WO2021177443A1 - アスファルト組成物 - Google Patents
アスファルト組成物 Download PDFInfo
- Publication number
- WO2021177443A1 WO2021177443A1 PCT/JP2021/008694 JP2021008694W WO2021177443A1 WO 2021177443 A1 WO2021177443 A1 WO 2021177443A1 JP 2021008694 W JP2021008694 W JP 2021008694W WO 2021177443 A1 WO2021177443 A1 WO 2021177443A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- asphalt
- polyester
- mass
- less
- polyethylene terephthalate
- Prior art date
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 294
- 239000000203 mixture Substances 0.000 title claims abstract description 183
- 229920000728 polyester Polymers 0.000 claims abstract description 123
- -1 polyethylene terephthalate Polymers 0.000 claims abstract description 90
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 75
- 239000005020 polyethylene terephthalate Substances 0.000 claims abstract description 75
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 60
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 52
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 31
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 39
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 38
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 32
- 238000002156 mixing Methods 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 25
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 23
- 239000002253 acid Substances 0.000 claims description 18
- 239000003054 catalyst Substances 0.000 claims description 13
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 12
- 230000032050 esterification Effects 0.000 claims description 12
- 238000005886 esterification reaction Methods 0.000 claims description 12
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical group C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 11
- 229920006132 styrene block copolymer Polymers 0.000 claims description 7
- 229920001400 block copolymer Polymers 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 6
- 229920005604 random copolymer Polymers 0.000 claims description 6
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 claims description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 3
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 31
- 238000003860 storage Methods 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 239000002245 particle Substances 0.000 description 18
- 239000000470 constituent Substances 0.000 description 15
- 239000002270 dispersing agent Substances 0.000 description 15
- 239000004576 sand Substances 0.000 description 15
- 229920001225 polyester resin Polymers 0.000 description 13
- 239000004645 polyester resin Substances 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 241000209094 Oryza Species 0.000 description 8
- 235000007164 Oryza sativa Nutrition 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 235000009566 rice Nutrition 0.000 description 8
- 239000004575 stone Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 238000006068 polycondensation reaction Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- 125000005907 alkyl ester group Chemical group 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000005846 sugar alcohols Polymers 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- NCEXYHBECQHGNR-UHFFFAOYSA-N chembl421 Chemical compound C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 229940018557 citraconic acid Drugs 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- GHLKSLMMWAKNBM-UHFFFAOYSA-N dodecane-1,12-diol Chemical compound OCCCCCCCCCCCCO GHLKSLMMWAKNBM-UHFFFAOYSA-N 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 229940074391 gallic acid Drugs 0.000 description 2
- 235000004515 gallic acid Nutrition 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005809 transesterification reaction Methods 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- XVOUMQNXTGKGMA-OWOJBTEDSA-N (E)-glutaconic acid Chemical compound OC(=O)C\C=C\C(O)=O XVOUMQNXTGKGMA-OWOJBTEDSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- QDCPNGVVOWVKJG-VAWYXSNFSA-N 2-[(e)-dodec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O QDCPNGVVOWVKJG-VAWYXSNFSA-N 0.000 description 1
- YLAXZGYLWOGCBF-UHFFFAOYSA-N 2-dodecylbutanedioic acid Chemical compound CCCCCCCCCCCCC(C(O)=O)CC(O)=O YLAXZGYLWOGCBF-UHFFFAOYSA-N 0.000 description 1
- PARCMDAOZHNXLU-UHFFFAOYSA-N 2-ethylhexanoic acid;tin Chemical compound [Sn].CCCCC(CC)C(O)=O.CCCCC(CC)C(O)=O PARCMDAOZHNXLU-UHFFFAOYSA-N 0.000 description 1
- GXCDLJXPZVCHBX-UHFFFAOYSA-N 3-methylpent-1-yn-3-yl carbamate Chemical compound CCC(C)(C#C)OC(N)=O GXCDLJXPZVCHBX-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 101150015738 Fev gene Proteins 0.000 description 1
- 229920006308 Indorama Polymers 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 102100037681 Protein FEV Human genes 0.000 description 1
- 229910020813 Sn-C Inorganic materials 0.000 description 1
- 229910018732 Sn—C Inorganic materials 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- OZCRKDNRAAKDAN-UHFFFAOYSA-N but-1-ene-1,4-diol Chemical compound O[CH][CH]CCO OZCRKDNRAAKDAN-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000006063 cullet Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- KCYQMQGPYWZZNJ-BQYQJAHWSA-N hydron;2-[(e)-oct-1-enyl]butanedioate Chemical compound CCCCCC\C=C\C(C(O)=O)CC(O)=O KCYQMQGPYWZZNJ-BQYQJAHWSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- LATKICLYWYUXCN-UHFFFAOYSA-N naphthalene-1,3,6-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 LATKICLYWYUXCN-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N trihydroxybenzene Natural products OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/668—Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/672—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
- C08J11/18—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
- C08J11/22—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
- C08J11/24—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/005—Processes for mixing polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/203—Solid polymers with solid and/or liquid additives
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C7/00—Coherent pavings made in situ
- E01C7/08—Coherent pavings made in situ made of road-metal and binders
- E01C7/18—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
- E01C7/26—Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders mixed with other materials, e.g. cement, rubber, leather, fibre
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08J2367/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2395/00—Bituminous materials, e.g. asphalt, tar or pitch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08J2467/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2495/00—Bituminous materials, e.g. asphalt, tar or pitch
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to an asphalt composition, an asphalt mixture, a method for producing the same, and a method for paving a road.
- Asphalt pavement using an asphalt composition is performed because it is relatively easy to lay on pavements such as motorways, parking lots, freight yards, and sidewalks, and the time from the start of pavement work to the start of traffic is short. ing.
- the road surface is formed by an asphalt mixture in which aggregates are bonded with asphalt, so that the paved road has good hardness and durability.
- the asphalt pavement surface has ruts and cracks due to long-term use, it is necessary to repair the pavement, which increases the maintenance cost and has a great influence on the traffic of automobiles.
- Patent Document 1 Japanese Patent Laid-Open No. 2006-096799 aims to provide an expensive plastic composition for pavement materials which can process a large amount of waste PET at the lowest possible cost and has desired properties.
- a method for producing a plastic composition for paving material which is obtained by transesterifying waste PET with one or more polyhydric alcohols and / or saccharides in the presence of a catalyst to obtain a plastic composition for paving material. ing.
- Patent Document 2 International Publication No. 2017/125421 contains asphalt, polyester resin, and aggregate for a road paving asphalt composition having excellent drying strength, water immersion strength, and oil immersion strength.
- the polyester resin contains 50 mol% or more of a constituent unit derived from an alcohol component containing 65 mol% or more of an alkylene oxide adduct of bisphenol A and one or more selected from the group consisting of terephthalic acid and isophthalic acid.
- a road paving asphalt composition having 5 parts by mass or more and 50 parts by mass or less with respect to parts by mass is disclosed.
- the present invention is an asphalt composition containing asphalt and polyester, wherein the polyester is a polycondensate of polyethylene terephthalate, an alcohol and a carboxylic acid compound, and the alcohol contains an alkylene oxide adduct of bisphenol A. Regarding asphalt compositions.
- the present invention relates to the following [1] to [4].
- Step 1 A step of polycondensing an alcohol component and a carboxylic acid component containing polyethylene terephthalate and a bisphenol A alkylene oxide adduct in the presence of an esterification catalyst to obtain a polyester
- a step 2 asphalt and a step.
- a method for producing an asphalt composition which comprises a step of mixing with the polyester obtained in 1.
- Step 1 Polyethylene terephthalate, an alcohol component containing a bisphenol A alkylene oxide adduct, and a carboxylic acid component are polycondensed to obtain polyester in the presence of an esterification catalyst, and Step 2: heated aggregate.
- a method for producing an asphalt mixture which comprises a step of mixing the asphalt and the polyester obtained in the step 1.
- an asphalt composition an asphalt mixture, and a method for producing the same, which are excellent in storage stability and can suppress rut digging on the pavement surface after construction.
- the asphalt composition of the present invention (hereinafter, also simply referred to as "asphalt composition”) contains asphalt and polyester.
- the polyester is a polycondensate of polyethylene terephthalate, an alcohol and a carboxylic acid compound, and the alcohol contains an alkylene oxide adduct of bisphenol A. Based on the above, an asphalt composition having excellent storage stability and capable of suppressing rut digging on the pavement surface after construction can be obtained. Further, this technique can be applied to provide an asphalt mixture and a method for producing the asphalt mixture.
- PET polyethylene terephthalate
- the melting point of PET is relatively high at 260 ° C. It causes a decrease in the rut resistance of the asphalt mixture.
- a method of adding a PET oligomer obtained by hydrolyzing PET in an autoclave to asphalt has also been disclosed, but the molecular weight of the oligomer is as low as about 1000, and the rut digging resistance is not improved.
- the polyester used in the present invention is a polycondensate of PET, an alcohol and a carboxylic acid compound, and a transesterification reaction occurs by polycondensing PET together with an alcohol component and a carboxylic acid component, which is a constituent unit of PET.
- a polyester incorporated into a constituent unit derived from an alcohol component and a constituent unit derived from a carboxylic acid component.
- the alcohol component contains an alkylene oxide adduct of bisphenol A. By including the alkylene oxide adduct of bisphenol A having hydrophobicity, the polyester can be finely dispersed in the hydrophobic asphalt.
- the hydrophilic PET structure incorporated in the polyester while maintaining the finely dispersed state strongly interacts with the asphalt contained in the asphalt, so that the asphalt and the aggregate can be firmly bonded, and after construction. It is probable that the rut digging of the pavement surface could be effectively suppressed. Further, it is considered that the polyester is less likely to settle in the asphalt due to the finely dispersed state and the strong interaction between the PET structure and the asphalt, and as a result, the storage stability is also excellent.
- rut digging is unevenness that occurs continuously in the longitudinal direction on the road running portion when the asphalt layer forming the pavement surface flows at a high temperature such as in summer. Rut digging correlates with the plastic flow resistance of the asphalt composition, which is a binder for asphalt pavement. It is possible to evaluate by G * / sin ⁇ of the binder).
- G * represents a complex elastic modulus
- G * and sin ⁇ are measured with a rheometer. The larger the value of G * / sin ⁇ , the larger the plastic flow resistance. Therefore, it is evaluated that the asphalt composition can provide asphalt pavement having excellent rut digging resistance.
- the "binder mixture” means a mixture containing asphalt and a thermoplastic elastomer, and is a concept including, for example, asphalt modified with a thermoplastic elastomer described later (hereinafter, also referred to as "modified asphalt”).
