WO2021179798A1 - 一种能量协调控制方法、系统及车辆 - Google Patents

一种能量协调控制方法、系统及车辆 Download PDF

Info

Publication number
WO2021179798A1
WO2021179798A1 PCT/CN2021/072669 CN2021072669W WO2021179798A1 WO 2021179798 A1 WO2021179798 A1 WO 2021179798A1 CN 2021072669 W CN2021072669 W CN 2021072669W WO 2021179798 A1 WO2021179798 A1 WO 2021179798A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
generator
engine
battery
charger
Prior art date
Application number
PCT/CN2021/072669
Other languages
English (en)
French (fr)
Inventor
侯文涛
胡志敏
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to US17/789,529 priority Critical patent/US20230065178A1/en
Priority to EP21767800.2A priority patent/EP4067141B1/en
Publication of WO2021179798A1 publication Critical patent/WO2021179798A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/0307Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for using generators driven by a machine different from the vehicle motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/30Auxiliary equipments
    • B60W2710/305Auxiliary equipments target power to auxiliaries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles

Definitions

  • the present disclosure relates to the field of automobile technology, and in particular to an energy coordinated control method, system and vehicle.
  • the new energy vehicle has a charging function, which can be used to transfer the electric energy in the grid to the battery pack, and then use the electric energy in the battery pack to drive the vehicle, so as to achieve a journey with no fuel consumption and no emissions.
  • Hybrid electric vehicles are new energy vehicles that can be driven by electric energy and fossil energy.
  • the power battery pack is smaller than that of pure electric vehicles, and the matching on-board charger is also relatively small. Most are less than the rated power of the air conditioner. If the user uses the air conditioner while charging the hybrid electric vehicle, since the power consumed by the air conditioner during normal operation is greater than the output power of the charger, in order to maintain the normal use of the air conditioner, the power battery pack needs to be discharged to supply power to the air conditioner, which will inevitably affect the normal operation of the battery pack Charge.
  • the existing technology uses a method of limiting the power of the air conditioner, that is, when the car is charging and the air conditioner is turned on, the power of the air conditioner is limited to a lower limit to ensure that the battery can be normal Charge.
  • the rate of temperature regulation in the car slows down, which affects the user experience.
  • the present disclosure aims to propose an energy coordinated control method, system, and vehicle to solve the problem that the existing hybrid electric vehicle cannot normally use the air conditioner when charging, which causes the temperature control rate in the vehicle to slow down, which is easy to bring to the drivers and passengers.
  • the problem of inconvenience is a problem that the existing hybrid electric vehicle cannot normally use the air conditioner when charging, which causes the temperature control rate in the vehicle to slow down, which is easy to bring to the drivers and passengers.
  • An energy coordinated control method applied to a vehicle, the vehicle includes an engine, a generator, a battery, a charger, and an air conditioner.
  • the generator is mechanically connected to the engine, and the generator and the charger are both connected to the
  • the battery is electrically connected, the charger and the battery are both electrically connected to the air conditioner, wherein the generator is electrically connected to the air conditioner, and the method includes:
  • the engine is controlled to start to drive the generator to supply power to the air conditioner.
  • controlling the engine to start to drive the generator to supply power to the air conditioner includes:
  • the engine is controlled to start to drive the generator to supply power to the air conditioner.
  • controlling the engine to start to drive the generator to supply power to the air conditioner further includes:
  • the engine is controlled to start to drive the generator to supply power to the air conditioner, and the battery is controlled to stop supplying power to the air conditioner.
  • the method further includes:
  • the air conditioner When the charger is charging the battery, if the shutdown signal of the air conditioner is monitored, the air conditioner is controlled to be turned off, and the engine is controlled to be turned off.
  • controlling the engine to start to drive the generator to supply power to the air conditioner specifically includes:
  • the engine is controlled to start to drive the generator to supply power to the air conditioner according to the target power consumption.
  • the vehicle includes an engine, a generator, a battery, a charger, and an air conditioner, and the generator is mechanically connected to the engine. Both the generator and the charger are electrically connected to the battery, and both the charger and the battery are electrically connected to the air conditioner, wherein the generator is electrically connected to the air conditioner, and the system includes:
  • the first control module is configured to control the charger to charge the battery when the charging signal is monitored, and monitor the air conditioning signal of the air conditioner;
  • the second control module is configured to, if the useful power demand of the air conditioner is determined according to the air conditioner signal, control the start of the engine to drive the generator to supply power to the air conditioner.
  • the second control module includes:
  • the first control unit is configured to, if an on signal of the air conditioner is monitored, control the air conditioner to turn on, and control the engine to start, so as to drive the generator to supply power to the air conditioner.
  • the second control module further includes:
  • the second control unit is configured to, if it is detected that the air conditioner is in an on state, control the engine to start to drive the generator to supply power to the air conditioner, and control the battery to stop supplying power to the air conditioner.
  • system further includes:
  • the third control module is configured to control the air conditioner to turn off and control the engine to turn off if the shutdown signal of the air conditioner is monitored when the charger is charging the battery.
  • the second control module is specifically configured to obtain the target power consumption of the air conditioner and control the engine if the useful electricity demand of the air conditioner is determined according to the air conditioner signal Start to drive the generator to supply power to the air conditioner according to the target power consumption.
  • Another object of the present disclosure is to provide a vehicle, the vehicle includes an engine, a generator, a battery, a charger, and an air conditioner, the generator is mechanically connected to the engine, and the generator and the charger are both connected to The battery is electrically connected, the charger and the battery are both electrically connected to the air conditioner, wherein the generator is electrically connected to the air conditioner, and the vehicle further includes the energy coordination control system.
  • the energy coordinated control method, system and vehicle described in the present disclosure have the following advantages:
  • the charger When the charging signal is monitored, the charger is controlled to charge the battery, and the air conditioning signal of the air conditioner is monitored; if the useful electricity demand of the air conditioner is determined according to the air conditioning signal, the engine is controlled to start to drive The generator supplies power to the air conditioner. Because if the air conditioner needs useful electricity when charging the battery, it is to start the engine to drive the generator to supply the air conditioner, so that the air conditioner does not need to use the electric energy of the charger or the battery pack, that is, it will not affect the charging power of the battery, and it can also ensure The normal use of the air conditioner solves the problem that the air conditioner cannot be used normally when the existing hybrid electric vehicle is charged, which causes the temperature control rate in the vehicle to slow down, and it is easy to cause inconvenience to the drivers and passengers.
  • FIG. 1 is a schematic flowchart of the energy coordinated control method proposed by an embodiment of the disclosure
  • Figure 2 is a schematic flow chart of the energy coordination control method proposed in a preferred embodiment of the present disclosure
  • FIG. 3 is an execution flow chart of the energy coordinated control method proposed by an embodiment of the disclosure.
  • FIG. 4 is a control principle diagram of the energy coordinated control method proposed by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of the energy coordinated control system proposed by an embodiment of the disclosure.
  • Fig. 6 schematically shows a block diagram of a computing processing device for executing the method according to the present disclosure.
  • Fig. 7 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present disclosure.
  • FIG. 1 shows a schematic flowchart of an energy coordinated control method provided by an embodiment of the present disclosure.
  • the energy coordinated control method provided by the embodiment of the present disclosure is applied to a vehicle, and the vehicle includes an engine, a generator, and A battery, a charger and an air conditioner, the generator is mechanically connected to the engine, the generator and the charger are both electrically connected to the battery, and the battery is electrically connected to the air conditioner, wherein the generator The air conditioner is electrically connected to the air conditioner, and the method includes steps S100 to S200.
  • the energy coordination control method provided by the embodiments of the present disclosure is suitable for hybrid vehicles, which include an engine, a generator, a battery, a charger, and an air conditioner; wherein the generator is mechanically connected to the engine, so the engine can be used to drive the generator to generate electricity ; And the charger is electrically connected to the battery, so the charger can be used to directly charge the battery; at the same time, the generator is also electrically connected to the battery, so the generator can be used to convert the mechanical energy of the engine into electrical energy when energy needs to be recovered.
  • the electric energy generated by the generator is input into the battery for storage; and the battery is electrically connected to the air conditioner, so the battery can be used to power the air conditioner to meet the working of the air conditioner; in addition, because the air conditioner is also electrically connected to the generator, it can be used in the air conditioner. When useful electricity is needed, control the generator to supply power to the air conditioner.
