WO2021177444A1 - アスファルト組成物 - Google Patents

アスファルト組成物 Download PDF

Info

Publication number
WO2021177444A1
WO2021177444A1 PCT/JP2021/008697 JP2021008697W WO2021177444A1 WO 2021177444 A1 WO2021177444 A1 WO 2021177444A1 JP 2021008697 W JP2021008697 W JP 2021008697W WO 2021177444 A1 WO2021177444 A1 WO 2021177444A1
Authority
WO
WIPO (PCT)
Prior art keywords
asphalt
less
polyester
polyethylene terephthalate
mass
Prior art date
Application number
PCT/JP2021/008697
Other languages
English (en)
French (fr)
Inventor
憲廣 福利
宏樹 垣内
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US17/908,929 priority Critical patent/US20230091707A1/en
Priority to EP21763542.4A priority patent/EP4116489A4/en
Priority to CN202180018790.4A priority patent/CN115244134B/zh
Priority to MX2022011004A priority patent/MX2022011004A/es
Priority to BR112022017615A priority patent/BR112022017615A2/pt
Publication of WO2021177444A1 publication Critical patent/WO2021177444A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2395/00Bituminous materials, e.g. asphalt, tar or pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/30Polymeric waste or recycled polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2555/00Characteristics of bituminous mixtures
    • C08L2555/30Environmental or health characteristics, e.g. energy consumption, recycling or safety issues
    • C08L2555/32Environmental burden or human safety, e.g. CO2 footprint, fuming or leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to an asphalt composition, an asphalt mixture, and a method for producing the same.
  • Asphalt pavement using an asphalt composition is performed because it is relatively easy to lay on pavements such as motorways, parking lots, freight yards, and sidewalks, and the time from the start of pavement work to the start of traffic is short. ing.
  • the road surface is formed by an asphalt mixture in which aggregates are bonded with asphalt, so that the paved road has good hardness and durability.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-096799 aims to provide an expensive plastic composition for pavement materials which can process a large amount of waste PET at the lowest possible cost and has desired properties.
  • a method for producing a plastic composition for paving material by transesterifying waste PET with one or more polyhydric alcohols and / or saccharides in the presence of a catalyst to obtain a plastic composition for paving material. Has been done.
  • the present invention is an asphalt composition containing asphalt and polyester, wherein the polyester is a polycondensate of polyethylene terephthalate, an alcohol and a carboxylic acid compound, and the polyethylene terephthalate (heat absorption as measured by DSC)-(DSC).
  • the present invention relates to an asphalt composition in which the value of (calorific value by measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.6 or more and 1.05 or less.
  • the present invention relates to an asphalt composition, an asphalt mixture, and a method for producing the asphalt composition, which can reduce the amount of microplastics generated.
  • the present invention relates to the following [1] to [5].
  • the polyester is a polycondensate of polyethylene terephthalate, an alcohol and a carboxylic acid compound.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 5 J / g or more and 30 J / g or less
  • the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.6 or more and 1
  • An asphalt composition of 0.05 or less.
  • Step 1 The value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) is 0.6 or more and 1.05.
  • step 2 asphalt and step 1 A method for producing an asphalt composition, which comprises a step of mixing the obtained polyester with the obtained polyester.
  • Step 1 The value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) is 0.6 or more and 1.05.
  • a method for producing an asphalt mixture which comprises a step of mixing the polyester obtained in step 1 with the polyester obtained in step 1.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) is 0.6 or more and 1.05 or less.
  • an asphalt composition an asphalt mixture, and a method for producing the asphalt composition, which can reduce the amount of microplastics generated.
  • the asphalt composition of the present invention (hereinafter, also simply referred to as "asphalt composition”) contains asphalt and polyester.
  • the polyester is a polycondensate of polyethylene terephthalate, an alcohol and a carboxylic acid compound, and the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 5 J / g or more and 30 J / g or less.
  • the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.6 or more and 1.05 or less. Based on the above, an asphalt composition capable of reducing the amount of microplastic generated can be obtained. Further, this technique can be applied to provide an asphalt mixture and a method for producing the asphalt mixture.
  • PET polyethylene terephthalate
  • the polyester used in the present invention is a polycondensate of PET, an alcohol and a carboxylic acid compound, and a transesterification reaction occurs by polycondensing PET together with an alcohol component and a carboxylic acid component, which is a constituent unit of PET.
  • the value of PET (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of PET is 0.6 or more and 1.05. It is as follows. In the case of PET having a predetermined calorific value, the transesterification reaction is promoted by the ease of melting of the PET during the transesterification reaction, and the PET is uniformly introduced into the polyester. Further, when the IV is 0.6 or more and 1.05 or less, the PET unit is incorporated into the polyester while holding the PET unit during the transesterification reaction. As a result, a state similar to a block copolymer is formed, and high polarity is uniformly maintained.
  • Asphalt contains a hydrophilic and aggregate-adsorbing asphalt component and a hydrophobic and non-aggregate-adsorbing marten component.
  • the uniformly introduced high-polarity PET site in the polyester used in the present invention effectively interacts with the marten component to form a complex, which strengthens the adhesion between aggregates and thus micros. It is thought that the amount of plastic generated can be reduced.
  • the calorific value of PET is 5 J / g or more
  • the amorphous portion of PET is an appropriate amount, and PET is depolymerized to the monomer unit during the transesterification reaction.
  • the "binder mixture” means a mixture containing asphalt and a thermoplastic elastomer, and is a concept including, for example, asphalt modified with a thermoplastic elastomer described later (hereinafter, also referred to as "modified asphalt”).
  • modified asphalt asphalt modified with a thermoplastic elastomer described later
  • the "constituent unit derived from the alcohol component” means the structure obtained by removing the hydrogen atom from the hydroxyl group of the alcohol component
  • the "constituent unit derived from the carboxylic acid component” means the hydroxyl group from the carboxyl group of the carboxylic acid component. It means the structure excluding.
  • the "carboxylic acid compound” is a concept that includes not only the carboxylic acid but also an anhydride that decomposes during the reaction to produce an acid, and an alkyl ester of the carboxylic acid (for example, an alkyl group having 1 or more and 3 or less carbon atoms). Is.
  • the carboxylic acid compound is an alkyl ester of a carboxylic acid, the carbon number of the alkyl group which is an alcohol residue of the ester is not included in the carbon number of the carboxylic acid compound.
  • the asphalt composition of the present invention contains asphalt.
  • various asphalts can be used.
  • modified asphalt can be mentioned.
  • the modified asphalt include blown asphalt; asphalt modified with a polymer material such as a thermoplastic elastomer and a thermoplastic resin.
  • Straight asphalt means a residual bituminous substance obtained by treating crude oil with an atmospheric distillation apparatus, a vacuum distillation apparatus, or the like.
  • the blown asphalt means asphalt obtained by heating a mixture of straight asphalt and heavy oil and then blowing air to oxidize the mixture.
  • Modified asphalt is preferable from the viewpoint of reducing the amount of microplastic generated.
  • the term "asphalt” includes bitumen as defined in the German Industrial Standard DIN EN 12597. "Asphalt" and “bitumen” shall be used interchangeably.
  • the asphalt composition preferably contains a thermoplastic elastomer from the viewpoint of reducing the amount of microplastics.
  • Asphalt and thermoplastic elastomers are preferably used as a binder mixture, which is a mixture of these. Examples of the binder mixture include straight asphalt modified with a thermoplastic elastomer (modified asphalt) and the like.
  • thermoplastic elastomer examples include a styrene / butadiene block copolymer (hereinafter, also simply referred to as “SB”), a styrene / butadiene / styrene block copolymer (hereinafter, also simply referred to as “SBS”), and a styrene / butadiene random.
  • SB styrene / butadiene block copolymer
  • SBS styrene / butadiene block copolymer
  • SBR styrene / isoprene block copolymer
  • SI styrene / isoprene / styrene block copolymer
  • SIR Styrene / isoprene random copolymer
  • ethylene / vinyl acetate copolymer and at least one selected from the group consisting of ethylene / acrylic acid ester copolymer. .. Examples of commercially available ethylene / acrylic ester copolymers include "Elvaroy” (manufactured by DuPont).
  • thermoplastic elastomers from the viewpoint of reducing the amount of microplastic generated, styrene / butadiene block copolymer, styrene / butadiene / styrene block copolymer, styrene / butadiene random copolymer, and styrene / isoprene block are all used.
  • At least one selected from the group consisting of a polymer, a styrene / isoprene / styrene block copolymer, and a styrene / isoprene random copolymer is preferable, and a styrene / butadiene random copolymer and a styrene / butadiene / styrene block copolymer weight are preferable. More preferably, at least one selected from the group consisting of coalesces.
  • the content of the thermoplastic elastomer in the asphalt composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on 100% by mass of the asphalt composition, from the viewpoint of reducing the amount of microplastics generated. , More preferably 1% by mass or more, still more preferably 2% by mass or more, and preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, still more preferably 5. It is mass% or less.
  • the content of the thermoplastic elastomer is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more with respect to 100 parts by mass of asphalt from the viewpoint of reducing the amount of microplastic generated. , More preferably 1 part by mass or more, still more preferably 2 parts by mass or more, and preferably 30 parts by mass or less, more preferably 20 parts by mass or less, still more preferably 10 parts by mass or less, still more preferably 5 parts. It is less than a part by mass.
  • the content of asphalt in the asphalt composition is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 75% by mass or more, from the viewpoint of reducing the amount of microplastics and exhibiting asphalt performance. It is more preferably 80% by mass or more, and from the viewpoint of reducing the amount of microplastic, it is preferably 98% by mass or less, more preferably 97% by mass or less, still more preferably 96% by mass or less.
  • the asphalt composition of the present invention contains polyester.
  • Polyester is a polycondensate of polyethylene terephthalate, alcohol and carboxylic acid compound from the viewpoint of reducing the amount of microplastic generated.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of polyethylene terephthalate is 5 J / g or more and 30 J / g or less, and polyethylene terephthalate.
  • the intrinsic viscosity (IV) is 0.6 or more and 1.05 or less.
  • Alcohol component examples include aliphatic diols, aromatic diols, and trihydric or higher polyhydric alcohols. These alcohol components can be used alone or in combination of two or more.
  • the aliphatic diol is preferably a linear or branched aliphatic diol having 2 or more and 12 or less carbon atoms, and more preferably a linear or branched aliphatic diol having 2 or more and 4 or less carbon atoms.
  • Specific examples of the aliphatic diol include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,4-butenediol, and 1,5. Examples thereof include -pentanediol, 1,6-hexanediol, neopentyl glycol, 1,10-decanediol, and 1,12-dodecanediol.
  • Examples of the aromatic diol include an alkylene oxide adduct of bisphenol A.
  • Examples of the alkylene oxide adduct of bisphenol A include the alkylene oxide adduct of bisphenol A represented by the following formula (I).
  • OR 1 and R 1 O are alkylene oxides
  • R 1 is an alkylene group having 2 or 3 carbon atoms
  • x and y are positive numbers indicating the average number of moles of alkylene oxide added
  • x and y The sum of is preferably 1 or more, more preferably 1.5 or more, and preferably 16 or less, more preferably 8 or less, still more preferably 4 or less.
  • alkylene oxide adduct of bisphenol A represented by the formula (I) examples include a propylene oxide adduct of bisphenol A [2,2-bis (4-hydroxyphenyl) propane] and an ethylene oxide adduct of bisphenol A. Be done. These alkylene oxide adducts of bisphenol A can be used alone or in combination of two or more.
  • trihydric or higher polyhydric alcohol examples include glycerin, pentaerythritol, trimethylolpropane, and sorbitol.
  • an aliphatic diol is preferable from the viewpoint of reducing the amount of microplastic generated.
  • the content of the aliphatic diol is preferably 80 mol% or more, more preferably 90 mol% or more, and 100 mol% in 100 mol% of the alcohol component of the polyester from the viewpoint of reducing the amount of microplastic generated. It is as follows.
  • Carboxylic acid component examples include an aliphatic dicarboxylic acid compound, an aromatic dicarboxylic acid compound, and a polyvalent carboxylic acid compound having a trivalent or higher and hexavalent or lower valence. These carboxylic acid components can be used alone or in combination of two or more.
  • the carbon number of the main chain of the aliphatic dicarboxylic acid is preferably 3 or more, more preferably 4 or more, and preferably 10 or less, more preferably 8 or less, from the viewpoint of reducing the amount of microplastic generated. ..
  • Examples of the aliphatic dicarboxylic acid compound include fumaric acid, maleic acid, oxalic acid, malonic acid, citraconic acid, itaconic acid, glutaconic acid, succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedic acid.
  • Citraconic acid substituted with an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms, or an anhydride thereof, an alkyl ester thereof (for example, an alkyl group having 1 to 3 carbon atoms) can be mentioned.
  • the substituted succinic acid include dodecyl succinic acid, dodecenyl succinic acid, and octenyl succinic acid.
  • at least one selected from the group consisting of fumaric acid, maleic acid and adipic acid is preferable, and adipic acid is more preferable.
  • aromatic dicarboxylic acid compound examples include phthalic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, anhydrides thereof, and alkyl esters thereof (for example, alkyl groups having 1 to 3 carbon atoms). ..
  • isophthalic acid and terephthalic acid are preferable, and terephthalic acid is more preferable, from the viewpoint of reducing the amount of microplastic generated.