- modified asphalt asphalt modified with a thermoplastic elastomer described later
- the "constituent unit derived from the alcohol component” means the structure obtained by removing the hydrogen atom from the hydroxyl group of the alcohol component
- the "constituent unit derived from the carboxylic acid component” means the hydroxyl group from the carboxyl group of the carboxylic acid component. It means the structure excluding.
- the "carboxylic acid compound” is a concept that includes not only the carboxylic acid but also an anhydride that decomposes during the reaction to produce an acid, and an alkyl ester of the carboxylic acid (for example, an alkyl group having 1 or more and 3 or less carbon atoms). Is.
- the carboxylic acid compound is an alkyl ester of a carboxylic acid, the carbon number of the alkyl group which is an alcohol residue of the ester is not included in the carbon number of the carboxylic acid compound.
- the asphalt composition of the present invention contains asphalt.
- various asphalts can be used.
- modified asphalt can be mentioned.
- the modified asphalt include blown asphalt; asphalt modified with a polymer material such as a thermoplastic elastomer and a thermoplastic resin.
- Straight asphalt means a residual bituminous substance obtained by treating crude oil with an atmospheric distillation apparatus, a vacuum distillation apparatus, or the like.
- the blown asphalt means asphalt obtained by heating a mixture of straight asphalt and heavy oil and then blowing air to oxidize the mixture.
- Modified asphalt is preferable from the viewpoint of rut digging resistance, and straight asphalt is preferable from the viewpoint of versatility.
- the term "asphalt” includes bitumen as defined in the German Industrial Standard DIN EN 12597. "Asphalt" and “bitumen” shall be used interchangeably.
- the asphalt content in asphalt is preferably 10% by mass or more, more preferably 15% by mass or more, and preferably 30% by mass in 100% by mass of asphalt. It is mass% or less, more preferably 25 mass% or less, still more preferably 20 mass% or less.
- the asphalt content in the asphalt is a value measured by the Petroleum Society Standard JPI-5S-22-83 "Composition analysis method by column chromatography of asphalt".
- the asphalt composition preferably contains a thermoplastic elastomer from the viewpoint of rut resistance.
- Asphalt and thermoplastic elastomers are preferably used as a binder mixture, which is a mixture of these.
- the binder mixture include straight asphalt modified with a thermoplastic elastomer (modified asphalt) and the like.
- thermoplastic elastomer examples include a styrene / butadiene block copolymer (hereinafter, also simply referred to as “SB”), a styrene / butadiene / styrene block copolymer (hereinafter, also simply referred to as “SBS”), and a styrene / butadiene random.
- SB styrene / butadiene block copolymer
- SBS styrene / butadiene block copolymer
- SBR styrene / isoprene block copolymer
- SI styrene / isoprene / styrene block copolymer
- SIR Styrene / isoprene random copolymer
- ethylene / vinyl acetate copolymer and at least one selected from the group consisting of ethylene / acrylic acid ester copolymer. .. Examples of commercially available ethylene / acrylic ester copolymers include "Elvaroy” (manufactured by DuPont).
- thermoplastic elastomers from the viewpoint of improving rut resistance, styrene / butadiene block copolymer, styrene / butadiene / styrene block copolymer, styrene / butadiene random copolymer, styrene / isoprene block copolymer weight.
- At least one selected from the group consisting of coalescing, styrene / isoprene / styrene block copolymer, and styrene / isoprene random copolymer is preferable, and styrene / butadiene random copolymer and styrene / butadiene / styrene block copolymer are preferable. At least one selected from the group consisting of is more preferable.
- the content of the thermoplastic elastomer in the asphalt composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on 100% by mass of the asphalt composition, from the viewpoint of improving the rut resistance. More preferably 1% by mass or more, still more preferably 2% by mass or more, and preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, still more preferably 5% by mass. % Or less.
- the content of the thermoplastic elastomer is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, based on 100 parts by mass of asphalt, from the viewpoint of improving rut digging resistance. It is more preferably 1 part by mass or more, still more preferably 2 parts by mass or more, and preferably 30 parts by mass or less, more preferably 20 parts by mass or less, still more preferably 10 parts by mass or less, still more preferably 5 parts by mass. It is less than a part.
- the content of asphalt in the asphalt composition is preferably 60% by mass or more, more preferably 70% by mass or more, and further, from the viewpoint of rut digging resistance and exhibiting asphalt performance, in 100% by mass of the asphalt composition. It is preferably 75% by mass or more, more preferably 80% by mass or more, and from the viewpoint of improving rut digging, preferably 98% by mass or less, more preferably 97% by mass or less, still more preferably 96% by mass or less. Is.
- the asphalt composition of the present invention contains polyester.
- the polyester is a polycondensate of polyethylene terephthalate, an alcohol and a carboxylic acid compound from the viewpoint of improving storage stability and rut resistance, and the alcohol contains an alkylene oxide adduct of bisphenol A.
- the alcohol component contains an alkylene oxide adduct of bisphenol A from the viewpoint of obtaining excellent rut resistance, and preferably contains an alkylene oxide adduct of bisphenol A represented by the following formula (I).
- OR 1 and R 1 O are alkylene oxides
- R 1 is an alkylene group having 2 or 3 carbon atoms
- x and y are positive numbers indicating the average number of moles of alkylene oxide added
- x and y The sum of is preferably 1 or more, more preferably 1.5 or more, and preferably 16 or less, more preferably 8 or less, still more preferably 4 or less.
- alkylene oxide adduct of bisphenol A represented by the formula (I) examples include a propylene oxide adduct of bisphenol A [2,2-bis (4-hydroxyphenyl) propane] and an ethylene oxide adduct of bisphenol A. Be done. These alkylene oxide adducts of bisphenol A can be used alone or in combination of two or more.
- the amount of the alkylene oxide adduct used for bisphenol A is preferably 80 mol% or more, more preferably 80 mol% or more, based on 100 mol% of the alcohol component of the polyester, from the viewpoint of enhancing the melt dispersibility in asphalt and obtaining excellent rut digging resistance. It is preferably 90 mol% or more and 100 mol% or less.
- the alcohol component may contain an alcohol component other than the alkylene oxide adduct of bisphenol A.
- examples thereof include aliphatic diols, aromatic diols (excluding alkylene oxide adducts of bisphenol A), and trihydric or higher polyhydric alcohols. These alcohol components can be used alone or in combination of two or more.
- Examples of the aliphatic diol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,4-butenediol, and 1,5-. Examples thereof include pentandiol, 1,6-hexanediol, neopentyl glycol, 1,10-decanediol, and 1,12-dodecanediol.
- the trihydric or higher polyhydric alcohol is, for example, a trihydric alcohol. Examples of the trihydric or higher polyhydric alcohol include glycerin.
- Carboxylic acid component examples include an aliphatic dicarboxylic acid compound, an aromatic dicarboxylic acid compound, and a polyvalent carboxylic acid compound having a trivalent or higher and hexavalent or lower valence. These carboxylic acid components can be used alone or in combination of two or more.
- the carbon number of the main chain of the aliphatic dicarboxylic acid is preferably 3 or more, more preferably 4 or more, and preferably 10 or less, more preferably 8 or less, from the viewpoint of further improving the crack resistance.
- the aliphatic dicarboxylic acid compound include fumaric acid, maleic acid, oxalic acid, malonic acid, citraconic acid, itaconic acid, glutaconic acid, succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedic acid.
- Citraconic acid substituted with an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms, or an anhydride thereof, an alkyl ester thereof (for example, an alkyl group having 1 to 3 carbon atoms) can be mentioned.
- the substituted succinic acid include dodecyl succinic acid, dodecenyl succinic acid, and octenyl succinic acid.
- at least one selected from the group consisting of fumaric acid, maleic acid and adipic acid is preferable, and adipic acid is more preferable.
- aromatic dicarboxylic acid compound examples include phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, anhydrides thereof, and alkyl esters thereof (for example, alkyl groups having 1 to 3 carbon atoms). ..
- isophthalic acid and terephthalic acid are preferable, and terephthalic acid is more preferable, from the viewpoint of obtaining rut-drilling resistance.
- the polyvalent carboxylic acid having a trivalent value or more and a hexavalent value or less is preferably a trivalent carboxylic acid.
- Examples of the trivalent or higher and hexavalent or lower polyvalent carboxylic acid include trimellitic acid, 2,5,7-naphthalene tricarboxylic acid, pyromellitic acid, and acid anhydrides thereof.
- the alcohol component may appropriately contain a monovalent alcohol from the viewpoint of adjusting the physical properties, and the carboxylic acid component appropriately contains a monovalent carboxylic acid compound. May be good.
- the content of the aliphatic dicarboxylic acid compound in the carboxylic acid component increases the flexibility of the polyester and further improves the rut resistance.
- it is preferably 1 mol% or more, more preferably 3 mol% or more, further preferably 5 mol% or more, and preferably 15 mol% or less, more preferably 10 mol% or less.
- the content of the aromatic dicarboxylic acid compound is preferably 60 mol% or more, more preferably 75 mol% or more, based on 100 mol% of the carboxylic acid component, from the viewpoint of enhancing the melt dispersibility in asphalt and obtaining excellent rut digging resistance. It is mol% or more, and preferably 100 mol% or less, more preferably 99 mol% or less, still more preferably 95 mol% or less, still more preferably 90 mol% or less.
- the molar ratio [carboxylic acid component / alcohol component] of the structural unit derived from the carboxylic acid component to the structural unit derived from the alcohol component is preferably 0.7 or more, more preferably 0.7 or more, from the viewpoint of adjusting the acid value and digging resistance. It is 0.8 or more, more preferably 0.9 or more, and preferably 1.5 or less, more preferably 1.3 or less, still more preferably 1.1 or less.
- the polyester used in the present invention contains a structural unit composed of ethylene glycol derived from polyethylene terephthalate and terephthalic acid.
- Polyethylene terephthalate may contain a small amount of components such as butanediol and isophthalic acid in addition to the structural unit composed of ethylene glycol and terephthalic acid.
- polyethylene terephthalate is widely used as products such as bottles and films
- polyethylene terephthalate (hereinafter, also referred to as “recovered PET”) produced as those products and then discarded is recovered. It is preferably used in terms of problems and price.
- the type of the recovered product is not particularly limited as long as it has a certain degree of purity.
- impurities a small amount of plastic such as polyethylene or polypropylene may be contained.
- the waste pouch container can be used as a recovery PET.
- the specific size of the recovered product used in the present invention is preferably 4 mm 2 or more and 15 mm 2 or less, and the thickness is preferably 3 mm or less.
- the molar ratio (B) / (E) of the structural unit (B) derived from the alkylene oxide adduct of bisphenol A in polyester and the structural unit (E) composed of ethylene glycol and terephthalic acid derived from polyethylene terephthalate is From the viewpoint of storage stability and rut resistance, it is preferably 30/70 or more, more preferably 50/50 or more, further preferably 60/40 or more, and preferably 95/5 or less. It is more preferably 90/10 or less, still more preferably 80/20 or less.