  • the charger can also be electrically connected to the air conditioner, so the charger can also be used to power the air conditioner directly.
  • Step S100 when the charging signal is monitored, control the charger to charge the battery, and monitor the air conditioning signal of the air conditioner.
  • step S100 when the charging signal is monitored, it means that the battery needs to be charged; and because the charger is electrically connected to the battery, when the charging signal is monitored, the charger can be directly controlled to deliver the electric energy in the grid to a certain power. In the battery, the battery enters the charging state, and then the battery is charged.
  • the charging signal may be the voltage signal at the input terminal of the charger, because when the charger is connected to the external power grid, the voltage signal at the input terminal changes, and it can be determined that the battery needs to be charged at this time.
  • the air-conditioning signal may specifically include a state signal of the air-conditioner and an on and off signal of the air-conditioner. Among them, if the on state signal is monitored, it means that the air conditioner is currently on, and the air conditioner needs electricity; if the on signal of the air conditioner is monitored, it means that although the air conditioner is currently off, it needs to be turned on and enters the running state.
  • the air conditioner also has electricity demand; and if the off signal of the air conditioner is detected, it means that although the air conditioner is currently running, it needs to be turned off and enters the off state, so the air conditioner no longer needs electricity, that is, there is no electricity demand.
  • Step S200 If the power demand of the air conditioner is confirmed according to the air conditioner signal, the engine is controlled to start to drive the generator to supply power to the air conditioner.
  • step S200 that is, after the charging signal is monitored, if the useful electricity demand of the air conditioner is determined according to the air conditioner signal, it indicates that the air conditioner needs to be supplied with power.
  • the engine is controlled to start, and the engine can be controlled to drive the generator to generate electricity.
  • the air conditioner is electrically connected to the generator, the electric energy produced by the engine to drive the generator can be used to power the air conditioner, thereby driving the operation of the air conditioner. Because there is an engine-driven generator to supply power to the air conditioner, there is no need to use a charger or battery to power the air conditioner, that is, it will not affect the charging power and charging efficiency of the battery, and it can ensure the normal operation of the air conditioner.
  • the step of controlling the engine to start to drive the generator to supply power to the air conditioner specifically includes steps S201 to S202.
  • Step S201 Obtain the target power consumption of the air conditioner.
  • the target power consumption of the air conditioner refers to the power consumption of the air conditioner, that is, the electric power consumed by the air conditioner to reach the target operating state, which can be directly calculated from the operating parameters of the air conditioner to reach the target operating state.
  • the target power consumption of the air conditioner is obtained, so as to subsequently control the power generation power of the engine-driven generator.
  • the above-mentioned target power consumption P AC can be calculated from the sum of the power consumption P PTC of the high-pressure heater and the power consumption P CMP of the refrigeration compressor, where P PTC can be calculated from the working current and voltage of the high-pressure heater , And P CMP is calculated from the working current and voltage of the refrigeration compressor. Specifically, it is calculated by the following formula:
  • P AC is the power consumption of the air conditioner
  • P PTC is the power consumption of the high-pressure heater
  • P CMP is the power consumption of the refrigeration compressor
  • U PTC and I PTC are the working voltage and work of the high-pressure heater, respectively Current
  • U CMP and I CMP are the operating voltage and operating current of the refrigeration compressor, respectively.
  • Step S202 Control the start of the engine to drive the generator to supply power to the air conditioner according to the target power consumption.
  • the engine can be controlled to drive the generator to generate electricity, and the output electric energy of the generator can be adjusted by controlling the engine speed and the change of the generator's magnetic field.
  • the generator is controlled to supply power to the air conditioner according to the target power consumption required by the air conditioner, that is, the generator is controlled according to the requirements of the air conditioner.
  • the consumed electric power is used to generate electricity, so that the air conditioner can work according to the target working state, and does not require a battery to supply power to the air conditioner, and it does not allow the engine to drive the generator to generate more power than the air conditioner needs, which causes energy waste.
  • the battery is controlled to supply power to the air conditioner, and the engine is controlled to turn off, so as to directly drive the air conditioner by using cleaner electric energy in the battery to avoid Excessive use of fossil energy to drive engines to drive generators to power air conditioners.
  • the vehicle air conditioning control method described in the present disclosure has the following advantages:
  • the charger When the charging signal is monitored, the charger is controlled to charge the battery and the air conditioning signal of the air conditioner is monitored; if the useful electricity demand of the air conditioner is determined according to the air conditioning signal, the engine is controlled to start to drive The generator supplies power to the air conditioner. Because if the air conditioner's useful electricity demand when charging the battery is to start the engine to drive the generator to supply the air conditioner, the operation of the air conditioner does not need to use the electric energy of the charger or the battery pack, that is, it will not affect the charging power of the battery, and it can also guarantee The normal use of the air conditioner solves the problem that the air conditioner cannot be used normally when the existing hybrid electric vehicle is charged, which causes the temperature control rate in the vehicle to slow down, and it is easy to cause inconvenience to the drivers and passengers.
  • step S200 includes step S211:
  • Step S211 If an on signal of the air conditioner is monitored, control the air conditioner to turn on, and control the engine to start, so as to drive the generator to supply power to the air conditioner.
  • the charger when the charger is charging the battery, if the on-signal of the air conditioner is monitored, it means that although the air conditioner is currently in the off state, it needs to be turned on and enters the running state, that is, the useful electricity demand of the air conditioner is determined.
  • the engine is controlled to start, and then the engine can be controlled to drive the generator to generate electricity; and because the air conditioner is electrically connected to the generator, the electric energy generated by the engine to drive the generator can be used to power the air conditioner, thereby driving the operation of the air conditioner. Because there is an engine-driven generator to supply power to the air conditioner, there is no need to use a charger or battery to power the air conditioner, that is, it will not affect the charging power and charging efficiency of the battery, and it can ensure the normal operation of the air conditioner.
  • step S200 includes step S212:
  • Step S212 If it is detected that the air conditioner is in an on state, control the engine to start to drive the generator to supply power to the air conditioner, and control the battery to stop supplying power to the air conditioner.
  • step S212 when the charging signal is monitored, if it is monitored that the air conditioner is already in operation, at this time, the air conditioner has useful electricity demand, and the battery is currently supplying power to the air conditioner to meet the target power consumption of the air conditioner; When the charging signal is reached, the charger needs to be controlled to charge the battery. In order to avoid affecting the charging efficiency of the battery, the engine is controlled to drive the generator to power the air conditioner according to the target power consumption of the air conditioner, so that the air conditioner does not need to be powered by the battery, and it will not affect The power and efficiency of the charger to charge the battery.
  • the energy coordination control method provided by the embodiment of the present disclosure further includes step S300 after step S200:
  • Step S300 When the charger is charging the battery, if the shutdown signal of the air conditioner is monitored, the air conditioner is controlled to be turned off, and the engine is controlled to be turned off.
  • step S300 after the charging signal is monitored, the battery will be controlled to enter the charging state.
  • the off signal of the air conditioner is monitored at this time, it means that the air conditioner is currently in operation, and the engine drives the generator to supply power to the air conditioner.
  • the air conditioner needs to be turned off, so the air conditioner is controlled to turn off; at this time, because the air conditioner no longer consumes electricity, that is, no generator is required to supply power to it, so the engine is controlled to turn off.
  • the charger is still charging the battery at this time, the charger can meet the power demand of the battery.
  • controlling the engine to turn off can not only avoid energy waste, but also avoid damage to the battery due to excessive charging power.
  • FIG. 2 shows a schematic flow chart of an energy coordination control method provided by a preferred embodiment of the present disclosure, which is applied to a vehicle, and the vehicle includes an engine, a generator, a battery, a charger, and an air conditioner.
  • the generator is mechanically connected to the engine, the generator and the charger are both electrically connected to the battery, and the battery is electrically connected to the air conditioner, wherein the generator is electrically connected to the air conditioner, and the The method includes steps S221 to S224.
  • Step S221 When the charging signal is monitored, the charger is controlled to charge the battery, and the air conditioning signal of the air conditioner is monitored.
  • step S221 refers to the detailed description of step S100, which will not be repeated here.