  • the polyvalent carboxylic acid having a trivalent value or more and a hexavalent value or less is preferably a trivalent carboxylic acid.
  • Examples of the trivalent or higher and hexavalent or lower polyvalent carboxylic acid include trimellitic acid, 2,5,7-naphthalene tricarboxylic acid, pyromellitic acid, and acid anhydrides thereof.
  • the alcohol component may appropriately contain a monovalent alcohol from the viewpoint of adjusting the physical properties, and the carboxylic acid component appropriately contains a monovalent carboxylic acid compound. May be good.
  • the content of the aliphatic dicarboxylic acid compound in the carboxylic acid component increases the flexibility of the polyester and reduces the amount of microplastic generated.
  • it is preferably 1 mol% or more, more preferably 5 mol% or more, further preferably 10 mol% or more, and preferably 40 mol% or less, more preferably 30 mol% or less.
  • the content of the aromatic dicarboxylic acid compound is preferably 60 mol% or more, more preferably 70 in 100 mol% of the carboxylic acid component, from the viewpoint of enhancing the melt dispersibility in asphalt and reducing the amount of microplastics generated. It is mol% or more, and preferably 100 mol% or less, more preferably 99 mol% or less, still more preferably 95 mol% or less, still more preferably 90 mol% or less.
  • the molar ratio of the carboxylic acid component-derived structural unit to the alcohol component-derived structural unit [carboxylic acid component / alcohol component] is preferably 0.7 from the viewpoint of adjusting the acid value and reducing the amount of microplastic generated. As described above, it is more preferably 0.8 or more, further preferably 0.9 or more, and preferably 1.5 or less, more preferably 1.3 or less, still more preferably 1.1 or less.
  • the polyester used in the present invention contains a structural unit composed of ethylene glycol derived from polyethylene terephthalate and terephthalic acid.
  • Polyethylene terephthalate may contain a small amount of components such as butanediol and isophthalic acid in addition to the structural unit composed of ethylene glycol and terephthalic acid.
  • the polyethylene terephthalate is preferably the recovered polyethylene terephthalate.
  • polyethylene terephthalate is widely used as products such as bottles and films
  • polyethylene terephthalate (hereinafter, also referred to as “recovered PET”) produced as those products and then discarded is recovered. It is preferably used in terms of problems and price.
  • the type of the recovered product is not particularly limited as long as it has a certain degree of purity.
  • impurities a small amount of plastic such as polyethylene or polypropylene may be contained.
  • the waste pouch container can be used as a recovery PET.
  • the total content of polyethylene and polypropylene is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the lower limit is not particularly limited, but may be, for example, 0.1% by mass or more, or 0.05% by mass or more.
  • the specific size of the recovered product used in the present invention is preferably about 4 to 15 mm 2 and preferably about 3 mm or less from the viewpoint of reaction efficiency.
  • the intrinsic viscosity (IV) of PET is 0.6 or more and 1.05 or less, preferably 1.04 or less, more preferably 1.03 or less, from the viewpoint of reducing the amount of microplastic generated. Is. When the intrinsic viscosity of PET is 0.6 or more and 1.05 or less, the amount of microplastic generated can be sufficiently reduced. Intrinsic viscosity (IV) is measured by the method described in Examples.
  • the intrinsic viscosity (IV) of PET is preferably more than 0.6, more preferably 0.61 or more, still more preferably 0.62 or more, still more preferably 0.63 or more, still more preferably 0.64 or more.
  • the intrinsic viscosity (IV) of PET may be, for example, 0.7 or more, 0.80 or more, or 0.90 or more.
  • the value of PET (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more, preferably 10 J / g or more, more preferably 12 J, from the viewpoint of reducing the amount of microplastic generated. It is more than / g and less than 30 J / g, preferably less than 29 J / g.
  • the value is, for example, 5.0 J / g or more, 10.0 J / g or more or 12.0 J / g or more, and 30.0 J / g or less, 29.5 J / g or less, or 29.0 J / g. It may be less than or equal to g.
  • the amount of heat absorbed and the amount of heat generated by the DSC measurement of PET are measured by the method described in Examples.
  • the polyester used in the present invention may be a polyester modified to such an extent that its characteristics are not substantially impaired.
  • the modified polyester can be grafted with phenol, urethane, epoxy or the like by the methods described in JP-A-11-133668, JP-A-10-239903, JP-A-8-20636 and the like. Examples include blocked polyester.
  • Preferred modified polyesters include urethane-modified polyesters obtained by urethane-extending polyester with a polyisocyanate compound.
  • the softening point of the polyester is preferably 90 ° C. or higher, more preferably 95 ° C. or higher, still more preferably 98 ° C. or higher, and preferably 140 ° C. or lower, more preferably 140 ° C. or lower, from the viewpoint of reducing the amount of microplastic generated. It is 130 ° C. or lower, more preferably 125 ° C. or lower, still more preferably 120 ° C. or lower, and even more preferably 115 ° C. or lower.
  • the acid value of the polyester is preferably 2 mgKOH / g or more, more preferably 5 mgKOH / g or more, still more preferably 10 mgKOH / g or more, from the viewpoint of promoting adsorption to the aggregate and reducing the amount of microplastic generated. From the viewpoint of increasing the water resistance of the pavement surface, it is preferably 40 mgKOH / g or less, more preferably 30 mgKOH / g or less, and further preferably 20 mgKOH / g or less.
  • the hydroxyl value of polyester is preferably 1 mgKOH / g or more, more preferably 5 mgKOH / g or more, still more preferably 10 mgKOH / g or more, still more preferably 15 mgKOH / g or more. And, preferably 70 mgKOH / g or less, more preferably 50 mgKOH / g or less, still more preferably 30 mgKOH / g or less, still more preferably 26 mgKOH / g or less.
  • the glass transition point of polyester is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, further preferably 50 ° C. or higher, and preferably 80 ° C. or lower, more preferably 80 ° C. or lower, from the viewpoint of reducing the amount of microplastic generated. Is 70 ° C. or lower, more preferably 65 ° C. or lower.
  • the number average molecular weight (Mn) of the polyester is preferably 1600 or more, more preferably 2000 or more, still more preferably 2500 or more, and preferably 5000 or less, more preferably 5000 or less, from the viewpoint of reducing the amount of microplastic generated. It is 4500 or less, more preferably 4000 or less.
  • the weight average molecular weight (Mw) of the polyester is preferably 5000 or more, more preferably 6000 or more, still more preferably 7000 or more, and preferably 30,000 or less, more preferably 30,000 or less, from the viewpoint of reducing the amount of microplastic generated. It is 20000 or less, more preferably 15000 or less.
  • the content of the component having a molecular weight of 500 or less in the molecular weight distribution measured by the gel permeation chromatography method in polyester is preferably 7.0% by mass or less, more preferably 5 from the viewpoint of reducing the amount of microplastic generated. It is 5.5% by mass or less, more preferably 5.0% by mass or less.
  • the lower limit is not particularly limited, but may be, for example, 2.0% by mass.
  • the softening point, acid value, hydroxyl value, glass transition point, number average molecular weight (Mn), weight average molecular weight (Mw), and the content of components having a molecular weight of 500 or less in polyester shall be measured by the method described in Examples. Can be done.
  • the softening point, acid value, hydroxyl value, glass transition point, number average molecular weight (Mn), weight average molecular weight (Mw), and the content of the component having a molecular weight of 500 or less in the polyester are the raw material monomer composition, the molecular weight, and the catalytic amount. Alternatively, it can be adjusted according to the reaction conditions.
  • the method for producing polyester is not particularly limited, but it can be produced, for example, by polycondensing polyethylene terephthalate, an alcohol component, and a carboxylic acid component.
  • the temperature of the polycondensation reaction is not particularly limited, but is preferably 180 ° C. or higher and 180 ° C. or higher and 235 ° C. or lower ° C. or lower from the viewpoint of reactivity and monomer decomposition temperature.
  • the temperature of the polycondensation reaction is preferably 180 ° C. or higher and 210 ° C. or lower.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) is 0.6 or more.
  • a method of transesterifying polyethylene terephthalate having a concentration of 05 or less in the presence of an alcohol and a carboxylic acid compound under the conditions of 180 ° C. or higher and 235 ° C. or lower for 4 hours or longer is preferable.
  • the temperature for transesterification is preferably 180 ° C. or higher and 210 ° C. or lower.
  • the abundance of polyethylene terephthalate in the raw material is preferably 5% by mass or more, more preferably 10% by mass, based on 100% by mass of the total amount of polyethylene terephthalate, alcohol component and carboxylic acid component from the viewpoint of reducing the amount of microplastic generated. As mentioned above, it is more preferably 15% by mass or more, and preferably 80% by mass or less, more preferably 70% by mass or less, still more preferably 60% by mass or less.
  • polyethylene terephthalate By adding polyethylene terephthalate during the polycondensation reaction between the alcohol component and the carboxylic acid component, a transesterification reaction occurs, and the constituent units of the polyethylene terephthalate are contained in the constituent units derived from the alcohol component and the constituent units derived from the carboxylic acid component. Incorporated polyester can be obtained. Polyethylene terephthalate may be present from the start of the polycondensation reaction or may be added to the reaction system during the polycondensation reaction. From the viewpoint of reducing the amount of microplastic, the addition timing of polyethylene terephthalate is preferably at a stage where the reaction rate between the alcohol component and the carboxylic acid component is 10% or less, and more preferably at a stage of 5% or less. The reaction rate refers to the value of the amount of produced reaction water (mol) / the theoretical amount of produced water (mol) x 100.
  • a tin (II) compound having no Sn—C bond such as di (2-ethylhexanoic acid) tin (II)
  • the amount of the esterification catalyst used is preferably 0.01 parts by mass or more, more preferably 0.2 parts by mass or more, and preferably 0.2 parts by mass or more, based on 100 parts by mass of the total amount of the alcohol component, the carboxylic acid component, and polyethylene terephthalate. It is 3.0 parts by mass or less, more preferably 1.5 parts by mass or less.
  • a pyrogallol compound such as gallic acid can be used as an esterification co-catalyst in addition to the catalyst from the viewpoint of reactivity and cost.
  • the amount of the esterification co-catalyst used is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, still more preferably 0, based on 100 parts by mass of the total amount of the alcohol component, the carboxylic acid component and the polyethylene terephthalate. It is 0.01 part by mass or more, preferably 0.50 part by mass or less, more preferably 0.20 part by mass or less, and further preferably 0.10 part by mass or less.
  • the content of polyester is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, based on 100 parts by mass of asphalt, from the viewpoint of reducing the amount of microplastics generated. More preferably 3 parts by mass or more, still more preferably 5 parts by mass or more, and preferably 50 parts by mass or less, more preferably 30 parts by mass or less, still more preferably 20 parts by mass or less, still more preferably 10 parts by mass. It is less than a part.
  • the method for producing the asphalt composition of the present invention preferably includes a step of mixing the asphalt and the above-mentioned polyester.
  • the asphalt composition is obtained by heating and melting asphalt, adding polyester, and stirring and mixing in a commonly used mixer until each component is uniformly dispersed.
  • commonly used mixers include homomixers, dissolvers, paddle mixers, ribbon mixers, screw mixers, planetary mixers, vacuum backflow mixers, roll mills, twin shaft extruders and the like.
  • the mixing temperature of the asphalt and the polyester is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 130 ° C. or higher, from the viewpoint of uniformly dispersing the polyester in the asphalt, reducing the amount of microplastics and storage stability. It is 160 ° C. or higher, more preferably 170 ° C. or higher, and preferably 230 ° C. or lower, more preferably 210 ° C. or lower, still more preferably 200 ° C. or lower, and even more preferably 190 ° C. or lower.
  • the mixing time of the asphalt and the polyester is preferably 0.1 hour or more, more preferably 0.5 hours or more, still more preferably 1.0 hour, from the viewpoint of efficiently and uniformly dispersing the polyester in the asphalt. Above, it is more preferably 1.5 hours or more, and preferably 10 hours or less, more preferably 7 hours or less, still more preferably 5 hours or less, still more preferably 3 hours or less.
  • a preferred embodiment of the method for producing an asphalt composition is that the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) is 0.
  • the above-mentioned polyester (polyester obtained in step 1) are mixed (step 2).
  • the temperature for transesterification is preferably 180 ° C. or higher and 210 ° C. or lower.
  • the above polyethylene terephthalate is preferably recovered polyethylene terephthalate.
  • the method for producing the asphalt composition preferably has a value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of 5 J / g or more and 30 J / g or less, and has an intrinsic viscosity (IV).
  • the step of recovering polyethylene terephthalate having a value of 0.6 or more and 1.05 or less from the product (step 1a) and the above-mentioned polyethylene terephthalate (polyethylene terephthalate obtained in step 1a) were carried out in the presence of an alcohol and a carboxylic acid compound.
  • a step of obtaining polyester by ester exchange for 4 hours or more under the condition of ° C. or higher and 235 ° C. or lower (step 2a), and a step of mixing asphalt with the above-mentioned polyester (polyester obtained in step 2a) (step 3a). )including.
  • the temperature for transesterification is preferably 180 ° C. or higher and 210 ° C. or lower.
  • the asphalt composition may contain a dispersant.
  • the dispersant is preferably one that dissolves in asphalt and has an affinity for polyester.
  • examples of the dispersant include polymer dispersants, surfactants such as polyoxyethylene alkylamines and alkanolamines, and the like.