- the above (B) / (E) are preferably 30/70 or more and 95/5 or less, more preferably 50/50 or more and 90/10 or less, and further, from the viewpoint of storage stability and rut digging resistance. It is preferably 60/40 or more and 80/20 or less.
- the polyester used in the present invention may be a polyester modified to such an extent that its characteristics are not substantially impaired.
- the modified polyester can be grafted with phenol, urethane, epoxy or the like by the methods described in JP-A-11-133668, JP-A-10-239903, JP-A-8-20636 and the like. Examples include blocked polyester.
- Preferred modified polyesters include urethane-modified polyesters obtained by urethane-extending polyester with a polyisocyanate compound.
- the softening point of the polyester is preferably 90 ° C. or higher, more preferably 95 ° C. or higher, still more preferably 100 ° C. or higher, and preferably 140 ° C. or lower, more preferably 130 ° C. or higher, from the viewpoint of obtaining rut digging resistance. Below, it is more preferably 125 ° C. or lower, still more preferably 120 ° C. or lower, and even more preferably 115 ° C. or lower.
- the acid value of the polyester is preferably 2 mgKOH / g or more, more preferably 3 mgKOH / g or more, still more preferably 5 mgKOH / g or more, from the viewpoint of promoting adsorption to the aggregate and improving rut digging resistance. From the viewpoint of increasing the water resistance of the pavement surface, it is preferably 40 mgKOH / g or less, more preferably 30 mgKOH / g or less, and further preferably 20 mgKOH / g or less.
- the hydroxyl value of polyester is preferably 1 mgKOH / g or more, more preferably 2 mgKOH / g or more, still more preferably 5 mgKOH / g or more, still more preferably 10 mgKOH / g or more. Then, it is preferably 70 mgKOH / g or less, more preferably 50 mgKOH / g or less, still more preferably 30 mgKOH / g or less, still more preferably 26 mgKOH / g or less.
- the glass transition point of polyester is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, further preferably 50 ° C. or higher, and preferably 80 ° C. or lower, more preferably 70 ° C. or higher, from the viewpoint of obtaining rut resistance. ° C. or lower, more preferably 65 ° C. or lower.
- the softening point, acid value, hydroxyl value, and glass transition point can be measured by the method described in Examples.
- the softening point, acid value, hydroxyl value, and glass transition point can be adjusted according to the raw material monomer composition, molecular weight, catalyst amount, or reaction conditions.
- polyester manufacturing method The method for producing polyester is not particularly limited, but it can be produced, for example, by polycondensing an alcohol component and a carboxylic acid component containing polyethylene terephthalate and a bisphenol A alkylene oxide adduct.
- the temperature of the polycondensation reaction is not particularly limited, but is preferably 210 ° C. or higher and 260 ° C. or lower from the viewpoint of reactivity and monomer decomposition temperature.
- the abundance of polyethylene terephthalate in the raw material is preferably 4% by mass or more, more preferably 10% by mass or more, still more preferably 13% by mass or more, based on 100% by mass of the total amount of the polyethylene terephthalate, the alcohol component and the carboxylic acid component. And, preferably 80% by mass or less, more preferably 70% by mass or less, still more preferably 40% by mass or less.
- the abundance of polyethylene terephthalate in the raw material is preferably 4% by mass or more and 80% by mass or less, more preferably 10% by mass or more and 70% by mass or less, based on 100% by mass of the total amount of polyethylene terephthalate, alcohol component and carboxylic acid component. It is preferably 13% by mass or more and 40% by mass or less.
- polyethylene terephthalate By adding polyethylene terephthalate during the polycondensation reaction between the alcohol component and the carboxylic acid component, a transesterification reaction occurs, and the constituent units of the polyethylene terephthalate are among the constituent units derived from the alcohol component and the constituent units derived from the carboxylic acid component.
- the polyester incorporated in can be obtained.
- Polyethylene terephthalate may be present from the start of the polycondensation reaction or may be added to the reaction system during the polycondensation reaction. From the viewpoint of rut digging resistance, the addition time of polyethylene terephthalate is preferably at a stage where the reaction rate between the alcohol component and the carboxylic acid component is 10% or less, and more preferably at a stage of 5% or less.
- the reaction rate refers to the value of the amount of produced reaction water (mol) / the theoretical amount of produced water (mol) x 100.
- a tin (II) compound having no Sn—C bond such as di (2-ethylhexanoic acid) tin (II)
- the amount of the esterification catalyst used is preferably 0.01 parts by mass or more, more preferably 0.2 parts by mass or more, and preferably 3 with respect to 100 parts by mass of the total amount of the alcohol component, the carboxylic acid component, and the polyethylene terephthalate. It is 0.0 parts by mass or less, more preferably 1.5 parts by mass or less.
- a pyrogallol compound such as gallic acid can be used as an esterification co-catalyst in addition to the catalyst from the viewpoint of reactivity and cost.
- the amount of the esterification co-catalyst used is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, still more preferably 0, based on 100 parts by mass of the total amount of the alcohol component, the carboxylic acid component and the polyethylene terephthalate. It is 0.01 part by mass or more, preferably 0.50 part by mass or less, more preferably 0.20 part by mass or less, and further preferably 0.10 part by mass or less.
- the content of polyester is preferably 0.5 parts by mass, more preferably 1 part by mass or more, still more preferably 1 part by mass or more, based on 100 parts by mass of asphalt, from the viewpoint of improving rut digging resistance. Is 3 parts by mass or more, more preferably 5 parts by mass or more, and preferably 50 parts by mass or less, more preferably 30 parts by mass or less, still more preferably 20 parts by mass or less, still more preferably 10 parts by mass or less. Is.
- the ratio (P) / (A) of the mass ratio (P) of the constituent unit of polyethylene terephthalate in polyester to the content (A) of asphalt in the asphalt is rut digging resistance.
- preferably 0.15 or more, more preferably 0.2 or more, more preferably 0.5 or more, more preferably 0.8, and 3 It is preferably 5.5 or less, more preferably 3 or less, and even more preferably 2.7 or less.
- the method for producing the asphalt composition of the present invention preferably includes a step of mixing the asphalt and the above-mentioned polyester.
- the asphalt composition is obtained by heating and melting asphalt, adding polyester, and stirring and mixing in a commonly used mixer until each component is uniformly dispersed.
- commonly used mixers include homomixers, dissolvers, paddle mixers, ribbon mixers, screw mixers, planetary mixers, vacuum backflow mixers, roll mills, twin shaft extruders and the like.
- the mixing temperature of the asphalt and the polyester is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 160 ° C. or higher, from the viewpoint of uniformly dispersing the polyester in the asphalt, digging resistance and storage stability. , More preferably 170 ° C. or higher, and preferably 230 ° C. or lower, more preferably 210 ° C. or lower, still more preferably 200 ° C. or lower, still more preferably 190 ° C. or lower.
- the mixing time of the asphalt and the polyester is preferably 1 minute 0.1 hours or more, more preferably 0, from the viewpoint of efficiently and uniformly dispersing the polyester in the asphalt, and from the viewpoint of rut digging resistance and storage stability. .5 hours or more, more preferably 1.0 hours or more, even more preferably 1.5 hours or more, and preferably 10 hours or less, more preferably 7 hours or less, still more preferably 5 hours or less, even more. It is preferably 3 hours or less.
- the ratio (P) / (A) of the mass ratio (P) of the constituent unit of polyethylene terephthalate in polyester to the content (A) of asphalt in asphalt is determined from the viewpoint of rut digging resistance and storage stability. It is preferably 0.15 or more, more preferably 0.2 or more, more preferably 0.5 or more, more preferably 0.8, and preferably 3.5 or less, more preferably. Is 3 or less, more preferably 2.7 or less.
- a preferred embodiment of the method for producing an asphalt composition is a step of polycondensing an alcohol component containing polyethylene terephthalate and a bisphenol A alkylene oxide adduct and a carboxylic acid component in the presence of an esterification catalyst to obtain a polyester (step 1). , And the step of mixing the asphalt and the polyester (polyester obtained in step 1) described above (step 2). including.
- the above polyethylene terephthalate is preferably recovered polyethylene terephthalate.
- the method for producing the asphalt composition is preferably a step of recovering polyethylene terephthalate from the product (step 1a), the above-mentioned polyethylene terephthalate (polyethylene terephthalate obtained in step 1a), and bisphenol in the presence of an esterification catalyst.
- the asphalt composition may contain a dispersant.
- the dispersant is preferably one that dissolves in asphalt and has an affinity for polyester.
- examples of the dispersant include polymer dispersants, surfactants such as polyoxyethylene alkylamines and alkanolamines, and the like.
- examples of the polymer dispersant include polyamide amine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly (meth) acrylate, and (meth) acrylic copolymer. , Naphthalene sulfonic acid formarin condensate and the like. These dispersants may be used alone or in combination of two or more.
- the dispersant is preferably a polymer dispersant from the viewpoint of improving high temperature storage stability.
- the "polymer dispersant” in the present invention means a dispersant having a weight average molecular weight of 1,000 or more. Although it depends on the polymer species, the weight average molecular weight is preferably 2,000 or more, more preferably 4,000 or more, and preferably 80,000 or less, more preferably 40,000 or less.
- the dispersant preferably has a basic functional group.
- the basic functional group means a group having a pKa of the conjugate acid of -3 or more.
- Examples of the basic functional group include an amino group, an imino group, and a quaternary ammonium group.
- the base value of the dispersant is preferably 10 mgKOH / g or more, more preferably 20 mgKOH / g or more, still more preferably 30 mgKOH / g or more, and preferably 150 mgKOH / g or less, from the viewpoint of high temperature storage stability. It is preferably 120 mgKOH / g or less, more preferably 100 mgKOH / g or less.
- the base value is measured by the method specified in JIS K7237: 1995.
- Examples of commercially available dispersants include “byk-101", “byk-130”, “byk-161”, “byk-162”, “byk-170", and “byk-2020” in the "Disper” series. "Byk-2164”, “byk-LPN21324" (all manufactured by Big Chemie (BYK)); “9000”, “11200”, “13240”, “13650”, “13940”, “17000” of the “Solsperse” series. , “18000”, “24000”, “28000”, “32000”, “38500”, “71000” (all manufactured by Lubrizol); “PB821", “PB822”, “PB880”, “Ajisper” series.
- PB881 (above, manufactured by Ajinomoto Fine-Techno Co., Ltd.);“ 46 ”,“ 47 ”,“ 48 ”,“ 49 ”,“ 4010 ”,“ 4047 ”,“ 4050 ”,“ 4165 ”, Examples thereof include “5010” (manufactured by BASF); "Floren TG-710” (manufactured by Kyoeisha Chemical Co., Ltd.); “TABN-15” (manufactured by Nikko Chemicals Co., Ltd.).