  • Step S222 If an on signal of the air conditioner is monitored, control the air conditioner to turn on, and control the engine to start, so as to drive the generator to supply power to the air conditioner.
  • step S222 refer to the detailed description of step S211, which will not be repeated here.
  • Step S223 If it is detected that the air conditioner is in an on state, control the engine to start to drive the generator to supply power to the air conditioner, and control the battery to stop supplying power to the air conditioner.
  • step S223 refer to the detailed description of step S212, which will not be repeated here.
  • Step S224 When the charger is charging the battery, if the shutdown signal of the air conditioner is monitored, control the air conditioner to turn off, and control the engine to turn off.
  • step S224 reference may be made to the detailed description of step S300, which will not be repeated here.
  • the energy coordination control method described in the embodiments of the present disclosure has the following advantages:
  • the air conditioner In the initial stage of controlling the charger to charge the battery, if the air conditioner is on, control the engine to start to control the engine to drive the generator to supply power to the air conditioner, and control the battery to stop supplying power to the air conditioner; and, When the charger is charging the battery, if the on-signal of the air conditioner is monitored, the engine is controlled to start, and the engine is controlled to drive the generator to generate electricity, and the generator is controlled to be the air conditioner Power supply; therefore, when using the charger to charge the battery, if you need to use the air conditioner, start the engine to drive the generator to power the air conditioner, so that the operation of the air conditioner does not need to use the power of the charger or the battery pack, that is, it will not affect the battery charging
  • the power can also ensure the normal use of the air conditioner, thereby solving the problem that the existing hybrid electric vehicle cannot use the air conditioner normally when charging, which causes the temperature control rate in the vehicle to slow down, and it is easy to cause inconvenience to the drivers and passengers.
  • FIG. 3 shows an execution flow chart of the energy coordinated control method proposed by an embodiment of the present disclosure.
  • step S301 it is detected whether the battery starts to be charged; when the battery starts to be charged, step S302 is entered;
  • step S302 determine whether the air conditioner is turned on; if the air conditioner is turned on, go to step S303; if the air conditioner is not turned on, go to step S306;
  • step S303 the generator is driven to generate electricity by controlling the engine to start; then in step S304, the power consumption of the air conditioner is detected, and in step S305, the engine is controlled to generate electricity according to the power consumption of the air conditioner, so as to meet the operation requirements of the air conditioner;
  • step S306 the charging energy management is controlled according to the normal strategy, that is, when there is no demand for air-conditioning use, the charger is controlled to charge according to the normal power demand of the battery.
  • FIG. 4 shows the control principle diagram of the energy coordinated control method proposed by the embodiment of the present disclosure.
  • the above-mentioned control method is jointly completed by the air-conditioning state detection module 41, the charging state control module 42, the engine start-stop module 43, the energy coordination module 44 and the generator module 45.
  • the air conditioner state detection module 41 is used to judge whether the air conditioner is turned on, and report the judgment result to the energy coordination module 44, and is used to calculate the power consumption of the air conditioner according to the voltage and current of the high-pressure heater and the refrigeration compressor; and the state of charge control module 42 is used to control the charging process of the entire vehicle.
  • the engine start module 43 is used to receive After the engine start signal, the engine is started according to the pre-defined process, and the engine is shut down when the stop signal is received;
  • the energy coordination module 44 is used to specifically implement the energy coordination control method described above;
  • the generator module 45 is used after the engine is started The mechanical energy generated by the engine is converted into electrical energy for consumption by the air conditioner, wherein the generated power is equal to the power requested by the energy coordination module 44.
  • Another objective of the present disclosure is to provide an energy coordinated control system applied to a vehicle.
  • the vehicle includes an engine, a generator, a battery, a charger, and an air conditioner.
  • the generator is mechanically connected to the engine, and the generator is mechanically connected to the engine.
  • the charger are electrically connected to the battery, and both the charger and the battery are electrically connected to the air conditioner.
  • Schematic diagram of the structure of the energy coordination control system the system includes:
  • the first control module 10 is configured to control the charger to charge the battery and monitor the air conditioning signal of the air conditioner when the charging signal is monitored;
  • the second control module 20 is configured to control the engine to start to drive the generator to supply power to the air conditioner if the useful electricity demand of the air conditioner is determined according to the air conditioner signal.
  • the first control module 10 controls the charger to charge the battery and monitors the air-conditioning signal of the air-conditioning; and then when determining the useful electricity demand of the air-conditioning according to the above-mentioned air-conditioning signal,
  • the second control module 20 controls the start of the engine to drive the generator to supply power to the air conditioner.
  • the air conditioner Because if the air conditioner needs useful electricity when charging the battery, it is to start the engine to drive the generator to supply the air conditioner, so that the air conditioner does not need to use the electric energy of the charger or the battery pack, that is, it will not affect the charging power of the battery, and it can also ensure
  • the normal use of the air conditioner solves the problem that the air conditioner cannot be used normally when the existing hybrid electric vehicle is charged, which causes the temperature control rate in the vehicle to slow down, and it is easy to cause inconvenience to the drivers and passengers.
  • the second control module 20 includes:
  • the first control unit is configured to, if an on signal of the air conditioner is monitored, control the air conditioner to turn on, and control the engine to start, so as to drive the generator to supply power to the air conditioner.
  • the second control module 20 further includes:
  • the second control unit is configured to, if it is detected that the air conditioner is in an on state, control the engine to start to drive the generator to supply power to the air conditioner, and control the battery to stop supplying power to the air conditioner.
  • system further includes:
  • the third control module is configured to control the air conditioner to turn off and control the engine to turn off if the shutdown signal of the air conditioner is monitored when the charger is charging the battery.
  • the second control module 20 is specifically configured to obtain the target power consumption of the air conditioner if the air conditioner's useful electricity demand is determined according to the air conditioner signal, and control all The engine is started to drive the generator to supply power to the air conditioner according to the target power consumption.
  • Another object of the present disclosure is to provide a vehicle that includes an engine, a generator, a battery, a charger, and an air conditioner.
  • the generator is mechanically connected to the engine, and both the generator and the charger are connected to each other.
  • the battery is electrically connected, the charger and the battery are both electrically connected to the air conditioner, wherein the generator is electrically connected to the air conditioner, and the vehicle further includes the energy coordination control system.
  • the energy coordinated control control system, the vehicle and the foregoing energy coordinated control method have the same advantages over the prior art, and will not be repeated here.
  • the energy coordination control method, system, and vehicle provided by the present application control the charger to charge the battery and monitor the air-conditioning signal of the air conditioner when the charging signal is monitored; and then according to the above-mentioned air-conditioning information Determine whether the air conditioner has useful power demand; if the air conditioner useful power demand is determined according to the above air conditioning signal, control the engine to start to drive the generator to supply power to the air conditioner.
  • the air conditioner Because if the air conditioner needs useful electricity when charging the battery, it is to start the engine to drive the generator to supply the air conditioner, so that the air conditioner does not need to use the electric energy of the charger or the battery pack, that is, it will not affect the charging power of the battery, and it can also ensure
  • the normal use of the air conditioner solves the problem that the air conditioner cannot be used normally when the existing hybrid electric vehicle is charged, which causes the temperature control rate in the vehicle to slow down, and it is easy to cause inconvenience to the drivers and passengers.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement it without creative work.
  • the various component embodiments of the present disclosure may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present disclosure may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 6 shows a computing processing device that can implement the method according to the present disclosure.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 7.
  • the storage unit may have storage segments, storage spaces, and the like arranged similarly to the memory 1020 in the computing processing device of FIG. 6.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when run by a computing processing device, cause the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the present disclosure can be realized by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims listing several devices, several of these devices may be embodied in the same hardware item. The use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种能量协调控制方法,其中车辆包括发动机、发电机、电池、充电机及空调,发电机与发动机机械连接,发电机及充电机均与电池电连接,电池与空调电连接,其中,发电机与空调电连接,方法包括:在监测到充电信号时,控制充电机为电池充电,并监测空调的空调信号(S100);若根据空调信号,确定空调有用电需求,则控制发动机启动,以驱动发电机为空调供电(S200)。还包括一种能量协调控制系统、车辆、计算机处理设备、计算机程序以及计算机可读介质。此方法的空调的运行无需利用充电机或电池包的电能,不会影响电池的充电功率,同时能够保证空调的正常使用。