  • examples of the polymer dispersant include polyamide amine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly (meth) acrylate, and (meth) acrylic copolymer. , Naphthalene sulfonic acid formarin condensate and the like. These dispersants may be used alone or in combination of two or more.
  • the dispersant is preferably a polymer dispersant from the viewpoint of improving high temperature storage stability.
  • the "polymer dispersant” in the present invention means a dispersant having a weight average molecular weight of 1,000 or more. Although it depends on the polymer species, the weight average molecular weight is preferably 2,000 or more, more preferably 4,000 or more, and preferably 80,000 or less, more preferably 40,000 or less.
  • the dispersant preferably has a basic functional group.
  • the basic functional group means a group having a pKa of the conjugate acid of -3 or more.
  • Examples of the basic functional group include an amino group, an imino group, and a quaternary ammonium group.
  • the base value of the dispersant is preferably 10 mgKOH / g or more, more preferably 20 mgKOH / g or more, still more preferably 30 mgKOH / g or more, and preferably 150 mgKOH / g or less, from the viewpoint of high temperature storage stability. It is preferably 120 mgKOH / g or less, more preferably 100 mgKOH / g or less.
  • the base value is measured by the method specified in JIS K7237: 1995.
  • Examples of commercially available dispersants include “byk-101", “byk-130”, “byk-161”, “byk-162”, “byk-170", and “byk-2020” in the "Disper” series. "Byk-2164”, “byk-LPN21324" (all manufactured by Big Chemie (BYK)); “9000”, “11200”, “13240”, “13650”, “13940”, “17000” of the “Solsperse” series. , “18000”, “24000”, “28000”, “32000”, “38500”, “71000” (all manufactured by Lubrizol); “PB821", “PB822”, “PB880”, “Ajisper” series.
  • PB881 (above, manufactured by Ajinomoto Fine-Techno Co., Ltd.);“ 46 ”,“ 47 ”,“ 48 ”,“ 49 ”,“ 4010 ”,“ 4047 ”,“ 4050 ”,“ 4165 ”, Examples thereof include “5010” (manufactured by BASF); "Floren TG-710” (manufactured by Kyoeisha Chemical Co., Ltd.); “TABN-15” (manufactured by Nikko Chemicals Co., Ltd.).
  • the content of the dispersant is preferably 1 part by mass or more, more preferably 3 parts by mass or more, still more preferably 4 parts by mass or more, and more preferably 4 parts by mass or more, based on 100 parts by mass of polyester, from the viewpoint of high temperature storage stability. It is preferably 80 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 40 parts by mass or less, still more preferably 30 parts by mass or less, still more preferably 20 parts by mass or less.
  • the asphalt composition of the present invention is a binder composition, and an aggregate is added to the asphalt composition to form an asphalt mixture, which is then used for pavement. That is, the asphalt composition of the present invention is suitable for pavement, and is particularly suitable for road pavement.
  • the asphalt mixture of the present invention contains the above-mentioned asphalt composition and aggregate. That is, the asphalt mixture contains asphalt, polyester and aggregate, preferably asphalt, thermoplastic elastomer, polyester and aggregate.
  • the content of the asphalt composition in the asphalt mixture is preferably 2% by mass or more, more preferably 3% by mass or more, still more preferably 4% by mass in 100% by mass of the asphalt mixture from the viewpoint of reducing the amount of microplastics generated. % Or more, and preferably 15% by mass or less, more preferably 10% by mass or less, still more preferably 8% by mass or less.
  • the aggregate for example, crushed stone, boulder, gravel, sand, regenerated aggregate, ceramics and the like can be arbitrarily selected and used. Further, as the aggregate, either a coarse aggregate having a particle size of 2.36 mm or more and a fine aggregate having a particle size of less than 2.36 mm can be used. Examples of the coarse aggregate include crushed stones having a particle size range of 2.36 mm or more and 4.75 mm or less, crushed stones having a particle size range of 4.75 mm or more and 12.5 mm or less, crushed stones having a particle size range of 12.5 mm or more and 19 mm or less, and particle size. Examples thereof include crushed stones having a range of 19 mm or more and 31.5 mm or less.
  • the fine aggregate is preferably a fine aggregate having a particle size of 0.075 mm or more and less than 2.36 mm.
  • the fine aggregate include river sand, hill sand, mountain sand, sea sand, crushed sand, fine sand, screenings, crushed stone dust, silica sand, artificial sand, glass cullet, casting sand, and crushed recycled aggregate sand. ..
  • the above particle size is a value specified in JIS A5001: 1995. Among these, a combination of coarse aggregate and fine aggregate is preferable.
  • the fine aggregate may contain a filler (for example, sand) having a particle size of less than 0.075 mm.
  • a filler for example, sand
  • the filler include sand, fly ash, calcium carbonate, slaked lime and the like. Of these, calcium carbonate is preferable from the viewpoint of improving drying strength.
  • the average particle size of the filler is preferably 0.001 mm or more, preferably 0.05 mm or less, more preferably 0.03 mm or less, still more preferably 0.02 mm or less, from the viewpoint of improving the drying strength.
  • the average particle size of the filler can be measured with a laser diffraction type particle size distribution measuring device.
  • the average particle size means an average particle size having a cumulative volume of 50%.
  • the average particle size of the filler is a value measured under the following conditions using a laser diffraction type particle size distribution measuring device "LA-950" (manufactured by HORIBA, Ltd.).
  • -Measurement method Flow method-Dispersion medium: Ethanol-Sample preparation: 2 mg / 100 mL ⁇ Dispersion method: stirring, built-in ultrasonic wave 1 minute
  • the mass ratio of the coarse aggregate to the fine aggregate is preferably 10/90 or more, more preferably 20/80 or more, still more preferably 30/70 or more, and preferably 30/70 or more, from the viewpoint of reducing the amount of microplastic. Is 90/10 or less, more preferably 80/20 or less, still more preferably 70/30 or less.
  • the content of the aggregate is preferably 1,000 parts by mass or more, more preferably 1,200 parts by mass or more, still more preferably 1,200 parts by mass or more with respect to 100 parts by mass of the asphalt composition. It is 1,400 parts by mass or more, and preferably 3,000 parts by mass or less, more preferably 2,500 parts by mass or less, and further preferably 2,000 parts by mass or less.
  • Suitable formulations for asphalt mixtures are: (1) The asphalt mixture of one example has, for example, a coarse aggregate of 30% by volume or more and less than 45% by volume, a fine aggregate of 30% by volume or more and 50% by volume or less, and an asphalt composition of 5% by volume or more and 10% by volume or less. Including things (fine-grained asphalt). (2) The asphalt mixture of one example has, for example, a coarse aggregate of 45% by volume or more and less than 70% by volume, a fine aggregate of 20% by volume or more and 45% by volume or less, and an asphalt composition of 3% by volume or more and 10% by volume or less. Including things (dense grain asphalt).
  • the asphalt mixture of one example has, for example, a coarse aggregate of 70% by volume or more and 80% by volume or less, a fine aggregate of 10% by volume or more and 20% by volume or less, and an asphalt composition of 3% by volume or more and 10% by volume or less. Including things (porous asphalt).
  • the blending ratio of asphalt in the conventional asphalt mixture containing aggregate and asphalt is usually obtained from the "mixing design of asphalt composition" described in the "Pavement Design and Construction Guidelines” issued by the Japan Road Association. It is used according to the optimum amount of asphalt to be used.
  • the above-mentioned optimum amount of asphalt corresponds to the total amount of asphalt, thermoplastic elastomer and polyester. Therefore, it is usually preferable that the optimum amount of asphalt is the total amount of asphalt, thermoplastic elastomer and polyester.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) is 0.6.
  • Polyethylene terephthalate having a temperature of 1.05 or less was subjected to ester exchange for 4 hours or more under the conditions of 180 ° C. or higher and 235 ° C. or lower in the presence of an alcohol and a carboxylic acid compound to obtain a polyester (step 1) and heated.
  • a step (step 2) of mixing an aggregate, an asphalt, and the polyester (polyester obtained in step 1) is included, preferably a heated aggregate, asphalt, a thermoplastic elastomer, and the polyester described above. Includes the step of mixing with.
  • polyethylene terephthalate is preferably recovered polyethylene terephthalate.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) is 0.6.
  • step 2a A step of obtaining polyester by ester exchange for 4 hours or more under the condition of 235 ° C. or lower (step 2a), and a step of mixing asphalt with the above-mentioned polyester (polyester obtained in step 2a) (step 3a). including.
  • Specific methods for producing the asphalt mixture include conventional methods for producing an asphalt mixture, which are called a plant mix method and a premix method. Both are methods of adding asphalt (and thermoplastic elastomer, if necessary) and polyester to the heated aggregate.
  • the addition method is, for example, a premix method in which asphalt (and a thermoplastic elastomer, if necessary) and polyester are previously dissolved, or a modified asphalt in which a thermoplastic elastomer is dissolved in asphalt is added, and then polyester is added.
  • Plant mix method to be used is preferable from the viewpoint of reducing the amount of microplastic generated. More specifically, the method for producing an asphalt mixture is preferably used in the mixing step.
  • the mixing temperature when the asphalt and the polyester in the method (iii) are mixed in advance is preferably a temperature higher than the softening point of the polyester, preferably 130 ° C. or higher, from the viewpoint of reducing the amount of microplastics generated. It is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher, and preferably 230 ° C. or lower, more preferably 210 ° C. or lower, further preferably from the viewpoint of preventing thermal deterioration of asphalt. Is below 200 ° C.
  • the mixing time is, for example, 10 minutes or more, preferably 30 minutes or more, more preferably 1 hour or more, and more preferably 2 hours or more. The upper limit of the time is not particularly limited, but is, for example, about 5 hours.
  • the temperature of the heated aggregate in the methods (i) to (iii) is preferably higher than the softening point of polyester from the viewpoint of reducing the amount of microplastic generated, preferably 130 ° C. or higher, more preferably 150.
  • the temperature is preferably 230 ° C. or higher, more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher, and preferably 230 ° C. or lower, more preferably 210 ° C. or lower, still more preferably 200 ° C. or lower, from the viewpoint of preventing thermal deterioration of asphalt. be.
  • the mixing temperature is preferably higher than the softening point of polyester, preferably 130 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 170 ° C. or higher. , More preferably 180 ° C. or higher, preferably 230 ° C. or lower, more preferably 210 ° C. or lower, still more preferably 200 ° C. or lower, from the viewpoint of preventing thermal deterioration of asphalt.
  • the mixing time in the mixing step is, for example, 30 seconds or longer, preferably 1 minute or longer, more preferably 2 minutes or longer, still more preferably 5 minutes or longer, and the upper limit of the time is not particularly limited, but is, for example, about 30 minutes. Degree.
  • the method for producing an asphalt mixture preferably includes a step of holding the obtained mixture at a temperature higher than the softening point of the polyester after the mixing step.
  • the mixture may be further mixed, but the temperature may be kept above the above-mentioned temperature.
  • the mixing temperature is preferably higher than the softening point of the polyester, preferably 130 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher.
  • the temperature is preferably 230 ° C. or lower, more preferably 210 ° C.
  • the holding time in the holding step is preferably 0.5 hours or more, more preferably 1 hour or more, still more preferably 1.5 hours or more, and the upper limit of the time is not particularly limited, but is, for example, about 5 hours. Is.
  • the asphalt mixture of the present invention is suitable for road pavement, and as described above, the asphalt mixture obtained by adding an aggregate to the asphalt composition is used for road pavement.
  • the road pavement method preferably includes a step of constructing the above-mentioned asphalt mixture on the road to form an asphalt pavement material layer.
  • the road paving method includes a step of mixing asphalt, the above-mentioned polyester, and an aggregate to obtain an asphalt mixture (step 1), and the asphalt mixture obtained in the step 1 is applied to the road.
  • the step (step 2) of forming the asphalt pavement material layer is included.
  • the asphalt pavement layer is preferably a base layer or a surface layer.
  • the asphalt mixture may be compacted by a known construction machine knitting method in the same manner.
  • the compaction temperature when used as a heated asphalt mixture is preferably higher than the softening point of polyester, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 130, from the viewpoint of reducing the amount of microplastics. ° C. or higher, and preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the present invention is an asphalt composition containing ⁇ 1> asphalt and polyester which further discloses the following ⁇ 1> to ⁇ 8>.
  • the polyester is a polycondensate of polyethylene terephthalate, an alcohol and a carboxylic acid compound.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.6 or more and 1
  • An asphalt composition of 0.05 or less.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 10 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 12 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.
  • the asphalt composition according to ⁇ 1> above which is 6 or more and 1.05 or less.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 10 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.
  • An asphalt composition containing asphalt and polyester is a polycondensate of polyethylene terephthalate, an alcohol and a carboxylic acid compound.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) of the polyethylene terephthalate is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) of the polyethylene terephthalate is 0.7 or more and 1
  • Step 1 The value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) is 0.6 or more and 1.05.
  • a method for producing an asphalt mixture which comprises a step of mixing the polyester obtained in step 1 with the polyester obtained in step 1.
  • the value of (heat absorption by DSC measurement)-(calorific value by DSC measurement) is 5 J / g or more and 30 J / g or less, and the intrinsic viscosity (IV) is 0.6 or more and 1.05 or less.