- the content of the dispersant is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 4 parts by mass or more, and more preferably 4 parts by mass or more, based on 100 parts by mass of polyester, from the viewpoint of high temperature storage stability. It is preferably 80 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less, still more preferably 20 parts by mass or less.
- the asphalt composition of the present invention is a binder composition, and an aggregate is added to the asphalt composition to form an asphalt mixture, which is then used for pavement. That is, the asphalt composition of the present invention is suitable for pavement, and is particularly suitable for road pavement.
- the asphalt mixture of the present invention contains the above-mentioned asphalt composition and aggregate. That is, the asphalt mixture contains asphalt, polyester and aggregate, preferably asphalt, thermoplastic elastomer, polyester and aggregate.
- the content of the asphalt composition in the asphalt mixture is preferably 2% by mass or more, more preferably 3% by mass or more, still more preferably 4% by mass in 100% by mass of the asphalt mixture from the viewpoint of improving the rut resistance. And more preferably 15% by mass or less, more preferably 10% by mass or less, still more preferably 8% by mass or less.
- the aggregate for example, crushed stone, boulder, gravel, sand, regenerated aggregate, ceramics and the like can be arbitrarily selected and used. Further, as the aggregate, either a coarse aggregate having a particle size of 2.36 mm or more and a fine aggregate having a particle size of less than 2.36 mm can be used. Examples of the coarse aggregate include crushed stones having a particle size range of 2.36 mm or more and 4.75 mm or less, crushed stones having a particle size range of 4.75 mm or more and 12.5 mm or less, crushed stones having a particle size range of 12.5 mm or more and 19 mm or less, and particle size. Examples thereof include crushed stones having a range of 19 mm or more and 31.5 mm or less.
- the fine aggregate is preferably a fine aggregate having a particle size of 0.075 mm or more and less than 2.36 mm.
- the fine aggregate include river sand, hill sand, mountain sand, sea sand, crushed sand, fine sand, screenings, crushed stone dust, silica sand, artificial sand, glass cullet, casting sand, and crushed recycled aggregate sand. ..
- the above particle size is a value specified in JIS A5001: 1995. Among these, a combination of coarse aggregate and fine aggregate is preferable.
- the fine aggregate may contain a filler (for example, sand) having a particle size of less than 0.075 mm.
- a filler for example, sand
- the filler include sand, fly ash, calcium carbonate, slaked lime and the like. Of these, calcium carbonate is preferable from the viewpoint of improving drying strength.
- the average particle size of the filler is preferably 0.001 mm or more, preferably 0.05 mm or less, more preferably 0.03 mm or less, still more preferably 0.02 mm or less, from the viewpoint of improving the drying strength.
- the average particle size of the filler can be measured with a laser diffraction type particle size distribution measuring device.
- the average particle size means an average particle size having a cumulative volume of 50%.
- the average particle size of the filler is a value measured under the following conditions using a laser diffraction type particle size distribution measuring device "LA-950" (manufactured by HORIBA, Ltd.).
- -Measurement method Flow method-Dispersion medium: Ethanol-Sample preparation: 2 mg / 100 mL ⁇ Dispersion method: stirring, built-in ultrasonic wave 1 minute
- the mass ratio of the coarse aggregate to the fine aggregate is preferably 10/90 or more, more preferably 20/80 or more, still more preferably 30/70 or more, and preferably 30/70 or more, from the viewpoint of rut digging resistance. It is 90/10 or less, more preferably 80/20 or less, still more preferably 70/30 or less.
- the content of the aggregate is preferably 1,000 parts by mass or more, more preferably 1,200 parts by mass or more, and further preferably 1,400 parts by mass with respect to 100 parts by mass of the asphalt composition. It is more than parts by mass, and is preferably 3,000 parts by mass or less, more preferably 2,500 parts by mass or less, and further preferably 2,000 parts by mass or less.
- Suitable formulations for asphalt mixtures are: (1) The asphalt mixture of one example has, for example, a coarse aggregate of 30% by volume or more and less than 45% by volume, a fine aggregate of 30% by volume or more and 50% by volume or less, and an asphalt composition of 5% by volume or more and 10% by volume or less. Including things (fine-grained asphalt). (2) The asphalt mixture of one example has, for example, a coarse aggregate of 45% by volume or more and less than 70% by volume, a fine aggregate of 20% by volume or more and 45% by volume or less, and an asphalt composition of 3% by volume or more and 10% by volume or less. Including things (dense grain asphalt).
- the asphalt mixture of one example has, for example, a coarse aggregate of 70% by volume or more and 80% by volume or less, a fine aggregate of 10% by volume or more and 20% by volume or less, and an asphalt composition of 3% by volume or more and 10% by volume or less. Including things (porous asphalt).
- the blending ratio of asphalt in the conventional asphalt mixture containing aggregate and asphalt is usually obtained from the "mixing design of asphalt composition" described in the "Pavement Design and Construction Guidelines” issued by the Japan Road Association. It is used according to the optimum amount of asphalt to be used.
- the above-mentioned optimum amount of asphalt corresponds to the total amount of asphalt, thermoplastic elastomer and polyester. Therefore, it is usually preferable that the optimum amount of asphalt is the total amount of asphalt, thermoplastic elastomer and polyester.
- the method for producing an asphalt mixture of the present invention is a step of polycondensing an alcohol component and a carboxylic acid component containing polyethylene terephthalate and a bisphenol A alkylene oxide adduct in the presence of an esterification catalyst to obtain a polyester (step 1).
- a step (step 2) of mixing the heated aggregate, the asphalt, and the polyester (polyester obtained in the step 1) described above is included, preferably the heated aggregate, the asphalt, the thermoplastic elastomer, and the like.
- the step of mixing with the polyester mentioned above is included.
- Specific methods for producing the asphalt mixture include conventional methods for producing an asphalt mixture, which are called a plant mix method and a premix method. Both are methods of adding asphalt (and thermoplastic elastomer, if necessary) and polyester to the heated aggregate.
- the addition method is, for example, a premix method in which asphalt (and a thermoplastic elastomer, if necessary) and polyester are previously dissolved, or a modified asphalt in which a thermoplastic elastomer is dissolved in asphalt is added, and then polyester is added.
- the premix method is preferable from the viewpoint of rut digging resistance. More specifically, the method for producing an asphalt mixture is preferably used in the mixing step.
- the mixing temperature when the asphalt and the polyester in the method (iii) are mixed in advance is preferably a temperature higher than the softening point of the polyester from the viewpoint of rut digging resistance, preferably 130 ° C. or higher, more preferably 150. ° C. or higher, more preferably 170 ° C. or higher, even more preferably 180 ° C. or higher, and from the viewpoint of preventing thermal deterioration of asphalt, preferably 230 ° C. or lower, more preferably 210 ° C. or lower, still more preferably 200 ° C. or higher. It is as follows.
- the mixing time is, for example, 10 minutes or more, preferably 30 minutes or more, more preferably 1 hour or more, and more preferably 2 hours or more.
- the upper limit of the time is not particularly limited, but is, for example, about 5 hours.
- the temperature of the heated aggregate in the methods (i) to (iii) is preferably higher than the softening point of the polyester, preferably 130 ° C. or higher, more preferably 150 ° C. or higher, from the viewpoint of rut digging resistance. It is more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher, and from the viewpoint of preventing thermal deterioration of asphalt, it is preferably 230 ° C. or lower, more preferably 210 ° C. or lower, still more preferably 200 ° C. or lower.
- the mixing temperature is preferably higher than the softening point of polyester, preferably 130 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 170 ° C. or higher, and further.
- the temperature is preferably 180 ° C. or higher, preferably 230 ° C. or lower, more preferably 210 ° C. or lower, still more preferably 200 ° C. or lower, from the viewpoint of preventing thermal deterioration of asphalt.
- the mixing time in the mixing step is, for example, 30 seconds or longer, preferably 1 minute or longer, more preferably 2 minutes or longer, still more preferably 5 minutes or longer, and the upper limit of the time is not particularly limited, but is, for example, about 30 minutes. Degree.
- the asphalt mixture production method preferably includes a step of holding the obtained mixture at a temperature higher than the softening point of the polyester after the mixing step.
- the mixture may be further mixed, but the temperature may be kept above the above-mentioned temperature.
- the mixing temperature is preferably higher than the softening point of the polyester, preferably 130 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher.
- the temperature is preferably 230 ° C. or lower, more preferably 210 ° C. or lower, still more preferably 200 ° C. or lower.
- the holding time in the holding step is preferably 0.5 hours or more, more preferably 1 hour or more, still more preferably 1.5 hours or more, and the upper limit of the time is not particularly limited, but is, for example, about 5 hours. Is.
- the above polyethylene terephthalate is preferably recovered polyethylene terephthalate.
- the method for producing the asphalt mixture is a step of recovering polyethylene terephthalate from the product (step 1a), the above-mentioned polyethylene terephthalate (polyethylene terephthalate obtained in step 1a), and addition of bisphenol A alkylene oxide in the presence of an esterification catalyst.
- the step of mixing (step 3a) is included.
- the asphalt mixture of the present invention is suitable for road pavement, and as described above, the asphalt mixture obtained by adding an aggregate to the asphalt composition is used for road pavement.
- the road pavement method preferably includes a step of constructing the above-mentioned asphalt mixture on the road to form an asphalt pavement material layer.
- the road paving method includes a step of mixing asphalt, the above-mentioned polyester, and an aggregate to obtain an asphalt mixture (step 1), and the asphalt mixture obtained in the step 1 is applied to the road.
- the step (step 2) of forming the asphalt pavement material layer is included.
- the asphalt pavement layer is preferably a base layer or a surface layer.
- the asphalt mixture may be compacted by a known construction machine knitting method in the same manner.
- the compaction temperature when used as a heated asphalt mixture is preferably higher than the softening point of polyester, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 130 ° C. The above, and preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
- the present invention is an asphalt composition containing ⁇ 1> asphalt and polyester which further discloses the following ⁇ 1> to ⁇ 7>.
- ⁇ 4> The molar ratio (B) of the structural unit (B) derived from the alkylene oxide adduct of the bisphenol A in the polyester and the structural unit (E) composed of ethylene glycol and terephthalic acid derived from the polyethylene terephthalate.
- ⁇ 5> The molar ratio (B) of the structural unit (B) derived from the alkylene oxide adduct of the bisphenol A in the polyester and the structural unit (E) composed of ethylene glycol and terephthalic acid derived from the polyethylene terephthalate.
- ⁇ 6> The molar ratio (B) of the structural unit (B) derived from the alkylene oxide adduct of the bisphenol A in the polyester and the structural unit (E) composed of ethylene glycol and terephthalic acid derived from the polyethylene terephthalate.
- Each physical property value of the resin and the like was measured and evaluated by the following method.
