 炭素繊維束およびその製造方法
WO2021187160A1 (ja) 炭素繊維とその製造方法および炭素繊維複合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882226

Country of ref document: EP

Kind code of ref document: A1