  • A-500 (5.0 ⁇ 10 2 ), A-1000 (1.01 ⁇ 10 3), A-2500 (2.63 ⁇ 10 3 ), A-5000 (5.97 ⁇ 10 3 ), F-1 (1.02 ⁇ 10 4 ), F-2 (1.81 ⁇ 10 4 ), F-4 (3.97 ⁇ 10) 4), F-10 (9.64 ⁇ 10 4), F-20 (1.90 ⁇ 10 5), F-40 (4.27 ⁇ 10 5), F-80 (7.06 ⁇ 10 5) , F-128 (1.09 ⁇ 10 6 )) was used as a standard sample.
  • the numbers in parentheses indicate the molecular weight.
  • Measuring device "HLC-8220GPC” (manufactured by Tosoh Corporation)
  • Analytical column “TSKgel GMHXL” + “TSKgel G3000HXL” (manufactured by Tosoh Corporation)
  • the proportion (mass%) of the components having a molecular weight of 500 or less in the polyester was determined by the GPC method.
  • the sample solution was prepared and measured by the same method as the measurement of the number average molecular weight and the weight average molecular weight of the polyester.
  • (2) Calculation method The peak of the chart obtained by the above method is cut by a straight line at a holding time of 500 converted molecular weight by a calibration curve prepared from the standard substance, and the area of the peak on the smaller molecular weight side is taken as the whole. The value divided by the area of the peak of was calculated as the ratio (mass%) of the components having a molecular weight of 500 or less.
  • PET-1 As PET-1, PET-c described in JP-A-2004-163808 was used, and was used as it was for polyester synthesis without melt-kneading.
  • PET-2 100 parts by mass of PET-1 is melt-kneaded at a roll rotation speed of 200 r / min and a heating temperature of 280 ° C. in the roll using a uniaxial rotating biaxial extruder having a total length of 1560 mm, a screw diameter of 42 mm, and a barrel inner diameter of 43 mm.
  • a melt-kneaded product of PET-1 was obtained.
  • the supply rate of PET-1 was 10 kg / h, and the average residence time was about 18 seconds.
  • the obtained melt-kneaded product was cooled using a cooling roller having a water temperature of 20 ° C. and coarsely pulverized to obtain PET-2.
  • PET-2A A melt-kneaded product of PET-1 was obtained in the same manner as in the preparation of PET-2. The obtained melt-kneaded product was immediately cooled using a cooling roller having a water temperature of 5 ° C. and coarsely pulverized to obtain PET-2A.
  • PET-2B A melt-kneaded product of PET-1 was obtained in the same manner as in the preparation of PET-2. The obtained melt-kneaded product was cooled using a roller having a water temperature of 35 ° C. and coarsely pulverized to obtain PET-2B.
  • PET-3 As PET-3, "RAMAPET N2G” (manufactured by Indorama Ventures) was used, and it was used as it was for polyester synthesis without melt-kneading.
  • PET-4 A melt-kneaded product of PET-3 was obtained in the same manner except that PET-1 was replaced with PET-3 in the preparation of PET-2. The obtained melt-kneaded product was immediately cooled using a cooling roller having a water temperature of 5 ° C. and coarsely pulverized to obtain PET-4.
  • PET-5 A melt-kneaded product was obtained in the same manner except that PET-1 was replaced with "TRN-MTJ" (manufactured by Teijin Limited) in the preparation of PET-2.
  • the obtained melt-kneaded product was immediately cooled using a cooling roller having a water temperature of 5 ° C. and coarsely pulverized to obtain PET-5.
  • PET-6 As PET-6, "SA-1206” (manufactured by Unitika Ltd.) was used.
  • PET-7 A melt-kneaded product was obtained in the same manner except that PET-1 was replaced with PET-6 in the preparation of PET-2.
  • the obtained melt-kneaded product was cooled using a cooling roller having a water temperature of 20 ° C. and coarsely pulverized to obtain PET-7.
  • PET-8 "Recycle Pellet Polyester Chip white” (manufactured by Polindo UTAMA) was used, and it was used as it was for polyester synthesis without melt-kneading.
  • Polyester (A11) Raw materials other than adipic acid shown in Table 3 are placed in a 5-liter four-necked flask equipped with a thermometer, a stainless steel stirring rod, a flow-down condenser and a nitrogen introduction tube, and di (2-ethylhexane) is placed in a nitrogen atmosphere. 20 g of (acid) tin (II) and 2 g of gallic acid were added, the temperature was raised to 235 ° C. in a mantle heater, held for 7 hours after reaching 235 ° C., and then a reduced pressure reaction was carried out at 8.0 kPa for 1 hour. Then, after cooling to 180 ° C., adipic acid was added, the temperature was raised to 210 ° C. for 2 hours, and then the temperature was maintained at 210 ° C. for 1 hour. , Polyester (A11) was obtained.
  • Polyester (B1) Raw materials for polyester resins other than adipic acid shown in Table 4 were placed in a 5-liter four-necked flask equipped with a thermometer, a stainless steel stirring rod, a flow-down condenser, and a nitrogen introduction tube, and placed at 160 ° C. in a nitrogen atmosphere. The temperature was raised to. Then, a mixture of acrylic acid (both reactive monomers), a raw material monomer of a vinyl resin and a polymerization initiator was added dropwise over 1 hour using a dropping funnel.
  • the addition polymerization reaction was aged for 1 hour while being maintained at 160 ° C., the temperature was raised to 200 ° C., 20 g of tin (II) 2-ethylhexanoate and 2 g of gallic acid were added, and then 6 at 230 ° C. The time-reduced polymerization reaction was further carried out, and the reaction was further carried out at 230 ° C. and 8.0 kPa for 1 hour. After cooling to 210 ° C., adipic acid was added and the reaction was carried out at 210 ° C. and 10 kPa until the softening point shown in Table 4 was reached to obtain polyester (B1).
  • Example 1 As a binder mixture, 2200 g of modified type II asphalt (manufactured by Toa Road Corporation) heated to 180 ° C. was placed in a 3 L stainless steel container and stirred at 100 rpm, and 110 g of polyester (A1) (5 with respect to 100 parts by mass of asphalt). (Mass part) was gradually added and stirred at 300 rpm for 2 hours to prepare an asphalt composition (AS-1).
  • Example 2-7 The asphalt composition (AS) is the same as in Example 1 except that the polyester (A1) is changed to polyesters (A2) to (A6), (A11), (B1) or (A12) in Example 1. -2)-(AS-7), (AS-12) and (AS-13) were prepared. In Example 1, 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-2) to (AS-7), (AS-12) or (AS-13), respectively. Asphalt mixtures (M-2) to (M-7), (M-12) and (M-13) were obtained as specimens in the same manner as in Example 1.
  • Example 8 An asphalt composition (AS-8) was obtained in the same manner as in Example 1 except that the amount of polyester (A1) added was changed to 550 g (25 parts by mass with respect to 100 parts by mass of asphalt) in Example 1. rice field.
  • An asphalt mixture (M-8) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 756 g of the asphalt composition (AS-8) in Example 1. rice field.
  • Example 9 An asphalt composition (AS-9) was obtained in the same manner as in Example 1 except that the asphalt was changed to straight asphalt (manufactured by Toa Road Corporation) in Example 1.
  • An asphalt mixture (M-9) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-9) in Example 1. rice field.
  • Example 10 An asphalt composition (AS-10) was obtained in the same manner as in Example 1 except that the asphalt was changed to the modified asphalt "PG76-22" (manufactured by Ergon, Texas, USA) in Example 1.
  • An asphalt mixture (M-10) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-10) in Example 1. rice field.
  • Example 11 An asphalt composition (AS-11) was obtained in the same manner as in Example 1 except that the asphalt was changed to modified asphalt (manufactured by FESPA, Mexico) in Example 1.