- polyester resins (A1) to (A4) and (a1) to (a2) The polyester alcohol component, carboxylic acid component and PET shown in Table 1 are placed in a 5-liter four-necked flask equipped with a thermometer, a stainless steel stirring rod, a flow-down condenser and a nitrogen inlet tube, and displayed in a nitrogen atmosphere.
- the amount of di (2-ethylhexanoic acid) tin (II) and gallic acid shown in 1 was added, the temperature was raised to 235 ° C over 3 hours in a mantle heater, and the reaction product was held for 5 hours after reaching 235 ° C.
- Example 1 As a binder mixture, 2200 g of modified type II asphalt (manufactured by Toa Road Corporation, asphalt concentration in asphalt: 15% by mass) heated to 180 ° C. was placed in a 3 L stainless steel container and stirred at 100 rpm to produce a polyester resin (A1). ) 110 g (5 parts by mass with respect to 100 parts by mass of asphalt) was gradually added and stirred at 300 rpm for 2 hours to prepare an asphalt composition (AS-1).
- modified type II asphalt manufactured by Toa Road Corporation, asphalt concentration in asphalt: 15% by mass
- Examples 2-4 The asphalt compositions (AS-2) to (AS-4) were prepared in the same manner as in Example 1 except that the polyester resin (A1) was changed to the polyester resins (A2) to (A4) in Example 1. Made. Asphalt mixture as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-2) to (AS-4) in Example 1. (M-2) to (M-4) were obtained.
- Example 5 In Example 1, the asphalt composition (AS-5) was prepared in the same manner as in Example 1 except that the amount of the polyester resin (A1) added was changed to 550 g (25 parts by mass with respect to 100 parts by mass of asphalt). Obtained. An asphalt mixture (M-5) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 756 g of the asphalt composition (AS-5) in Example 1. rice field.
- Example 6 In Example 1, the asphalt composition (AS-6) was prepared in the same manner as in Example 1 except that the asphalt was changed to straight asphalt (manufactured by Toa Road Corporation, asphalt concentration in asphalt: 15% by mass). Obtained. An asphalt mixture (M-6) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-6) in Example 1. rice field.
- Example 7 In Example 1, the asphalt composition was the same as in Example 1 except that the asphalt was changed to the modified asphalt "PG76-22" (manufactured by Ergon, Texas, USA, asphalt concentration in asphalt: 22% by mass). The thing (AS-7) was obtained. An asphalt mixture (M-7) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-7) in Example 1. rice field.
- PG76-22 manufactured by Ergon, Texas, USA, asphalt concentration in asphalt: 22% by mass
- Example 8 An asphalt composition (AS-8) was obtained in the same manner as in Example 3 except that the asphalt was changed to modified asphalt (manufactured by FESPA, Mexico, asphalt concentration in asphalt: 28% by mass) in Example 1. rice field.
- An asphalt mixture (M-8) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-8) in Example 1. rice field.
- Example 9 An asphalt mixture (M-9) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 716 g of the asphalt composition (AS-1) in Example 1. rice field.
- Example 10 An asphalt mixture (M-10) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 520 g of the asphalt composition (AS-1) in Example 1. rice field.
- Example 1 Comparative Example 1 In Example 1, the modified type II asphalt was used as it was without adding the polyester resin (A1). An asphalt mixture (MA) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 605 g of modified type II asphalt in Example 1.
- An asphalt composition (AS-a3) was prepared in the same manner as in Example 1 except that the polyester resin (A1) was changed to PET1 (“RAMAPET L1”, manufactured by Indorama Ventures) in Example 1.
- An asphalt mixture (MA3) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-a3) in Example 1. rice field.
- Example 1 In Examples 1 to 5, 7 to 10 and Comparative Examples 1 to 4 using the modified asphalt, the specimen was infiltrated with warm water set at 60 ° C. in a constant temperature room at 60 ° C., and the number of tire passages was 2, The amount of displacement at 500 times was measured.
- Example 6 using straight asphalt, the specimen was infiltrated with warm water set at 50 ° C. in a constant temperature room at 50 ° C., and the amount of displacement was measured when the number of tire passes was 1,250. The results are shown in Table 2.
- Comparative Example 2 which does not contain a structural unit composed of ethylene glycol derived from polyethylene terephthalate and terephthalic acid can suppress rut digging, but is inferior in storage stability of asphalt at high temperature.
- Comparative Example 4 in which polyethylene terephthalate is blended as it is and Comparative Example 3 in which the structural unit derived from the alkylene oxide adduct of bisphenol A is not contained cannot sufficiently suppress rut digging.
- an asphalt composition containing a specific polyester containing a structural unit composed of ethylene glycol and terephthalic acid derived from polyethylene terephthalate and a structural unit derived from an alkylene oxide adduct of bisphenol A. It can be seen that the storage stability is excellent and the rut digging of the pavement surface after construction can be further suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Structural Engineering (AREA)
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Architecture (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Road Paving Structures (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
このアスファルト舗装は、骨材をアスファルトで結合したアスファルト混合物によって路面が形成されているので、舗装道路は良好な硬度や耐久性を有している。
しかしながら、アスファルト舗装面は、長期使用によって轍やひび割れが入るため、舗装の補修を行う必要が生じ、維持費用が増大するとともに、自動車の交通に大きな影響を与える結果となっていた。
本発明は、保存安定性に優れ、かつ、施工後の舗装面の轍掘れを抑制することができるアスファルト組成物、アスファルト混合物及びその製造方法に関する。
〔1〕 アスファルト及びポリエステルを含有するアスファルト組成物であって、
前記ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、該アルコールが、ビスフェノールAのアルキレンオキシド付加物を含む、アスファルト組成物。
〔2〕 工程1:エステル化触媒の存在下、ポリエチレンテレフタレート、ビスフェノールAアルキレンオキシド付加物を含有するアルコール成分及びカルボン酸成分を重縮合反応させてポリエステルを得る工程、並びに
工程2:アスファルトと、工程1で得られたポリエステルとを混合する工程
を含む、アスファルト組成物の製造方法。
〔3〕 上記〔1〕に記載のアスファルト組成物と、骨材と、を含むアスファルト混合物。
〔4〕 工程1:エステル化触媒の存在下、ポリエチレンテレフタレート、ビスフェノールAアルキレンオキシド付加物を含有するアルコール成分及びカルボン酸成分を重縮合反応させてポリエステルを得る工程、並びに
工程2:加熱した骨材と、アスファルトと、工程1で得られたポリエステルとを混合する工程
を含む、アスファルト混合物の製造方法。
本発明のアスファルト組成物(以下、単に「アスファルト組成物」ともいう)は、アスファルト及びポリエステルを含有する。
そして、ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、該アルコールが、ビスフェノールAのアルキレンオキシド付加物を含む。