Description

一种能量协调控制方法、系统及车辆
本申请要求在2020年03月10日提交中国专利局、申请号为202010162805.1、名称为“一种能量协调控制方法、系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及汽车技术领域,特别涉及一种能量协调控制方法、系统及车辆。
背景技术
当前,随着全球环保问题的日益严重,新能源汽车得以快速发展。新能源汽车具有充电功能,利用该充电功能可以将电网中的电能输送到电池包中,然后利用电池包中的电能驱动车辆行驶,从而实现无油耗、无排放的行程。
混合动力汽车为可利用电能及化石能源驱动的新能源汽车,其动力电池包相对于纯电动汽车的动力电池包较小,配套的车载充电机也相对较小,使得混合动力汽车的充电机功率大都小于空调的额定功率。若用户在混合动力汽车充电时使用空调,由于空调正常工作消耗的功率大于充电机输出的功率,为了维持空调的正常使用,需要动力电池包放电以向空调供电,这势必会影响电池包的正常充电。
针对空调的使用会影响电池包充电的情况,现有技术采用的是限制空调功率的方式,即在汽车充电并开启空调时,将空调的功率限制在较低的限值,以确保电池能够正常充电。但由于空调功率被限制,导致车内温度调控速率变慢,因而影响了用户体验。
概述
有鉴于此,本公开旨在提出一种能量协调控制方法、系统及车辆,以解决现有混合动力汽车充电时无法正常使用空调,导致车内温度调控速率变慢,容易给驾乘人员带来不便的问题。
为达到上述目的,本公开的技术方案是这样实现的:
一种能量协调控制方法,应用于车辆,所述车辆包括发动机、发电机、电池、充电机及空调,所述发电机与所述发动机机械连接,所述发电机及所述充电机均与所述电池电连接,所述充电机及所述电池均与所述空调电连接,其中,所述发电机与所述空调电连接,所述方法包括:
在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号;
若根据所述空调信号,确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机为所述空调供电。
进一步地,所述的方法中,所述若根据所述空调信号,确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机为所述空调供电,包括:
若监测到所述空调的开启信号,则控制所述发动机启动,以驱动所述发电机为所述空调供电。
进一步地,所述的方法中,所述若根据所述空调信号,确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机为所述空调供电,还包括:
若检测到所述空调处于开启状态,则控制所述发动机启动,以驱动所述发电机为所述空调供电,并控制所述电池停止为所述空调供电。
进一步地,所述方法,还包括:
在所述充电机为所述电池充电时,若监测到所述空调的关闭信号,则控制所述空调关闭,并控制所述发动机关闭。
进一步地,所述的方法中,所述控制所述发动机启动,以驱动所述发电机为所述空调供电,具体包括:
获取所述空调的目标消耗功率;
控制所述发动机启动,以驱动所述发电机按所述目标消耗功率为所述空调供电。
本公开实施例的另一目的还在于提出一种能量协调控制系统,应用于车辆,所述车辆包括发动机、发电机、电池、充电机及空调,所述发电机与所 述发动机机械连接,所述发电机及所述充电机均与所述电池电连接,所述充电机及所述电池均与所述空调电连接,其中,所述发电机与所述空调电连接,所述系统包括:
第一控制模块,用于在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号;
第二控制模块,用于若根据所述空调信号,确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机为所述空调供电。
进一步地,所述的系统中,所述第二控制模块,包括:
第一控制单元,用于若监测到所述空调的开启信号,则控制所述空调开启,并控制所述发动机启动,以驱动所述发电机发为所述空调供电。
进一步地,所述的系统中,所述第二控制模块,还包括:
第二控制单元,用于若监测到所述空调处于开启状态,则控制所述发动机启动,以驱动所述发电机为所述空调供电,并控制所述电池停止为所述空调供电。
进一步地,所述的系统,还包括:
第三控制模块,用于在所述充电机为所述电池充电时,若监测到所述空调的关闭信号,则控制所述空调关闭,并控制所述发动机关闭。
进一步地,所述的系统中,所述第二控制模块,具体用于若根据所述空调信号,确定所述空调有用电需求,则获取所述空调的目标消耗功率,并控制所述发动机启动,以驱动所述发电机按所述目标消耗功率为所述空调供电。
本公开的再一目的在于提出一种车辆,所述车辆包括发动机、发电机、电池、充电机及空调,所述发电机与所述发动机机械连接,所述发电机及所述充电机均与所述电池电连接,所述充电机及所述电池均与所述空调电连接,其中,所述发电机与所述空调电连接,所述车辆还包括所述的能量协调控制系统。
相对于在先技术,本公开所述的能量协调控制方法、系统及车辆具有以下优势:
在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号;若根据上述空调信号确定所述空调有用电需求,则控制所述 发动机启动,以驱动所述发电机向所述空调供电。因为若在给电池充电时空调有用电需求,是启动发动机驱动发电机为空调供电,使得空调的运行无需利用充电机或电池包的电能,也即不会影响电池的充电功率,也能够保证空调的正常使用,从而解决了现有混合动力汽车充电时无法正常使用空调,导致车内温度调控速率变慢,容易给驾乘人员带来不便的问题。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图简述
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开实施例所提出的能量协调控制方法的流程示意图;
图2为本公开一优选实施例所提出的能量协调控制方法的流程示意图
图3为本公开实施例所提出的能量协调控制方法的执行流程图;
图4为本公开实施例所提出的能量协调控制方法的控制原理图;
图5为本公开实施例所提出的能量协调控制系统的结构示意图。
图6示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;以及
图7示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
详细描述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
下面将参考附图更详细地描述本申请的实施例。虽然附图中显示了本申请的实施例,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更彻底地理解本申请,并且能够将本申请的范围完整地传达给本领域的技术人员。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
请参阅图1,示出了本公开实施例所提供的一种能量协调控制方法的流程示意图,本公开实施例所提供的能量协调控制方法,应用于车辆,所述车辆包括发动机、发电机、电池、充电机及空调,所述发电机与所述发动机机械连接,所述发电机及所述充电机均与所述电池电连接,所述电池与所述空调电连接,其中,所述发电机与所述空调电连接,所述方法包括步骤S100~S200。