  • An asphalt mixture (M-11) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-11) in Example 1. rice field.
  • Example 1 modified type II asphalt was used as it was without adding polyester (A1).
  • An asphalt mixture (MA) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 605 g of modified type II asphalt in Example 1.
  • Asphalt compositions (AS-a1) to (AS-a4) were prepared in the same manner as in Example 1 except that the polyester (A1) was changed to polyesters (A7) to (A10) in Example 1. ..
  • An asphalt composition (AS-a5) was prepared in the same manner as in Example 1 except that the polyester (A1) was changed to PET-1 in Example 1.
  • An asphalt mixture (M-a5) was obtained as a specimen in the same manner as in Example 1 except that 635 g of the asphalt composition (AS-1) was changed to 635 g of the asphalt composition (AS-a5) in Example 1. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Civil Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Road Paving Structures (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明は、アスファルト及びポリエステルを含有するアスファルト組成物であって、前記ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下である、アスファルト組成物を提供する。

Description

アスファルト組成物
 本発明は、アスファルト組成物、アスファルト混合物及びその製造方法に関する。
 自動車道や駐車場、貨物ヤード、歩道等の舗装には、敷設が比較的容易であり、舗装作業開始から交通開始までの時間が短くてすむことから、アスファルト組成物を用いるアスファルト舗装が行われている。このアスファルト舗装は、骨材をアスファルトで結合したアスファルト混合物によって路面が形成されているので、舗装道路は良好な硬度や耐久性を有している。
 例えば特許文献1(日本国特開2006-096799号公報)では、廃PETをできるだけ低コストで大量に処理でき、かつ所望の特性を備えた高価な舗装材用プラスチック組成物を提供することを目的として、廃PETと、1種又は2種以上の多価アルコール及び/又は糖類とを触媒の存在下でエステル交換させて舗装材用プラスチック組成物を得る舗装材用プラスチック組成物の製造方法が開示されている。
 本発明は、アスファルト及びポリエステルを含有するアスファルト組成物であって、前記ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下である、アスファルト組成物に関する。
発明の詳細な説明
 アスファルト舗装面は、長期使用によって劣化して轍やひび割れが入るため、舗装の補修を行う必要が生じる。さらには、路面が削れて摩耗アスファルト粉が発生し、マイクロプラスチックが発生する。
 本発明は、マイクロプラスチックの発生量を低減できるアスファルト組成物、アスファルト混合物及びその製造方法に関する。
 本発明は、以下の〔1〕~〔5〕に関する。
〔1〕 アスファルト及びポリエステルを含有するアスファルト組成物であって、
 前記ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、
 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下である、アスファルト組成物。
〔2〕 工程1:(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させてポリエステルを得る工程、並びに
 工程2:アスファルトと、工程1で得られたポリエステルとを混合する工程
を含む、アスファルト組成物の製造方法。
〔3〕 上記〔1〕に記載のアスファルト組成物と、骨材と、を含むアスファルト混合物。
〔4〕 工程1:(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させてポリエステルを得る工程、並びに
 工程2:加熱した骨材と、アスファルトと、工程1で得られたポリエステルとを混合する工程
を含む、アスファルト混合物の製造方法。
〔5〕 (DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させる、ポリエステルの製造方法。
 本発明によれば、マイクロプラスチックの発生量を低減できるアスファルト組成物、アスファルト混合物及びその製造方法を提供することができる。
[アスファルト組成物]
 本発明のアスファルト組成物(以下、単に「アスファルト組成物」ともいう)は、アスファルト及びポリエステルを含有する。
 そして、ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下である。
 以上によれば、マイクロプラスチックの発生量を低減できるアスファルト組成物が得られる。更にこの技術を応用して、アスファルト混合物、及びアスファルト混合物の製造方法を提供することができる。
 本発明の効果が得られる理由は定かではないが、以下のように考えられる。
 ポリエチレンテレフタレート(以下、「PET」ともいう)を加工せずにそのままアスファルト中に添加すると、PETの融点が260℃と比較的高いため、PETが原粒径のまま塊として舗装中に存在し、アスファルトによる骨材間接着力の向上には至らない。
 これに対し、本発明に用いられるポリエステルは、PET、アルコール及びカルボン酸化合物の重縮合物であり、PETをアルコール成分及びカルボン酸成分とともに重縮合することでエステル交換反応が起こり、PETの構成単位がアルコール成分由来の構成単位及びカルボン酸成分由来の構成単位中に取り込まれたポリエステルである。そして、PETの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、PETの固有粘度(IV)が0.6以上1.05以下である。所定の熱量を有するPETの場合、エステル交換反応時、PETの溶融しやすさによりエステル交換反応が促進され、均一にPETがポリエステル中に導入される。さらに、IVが0.6以上1.05以下のPETであることで、エステル交換反応時にPETユニットを保持したままポリエステル中に組み込まれる。その結果、ブロック共重合体に類似した状態が形成され、高い極性が均一に保持される。
 アスファルトは、親水性で骨材吸着性があるアスファルテン成分と、疎水性で骨材吸着性がないマルテン成分を含有している。本発明に用いられるポリエステルにおいて均一導入された高極性のPET部位は、マルテン成分と効果的に相互作用して複合体を形成し、この複合体が骨材間接着をより強固にすることでマイクロプラスチックの発生量を低減できると考えられる。ここで、本発明者らが見出した知見によれば、PETの熱量が5J/g以上であれば、PETの非晶部位が適量でありエステル交換反応時にPETがモノマー単位まで解重合されることが抑制されるため、マルテンと相互作用するPET部位が適量導入され、複合体を形成しやすい。PETの熱量が30J/g以下であれば、PETの結晶部位が適量であり、PET部位が均一に導入され、複合体を形成しやすい。PETのIVが0.6以上であれば、エステル交換反応時にPETがモノマー単位まで解重合されることが抑制されるため、マルテンと相互作用する部位が適量導入され、複合体を形成しやすい。PETのIVが1.05以下であれば、PET部位が均一に導入され、複合体を形成しやすい。
 本明細書における各種用語の定義等を以下に示す。
 「バインダ混合物」とは、アスファルトと熱可塑性エラストマーとを含む混合物を意味し、例えば、後述の熱可塑性エラストマーで改質されたアスファルト(以下、「改質アスファルト」ともいう)を含む概念である。
 ポリエステル中、「アルコール成分由来の構成単位」とは、アルコール成分の水酸基から水素原子を除いた構造を意味し、「カルボン酸成分由来の構成単位」とは、カルボン酸成分のカルボキシル基から水酸基を除いた構造を意味する。
 「カルボン酸化合物」とは、そのカルボン酸のみならず、反応中に分解して酸を生成する無水物、及びカルボン酸のアルキルエステル(例えば、アルキル基の炭素数1以上3以下)も含む概念である。カルボン酸化合物がカルボン酸のアルキルエステルである場合、カルボン酸化合物の炭素数には、エステルのアルコール残基であるアルキル基の炭素数を算入しない。
〔アスファルト〕
 本発明のアスファルト組成物は、アスファルトを含有する。
 アスファルトとしては、種々のアスファルトが使用できる。例えば舗装用石油アスファルトであるストレートアスファルトの他、改質アスファルトが挙げられる。改質アスファルトとしては、ブローンアスファルト;熱可塑性エラストマー、熱可塑性樹脂等の高分子材料で改質したアスファルト等が挙げられる。ストレートアスファルトとは、原油を常圧蒸留装置、減圧蒸留装置等で処理して得られる残留瀝青物質を意味する。また、ブローンアスファルトとは、ストレートアスファルトと重質油との混合物を加熱し、その後空気を吹き込んで酸化させることによって得られるアスファルトを意味する。マイクロプラスチックの発生量を低減する観点から改質アスファルトが好ましい。
 本明細書において、「アスファルト」とは、ドイツ工業規格DIN EN 12597に定義されるビチューメンを包含する。「アスファルト」と「ビチューメン」は交換可能に用いられるものとする。
〔熱可塑性エラストマー〕
 アスファルト組成物は、マイクロプラスチック量の低減の観点から、熱可塑性エラストマーを含有することが好ましい。アスファルト及び熱可塑性エラストマーは、これらの混合物であるバインダ混合物として使用されることが好ましい。バインダ混合物としては、熱可塑性エラストマーで改質されたストレートアスファルト(改質アスファルト)等が挙げられる。
 熱可塑性エラストマーとしては、例えば、スチレン/ブタジエンブロック共重合体(以下、単に「SB」ともいう)、スチレン/ブタジエン/スチレンブロック共重合体(以下、単に「SBS」ともいう)、スチレン/ブタジエンランダム共重合体(以下、単に「SBR」ともいう)、スチレン/イソプレンブロック共重合体(以下、単に「SI」ともいう)、スチレン/イソプレン/スチレンブロック共重合体(以下、単に「SIS」ともいう)、スチレン/イソプレンランダム共重合体(以下、単に「SIR」ともいう)、エチレン/酢酸ビニル共重合体、及びエチレン/アクリル酸エステル共重合体からなる群より選択される少なくとも1種が挙げられる。
 エチレン/アクリル酸エステル共重合体の市販品としては、例えば、「Elvaroy」(デュポン社製)が挙げられる。
 これらの熱可塑性エラストマーの中でも、マイクロプラスチックの発生量を低減する観点から、スチレン/ブタジエンブロック共重合体、スチレン/ブタジエン/スチレンブロック共重合体、スチレン/ブタジエンランダム共重合体、スチレン/イソプレンブロック共重合体、スチレン/イソプレン/スチレンブロック共重合体、及びスチレン/イソプレンランダム共重合体からなる群より選択される少なくとも1種が好ましく、スチレン/ブタジエンランダム共重合体及びスチレン/ブタジエン/スチレンブロック共重合体からなる群より選択される少なくとも1種がより好ましい。
 アスファルト組成物中の熱可塑性エラストマーの含有量は、マイクロプラスチックの発生量を低減する観点から、アスファルト組成物100質量%中、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、より更に好ましくは2質量%以上であり、そして、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下、より更に好ましくは5質量%以下である。
 アスファルト組成物において、熱可塑性エラストマーの含有量は、マイクロプラスチックの発生量を低減する観点から、アスファルト100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上、より更に好ましくは2質量部以上であり、そして、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下、より更に好ましくは5質量部以下である。
 アスファルト組成物中のアスファルトの含有量は、マイクロプラスチック量の低減の観点とアスファルト性能を発揮する観点から、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは75質量%以上、より更に好ましくは80質量%以上であり、そして、マイクロプラスチック量の低減の観点から、好ましくは98質量%以下、より好ましくは97質量%以下、更に好ましくは96質量%以下である。
〔ポリエステル〕
 本発明のアスファルト組成物は、ポリエステルを含有する。ポリエステルは、マイクロプラスチックの発生量を低減する観点から、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物である。そして、マイクロプラスチックの発生量を低減する観点から、ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値は5J/g以上30J/g以下であり、かつ、ポリエチレンテレフタレートの固有粘度(IV)は0.6以上1.05以下である。
<アルコール成分>
 アルコール成分としては、脂肪族ジオール、芳香族ジオール、3価以上の多価アルコールが挙げられる。これらのアルコール成分は、単独で又は2種以上を組み合わせて使用することができる。
 脂肪族ジオールとしては、好ましくは炭素数2以上12以下の直鎖又は分岐の脂肪族ジオールであり、より好ましくは炭素数2以上4以下の直鎖又は分岐の脂肪族ジオールである。脂肪族ジオールの具体例としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,4-ブテンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,10-デカンジオール、1,12-ドデカンジオールが挙げられる。
 芳香族ジオールとしては、例えば、ビスフェノールAのアルキレンオキサイド付加物が挙げられる。ビスフェノールAのアルキレンオキサイド付加物としては、下記式(I)で表されるビスフェノールAのアルキレンオキシド付加物が挙げられる。
Figure JPOXMLDOC01-appb-C000001

〔式中、OR1及びR1Oはアルキレンオキシドであり、R1は炭素数2又は3のアルキレン基、x及びyはアルキレンオキシドの平均付加モル数を示す正の数を示し、xとyの和は好ましくは1以上、より好ましくは1.5以上であり、そして、好ましくは16以下、より好ましくは8以下、更に好ましくは4以下である。〕
 式(I)で表されるビスフェノールAのアルキレンオキシド付加物としては、例えば、ビスフェノールA〔2,2-ビス(4-ヒドロキシフェニル)プロパン〕のプロピレンオキシド付加物、ビスフェノールAのエチレンオキシド付加物が挙げられる。これらのビスフェノールAのアルキレンオキシド付加物は、単独で又は2種以上を組み合わせて使用することができる。
 3価以上の多価アルコールとしては、例えば、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトールが挙げられる。
 アルコール成分としては、マイクロプラスチックの発生量を低減する観点から、脂肪族ジオールが好ましい。脂肪族ジオールの含有量は、マイクロプラスチックの発生量を低減する観点から、ポリエステルのアルコール成分100モル%中、好ましくは80モル%以上、より好ましくは90モル%以上であり、そして、100モル%以下である。
<カルボン酸成分>
 カルボン酸成分としては、脂肪族ジカルボン酸化合物、芳香族ジカルボン酸化合物、3価以上6価以下の多価カルボン酸化合物が挙げられる。これらのカルボン酸成分は、単独で又は2種以上を組み合わせて使用することができる。
 脂肪族ジカルボン酸の主鎖の炭素数は、マイクロプラスチックの発生量を低減する観点から、好ましくは3以上、より好ましくは4以上であり、そして、好ましくは10以下、より好ましくは8以下である。