以上によれば、保存安定性に優れ、かつ、施工後の舗装面の轍掘れを抑制することができるアスファルト組成物が得られる。更にこの技術を応用して、アスファルト混合物、及びアスファルト混合物の製造方法を提供することができる。
ポリエチレンテレフタレート(以下、「PET」ともいう)を加工せずにそのままアスファルト中に添加すると、PETの融点が260℃と比較的高いため、PETが原粒径のまま塊として舗装中に存在し、アスファルト混合物の耐轍掘れ性が低下する要因となる。また、PETをオートクレーブにて加水分解したPETオリゴマーをアスファルトに添加する手法も開示されているが、オリゴマーの分子量が約1000と低く耐轍掘れ性の向上には至らない。
これに対し、本発明に用いられるポリエステルは、PET、アルコール及びカルボン酸化合物の重縮合物であり、PETをアルコール成分及びカルボン酸成分とともに重縮合することでエステル交換反応が起こり、PETの構成単位が、アルコール成分由来の構成単位及びカルボン酸成分由来の構成単位中に取り込まれたポリエステルである。そして、アルコール成分としては、ビスフェノールAのアルキレンオキシド付加物を含む。疎水性を有するビスフェノールAのアルキレンオキシド付加物を含むことで、疎水性であるアスファルト中にポリエステルを微分散させることができる。微分散状態を保ったまま、ポリエステル中に取り込まれた親水性のPET構造が、アスファルト中に含まれるアスファルテンと強く相互作用することで、アスファルトと骨材を強固に繋ぎ止めることができ、施工後の舗装面の轍掘れを効率的に抑制することができたと考えられる。更に、微分散状態かつPET構造とアスファルテンとの強い相互作用により、ポリエステルがアスファルト中に沈殿しにくくなり、結果、保存安定性も優れると考えられる。
G*/sinδの値が大きいほど、塑性流動抵抗性が大きいことから、該アスファルト組成物により、耐轍掘れ性に優れるアスファルト舗装が提供できると評価される。
「バインダ混合物」とは、アスファルトと熱可塑性エラストマーとを含む混合物を意味し、例えば、後述の熱可塑性エラストマーで改質されたアスファルト(以下、「改質アスファルト」ともいう)を含む概念である。
ポリエステル中、「アルコール成分由来の構成単位」とは、アルコール成分の水酸基から水素原子を除いた構造を意味し、「カルボン酸成分由来の構成単位」とは、カルボン酸成分のカルボキシル基から水酸基を除いた構造を意味する。
「カルボン酸化合物」とは、そのカルボン酸のみならず、反応中に分解して酸を生成する無水物、及びカルボン酸のアルキルエステル(例えば、アルキル基の炭素数1以上3以下)も含む概念である。カルボン酸化合物がカルボン酸のアルキルエステルである場合、カルボン酸化合物の炭素数には、エステルのアルコール残基であるアルキル基の炭素数を算入しない。
本発明のアスファルト組成物は、アスファルトを含有する。
アスファルトとしては、種々のアスファルトが使用できる。例えば舗装用石油アスファルトであるストレートアスファルトの他、改質アスファルトが挙げられる。改質アスファルトとしては、ブローンアスファルト;熱可塑性エラストマー、熱可塑性樹脂等の高分子材料で改質したアスファルト等が挙げられる。ストレートアスファルトとは、原油を常圧蒸留装置、減圧蒸留装置等で処理して得られる残留瀝青物質を意味する。また、ブローンアスファルトとは、ストレートアスファルトと重質油との混合物を加熱し、その後空気を吹き込んで酸化させることによって得られるアスファルトを意味する。耐轍掘れ性の観点からは改質アスファルトが好ましく、汎用性の観点からはストレートアスファルトが好ましい。
本明細書において、「アスファルト」とは、ドイツ工業規格DIN EN 12597に定義されるビチューメンを包含する。「アスファルト」と「ビチューメン」は交換可能に用いられるものとする。
なお、アスファルト中のアスファルテン含有量は、石油学会規格JPI-5S-22-83「アスファルテンのカラムクロマトグラフィーによる組成分析法」により測定した値である。
アスファルト組成物は、耐轍掘れ性の観点から、熱可塑性エラストマーを含有することが好ましい。アスファルト及び熱可塑性エラストマーは、これらの混合物であるバインダ混合物として使用されることが好ましい。バインダ混合物としては、熱可塑性エラストマーで改質されたストレートアスファルト(改質アスファルト)等が挙げられる。
エチレン/アクリル酸エステル共重合体の市販品としては、例えば、「Elvaroy」(デュポン社製)が挙げられる。
本発明のアスファルト組成物は、ポリエステルを含有する。ポリエステルは、保存安定性及び耐轍掘れ性を向上させる観点から、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、該アルコールが、ビスフェノールAのアルキレンオキシド付加物を含む。
アルコール成分は、優れた耐轍掘れ性を得る観点から、ビスフェノールAのアルキレンオキシド付加物を含み、好ましくは下記式(I)で表されるビスフェノールAのアルキレンオキシド付加物を含む。
〔式中、OR1及びR1Oはアルキレンオキシドであり、R1は炭素数2又は3のアルキレン基、x及びyはアルキレンオキシドの平均付加モル数を示す正の数を示し、xとyの和は好ましくは1以上、より好ましくは1.5以上であり、そして、好ましくは16以下、より好ましくは8以下、更に好ましくは4以下である。〕
3価以上の多価アルコールは、例えば3価アルコールである。3価以上の多価アルコールとしては、例えばグリセリンが挙げられる。
カルボン酸成分としては、脂肪族ジカルボン酸化合物、芳香族ジカルボン酸化合物、3価以上6価以下の多価カルボン酸化合物が挙げられる。これらのカルボン酸成分は、単独で又は2種以上を組み合わせて使用することができる。
脂肪族ジカルボン酸化合物としては、例えば、フマル酸、マレイン酸、シュウ酸、マロン酸、シトラコン酸、イタコン酸、グルタコン酸、コハク酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、炭素数1以上20以下のアルキル基若しくは炭素数2以上20以下のアルケニル基で置換されたコハク酸、又は、これらの無水物、これらのアルキルエステル(例えば、アルキル基の炭素数1以上3以下)が挙げられる。置換されたコハク酸としては、例えば、ドデシルコハク酸、ドデセニルコハク酸、オクテニルコハク酸が挙げられる。以上の脂肪族ジカルボン酸化合物の中でも、フマル酸、マレイン酸及びアジピン酸からなる群より選択される少なくとも1種が好ましく、アジピン酸がより好ましい。
アルコール成分由来の構成単位に対するカルボン酸成分由来の構成単位のモル比〔カルボン酸成分/アルコール成分〕は、酸価の調整及び耐轍掘れ性の観点から、好ましくは0.7以上、より好ましくは0.8以上、更に好ましくは0.9以上であり、そして、好ましくは1.5以下、より好ましくは1.3以下、更に好ましくは1.1以下である。
本発明に用いられるポリエステルは、ポリエチレンテレフタレート由来のエチレングリコール及びテレフタル酸からなる構成単位を含む。ポリエチレンテレフタレートは、エチレングリコール及びテレフタル酸からなる構成単位の他にブタンジオールやイソフタル酸等の成分を少量含有してもよい。
前記(B)/(E)は、保存安定性及び耐轍掘れ性の観点から、好ましくは30/70以上95/5以下であり、より好ましくは50/50以上90/10以下であり、更に好ましくは60/40以上80/20以下である。
ポリエステルの軟化点は、耐轍掘れ性を得る観点から、好ましくは90℃以上、より好ましくは95℃以上、更に好ましくは100℃以上であり、そして、好ましくは140℃以下、より好ましくは130℃以下、更に好ましくは125℃以下、より更に好ましくは120℃以下、より更に好ましくは115℃以下である。
ポリエステルの製造方法は、特に限定されるものではないが、例えば、ポリエチレンテレフタレート、ビスフェノールAアルキレンオキシド付加物を含有するアルコール成分及びカルボン酸成分を重縮合することにより製造することができる。
重縮合反応の温度は、特に限定されるものではないが、反応性の観点とモノマー分解温度の観点から、好ましくは210℃以上260℃以下である。
原料におけるポリエチレンテレフタレートの存在量は、ポリエチレンテレフタレート、アルコール成分及びカルボン酸成分の合計量100質量%中、好ましくは4質量%以上80質量%以下、より好ましくは10質量%以上70質量%以下、更に好ましくは13質量%以上40質量%以下である。
ポリエチレンテレフタレートは、重縮合反応開始時から存在させていても、重縮合反応途中で反応系に添加してもよい。ポリエチレンテレフタレートの添加時期は、耐轍掘れ性の観点から、アルコール成分とカルボン酸成分との反応率が10%以下の段階が好ましく、5%以下の段階がより好ましい。なお、反応率とは、生成反応水量(モル)/理論生成水量(モル)×100の値をいう。
重縮合反応には、反応性とコストの観点から、触媒に加えて、没食子酸等のピロガロール化合物をエステル化助触媒として使用できる。エステル化助触媒の使用量は、アルコール成分とカルボン酸成分とポリエチレンテレフタレートの総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.005質量部以上、更に好ましくは0.01質量部以上、そして、好ましくは0.50質量部以下、より好ましくは0.20質量部以下、更に好ましくは0.10質量部以下である。
本発明のアスファルト組成物において、ポリエステルの含有量は、耐轍掘れ性を向上させる観点から、アスファルト100質量部に対して、好ましくは0.5質量部、より好ましくは1質量部以上、更に好ましくは3質量部以上、より更に好ましくは5質量部以上であり、そして、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは20質量部以下、より更に好ましくは10質量部以下である。
本発明のアスファルト組成物を製造する方法は、アスファルトと、上記のポリエステルとを混合する工程を有することが好ましい。
を含む。
アスファルト組成物は、分散剤を含んでいてもよい。
分散剤は、アスファルトに溶解するものであり、且つポリエステルとの親和性があるものが好ましい。
分散剤としては、例えば、高分子分散剤、ポリオキシエチレンアルキルアミン、アルカノールアミン等の界面活性剤等を挙げることができる。
高分子分散剤としては、例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物等が挙げられる。これらの分散剤は、単独で又は2種以上を組み合わせて使用してもよい。
分散剤は、高温保管安定性を向上させる観点から、好ましくは高分子分散剤である。なお、本発明における「高分子分散剤」とは、重量平均分子量が1,000以上の分散剤を意味する。ポリマー種にもよるが、重量平均分子量としては、好ましくは2,000以上、より好ましくは4,000以上であり、そして、好ましくは80,000以下、より好ましくは40,000以下である。
分散剤の塩基価は、高温保管安定性の観点から、好ましくは10mgKOH/g以上、より好ましくは20mgKOH/g以上、更に好ましくは30mgKOH/g以上であり、そして、好ましくは150mgKOH/g以下、より好ましくは120mgKOH/g以下、更に好ましくは100mgKOH/g以下である。塩基価の測定方法は、JIS K7237:1995に規定の方法により測定する。
本発明のアスファルト組成物は、バインダ組成物であり、該アスファルト組成物に、骨材を添加して、アスファルト混合物とした後に、舗装に使用される。すなわち、本発明のアスファルト組成物は、舗装用として好適であり、特に道路舗装用として好適である。
本発明のアスファルト混合物は、前述のアスファルト組成物、及び骨材を含有する。つまり、アスファルト混合物は、アスファルト、ポリエステル及び骨材を含有し、好ましくはアスファルト、熱可塑性エラストマー、ポリエステル及び骨材を含有する。
骨材としては、例えば、砕石、玉石、砂利、砂、再生骨材、セラミックス等を任意に選択して用いることができる。また、骨材としては、粒径2.36mm以上の粗骨材、粒径2.36mm未満の細骨材のいずれも使用することができる。
粗骨材としては、例えば、粒径範囲2.36mm以上4.75mm以下の砕石、粒径範囲4.75mm以上12.5mm以下の砕石、粒径範囲12.5mm以上19mm以下の砕石、粒径範囲19mm以上31.5mm以下の砕石が挙げられる。
細骨材は、好ましくは粒径0.075mm以上2.36mm未満の細骨材である。細骨材としては、例えば、川砂、丘砂、山砂、海砂、砕砂、細砂、スクリーニングス、砕石ダスト、シリカサンド、人工砂、ガラスカレット、鋳物砂、再生骨材破砕砂が挙げられる。
上記の粒径はJIS A5001:1995に規定される値である。
これらの中でも、粗骨材と細骨材との組合せが好ましい。
フィラーの平均粒径は、レーザー回折式粒度分布測定装置「LA-950」(株式会社堀場製作所製)を用い、以下に示す条件で測定した値である。
・測定方法:フロー法
・分散媒:エタノール
・試料調製:2mg/100mL
・分散方法:撹拌、内蔵超音波1分
(1)一例のアスファルト混合物は、例えば、30容量%以上45容量%未満の粗骨材と、30容量%以上50容量%以下の細骨材と、5容量%以上10容量%以下のアスファルト組成物とを含む(細粒度アスファルト)。
(2)一例のアスファルト混合物は、例えば、45容量%以上70容量%未満の粗骨材と、20容量%以45容量%以下の細骨材と、3容量%以上10容量%以下のアスファルト組成物とを含む(密粒度アスファルト)。
(3)一例のアスファルト混合物は、例えば、70容量%以上80容量%以下の粗骨材と、10容量%以上20容量%以下の細骨材と、3容量%以上10容量%以下のアスファルト組成物とを含む(ポーラスアスファルト)。
なお、従来の骨材とアスファルトを含むアスファルト混合物におけるアスファルトの配合割合については、通常、社団法人日本道路協会発行の「舗装設計施工指針」に記載されている「アスファルト組成物の配合設計」から求められる最適アスファルト量に準じて用いられている。
本発明においては、上記の最適アスファルト量が、アスファルト、熱可塑性エラストマー及びポリエステルの合計量に相当する。したがって、通常、前記最適アスファルト量を、アスファルト、熱可塑性エラストマー及びポリエステルの合計配合量とすることが好ましい。
ただし、「舗装設計施工指針」に記載の方法に限定する必要はなく、他の方法によって決定してもよい。
本発明のアスファルト混合物の製造方法は、エステル化触媒の存在下、ポリエチレンテレフタレート、ビスフェノールAアルキレンオキシド付加物を含有するアルコール成分及びカルボン酸成分を重縮合反応させてポリエステルを得る工程(工程1)、並びに加熱した骨材と、アスファルトと、前述のポリエステル(工程1で得られたポリエステル)とを混合する工程(工程2)を含み、好ましくは加熱した骨材と、アスファルトと、熱可塑性エラストマーと、前述のポリエステルとを混合する工程を含む。