本公开实施例所提供的能量协调控制方法,适用于混合动力车辆,该车辆包括发动机、发电机、电池、充电机及空调;其中,发电机与发动机机械连接,因而可以利用发动机带动发电机发电;而充电机与电池电连接,因而可以利用充电机直接为电池充电;同时,发电机也与电池电连接,因而可以在需要回收能量时,可以利用发电机将发动机处的机械能转化为电能,并将发电机产生的电能输入电池中进行存储;而电池与所述空调电连接,因而可以利用电池为空调供电,以满足空调的工作;另外,因为空调还与发电机电连接,因而可以在空调有用电需求时,控制发电机为空调供电。
在实际应用中,充电机也可与空调电连接,因而也可以直接利用充电机为空调供电。
步骤S100、在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号。
上述步骤S100中,在监测充电信号时,即说明需要给电池充电;而因为充电机与电池电连接,因而可以在监测到充电信号时,直接控制充电机将电网中的电能按一定功率输送到电池中,使得电池进入充电状态,进而实现对电池的充电。
在实际应用中,该充电信号可以是充电机的输入端处的电压信号,因为在充电机与外部电网接通时,其输入端的电压信号发生变化,此时即可以判定需要给电池充电。
上述步骤S100中,还需在监测到充电信号之后,监测空调的空调信号,以根据上述空调信号确定空调是否有用电需求,即监测空调是否需要用电以进行工作,以便于后续确实是否需要开启发动机为空调供电。该空调信号具体可以包括空调所处状态信号以及空调的开启信号及关闭信号。其中,若监测到开启状态信号,说明空调当前处于开启状态,则空调有用电需求;若监测到空调的开启信号,则说明虽然空调当前处于关闭状态,但其需要开启并进入运行状态,因而空调也有用电需求;而若检测到空调的关闭信号,则说明虽然空调当前处于运行状态,但其需要关闭并进入关闭状态,因而空调不再需要用电,也即无用电需求。
步骤S200、若根据所述空调信号,确实所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机向所述空调供电。
在上述步骤S200中,即在监测到充电信号后,若还根据空调信号确定了所述空调有用电需求,则说明需要向空调供电,此时控制发动机启动,进而可以控制发动机驱动发电机发电;而因为空调与发电机电连接,因而可以利用发动机驱动发电机产出的电能为空调供电,从而驱动空调的运行。因为有发动机驱动发电机为空调供电,因而无需再利用充电机或电池为空调供电,也即不会影响电池的充电功率及充电效率,又能够保证空调的正常运行。
具体地,上述控制所述发动机启动,以驱动所述发电机向所述空调供电的步骤,具体包括步骤S201~S202。
步骤S201、获取所述空调的目标消耗功率。
上述步骤S201中,空调的目标消耗功率指的是空调的耗电功率,即空调达到目标运行状态所需要消耗的电功率,可以直接由空调为达到目标运行 状态的各运行参数计算得到。上述步骤S201中,获取空调的目标消耗功率,以便于后续控制发动机驱动发电机的发电功率。
在实际应用中,上述目标消耗功率P AC可以根据高压加热器的消耗功率P PTC与制冷压缩机的消耗功率P CMP之和计算得到,其中,P PTC可由高压加热器的工作电流及电压计算得到,而P CMP由制冷压缩机的工作电流及电压计算得到。具体地,由以下公式进行计算:
P AC=P PTC+P CMP  (1)
P PTC=U PTC×I PTC  (2)
P CMP=U CMP×I CMP  (3)
公式(1)~(3)中,P AC是空调消耗功率,P PTC是高压加热器消耗功率,P CMP为制冷压缩机消耗功率,U PTC及I PTC分别为高压加热器的工作电压及工作电流,U CMP及I CMP分别为制冷压缩机的工作电压及工作电流。
步骤S202、控制所述发动机启动,以驱动所述发电机按所述目标消耗功率为所述空调供电。
因为发动机与发电机机械连接,因而可以控制发动机驱动发电机发电,而且可以通过控制发动机的转速及发电机的磁场变化,对发电机的输出电能进行调整。在上述步骤S202中,在发动机启动后,不仅控制所述发动机驱动所述发电机发电,而且控制所述发电机按空调所述需要的目标消耗功率为空调供电,即控制发电机按照空调所需要消耗的电功率进行发电,这样既可以使得空调可以按目标工作状态进行工作,且无需电池向空调供电,又不会让发动机驱动发电机发出超出空调所需的电量而造成能量浪费。
另外,若接收到停止充电信号时,若所述空调处于运行状态,则控制所述电池为所述空调供电,并控制所述发动机关闭,以利用电池中更为清洁的电能直接驱动空调,避免过多地使用化石能源驱动发动机带动发电机为空调供电。
相对于现有技术,本公开所述的车辆空调控制方法具有以下优势:
在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号;若根据上述空调信号确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机向所述空调供电。因为若在给电池充电时空 调有用电需求,是启动发动机驱动发电机为空调供电,因而空调的运行无需利用充电机或电池包的电能,也即不会影响电池的充电功率,也能够保证空调的正常使用,从而解决了现有混合动力汽车充电时无法正常使用空调,导致车内温度调控速率变慢,容易给驾乘人员带来不便的问题。
可选地,在一种实施方式中,上述步骤S200包括步骤S211:
步骤S211、若监测到所述空调的开启信号,则控制所述空调开启,并控制所述发动机启动,以驱动所述发电机向所述空调供电。
即在充电机为电池充电的过程中,若监测到所述空调的开启信号,则说明虽然空调当前处于关闭状态,但其需要开启并进入运行状态,也即确定空调有用电需求。此时控制发动机启动,进而可以控制发动机驱动发电机发电;而因为空调与发电机电连接,因而可以利用发动机驱动发电机产出的电能为空调供电,从而驱动空调的运行。因为有发动机驱动发电机为空调供电,所以无需再利用充电机或电池为空调供电,也即不会影响电池的充电功率及充电效率,又能够保证空调的正常运行。
可选地,在一种实施方式中,上述步骤S200包括步骤S212:
步骤S212、若监测到所述空调处于开启状态,则控制所述发动机启动,以驱动所述发电机为所述空调供电,并控制所述电池停止为所述空调供电。
在上述步骤S212中,在监测到充电信号时,若监测到空调已经处于运行状态,此时,空调有用电需求,且当前是由电池为空调供电以满足空调的目标消耗功率;而在监测到充电信号时,又需要控制充电机给电池充电,为了避免影响电池的充电效率,控制发动机驱动发电机按空调的目标消耗功率为空调供电,使得空调无需再由电池供电,也就不会影响充电机为电池充电的功率及效率。
可选地,在一种实施方式中,本公开实施例所提供的能量协调控制方法,在步骤S200之后,还包括步骤S300:
步骤S300、在所述充电机为所述电池充电时,若监测到所述空调的关闭信号,则控制所述空调关闭,并控制所述发动机关闭。
上述步骤S300中,在监测到充电信号后,会控制电池进入充电状态,此时若监测到所述空调的关闭信号,则说明空调当前处于运行状态,且当前 是由发动机驱动发电机为空调供电,且需要关停空调,因而控制空调关闭;此时,因为空调不再消耗电能,也即无需发电机再向其供电,因而控制发动机关闭。另外,因为此时充电机仍在为电池充电,充电机可以满足电池的电能需求,在空调关闭后,控制发动机关闭,不仅可以避免能量浪费,还可以避免因充电功率过大而损害电池。