 脂肪族ジカルボン酸化合物としては、例えば、フマル酸、マレイン酸、シュウ酸、マロン酸、シトラコン酸、イタコン酸、グルタコン酸、コハク酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、炭素数1以上20以下のアルキル基若しくは炭素数2以上20以下のアルケニル基で置換されたコハク酸、又は、これらの無水物、これらのアルキルエステル(例えば、アルキル基の炭素数1以上3以下)が挙げられる。置換されたコハク酸としては、例えば、ドデシルコハク酸、ドデセニルコハク酸、オクテニルコハク酸が挙げられる。以上の脂肪族ジカルボン酸化合物の中でも、フマル酸、マレイン酸及びアジピン酸からなる群より選択される少なくとも1種が好ましく、アジピン酸がより好ましい。
 芳香族ジカルボン酸化合物としては、例えば、フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、又は、これらの無水物、これらのアルキルエステル(例えば、アルキル基の炭素数1以上3以下)が挙げられる。以上の芳香族ジカルボン酸化合物の中でも、マイクロプラスチックの発生量を低減する観点から、イソフタル酸及びテレフタル酸が好ましく、テレフタル酸がより好ましい。
 3価以上6価以下の多価カルボン酸は、好ましくは3価カルボン酸である。3価以上6価以下の多価カルボン酸としては、例えば、トリメリット酸、2,5,7-ナフタレントリカルボン酸、ピロメリット酸、又はこれらの酸無水物等が挙げられる。なお、多価カルボン酸を含む場合、物性調整の観点から、アルコール成分には1価のアルコールが適宜含有されていてもよく、カルボン酸成分には1価のカルボン酸化合物が適宜含有されていてもよい。
 カルボン酸成分が脂肪族ジカルボン酸化合物を含む場合、カルボン酸成分中における脂肪族ジカルボン酸化合物の含有量は、ポリエステルの可撓性を上げてマイクロプラスチックの発生量を低減する観点から、カルボン酸成分100モル%中、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上であり、そして、好ましくは40モル%以下、より好ましくは30モル%以下である。
 芳香族ジカルボン酸化合物の含有量は、アスファルトへの溶融分散性を高め、かつマイクロプラスチックの発生量を低減する観点から、カルボン酸成分100モル%中、好ましくは60モル%以上、より好ましくは70モル%以上であり、そして、好ましくは100モル%以下、より好ましくは99モル%以下、更に好ましくは95モル%以下、より更に好ましくは90モル%以下である。
<アルコール成分由来の構成単位に対するカルボン酸成分由来の構成単位のモル比>
 アルコール成分由来の構成単位に対するカルボン酸成分由来の構成単位のモル比〔カルボン酸成分/アルコール成分〕は、酸価の調整の観点及びマイクロプラスチックの発生量を低減する観点から、好ましくは0.7以上、より好ましくは0.8以上、更に好ましくは0.9以上であり、そして、好ましくは1.5以下、より好ましくは1.3以下、更に好ましくは1.1以下である。
<ポリエチレンテレフタレート由来の構成単位>
 本発明に用いられるポリエステルは、ポリエチレンテレフタレート由来のエチレングリコール及びテレフタル酸からなる構成単位を含む。ポリエチレンテレフタレートは、エチレングリコール及びテレフタル酸からなる構成単位の他にブタンジオールやイソフタル酸等の成分を少量含有してもよい。ポリエチレンテレフタレートは、回収されたポリエチレンテレフタレートであることが好ましい。
 近年、廃プラスチックが環境に与える影響が問題となっており、廃プラスチックのリサイクルが検討されている。本発明では、ポリエチレンテレフタレートはボトルやフィルム等の製品として汎用されていることから、それらの製品として製造され、その後廃棄されたものを回収したポリエチレンテレフタレート(以下「回収PET」ともいう)が、環境問題及び価格の面から好ましく用いられる。なお、回収品は、ある程度の純度を有しているものであれば、その種類等は特に限定されない。不純物として、ポリエチレンやポリプロピレンのようなプラスチックを少量含んでいてもよい。例えば、廃パウチ容器を回収PETとして利用することもできる。回収PETがポリエチレン及び/又はポリプロピレンを含む場合、ポリエチレン及びポリプロピレンの合計含有量は、好ましくは5質量%以下、より好ましくは3質量%以下である。下限は特に限定されないが、例えば0.1質量%以上であってもよく、0.05質量%以上であってもよい。
 なお、回収品の使用に際しては、取り扱いや分散及び分解等の容易性のため、フレーク状に粉砕されたもの、ペレット等が好適に用いられる。本発明に用いられる回収品の具体的な大きさとしては、反応効率の観点から、4~15mm2程度が好ましく、厚みは3mm以下程度が好ましい。
 PETの固有粘度(IV)は、マイクロプラスチックの発生量を低減する観点から、0.6以上であり、そして、1.05以下であり、好ましくは1.04以下、より好ましくは1.03以下である。PETの固有粘度が0.6以上1.05以下であると、マイクロプラスチックの発生量を充分に低減することができる。
 固有粘度(IV)は、実施例に記載の方法により測定される。PETの固有粘度(IV)は、好ましくは0.6超、より好ましくは0.61以上、更に好ましくは0.62以上、更に好ましくは0.63以上、更に好ましくは0.64以上である。PETの固有粘度(IV)は、例えば、0.7以上、0.80以上、0.90以上であってもよい。
 PETの(DSC測定による吸熱量)-(DSC測定による発熱量)の値は、マイクロプラスチックの発生量を低減する観点から、5J/g以上であり、好ましくは10J/g以上、より好ましくは12J/g以上であり、そして、30J/g以下であり、好ましくは29J/g以下である。当該値は、例えば、5.0J/g以上、10.0J/g以上又は12.0J/g以上であり、そして、30.0J/g以下、29.5J/g以下、又は29.0J/g以下であってもよい。
 PETのDSC測定による吸熱量及び発熱量は、実施例に記載の方法により測定される。
 本発明に用いられるポリエステルは、実質的にその特性を損なわない程度に変性されたポリエステルであってもよい。変性されたポリエステルは、具体的には、特開平11-133668号公報、特開平10-239903号公報、特開平8-20636号公報等に記載の方法によりフェノール、ウレタン、エポキシ等によりグラフト化やブロック化したポリエステルが挙げられる。好ましい変性されたポリエステルは、ポリエステルをポリイソシアネート化合物でウレタン伸長したウレタン変性ポリエステルが挙げられる。
<ポリエステルの物性>
 ポリエステルの軟化点は、マイクロプラスチックの発生量を低減する観点から、好ましくは90℃以上、より好ましくは95℃以上、更に好ましくは98℃以上であり、そして、好ましくは140℃以下、より好ましくは130℃以下、更に好ましくは125℃以下、より更に好ましくは120℃以下、より更に好ましくは115℃以下である。
 ポリエステルの酸価は、骨材への吸着を促進し、マイクロプラスチックの発生量を低減する観点から、好ましくは2mgKOH/g以上、より好ましくは5mgKOH/g以上、更に好ましくは10mgKOH/g以上であり、そして、舗装面の耐水性を高める観点から、好ましくは40mgKOH/g以下、より好ましくは30mgKOH/g以下、更に好ましくは20mgKOH/g以下である。
 ポリエステルの水酸基価は、マイクロプラスチックの発生量を低減する観点から、好ましくは1mgKOH/g以上、より好ましくは5mgKOH/g以上、更に好ましくは10mgKOH/g以上、より更に好ましくは15mgKOH/g以上であり、そして、好ましくは70mgKOH/g以下、より好ましくは50mgKOH/g以下、更に好ましくは30mgKOH/g以下、より更に好ましくは26mgKOH/g以下である。
 ポリエステルのガラス転移点は、マイクロプラスチックの発生量を低減する観点から、好ましくは30℃以上、より好ましくは40℃以上、更に好ましくは50℃以上であり、そして、好ましくは80℃以下、より好ましくは70℃以下、更に好ましくは65℃以下である。
 ポリエステルの数平均分子量(Mn)は、マイクロプラスチックの発生量を低減する観点から、好ましくは1600以上、より好ましくは2000以上、更に好ましくは2500以上であり、そして、好ましくは5000以下、より好ましくは4500以下、更に好ましくは4000以下である。
 ポリエステルの重量平均分子量(Mw)は、マイクロプラスチックの発生量を低減する観点から、好ましくは5000以上、より好ましくは6000以上、更に好ましくは7000以上であり、そして、好ましくは30000以下、より好ましくは20000以下、更に好ましくは15000以下である。
 ポリエステル中の、ゲル浸透クロマトグラフィー法により測定される分子量分布における分子量500以下の成分の含有量は、マイクロプラスチックの発生量を低減する観点から、好ましくは7.0質量%以下、より好ましくは5.5質量%以下、更に好ましくは5.0質量%以下である。下限値は特に限定されないが、例えば2.0質量%であってもよい。
 軟化点、酸価、水酸基価、ガラス転移点、数平均分子量(Mn)、重量平均分子量(Mw)及びポリエステル中の分子量500以下の成分の含有量は、実施例に記載の方法により測定することができる。なお、軟化点、酸価、水酸基価、ガラス転移点、数平均分子量(Mn)、重量平均分子量(Mw)及びポリエステル中の分子量500以下の成分の含有量は、原料モノマー組成、分子量、触媒量又は反応条件により調整することができる。
<ポリエステルの製造方法>
 ポリエステルの製造方法は、特に限定されるものではないが、例えば、ポリエチレンテレフタレート、アルコール成分及びカルボン酸成分を重縮合することにより製造することができる。重縮合反応の温度は、特に限定されるものではないが、反応性の観点とモノマー分解温度の観点から、好ましくは180℃以上180℃以上235℃以下℃以下である。重縮合反応の温度として、180℃以上210℃以下も好ましい。
 ポリエステルの製造方法としては、(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させる方法が好ましい。エステル交換させる温度として、180℃以上210℃以下も好ましい。
 原料におけるポリエチレンテレフタレートの存在量は、マイクロプラスチックの発生量を低減する観点から、ポリエチレンテレフタレート、アルコール成分及びカルボン酸成分の合計量100質量%中、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下である。
 アルコール成分とカルボン酸成分との重縮合反応の際にポリエチレンテレフタレートを添加することで、エステル交換反応が起こり、ポリエチレンテレフタレートの構成単位がアルコール成分由来の構成単位及びカルボン酸成分由来の構成単位中に取り込まれたポリエステルを得ることができる。
 ポリエチレンテレフタレートは、重縮合反応開始時から存在させていても、重縮合反応途中で反応系に添加してもよい。ポリエチレンテレフタレートの添加時期は、マイクロプラスチック量の低減の観点から、アルコール成分とカルボン酸成分との反応率が10%以下の段階が好ましく、5%以下の段階がより好ましい。なお、反応率とは、生成反応水量(モル)/理論生成水量(モル)×100の値をいう。
 重縮合反応には、反応性とコストの観点から、ジ(2-エチルヘキサン酸)錫(II)等のSn-C結合を有していない錫(II)化合物をエステル化触媒として使用できる。エステル化触媒の使用量は、アルコール成分とカルボン酸成分とポリエチレンテレフタレートの合計量100質量部に対して、好ましくは0.01質量部以上、より好ましくは0.2質量部以上、そして、好ましくは3.0質量部以下、より好ましくは1.5質量部以下である。
 重縮合反応には、反応性とコストの観点から、触媒に加えて、没食子酸等のピロガロール化合物をエステル化助触媒として使用できる。エステル化助触媒の使用量は、アルコール成分とカルボン酸成分とポリエチレンテレフタレートの総量100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.005質量部以上、更に好ましくは0.01質量部以上、そして、好ましくは0.50質量部以下、より好ましくは0.20質量部以下、更に好ましくは0.10質量部以下である。
<ポリエステルの含有量>
 本発明のアスファルト組成物において、ポリエステルの含有量は、マイクロプラスチックの発生量を低減する観点から、アスファルト100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、更に好ましくは3質量部以上、より更に好ましくは5質量部以上であり、そして、好ましくは50質量部以下、より好ましくは30質量部以下、更に好ましくは20質量部以下、より更に好ましくは10質量部以下である。
[アスファルト組成物の製造方法]
 本発明のアスファルト組成物を製造する方法は、アスファルトと、上記のポリエステルとを混合する工程を有することが好ましい。
 アスファルト組成物は、アスファルトを加熱溶融し、ポリエステルを添加し、通常用いられている混合機にて、各成分が均一に分散するまで撹拌混合することにより得られる。通常用いられている混合機としては、ホモミキサー、ディゾルバー、パドルミキサー、リボンミキサー、スクリューミキサー、プラネタリーミキサー、真空逆流ミキサー、ロールミル、二軸押出機等が挙げられる。
 アスファルトとポリエステルとの混合温度は、アスファルト中にポリエステルを均一に分散させ、マイクロプラスチック量の低減の観点及び保存安定性の観点から、好ましくは100℃以上、より好ましくは130℃以上、更に好ましくは160℃以上、より更に好ましくは170℃以上であり、そして、好ましくは230℃以下、より好ましくは210℃以下、更に好ましくは200℃以下、より更に好ましくは190℃以下である。
 また、アスファルトとポリエステルとの混合時間は、効率的にアスファルト中にポリエステルを均一に分散させる観点から、好ましくは0.1時間以上、より好ましくは0.5時間以上、更に好ましくは1.0時間以上、より更に好ましくは1.5時間以上であり、そして、好ましくは10時間以下、より好ましくは7時間以下、更に好ましくは5時間以下、より更に好ましくは3時間以下である。
 アスファルト組成物の製造方法の好ましい態様は、(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させてポリエステルを得る工程(工程1)、並びにアスファルトと、前述のポリエステル(工程1で得られたポリエステル)とを混合する工程(工程2)を含む。エステル交換させる温度として、180℃以上210℃以下も好ましい。
 上記ポリエチレンテレフタレートは、好ましくは回収されたポリエチレンテレフタレートである。この場合、アスファルト組成物の製造方法は、好ましくは、(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを製品から回収する工程(工程1a)、前述のポリエチレンテレフタレート(工程1aで得られたポリエチレンテレフタレート)を、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させてポリエステルを得る工程(工程2a)、並びにアスファルトと、前述のポリエステル(工程2aで得られたポリエステル)とを混合する工程(工程3a)を含む。エステル交換させる温度として、180℃以上210℃以下も好ましい。
〔分散剤〕
 アスファルト組成物は、分散剤を含んでいてもよい。
 分散剤は、アスファルトに溶解するものであり、且つポリエステルとの親和性があるものが好ましい。
 分散剤としては、例えば、高分子分散剤、ポリオキシエチレンアルキルアミン、アルカノールアミン等の界面活性剤等を挙げることができる。
 高分子分散剤としては、例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物等が挙げられる。これらの分散剤は、単独で又は2種以上を組み合わせて使用してもよい。
 分散剤は、高温保管安定性を向上させる観点から、好ましくは高分子分散剤である。なお、本発明における「高分子分散剤」とは、重量平均分子量が1,000以上の分散剤を意味する。ポリマー種にもよるが、重量平均分子量としては、好ましくは2,000以上、より好ましくは4,000以上であり、そして、好ましくは80,000以下、より好ましくは40,000以下である。
 分散剤は、好ましくは塩基性官能基を有する。塩基性官能基とは、共役酸のpKaが-3以上となるような基を意味する。塩基性官能基としては、例えば、アミノ基、イミノ基、4級アンモニウム基が挙げられる。
 分散剤の塩基価は、高温保管安定性の観点から、好ましくは10mgKOH/g以上、より好ましくは20mgKOH/g以上、更に好ましくは30mgKOH/g以上であり、そして、好ましくは150mgKOH/g以下、より好ましくは120mgKOH/g以下、更に好ましくは100mgKOH/g以下である。塩基価の測定方法は、JIS K7237:1995に規定の方法により測定する。
 市販の分散剤としては、例えば、「ディスパー」シリーズの「byk-101」、「byk-130」、「byk-161」、「byk-162」、「byk-170」、「byk-2020」、「byk-2164」、「byk-LPN21324」(以上、ビックケミー(BYK)社製);「ソルスパース」シリーズの「9000」、「11200」、「13240」、「13650」、「13940」、「17000」、「18000」、「24000」、「28000」、「32000」、「38500」、「71000」(以上、ルブリゾール社製);「アジスパー」シリーズの「PB821」、「PB822」、「PB880」、「PB881」(以上、味の素ファインテクノ株式会社製);「エフカ」シリーズの「46」、「47」、「48」、「49」、「4010」、「4047」、「4050」、「4165」、「5010」(以上、BASF社製);「フローレンTG-710」(共栄社化学株式会社製);「TAMN-15」(日光ケミカルズ株式会社製)が挙げられる。