より具体的には、アスファルト混合物の製造方法は、当該混合する工程において、好ましくは、
(i)加熱した骨材に、アスファルト(及び必要に応じて熱可塑性エラストマー)を添加及び混合した後、ポリエステルを添加及び混合する、
(ii)加熱した骨材に、アスファルト(及び必要に応じて熱可塑性エラストマー)及びポリエステルを同時に添加及び混合する、又は
(iii)加熱した骨材に、事前に加熱混合したアスファルト(及び必要に応じて熱可塑性エラストマー)とポリエステルとの混合物を添加及び混合する。
これらの中でも、耐轍掘れ性の観点から、(iii)の方法が好ましい。
保持する工程においては、混合物を更に混合してもよいが、前述の温度以上を保持していればよい。
保持する工程において、混合温度は、ポリエステルの軟化点よりも高い温度が好ましく、好ましくは130℃以上、より好ましくは150℃以上、更に好ましくは170℃以上、より更に好ましくは180℃以上であり、そして、アスファルト組成物の熱劣化を防止する観点から、好ましくは230℃以下、より好ましくは210℃以下、更に好ましくは200℃以下である。保持する工程における保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、更に好ましくは1.5時間以上であり、そして、時間の上限は、特に限定されないが、例えば5時間程度である。
本発明のアスファルト混合物は、道路舗装用として好適であり、上述したように、アスファルト組成物に骨材を添加したアスファルト混合物が、道路舗装に使用される。
道路舗装方法は、好ましくは、前述のアスファルト混合物を道路に施工し、アスファルト舗装材層を形成する工程を有する。具体的には、道路舗装方法は、アスファルトと、前述のポリエステルと、骨材とを混合する、アスファルト混合物を得る工程(工程1)、及び前記工程1で得られたアスファルト混合物を道路に施工してアスファルト舗装材層を形成する工程(工程2)を含む。アスファルト舗装材層は、基層又は表層であることが好ましい。
<1> アスファルト及びポリエステルを含有するアスファルト組成物であって、
前記ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、該アルコールが、ビスフェノールAのアルキレンオキシド付加物を含む、アスファルト組成物。
<2> 前記ポリエステルにおける、前記ビスフェノールAのアルキレンオキシド付加物に由来する構成単位(B)と、前記ポリエチレンテレフタレートに由来するエチレングリコール及びテレフタル酸からなる構成単位(E)とのモル比(B)/(E)が30/70以上95/5以下であり、ポリエステルの酸価が2mgKOH/g以上40mgKOH/g以下である、上記<1>に記載のアスファルト組成物。
<3> 前記ポリエステルにおける、前記ビスフェノールAのアルキレンオキシド付加物に由来する構成単位(B)と、前記ポリエチレンテレフタレートに由来するエチレングリコール及びテレフタル酸からなる構成単位(E)とのモル比(B)/(E)が50/50以上95/5以下であり、ポリエステルの酸価が2mgKOH/g以上40mgKOH/g以下である、上記<1>に記載のアスファルト組成物。
<4> 前記ポリエステルにおける、前記ビスフェノールAのアルキレンオキシド付加物に由来する構成単位(B)と、前記ポリエチレンテレフタレートに由来するエチレングリコール及びテレフタル酸からなる構成単位(E)とのモル比(B)/(E)が30/70以上80/20以下であり、ポリエステルの酸価が2mgKOH/g以上40mgKOH/g以下である、上記<1>に記載のアスファルト組成物。
<5> 前記ポリエステルにおける、前記ビスフェノールAのアルキレンオキシド付加物に由来する構成単位(B)と、前記ポリエチレンテレフタレートに由来するエチレングリコール及びテレフタル酸からなる構成単位(E)とのモル比(B)/(E)が30/70以上95/5以下であり、ポリエステルの酸価が5mgKOH/g以上40mgKOH/g以下である、上記<1>に記載のアスファルト組成物。
<6> 前記ポリエステルにおける、前記ビスフェノールAのアルキレンオキシド付加物に由来する構成単位(B)と、前記ポリエチレンテレフタレートに由来するエチレングリコール及びテレフタル酸からなる構成単位(E)とのモル比(B)/(E)が30/70以上95/5以下であり、ポリエステルの酸価が2mgKOH/g以上30mgKOH/g以下である、上記<1>に記載のアスファルト組成物。
<7> 前記ポリエステルにおける、前記ビスフェノールAのアルキレンオキシド付加物に由来する構成単位(B)と、前記ポリエチレンテレフタレートに由来するエチレングリコール及びテレフタル酸からなる構成単位(E)とのモル比(B)/(E)が60/40以上80/20以下であり、ポリエステルの酸価が5mgKOH/g以上20mgKOH/g以下である、上記<1>に記載のアスファルト組成物。
[測定方法]
〔ポリエステルの酸価及び水酸基価〕
ポリエステルの酸価及び水酸基価は、JIS K0070:1992の方法に基づき測定した。ただし、測定溶媒のみJIS K0070:1992に規定のエタノールとエーテルとの混合溶媒から、アセトンとトルエンとの混合溶媒(アセトン:トルエン=1:1(容量比))に変更した。
(1)軟化点
フローテスター「CFT-500D」(株式会社島津製作所製)を用い、1gの試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出した。温度に対し、フローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とした。
(2)ガラス転移点
示差走査熱量計「Q-100」(ティー エイ インスツルメント ジャパン株式会社製)を用いて、試料0.01~0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/分で0℃まで冷却した。次に昇温速度10℃/分で150℃まで昇温しながら測定した。吸熱の最大ピーク温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移点とした。
(ポリエステル樹脂(A1)~(A4)及び(a1)~(a2)の製造)
表1に示すポリエステルのアルコール成分、カルボン酸成分及びPETを、温度計、ステンレス製撹拌棒、流下式コンデンサー及び窒素導入管を装備した5リットル容の四つ口フラスコに入れ、窒素雰囲気にて表1に示す量のジ(2-エチルヘキサン酸)錫(II)及び没食子酸を添加し、マントルヒーター中で3時間かけて235℃まで昇温を行い235℃到達後5時間保持し、反応物からPET粒が目視で消失したことを確認後、8.0kPaにて減圧反応を行った後、表1に示す軟化点に達するまで反応を行い、目的のポリエステル樹脂(A1)~(A4)及び(a1)~(a2)を得た。
バインダ混合物として、180℃に加熱した改質II型アスファルト(東亜道路工業株式会社製、アスファルト中のアスファルテン濃度:15質量%)2200gを3Lのステンレス容器に入れて100rpmで撹拌し、ポリエステル樹脂(A1)110g(アスファルト100質量部に対して5質量部)を徐々に添加し、300rpmにて2時間撹拌し、アスファルト組成物(AS-1)を作製した。
次いで前記アスファルト組成物(AS-1)635gを加え、アスファルト用混合機にて2分間混合した。得られたアスファルト混合物を180℃で2時間保管後、300×300×50mmの型枠に充填し、ローラーコンパクター(株式会社岩田工業所製)を用い、温度150℃、荷重0.44kPaにて25回転圧処理を行い、供試体としてアスファルト混合物(M-1)を作成した。
6号砕石 50.9質量部
砕砂1 10.4質量部
砕砂2 22.1質量部
細砂 10.4質量部
石粉 6.2質量部
通過質量%:
ふるい目 15 mm: 100 質量%
ふるい目 10 mm: 85.6質量%
ふるい目 5 mm: 49.7質量%
ふるい目 2.5 mm: 44.6質量%
ふるい目 1.2 mm: 31.6質量%
ふるい目 0.6 mm: 21.3質量%
ふるい目 0.3 mm: 12.7質量%
ふるい目 0.15mm: 7.1質量%
実施例1において、ポリエステル樹脂(A1)をポリエステル樹脂(A2)~(A4)にそれぞれ変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-2)~(AS-4)を作製した。
実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-2)~(AS-4)635gにそれぞれ変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-2)~(M-4)を得た。
実施例1において、ポリエステル樹脂(A1)の添加量を550g(アスファルト100質量部に対して25質量部)に変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-5)を得た。
実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-5)756gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-5)を得た。
実施例1において、アスファルトをストレートアスファルト(東亜道路工業株式会社製、アスファルト中のアスファルテン濃度:15質量%)に変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-6)を得た。
実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-6)635gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-6)を得た。
実施例1において、アスファルトを改質アスファルト「PG76-22」(米国テキサス州、Ergon社製、アスファルト中のアスファルテン濃度:22質量%)に変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-7)を得た。
実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-7)635gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-7)を得た。
実施例1において、アスファルトを改質アスファルト(メキシコ FESPA社製、アスファルト中のアスファルテン濃度:28質量%)に変更したこと以外は実施例3と同様にして、アスファルト組成物(AS-8)を得た。
実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-8)635gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-8)を得た。
実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-1)716gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-9)を得た。
実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-1)520gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-10)を得た。
実施例1において、ポリエステル樹脂(A1)を添加せず、改質II型アスファルトをそのまま使用した。
実施例1において、アスファルト組成物(AS-1)635gを改質II型アスファルト605gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-A)を得た。
実施例1において、ポリエステル樹脂(A1)をポリエステル樹脂(a1)~(a2)にそれぞれ変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-a1)~(AS-a2)を作製した。
実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-a1)~(AS-a2)635gにそれぞれ変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-a1)~(M-a2)を得た。
実施例1において、ポリエステル樹脂(A1)をPET1(「RAMAPET L1」、Indorama Ventures社製)に変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-a3)を作製した。
実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-a3)635gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-a3)を得た。
〔耐轍掘れ性〕
60℃恒温室にて60℃に設定した温水に前記供試体を浸漬し、ホイールトラッキング試験機(株式会社岩田工業所製、荷重1370N、鉄輪幅47mm、線圧291.5N/cm)を用いて、速度15回/分にて供試体上に車輪を往復させ、通過回数1,250回、2,500回時の変位量を測定した。その他の測定条件は、社団法人日本道路協会出版の「舗装調査・試験法便覧」に記載される「B003ホイールトラッキング試験」に準じた。
なお、改質アスファルトを用いた実施例1~5、7~10及び比較例1~4では、60℃恒温室にて60℃に設定した温水に前記供試体を浸潤し、タイヤ通過回数2,500回時の変位量を測定した。ストレートアスファルトを用いた実施例6では、50℃恒温室にて50℃に設定した温水に前記供試体を浸潤し、タイヤ通過回数1,250回時の変位量を測定した。結果を表2に示す。
アスファルト組成物50mLをサンプル瓶(内径3.5cm×高さ7.8cm)に注ぎ込み、180℃オーブンにて4時間保管した後、アスファルト組成物中のポリエステルの沈殿の高さを測定した。アスファルト中のポリエステルが仮に全量沈殿したときの沈殿高さに対して何%の高さまで沈殿が生じたかを計算し、保存安定性の指標とした。数値が低いほど、沈殿量が少なく保存安定性に優れることを示す。
なお、ポリエステルを配合していない比較例1については、ポリエステルの沈殿が生じないため測定を行わなかった。表中、「-」と表記した。
これに対し、本発明によれば、ポリエチレンテレフタレートに由来するエチレングリコール及びテレフタル酸からなる構成単位とビスフェノールAのアルキレンオキシド付加物に由来する構成単位とを含む特定のポリエステルを含有するアスファルト組成物が、保存安定性に優れ、かつ、施工後の舗装面の轍掘れを更に抑制できることがわかる。
Claims (14)
- アスファルト及びポリエステルを含有するアスファルト組成物であって、