请参阅图2,示出了本公开一优选实施例所提供的一种能量协调控制方法的流程示意图,应用于车辆,所述车辆包括发动机、发电机、电池、充电机及空调,所述发电机与所述发动机机械连接,所述发电机及所述充电机均与所述电池电连接,所述电池与所述空调电连接,其中,所述发电机与所述空调电连接,所述方法包括步骤S221~S224。
步骤S221、在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号。
上述步骤S221可参照步骤S100的详细说明,此处不再赘述。
步骤S222、若监测到所述空调的开启信号,则控制所述空调开启,并控制所述发动机启动,以驱动所述发电机为所述空调供电。
上述步骤S222可参照步骤S211的详细说明,此处不再赘述。
步骤S223、若监测到所述空调处于开启状态,则控制所述发动机启动,以驱动所述发电机为所述空调供电,并控制所述电池停止为所述空调供电。
上述步骤S223可参照步骤S212的详细说明,此处不再赘述。
步骤S224、在所述充电机为所述电池充电时,若监测到所述空调的关闭信号,则控制所述空调关闭,并控制所述发动机关闭。
上述步骤S224可参照步骤S300的详细说明,此处不再赘述。
相对于现有技术,本公开实施例所述的能量协调控制方法具有以下优势:
在控制所述充电机为所述电池充电的开始阶段,若空调处于开启状态,则控制发动机启动以控制发动机驱动发电机为所述空调供电,同时控制电池停止为所述空调供电;以及,在所述充电机为所述电池充电时,若监测到所述空调的开启信号,则控制所述发动机启动,并控制所述发动机驱动所述发电机发电,并控制所述发电机为所述空调供电;因而可以在利用充电机给电池充电时,若需要使用空调,均启动发动机驱动发电机为空调供电,使得空 调的运行无需利用充电机或电池包的电能,也即不会影响电池的充电功率,也能够保证空调的正常使用,从而解决了现有混合动力汽车充电时无法正常使用空调,导致车内温度调控速率变慢,容易给驾乘人员带来不便的问题。
在实际应用中,请参阅图3,示出了本公开实施例所提出的能量协调控制方法的执行流程图。
如图3所示,在步骤S301中,检测电池是否开始充电;在电池开始充电时,则进入步骤S302;
在步骤S302中,判断空调是否被打开;若空调开启,则进入步骤S303中;若空调未打开,则进入步骤S306中;
在步骤S303中,通过控制发动机启动带动发电机发电;然后在步骤S304中检测空调消耗功率,并在步骤S305中,控制发动机按照空调消耗功率进行发电,从而满足空调的运行需求;
在步骤S306中,按照正常策略控制充电能量管理,即在没有空调使用需求时,控制充电机按照电池的正常功率需求进行充电。
在实际应用中,请参阅图4,示出了本公开实施例所提出的能量协调控制方法的控制原理图。如图4所示,上述控制方法由空调状态检测模块41、充电状态控制模块42、发动机启停模块43、能量协调模块44及发电机模块45共同完成。
其中,空调状态检测模块41用于判断空调是否开启,并将判断结果上报至能量协调模块44,同时用于根据高压加热器及制冷压缩机的电压、电流计算空调消耗功率;而充电状态控制模块42则用于控制整车充电流程,具有用于在用户执行充电动作后控制车辆进入充电状态,以及在用户执行充电停止动作或电池充满后控制车辆停止充电;发动机启动模块43则用于在接收到发动机启动信号后,按照预先定义的流程启动发动机,以及在接收到停机信号是关闭发动机;而能量协调模块44用于具体执行上述能量协调控制方法;发电机模块45则用于在发动机启动后将发动机产生的机械能转化为电能以供空调消耗,其中,发电功率等于能量协调模块44请求功率。
本公开的另一目标在于提出一种能量协调控制系统,应用于车辆,所述车辆包括发动机、发电机、电池、充电机及空调,所述发电机与所述发动机 机械连接,所述发电机及所述充电机均与所述电池电连接,所述充电机及所述电池均与所述空调电连接,其中,请参阅图5,图5示出了本公开实施例所提出的一种能量协调控制系统的结构示意图,所述系统包括:
第一控制模块10,用于在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号;
第二控制模块20,用于若根据所述空调信号,确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机为所述空调供电。
本公开实施例所述的系统,在监测到充电信号时,由第一控制模块10控制充电机为电池充电,并监测空调的空调信号;再在根据上述空调信号确定空调有用电需求时,由第二控制模块20控制发动机启动,以驱动发电机为上述空调供电。因为若在给电池充电时空调有用电需求,是启动发动机驱动发电机为空调供电,使得空调的运行无需利用充电机或电池包的电能,也即不会影响电池的充电功率,也能够保证空调的正常使用,从而解决了现有混合动力汽车充电时无法正常使用空调,导致车内温度调控速率变慢,容易给驾乘人员带来不便的问题。
可选地,所述的系统中,所述第二控制模块20,包括:
第一控制单元,用于若监测到所述空调的开启信号,则控制所述空调开启,并控制所述发动机启动,以驱动所述发电机发为所述空调供电。
可选地,所述的系统中,所述第二控制模块20,还包括:
第二控制单元,用于若监测到所述空调处于开启状态,则控制所述发动机启动,以驱动所述发电机为所述空调供电,并控制所述电池停止为所述空调供电。
可选地,所述的系统,还包括:
第三控制模块,用于在所述充电机为所述电池充电时,若监测到所述空调的关闭信号,则控制所述空调关闭,并控制所述发动机关闭。
可选地,所述的系统中,所述第二控制模块20,具体用于若根据所述空调信号,确定所述空调有用电需求,则获取所述空调的目标消耗功率,并控制所述发动机启动,以驱动所述发电机按所述目标消耗功率为所述空调供电。
本公开的再一目的在于提出一种车辆,所述车辆包括发动机、发电机、 电池、充电机及空调,所述发电机与所述发动机机械连接,所述发电机及所述充电机均与所述电池电连接,所述充电机及所述电池均与所述空调电连接,其中,所述发电机与所述空调电连接,所述车辆还包括所述的能量协调控制系统。
所述能量协调控制控制系统、车辆与上述能量协调控制方法相对于现有技术所具有的优势相同,在此不再赘述
综上所述,本申请提供的能量协调控制方法、系统及车辆,在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号;然后根据上述空调信息确定空调是否有用电需求;若根据上述空调信号确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机向所述空调供电。因为若在给电池充电时空调有用电需求,是启动发动机驱动发电机为空调供电,使得空调的运行无需利用充电机或电池包的电能,也即不会影响电池的充电功率,也能够保证空调的正常使用,从而解决了现有混合动力汽车充电时无法正常使用空调,导致车内温度调控速率变慢,容易给驾乘人员带来不便的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例 方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图6示出了可以实现根据本公开的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图7所述的便携式或者固定存储单元。该存储单元可以具有与图6的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全 指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (13)