 分散剤の含有量は、高温保管安定性の観点から、ポリエステル100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは4質量部以上であり、そして、好ましくは80質量部以下、より好ましくは60質量部以下、更に好ましくは40質量部以下、より更に好ましくは30質量部以下、より更に好ましくは20質量部以下である。
[アスファルト混合物]
 本発明のアスファルト組成物は、バインダ組成物であり、該アスファルト組成物に、骨材を添加して、アスファルト混合物とした後に、舗装に使用される。すなわち、本発明のアスファルト組成物は、舗装用として好適であり、特に道路舗装用として好適である。
 本発明のアスファルト混合物は、前述のアスファルト組成物、及び骨材を含有する。つまり、アスファルト混合物は、アスファルト、ポリエステル及び骨材を含有し、好ましくはアスファルト、熱可塑性エラストマー、ポリエステル及び骨材を含有する。
 アスファルト混合物中のアスファルト組成物の含有量は、マイクロプラスチックの発生量を低減する観点から、アスファルト混合物100質量%中、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは4質量%以上であり、そして、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。
〔骨材〕
 骨材としては、例えば、砕石、玉石、砂利、砂、再生骨材、セラミックス等を任意に選択して用いることができる。また、骨材としては、粒径2.36mm以上の粗骨材、粒径2.36mm未満の細骨材のいずれも使用することができる。
 粗骨材としては、例えば、粒径範囲2.36mm以上4.75mm以下の砕石、粒径範囲4.75mm以上12.5mm以下の砕石、粒径範囲12.5mm以上19mm以下の砕石、粒径範囲19mm以上31.5mm以下の砕石が挙げられる。
 細骨材は、好ましくは粒径0.075mm以上2.36mm未満の細骨材である。細骨材としては、例えば、川砂、丘砂、山砂、海砂、砕砂、細砂、スクリーニングス、砕石ダスト、シリカサンド、人工砂、ガラスカレット、鋳物砂、再生骨材破砕砂が挙げられる。
 上記の粒径はJIS A5001:1995に規定される値である。
 これらの中でも、粗骨材と細骨材との組合せが好ましい。
 なお、細骨材には、粒径0.075mm未満のフィラー(例えば、砂)が含まれていてもよい。フィラーとしては、砂、フライアッシュ、炭酸カルシウム、消石灰等が挙げられる。このうち、乾燥強度向上の観点から、炭酸カルシウムが好ましい。
 フィラーの平均粒径は、乾燥強度向上の観点から、好ましくは0.001mm以上であり、そして、好ましくは0.05mm以下、より好ましくは0.03mm以下、更に好ましくは0.02mm以下である。フィラーの平均粒径は、レーザー回折式粒度分布測定装置で測定することができる。ここで、平均粒径とは、体積累積50%の平均粒径を意味する。
〔フィラー平均粒径の測定方法〕
 フィラーの平均粒径は、レーザー回折式粒度分布測定装置「LA-950」(株式会社堀場製作所製)を用い、以下に示す条件で測定した値である。
・測定方法:フロー法
・分散媒:エタノール
・試料調製:2mg/100mL
・分散方法:撹拌、内蔵超音波1分
 粗骨材と細骨材との質量比率は、マイクロプラスチック量の低減の観点から、好ましくは10/90以上、より好ましくは20/80以上、更に好ましくは30/70以上であり、そして、好ましくは90/10以下、より好ましくは80/20以下、更に好ましくは70/30以下である。
 骨材の含有量は、マイクロプラスチックの発生量を低減する観点から、アスファルト組成物100質量部に対して、好ましくは1,000質量部以上、より好ましくは1,200質量部以上、更に好ましくは1,400質量部以上であり、そして、好ましくは3,000質量部以下、より好ましくは2,500質量部以下、更に好ましくは2,000質量部以下である。
 アスファルト混合物における好適な配合例は、以下のとおりである。
(1)一例のアスファルト混合物は、例えば、30容量%以上45容量%未満の粗骨材と、30容量%以上50容量%以下の細骨材と、5容量%以上10容量%以下のアスファルト組成物とを含む(細粒度アスファルト)。
(2)一例のアスファルト混合物は、例えば、45容量%以上70容量%未満の粗骨材と、20容量%以45容量%以下の細骨材と、3容量%以上10容量%以下のアスファルト組成物とを含む(密粒度アスファルト)。
(3)一例のアスファルト混合物は、例えば、70容量%以上80容量%以下の粗骨材と、10容量%以上20容量%以下の細骨材と、3容量%以上10容量%以下のアスファルト組成物とを含む(ポーラスアスファルト)。
 アスファルト混合物には、更に必要に応じて、その他の成分を配合してもよい。
 なお、従来の骨材とアスファルトを含むアスファルト混合物におけるアスファルトの配合割合については、通常、社団法人日本道路協会発行の「舗装設計施工指針」に記載されている「アスファルト組成物の配合設計」から求められる最適アスファルト量に準じて用いられている。
 本発明においては、上記の最適アスファルト量が、アスファルト、熱可塑性エラストマー及びポリエステルの合計量に相当する。したがって、通常、前記最適アスファルト量を、アスファルト、熱可塑性エラストマー及びポリエステルの合計配合量とすることが好ましい。
 ただし、「舗装設計施工指針」に記載の方法に限定する必要はなく、他の方法によって決定してもよい。
[アスファルト混合物の製造方法]
 本発明のアスファルト混合物の製造方法は、(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させてポリエステルを得る工程(工程1)、並びに加熱した骨材と、アスファルトと、前述のポリエステル(工程1で得られたポリエステル)とを混合する工程(工程2)を含み、好ましくは加熱した骨材と、アスファルトと、熱可塑性エラストマーと、前述のポリエステルとを混合する工程を含む。
 本発明のアスファルト混合物の製造方法において、ポリエチレンテレフタレートは好ましくは回収されたポリエチレンテレフタレートである。この場合、アスファルト混合物の製造方法は、(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを製品から回収する工程(工程1a)、工程2a:前述のポリエチレンテレフタレート(工程1aで得られたポリエチレンテレフタレート)を、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させてポリエステルを得る工程(工程2a)、並びにアスファルトと、前述のポリエステル(工程2aで得られたポリエステル)とを混合する工程(工程3a)を含む。
 アスファルト混合物の具体的な製造方法としては、従来のプラントミックス方式、プレミックス方式等といわれるアスファルト混合物の製造方法が挙げられる。いずれも加熱した骨材にアスファルト(及び必要に応じて熱可塑性エラストマー)及びポリエステルを添加する方法である。添加方法は、例えば、アスファルト(及び必要に応じて熱可塑性エラストマー)及びポリエステルを予め溶解させたプレミックス方式、又はアスファルトに熱可塑性エラストマーを溶解させた改質アスファルトを添加し、その後にポリエステルを投入するプラントミックス法が挙げられる。これらの中でも、マイクロプラスチックの発生量を低減する観点から、プレミックス方式が好ましい。
 より具体的には、アスファルト混合物の製造方法は、当該混合する工程において、好ましくは、
 (i)加熱した骨材に、アスファルト(及び必要に応じて熱可塑性エラストマー)を添加及び混合した後、ポリエステルを添加及び混合する、
 (ii)加熱した骨材に、アスファルト(及び必要に応じて熱可塑性エラストマー)及びポリエステルを同時に添加及び混合する、又は
 (iii)加熱した骨材に、事前に加熱混合したアスファルト(及び必要に応じて熱可塑性エラストマー)とポリエステルとの混合物を添加及び混合する。
 これらの中でも、マイクロプラスチックの発生量を低減する観点から、(iii)の方法が好ましい。
 (iii)の方法におけるアスファルトとポリエステルとを事前に混合するときの混合温度は、マイクロプラスチックの発生量を低減する観点から、ポリエステルの軟化点よりも高い温度が好ましく、好ましくは130℃以上、より好ましくは150℃以上、更に好ましくは170℃以上、より更に好ましくは180℃以上であり、そして、アスファルトの熱劣化を防止する観点から、好ましくは230℃以下、より好ましくは210℃以下、更に好ましくは200℃以下である。混合時間は、例えば、10分以上、好ましくは30分以上、より好ましくは1時間以上、より好ましくは2時間以上である。時間の上限は、特に限定されないが、例えば約5時間程度である。
 (i)~(iii)の方法における加熱した骨材の温度は、マイクロプラスチックの発生量を低減する観点から、ポリエステルの軟化点よりも高い温度が好ましく、好ましくは130℃以上、より好ましくは150℃以上、更に好ましくは170℃以上、より更に好ましくは180℃以上であり、アスファルトの熱劣化を防止する観点から、好ましくは230℃以下、より好ましくは210℃以下、更に好ましくは200℃以下である。
 混合する工程において、マイクロプラスチックの発生量を低減する観点から、混合温度は、ポリエステルの軟化点よりも高い温度が好ましく、好ましくは130℃以上、より好ましくは150℃以上、更に好ましくは170℃以上、より更に好ましくは180℃以上であり、アスファルトの熱劣化を防止する観点から、好ましくは230℃以下、より好ましくは210℃以下、更に好ましくは200℃以下である。混合する工程における混合時間は、例えば、30秒以上、好ましくは1分以上、より好ましくは2分以上、更に好ましくは5分以上であり、時間の上限は、特に限定されないが、例えば約30分程度である。
 アスファルト混合物の製造方法は、マイクロプラスチック量の低減の観点から、混合する工程後、得られた混合物をポリエステルの軟化点よりも高い温度以上で保持する工程を有することが好ましい。
 保持する工程においては、混合物を更に混合してもよいが、前述の温度以上を保持していればよい。
 保持する工程において、混合温度は、ポリエステルの軟化点よりも高い温度が好ましく、好ましくは130℃以上、より好ましくは150℃以上、更に好ましくは170℃以上、より更に好ましくは180℃以上であり、そして、アスファルト組成物の熱劣化を防止する観点から、好ましくは230℃以下、より好ましくは210℃以下、更に好ましくは200℃以下である。保持する工程における保持時間は、好ましくは0.5時間以上、より好ましくは1時間以上、更に好ましくは1.5時間以上であり、そして、時間の上限は、特に限定されないが、例えば5時間程度である。
[道路舗装方法]
 本発明のアスファルト混合物は、道路舗装用として好適であり、上述したように、アスファルト組成物に骨材を添加したアスファルト混合物が、道路舗装に使用される。
 道路舗装方法は、好ましくは、前述のアスファルト混合物を道路に施工し、アスファルト舗装材層を形成する工程を有する。具体的には、道路舗装方法は、アスファルトと、前述のポリエステルと、骨材とを混合する、アスファルト混合物を得る工程(工程1)、及び前記工程1で得られたアスファルト混合物を道路に施工してアスファルト舗装材層を形成する工程(工程2)を含む。アスファルト舗装材層は、基層又は表層であることが好ましい。
 アスファルト混合物は、公知の施工機械編成で、同様の方法によって締固め施工すればよい。加熱アスファルト混合物として使用する場合の締固め温度は、マイクロプラスチック量の低減の観点から、ポリエステルの軟化点よりも高い温度が好ましく、好ましくは100℃以上、より好ましくは120℃以上、更に好ましくは130℃以上であり、そして、好ましくは200℃以下、より好ましくは180℃以下である。
 本発明は、更に、以下の<1>~<8>を開示する
<1> アスファルト及びポリエステルを含有するアスファルト組成物であって、
 前記ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、
 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下である、アスファルト組成物。
<2> 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が10J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下である、上記<1>に記載のアスファルト組成物。
<3> 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が12J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下である、上記<1>に記載のアスファルト組成物。
<4> 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下であり、かつ、前記ポリエステルの数平均分子量(Mn)が1600以上5000以下である、上記<1>に記載のアスファルト組成物。
<5> 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下であり、かつ、前記ポリエステルの数平均分子量(Mn)が2000以上5000以下である、上記<1>に記載のアスファルト組成物。
<6> 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下であり、かつ、前記ポリエステルの数平均分子量(Mn)が1600以上4000以下である、上記<1>に記載のアスファルト組成物。
<7> 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が10J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下であり、かつ、前記ポリエステルの数平均分子量(Mn)が2000以上5000以下である、上記<1>に記載のアスファルト組成物。
<8> 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が10J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下であり、かつ、前記ポリエステルの数平均分子量(Mn)が2000以上4000以下である、上記<1>に記載のアスファルト組成物。
<9> 前記ポリエチレンテレフタレートの固有粘度(IV)が0.6超である、上記<1>~<8>のいずれかに記載のアスファルト組成物。
<10> 前記ポリエチレンテレフタレートの固有粘度(IV)が0.61以上である、上記<1>~<8>のいずれかに記載のアスファルト組成物。
<11> 前記ポリエチレンテレフタレートの固有粘度(IV)が0.62以上である、上記<1>~<8>のいずれかに記載のアスファルト組成物。
<12> 前記ポリエチレンテレフタレートの固有粘度(IV)が0.63以上である、上記<1>~<8>のいずれかに記載のアスファルト組成物。
<14> 前記ポリエチレンテレフタレートの固有粘度(IV)が0.4以上である、上記<1>~<8>のいずれかに記載のアスファルト組成物。
<15> アスファルト及びポリエステルを含有するアスファルト組成物であって、
 前記ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、
 前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.7以上1.05以下である、アスファルト組成物。
<16> 工程1:(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上210℃以下の条件下で4時間以上、エステル交換させてポリエステルを得る工程、並びに
 工程2:加熱した骨材と、アスファルトと、工程1で得られたポリエステルとを混合する工程
を含む、アスファルト混合物の製造方法。
<17> (DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上210℃以下の条件下で4時間以上、エステル交換させる、ポリエステルの製造方法。
 樹脂等の各物性値については次の方法により測定、評価した。
[測定方法]
〔PETの固有粘度(IV)〕
 PETの固有粘度(IV)は、フェノール/テトラクロロエタン(質量比)が60/40の混合溶媒に0.4g/dLの濃度にて溶解し、ウベローデ型粘度計にて測定を行い、下記式に従って算出することで求めた。
Figure JPOXMLDOC01-appb-M000002

〔式中、kはハギンズの定数であり、Cは試料溶液の濃度(g/dL)であり、η=(t1/t0)-1であり、t0は溶媒のみの落下秒数であり、t1は試料溶液の落下秒数である。kは0.33とする。〕
〔PETのDSC測定による吸熱量及び発熱量〕