前記ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、該アルコールが、ビスフェノールAのアルキレンオキシド付加物を含む、アスファルト組成物。 - 前記ポリエステルにおける、前記ビスフェノールAのアルキレンオキシド付加物に由来する構成単位(B)と、前記ポリエチレンテレフタレートに由来するエチレングリコール及びテレフタル酸からなる構成単位(E)とのモル比(B)/(E)が30/70以上95/5以下である、請求項1に記載のアスファルト組成物。
- 前記ポリエステルの含有量が、アスファルト100質量部に対し0.5質量部以上50質量部以下である、請求項1又は2に記載のアスファルト組成物。
- 前記ポリエチレンテレフタレートが、回収されたポリエチレンテレフタレートである、請求項1~3のいずれか1つに記載のアスファルト組成物。
- 前記ポリエステル中の前記ポリエチレンテレフタレートに由来する構成単位の質量比率(P)と、前記アスファルト中のアスファルテンの含有量(A)との比率(P)/(A)が0.15以上3.5以下である、請求項1~4のいずれか1つに記載のアスファルト組成物。
- 前記ポリエステルの酸価が2mgKOH/g以上40mgKOH/g以下である、請求項1~5のいずれか1つに記載のアスファルト組成物。
- 熱可塑性エラストマーを更に含有する、請求項1~6のいずれか1つに記載のアスファルト組成物。
- 前記熱可塑性エラストマーが、スチレン/ブタジエンブロック共重合体、スチレン/ブタジエン/スチレンブロック共重合体、スチレン/ブタジエンランダム共重合体、スチレン/イソプレンブロック共重合体、スチレン/イソプレン/スチレンブロック共重合体、スチレン/イソプレンランダム共重合体、エチレン/酢酸ビニル共重合体、及びエチレン/アクリル酸エステル共重合体からなる群より選択される少なくとも1種である、請求項7に記載のアスファルト組成物。
- 工程1:エステル化触媒の存在下、ポリエチレンテレフタレート、ビスフェノールAアルキレンオキシド付加物を含有するアルコール成分及びカルボン酸成分を重縮合反応させてポリエステルを得る工程、並びに
工程2:アスファルトと、工程1で得られたポリエステルとを混合する工程
を含む、アスファルト組成物の製造方法。 - 前記ポリエチレンテレフタレートが、回収されたポリエチレンテレフタレートである、請求項9に記載のアスファルト組成物の製造方法。
- 請求項1~8のいずれか1つに記載のアスファルト組成物と、骨材と、を含むアスファルト混合物。
- 工程1:エステル化触媒の存在下、ポリエチレンテレフタレート、ビスフェノールAアルキレンオキシド付加物を含有するアルコール成分及びカルボン酸成分を重縮合反応させてポリエステルを得る工程、並びに
工程2:加熱した骨材と、アスファルトと、工程1で得られたポリエステルとを混合する工程
を含む、アスファルト混合物の製造方法。 - 前記工程2における前記混合する工程において、
(i)加熱した骨材に、アスファルトを添加及び混合した後、ポリエステルを添加及び混合する、
(ii)加熱した骨材に、アスファルト及びポリエステルを同時に添加及び混合する、又は
(iii)加熱した骨材に、事前に加熱混合したアスファルトとポリエステルとの混合物を添加及び混合する、
請求項12に記載のアスファルト混合物の製造方法。 - 前記ポリエチレンテレフタレートが、回収されたポリエチレンテレフタレートである、請求項12又は13に記載のアスファルト混合物の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21764612.4A EP4116491A4 (en) | 2020-03-06 | 2021-03-05 | ASPHALT COMPOSITION |
BR112022017651A BR112022017651A2 (pt) | 2020-03-06 | 2021-03-05 | Composição asfáltica |
US17/908,972 US20230105129A1 (en) | 2020-03-06 | 2021-03-05 | Asphalt composition |
MX2022011005A MX2022011005A (es) | 2020-03-06 | 2021-03-05 | Composicion de asfalto. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020039311 | 2020-03-06 | ||
JP2020-039311 | 2020-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021177443A1 true WO2021177443A1 (ja) | 2021-09-10 |
Family
ID=77614050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/008694 WO2021177443A1 (ja) | 2020-03-06 | 2021-03-05 | アスファルト組成物 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230105129A1 (ja) |
EP (1) | EP4116491A4 (ja) |
JP (1) | JP2021138949A (ja) |
BR (1) | BR112022017651A2 (ja) |
MX (1) | MX2022011005A (ja) |
WO (1) | WO2021177443A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022071508A1 (ja) * | 2020-09-30 | 2022-04-07 | 花王株式会社 | アスファルト改質剤 |
JP2023080050A (ja) * | 2021-11-29 | 2023-06-08 | 花王株式会社 | アスファルト組成物 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820636A (ja) | 1994-07-07 | 1996-01-23 | Mitsubishi Rayon Co Ltd | トナー用架橋ポリエステル樹脂 |
JPH10239903A (ja) | 1997-02-27 | 1998-09-11 | Sanyo Chem Ind Ltd | 静電荷像現像用トナーバインダー |
JPH11133668A (ja) | 1997-10-31 | 1999-05-21 | Sanyo Chem Ind Ltd | トナーバインダー |
JP2006096799A (ja) | 2004-09-28 | 2006-04-13 | Yamaken Plant Kk | 舗装材用プラスチック組成物の製造方法 |
JP2009276791A (ja) * | 2003-02-24 | 2009-11-26 | Kao Corp | 静電荷像現像用トナー |
JP2017125421A (ja) | 2016-01-12 | 2017-07-20 | 株式会社豊田自動織機 | エンジンオイル温度制御装置 |
WO2019017334A1 (ja) * | 2017-07-18 | 2019-01-24 | 花王株式会社 | アスファルト組成物 |
WO2019100058A1 (en) * | 2017-11-20 | 2019-05-23 | Resinate Materials Group, Inc. | Polyol compositions from thermoplastic polyesters and their use in hot-melt adhesives and binders |
JP2020200459A (ja) * | 2019-06-05 | 2020-12-17 | 花王株式会社 | アスファルト混合物 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019017335A1 (ja) * | 2017-07-18 | 2019-01-24 | 花王株式会社 | 道路の舗装方法 |
JP6787588B2 (ja) * | 2017-07-18 | 2020-11-18 | 花王株式会社 | 道路の舗装方法 |
-
2021
- 2021-03-05 EP EP21764612.4A patent/EP4116491A4/en active Pending
- 2021-03-05 MX MX2022011005A patent/MX2022011005A/es unknown
- 2021-03-05 JP JP2021035330A patent/JP2021138949A/ja active Pending
- 2021-03-05 WO PCT/JP2021/008694 patent/WO2021177443A1/ja unknown
- 2021-03-05 BR BR112022017651A patent/BR112022017651A2/pt unknown
- 2021-03-05 US US17/908,972 patent/US20230105129A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820636A (ja) | 1994-07-07 | 1996-01-23 | Mitsubishi Rayon Co Ltd | トナー用架橋ポリエステル樹脂 |
JPH10239903A (ja) | 1997-02-27 | 1998-09-11 | Sanyo Chem Ind Ltd | 静電荷像現像用トナーバインダー |
JPH11133668A (ja) | 1997-10-31 | 1999-05-21 | Sanyo Chem Ind Ltd | トナーバインダー |
JP2009276791A (ja) * | 2003-02-24 | 2009-11-26 | Kao Corp | 静電荷像現像用トナー |
JP2006096799A (ja) | 2004-09-28 | 2006-04-13 | Yamaken Plant Kk | 舗装材用プラスチック組成物の製造方法 |
JP2017125421A (ja) | 2016-01-12 | 2017-07-20 | 株式会社豊田自動織機 | エンジンオイル温度制御装置 |
WO2019017334A1 (ja) * | 2017-07-18 | 2019-01-24 | 花王株式会社 | アスファルト組成物 |
WO2019100058A1 (en) * | 2017-11-20 | 2019-05-23 | Resinate Materials Group, Inc. | Polyol compositions from thermoplastic polyesters and their use in hot-melt adhesives and binders |
JP2020200459A (ja) * | 2019-06-05 | 2020-12-17 | 花王株式会社 | アスファルト混合物 |
Non-Patent Citations (2)
Title |
---|
"Handbook for Method of Assessment and Test for Pavement", JAPAN ROAD ASSOCIATION |
See also references of EP4116491A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4116491A1 (en) | 2023-01-11 |
JP2021138949A (ja) | 2021-09-16 |
US20230105129A1 (en) | 2023-04-06 |
EP4116491A4 (en) | 2024-03-27 |
BR112022017651A2 (pt) | 2022-10-18 |
MX2022011005A (es) | 2022-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6800919B2 (ja) | アスファルト組成物 | |
JP6828042B2 (ja) | 道路舗装用アスファルト組成物 | |
JP6852855B2 (ja) | 道路舗装用アスファルト組成物 | |
JP2020200459A (ja) | アスファルト混合物 | |
US11958975B2 (en) | Asphalt composition | |
WO2021177443A1 (ja) | アスファルト組成物 | |
WO2019017334A1 (ja) | アスファルト組成物 | |
JP6787588B2 (ja) | 道路の舗装方法 | |
WO2018003151A1 (ja) | 道路舗装用アスファルト組成物 | |
JP7201159B2 (ja) | アスファルト組成物、舗装用アスファルト混合物、及び舗装体 | |
WO2021177444A1 (ja) | アスファルト組成物 | |
US12043577B2 (en) | Asphalt composition | |
WO2022071508A1 (ja) | アスファルト改質剤 | |
JP7542402B2 (ja) | アスファルト組成物 | |
JP2021063221A (ja) | アスファルト組成物 | |
US20230250290A1 (en) | Asphalt modifier | |
WO2019017335A1 (ja) | 道路の舗装方法 | |
JP2023079024A (ja) | アスファルト改質剤 | |
JP2023079030A (ja) | アスファルト改質剤 | |
WO2023199899A1 (ja) | アスファルト組成物 | |
JP2023079808A (ja) | アスファルト組成物 | |
JP2023079026A (ja) | アスファルト改質剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21764612 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022017651 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2021764612 Country of ref document: EP Effective date: 20221006 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112022017651 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220902 |