  1. 一种能量协调控制方法,应用于车辆,所述车辆包括发动机、发电机、电池、充电机及空调,所述发电机与所述发动机机械连接,所述发电机及所述充电机均与所述电池电连接,所述电池与所述空调电连接,其特征在于,所述发电机与所述空调电连接,所述方法包括:
    在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号;
    若根据所述空调信号,确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机为所述空调供电。
  2. 根据权利要求1所述的方法,其特征在于,所述若根据所述空调信号,确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机为所述空调供电,包括:
    若监测到所述空调的开启信号,则控制所述空调开启,并控制所述发动机启动,以驱动所述发电机发为所述空调供电。
  3. 根据权利要求1所述的方法,其特征在于,所述若根据所述空调信号,确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机为所述空调供电,包括:
    若监测到所述空调处于开启状态,则控制所述发动机启动,以驱动所述发电机向所述空调供电,并控制所述电池停止为所述空调供电。
  4. 根据权利要求1所述的方法,其特征在于,所述方法,还包括:
    在所述充电机为所述电池充电时,若监测到所述空调的关闭信号,则控制所述空调关闭,并控制所述发动机关闭。
  5. 根据权利要求1所述的方法,其特征在于,所述控制所述发动机启动,以驱动所述发电机为所述空调供电,具体包括:
    获取所述空调的目标消耗功率;
    控制所述发动机启动,以驱动所述发电机按所述目标消耗功率为所述空调供电。
  6. 一种能量协调控制系统,应用于车辆,所述车辆包括发动机、发电机、电池、充电机及空调,所述发电机与所述发动机机械连接,所述发电机 及所述充电机均与所述电池电连接,所述电池与所述空调电连接,其特征在于,所述发电机与所述空调电连接,所述系统:
    第一控制模块,用于在监测到充电信号时,控制所述充电机为所述电池充电,并监测所述空调的空调信号;
    第二控制模块,用于若根据所述空调信号,确定所述空调有用电需求,则控制所述发动机启动,以驱动所述发电机为所述空调供电。
  7. 根据权利要求6所述的系统,其特征在于,所述第二控制模块,包括:
    第一控制单元,用于若监测到所述空调的开启信号,则控制所述空调开启,并控制所述发动机启动,以驱动所述发电机发为所述空调供电;
    第二控制单元,用于若监测到所述空调处于开启状态,则控制所述发动机启动,以驱动所述发电机为所述空调供电,并控制所述电池停止为所述空调供电。
  8. 根据权利要求6所述的系统,其特征在于,所述系统,还包括:
    第三控制模块,用于在所述充电机为所述电池充电时,若监测到所述空调的关闭信号,则控制所述空调关闭,并控制所述发动机关闭。
  9. 根据权利要求7所述的系统,其特征在于,所述第二控制模块,具体用于若根据所述空调信号,确定所述空调有用电需求,则获取所述空调的目标消耗功率,并控制所述发动机启动,以驱动所述发电机按所述目标消耗功率为所述空调供电。
  10. 一种车辆,所述车辆包括发动机、发电机、电池、充电机及空调,所述发电机与所述发动机机械连接,所述发电机及所述充电机均与所述电池电连接,所述充电机及所述电池均与所述空调电连接,其特征在于,所述发电机与所述空调电连接,所述车辆还包括如权利要求6~9任一所述的能量协调控制系统。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-5中任一项所述的能量协调控制 方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中任一项所述的能量协调控制方法。
  13. 一种计算机可读介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2021/072669 2020-03-10 2021-01-19 一种能量协调控制方法、系统及车辆 WO2021179798A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/789,529 US20230065178A1 (en) 2020-03-10 2021-01-19 Energy coordination control method and system and vehicle
EP21767800.2A EP4067141B1 (en) 2020-03-10 2021-01-19 Energy coordination control method and system and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010162805.1 2020-03-10
CN202010162805.1A CN111252020B (zh) 2020-03-10 2020-03-10 一种能量协调控制方法、系统及车辆

Publications (1)

Publication Number Publication Date
WO2021179798A1 true WO2021179798A1 (zh) 2021-09-16

Family

ID=70945791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072669 WO2021179798A1 (zh) 2020-03-10 2021-01-19 一种能量协调控制方法、系统及车辆

Country Status (4)

Country Link
US (1) US20230065178A1 (zh)
EP (1) EP4067141B1 (zh)
CN (1) CN111252020B (zh)
WO (1) WO2021179798A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111252020B (zh) * 2020-03-10 2021-06-18 长城汽车股份有限公司 一种能量协调控制方法、系统及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624007A (zh) * 2009-08-05 2010-01-13 奇瑞汽车股份有限公司 一种可插电式混合动力汽车
CN106553633A (zh) * 2015-09-29 2017-04-05 上海汽车集团股份有限公司 混合动力汽车的发动机控制方法和混动单元控制器
CN107323451A (zh) * 2017-07-10 2017-11-07 德州富路汽车智能化研究有限公司 一种混合动力车的发电控制方法、设备及系统
CN107539061A (zh) * 2016-06-29 2018-01-05 长城汽车股份有限公司 车载空调的控制方法、控制系统和车辆
CN108466530A (zh) * 2018-02-26 2018-08-31 江苏大学 一种多驱动模式混合动力汽车空调压缩机系统及控制方法
US10215110B2 (en) * 2013-04-02 2019-02-26 Denso Corporation Controller for hybrid vehicle
CN209466955U (zh) * 2019-01-29 2019-10-08 重庆巨合机械有限公司 一种具有独立冷暖空调系统的电动商用车
CN111252020A (zh) * 2020-03-10 2020-06-09 长城汽车股份有限公司 一种能量协调控制方法、系统及车辆

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136699A (ja) * 2002-10-15 2004-05-13 Denso Corp ハイブリッド車用空調装置
KR100680199B1 (ko) * 2004-12-14 2007-02-08 엘지전자 주식회사 열병합 발전 시스템의 제어 방법
US7543454B2 (en) * 2005-03-14 2009-06-09 Zero Emission Systems, Inc. Method and auxiliary system for operating a comfort subsystem for a vehicle
US7552705B2 (en) * 2007-03-07 2009-06-30 The Gates Corporation Vehicle stop/start system with regenerative braking
JP5263242B2 (ja) * 2010-08-24 2013-08-14 三菱自動車工業株式会社 空調制御装置
JP2012188062A (ja) * 2011-03-14 2012-10-04 Mitsubishi Motors Corp ハイブリッド車の空調制御装置
JP2013043478A (ja) * 2011-08-22 2013-03-04 Honda Motor Co Ltd ハイブリッド車両
MX365481B (es) * 2015-03-19 2019-06-05 Nissan Motor Dispositivo de control para vehículo híbrido y método de control.
CN106611886B (zh) * 2015-10-26 2020-06-19 比亚迪股份有限公司 混合动力汽车的放电方法和系统
JP6481633B2 (ja) * 2016-02-02 2019-03-13 株式会社デンソー 車両の空調装置
CN106696641B (zh) * 2016-12-30 2023-09-05 中通客车股份有限公司 一种插电式混合动力客车空调控制电路及控制方法
JP7253952B2 (ja) * 2019-03-27 2023-04-07 株式会社Subaru 車両
CN110077278B (zh) * 2019-04-30 2021-06-11 浙江吉利控股集团有限公司 一种插电式混合动力车的放电管理方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624007A (zh) * 2009-08-05 2010-01-13 奇瑞汽车股份有限公司 一种可插电式混合动力汽车
US10215110B2 (en) * 2013-04-02 2019-02-26 Denso Corporation Controller for hybrid vehicle
CN106553633A (zh) * 2015-09-29 2017-04-05 上海汽车集团股份有限公司 混合动力汽车的发动机控制方法和混动单元控制器
CN107539061A (zh) * 2016-06-29 2018-01-05 长城汽车股份有限公司 车载空调的控制方法、控制系统和车辆
CN107323451A (zh) * 2017-07-10 2017-11-07 德州富路汽车智能化研究有限公司 一种混合动力车的发电控制方法、设备及系统
CN108466530A (zh) * 2018-02-26 2018-08-31 江苏大学 一种多驱动模式混合动力汽车空调压缩机系统及控制方法
CN209466955U (zh) * 2019-01-29 2019-10-08 重庆巨合机械有限公司 一种具有独立冷暖空调系统的电动商用车
CN111252020A (zh) * 2020-03-10 2020-06-09 长城汽车股份有限公司 一种能量协调控制方法、系统及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067141A4

Also Published As

Publication number Publication date
US20230065178A1 (en) 2023-03-02
EP4067141A4 (en) 2023-01-11
EP4067141A1 (en) 2022-10-05
CN111252020A (zh) 2020-06-09
EP4067141B1 (en) 2024-05-29
CN111252020B (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN110040038B (zh) 一种氢-电混合燃料电池客车能量管理控制方法及系统
WO2021227990A1 (zh) 一种燃料电池汽车能量管理方法、系统及车辆
JP6475359B2 (ja) 太陽エネルギー車載エアコンシステム
JP5016894B2 (ja) 空調・発電装置及びその制御方法
CN107323433B (zh) 车辆的故障检测维修方法、装置及存储介质
CN103158711A (zh) 用于混合动力车的转矩控制方法及其系统
CN110329037B (zh) 驻车空调的控制方法
JP2002325373A (ja) バッテリ容量制御装置
CN111086415B (zh) 电池充电管理方法、装置、车辆及存储介质
WO2024021842A1 (zh) 车辆的补能方法、装置、存储介质及车辆
WO2021179798A1 (zh) 一种能量协调控制方法、系统及车辆
JP2015149818A (ja) 車両用電力制御装置
CN105790374A (zh) 一种车载储电箱
CN106208178A (zh) 电动车辆的电池充电装置和方法
CN111169459B (zh) 混合动力车辆爬行控制方法、装置、车辆及存储介质
CN115991099B (zh) 一种基于状态控制的燃料电池系统功率控制方法及系统
JP5545309B2 (ja) エネルギ管理システム
CN104842742A (zh) 一种混合动力车、混合动力车的空调系统及其控制方法
JP5181900B2 (ja) 蓄電装置出力予測装置およびハイブリッド車両制御システム
CN114083956B (zh) 一种控制方法、装置、设备及存储介质
JP2021090266A (ja) ソーラー充電システム
CN113879173B (zh) 一种低电量下电动附件控制方法及纯电汽车
JP2014144757A (ja) 車両用熱電供給装置
CN116394943A (zh) 车辆控制方法、装置、车辆及存储介质
CN114683826A (zh) 混合动力车辆及其动力系统和充电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021767800

Country of ref document: EP

Effective date: 20220627

NENP Non-entry into the national phase

Ref country code: DE