 示差走査熱量計「Q-100」(ティー エイ インスツルメント ジャパン株式会社製)を用いて、試料0.01~0.02gをアルミパンに計量し、300℃まで昇温速度10℃/分で昇温した。吸熱の最大ピーク温度を含む吸熱挙動部分にベースラインを引き、その面積を吸熱量とした。発熱の最大ピーク温度を含む発熱挙動部分にベースラインを引き、その面積を発熱量とした。
〔ポリエステルの酸価及び水酸基価〕
 ポリエステルの酸価及び水酸基価は、JIS K0070:1992の方法に基づき測定した。ただし、測定溶媒のみJIS K0070:1992に規定のエタノールとエーテルとの混合溶媒から、アセトンとトルエンとの混合溶媒(アセトン:トルエン=1:1(容量比))に変更した。
〔ポリエステルの軟化点及びガラス転移点〕
(1)軟化点
 フローテスター「CFT-500D」(株式会社島津製作所製)を用い、1gの試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出した。温度に対し、フローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とした。
(2)ガラス転移点
 示差走査熱量計「Q-100」(ティー エイ インスツルメント ジャパン株式会社製)を用いて、試料0.01~0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/分で0℃まで冷却した。次に昇温速度10℃/分で150℃まで昇温しながら測定した。吸熱の最大ピーク温度以下のベースラインの延長線とピークの立ち上がり部分からピークの頂点までの最大傾斜を示す接線との交点の温度をガラス転移点とした。
〔樹脂の数平均分子量(Mn)及び重量平均分子量(Mw)〕
 以下の方法により、ゲル浸透クロマトグラフィー(GPC)法により数平均分子量及び重量平均分子量を求めた。
(1)試料溶液の調製
 濃度が0.5g/100mLになるように、試料をテトラヒドロフランに、40℃で溶解させた。次いで、この溶液を孔径0.20μmのPTFEタイプメンブレンフィルター「DISMIC-25JP」(東洋濾紙株式会社製)を用いて濾過して不溶解成分を除き、試料溶液とした。
(2)分子量測定
 下記の測定装置と分析カラムを用い、溶離液としてテトラヒドロフランを、毎分1mLの流速で流し、40℃の恒温槽中でカラムを安定させた。そこに試料溶液100μLを注入して測定を行う。試料の分子量は、あらかじめ作成した検量線に基づき算出した。このときの検量線には、数種類の単分散ポリスチレン(東ソー株式会社製のA-500(5.0×102)、A-1000(1.01×103)、A-2500(2.63×103)、A-5000(5.97×103)、F-1(1.02×104)、F-2(1.81×104)、F-4(3.97×104)、F-10(9.64×104)、F-20(1.90×105)、F-40(4.27×105)、F-80(7.06×105)、F-128(1.09×106))を標準試料として作成したものを用いた。括弧内は分子量を示す。
測定装置:「HLC-8220GPC」(東ソー株式会社製)
分析カラム:「TSKgel GMHXL」+「TSKgel G3000HXL」(東ソー株式会社製)
〔ポリエステル中の分子量500以下の成分の含有量〕
 以下の方法により、GPC法によりポリエステル中の分子量が500以下の成分の割合(質量%)を求めた。
(1)試料溶液の調製及び測定は、前記ポリエステルの数平均分子量及び重量平均分子量の測定と同様の方法で行った。
(2)算出方法
 前記方法によって得られたチャートのピークを、前記標準物質から作成した検量線による換算分子量500である保持時間において、直線により切断し、その分子量の小さい側のピークの面積を全体のピークの面積で除した値を分子量が500以下の成分の割合(質量%)として算出した。
[PET]
(PET-1)
 PET-1としては、特開2004-163808号公報に記載のPET-cを使用し、溶融混練せず、そのままポリエステル合成に使用した。
(PET-2)
 PET-1 100質量部を混練部分の全長1560mm、スクリュー径42mm、バレル内径43mmの同方向回転二軸押出し機を用い、ロール回転速度200r/min、ロール内の加熱温度280℃で溶融混練してPET-1の溶融混練物を得た。PET-1の供給速度は10kg/h、平均滞留時間は約18秒であった。
 得られた溶融混練物を水温20℃の冷却ローラーを使用しながら冷却し、粗粉砕してPET-2を得た。
(PET-2A)
 PET-2の調製と同様にしてPET-1の溶融混練物を得た。
 得られた溶融混練物を水温5℃の冷却ローラーを使用しながら即座に冷却し、粗粉砕してPET-2Aを得た。
(PET-2B)
 PET-2の調製と同様にしてPET-1の溶融混練物を得た。
 得られた溶融混練物を水温35℃のローラーを使用しながら冷却し、粗粉砕してPET-2Bを得た。
(PET-3)
 PET-3としては、「RAMAPET N2G」(Indorama Ventures社製)を使用し、溶融混練せず、そのままポリエステル合成に使用した。
(PET-4)
 PET-2の調製において、PET-1をPET-3に代えたこと以外は同様にして、PET-3の溶融混練物を得た。
 得られた溶融混練物を水温5℃の冷却ローラーを使用しながら即座に冷却し、粗粉砕してPET-4を得た。
(PET-5)
 PET-2の調製において、PET-1を「TRN-MTJ」(帝人株式会社製)に代えたこと以外は同様にして、溶融混練物を得た。
 得られた溶融混練物を水温5℃の冷却ローラーを使用しながら即座に冷却し、粗粉砕してPET-5を得た。
(PET-6)
 PET-6としては、「SA-1206」(ユニチカ株式会社製)を用いた。
(PET-7)
 PET-2の調製において、PET-1をPET-6に代えたこと以外は同様にして、溶融混練物を得た。
 得られた溶融混練物を水温20℃の冷却ローラーを使用しながら冷却し、粗粉砕してPET-7を得た。
(PET-8)
 PET-8としては、「Recycle  Pellet Polyester Chip  white」(Polindo UTAMA社製)をを使用し、溶融混練せず、そのままポリエステル合成に使用した。
Figure JPOXMLDOC01-appb-T000003
製造例1~10
(ポリエステル(A1)~(A10)及び(A12))
 表2及び3に示すアジピン酸以外の原料を、窒素導入管、100℃の熱水を通した分留管を装備した脱水管、攪拌器及び熱電対を装備した5リットル容の四つ口フラスコに入れ、窒素雰囲気下にてジ(2-エチルヘキサン酸)錫(II)20g、及び没食子酸2gを添加し、180℃まで昇温した。180℃で1時間保温した後に180℃から210℃まで10℃/時間で昇温し、その後210℃で7時間縮重合反応させ、さらに210℃、8.0kPaにて1時間反応を行った。次にアジピン酸を添加し、210℃、10kPaにて表2及び3に示す軟化点に達するまで反応を行って、非晶質ポリエステル(A1)~(A10)及び(A12)を得た。
製造例11
(ポリエステル(A11))
 表3に示すアジピン酸以外の原料を、温度計、ステンレス製撹拌棒、流下式コンデンサー及び窒素導入管を装備した5リットル容の四つ口フラスコに入れ、窒素雰囲気にてジ(2-エチルヘキサン酸)錫(II)20g、及び没食子酸2gを添加し、マントルヒーター中で235℃まで昇温を行い235℃到達後7時間保持した後8.0kPaにて1時間減圧反応を行った。その後、180℃まで冷却後、アジピン酸を投入し、210℃まで2時間かけて昇温後210℃で1時間保持し、減圧反応を行いながら、表3に示す軟化点に達するまで反応を行い、ポリエステル(A11)を得た。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
製造例12
(ポリエステル(B1))
 表4に示すアジピン酸以外のポリエステル系樹脂の原料を、温度計、ステンレス製撹拌棒、流下式コンデンサー及び窒素導入管を装備した5リットル容の四つ口フラスコに入れ、窒素雰囲気下、160℃まで昇温した。その後、アクリル酸(両反応性モノマー)、ビニル系樹脂の原料モノマー及び重合開始剤の混合物を滴下ロートにより1時間かけて滴下した。滴下後、160℃に保持したまま、1時間付加重合反応を熟成させた後、200℃まで上昇させ、2-エチルヘキサン酸錫(II)20g及び没食子酸2gを入れた後、230℃で6時間縮重合反応させ、さらに230℃、8.0kPaにて1時間反応を行った。210℃まで冷却した後、アジピン酸を投入し、210℃、10kPaにて表4に示す軟化点に達するまで反応を行って、ポリエステル(B1)を得た。
Figure JPOXMLDOC01-appb-T000006
実施例1
 バインダ混合物として、180℃に加熱した改質II型アスファルト(東亜道路工業株式会社製)2200gを3Lのステンレス容器に入れて100rpmで撹拌し、ポリエステル(A1)110g(アスファルト100質量部に対して5質量部)を徐々に添加し、300rpmにて2時間撹拌し、アスファルト組成物(AS-1)を作製した。
 次に180℃に加熱した骨材(骨材の組成は以下を参照)11kgをアスファルト用混合機に入れ、180℃にて60秒間混合した。
 次いで前記アスファルト組成物(AS-1)635gを加え、アスファルト用混合機にて2分間混合した。得られたアスファルト混合物を180℃で2時間保管後、300×300×50mmの型枠に充填し、ローラーコンパクター(株式会社岩田工業所製)を用い、温度150℃、荷重0.44kPaにて25回転圧処理を行い、供試体としてアスファルト混合物(M-1)を作成した。
<骨材の組成>
   6号砕石    50.9質量部
   砕砂1     10.4質量部
   砕砂2     22.1質量部
   細砂      10.4質量部
   石粉       6.2質量部
通過質量%:
    ふるい目 15   mm: 100  質量%
    ふるい目 10   mm:  85.6質量%
    ふるい目  5   mm:  49.7質量%
    ふるい目  2.5 mm:  44.6質量%
    ふるい目  1.2 mm:  31.6質量%
    ふるい目  0.6 mm:  21.3質量%
    ふるい目  0.3 mm:  12.7質量%
    ふるい目  0.15mm:   7.1質量%
実施例2~7、12及び13
 実施例1において、ポリエステル(A1)をポリエステル(A2)~(A6)、(A11)、(B1)又は(A12)にそれぞれ変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-2)~(AS-7)、(AS-12)及び(AS-13)を作製した。
 実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-2)~(AS-7)、(AS-12)又は(AS-13)635gにそれぞれ変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-2)~(M-7)、(M-12)及び(M-13)を得た。
実施例8
 実施例1において、ポリエステル(A1)の添加量を550g(アスファルト100質量部に対して25質量部)に変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-8)を得た。
 実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-8)756gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-8)を得た。
実施例9
 実施例1において、アスファルトをストレートアスファルト(東亜道路工業株式会社製)に変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-9)を得た。
 実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-9)635gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-9)を得た。
実施例10
 実施例1において、アスファルトを改質アスファルト「PG76-22」(米国テキサス州、Ergon社製)に変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-10)を得た。
 実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-10)635gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-10)を得た。
実施例11
 実施例1において、アスファルトを改質アスファルト(メキシコ FESPA社製)に変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-11)を得た。
 実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-11)635gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-11)を得た。
比較例1
 実施例1において、ポリエステル(A1)を添加せず、改質II型アスファルトをそのまま使用した。
 実施例1において、アスファルト組成物(AS-1)635gを改質II型アスファルト605gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-A)を得た。
比較例2~5
 実施例1において、ポリエステル(A1)をポリエステル(A7)~(A10)にそれぞれ変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-a1)~(AS-a4)を作製した。
 実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-a1)~(AS-a4)635gにそれぞれ変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-a1)~(M-a4)を得た。
比較例6
 実施例1において、ポリエステル(A1)をPET-1に変更したこと以外は実施例1と同様にして、アスファルト組成物(AS-a5)を作製した。
 実施例1において、アスファルト組成物(AS-1)635gをアスファルト組成物(AS-a5)635gに変更したこと以外は実施例1と同様にして、供試体としてアスファルト混合物(M-a5)を得た。
[評価]
<マイクロプラスチック量の測定>
 60℃恒温室にて60℃に設定した温水に前記供試体を浸漬し、ホイールトラッキング試験機(株式会社岩田工業所製)を用いて、荷重150kg、接地圧0.9MPa、水温60℃、速度15回/分の条件で、試験を実施し1200回(80分間)後に停止した。水槽内を脱水し乾燥させた後に、堆積した摩耗粉を回収し秤量して、これを「マイクロプラスチック発生量」とした。なお、得られた値は0.3m2あたりの発生量であり、これを1m2あたりに換算した。
Figure JPOXMLDOC01-appb-T000007
 ポリエチレンテレフタレートをそのまま配合した比較例6は、マイクロプラスチックの発生量を充分に低減できない。特定のポリエチレンテレフタレートに由来する構成単位を含まない比較例2~5は、マイクロプラスチックの発生量を充分に低減できない。
 これに対し、本発明によれば、特定のポリエチレンテレフタレートに由来する構成単位を含む特定のポリエステルを含有するアスファルト組成物が、マイクロプラスチックの発生量を顕著に低減できることがわかる。

Claims (14)

  1.  アスファルト及びポリエステルを含有するアスファルト組成物であって、
     前記ポリエステルが、ポリエチレンテレフタレート、アルコール及びカルボン酸化合物の重縮合物であり、
     前記ポリエチレンテレフタレートの(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、前記ポリエチレンテレフタレートの固有粘度(IV)が0.6以上1.05以下である、アスファルト組成物。
  2.  前記ポリエステル中の、ゲル浸透クロマトグラフィー法により測定される分子量分布における分子量500以下の成分の含有量が、7.0質量%以下である、請求項1に記載のアスファルト組成物。
  3.  前記ポリエステル中のアルコール成分が、脂肪族ジオールである、請求項1又は2に記載のアスファルト組成物。
  4.  前記ポリエステルの数平均分子量(Mn)が、1600以上5000以下である、請求項1~3のいずれか1つに記載のアスファルト組成物。
  5.  前記ポリエステルの酸価が、2mgKOH/g以上40mgKOH/g以下である、請求項1~4のいずれか1つに記載のアスファルト組成物。
  6.  熱可塑性エラストマーを更に含有する、請求項1~5のいずれか1つに記載のアスファルト組成物。
  7.  前記ポリエチレンテレフタレートが、回収されたポリエチレンテレフタレートである、請求項1~6のいずれか1つに記載のアスファルト組成物。
  8.  工程1:(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させてポリエステルを得る工程、並びに
     工程2:アスファルトと、工程1で得られたポリエステルとを混合する工程
    を含む、アスファルト組成物の製造方法。
  9.  前記ポリエチレンテレフタレートが、回収されたポリエチレンテレフタレートである、請求項8に記載のアスファルト組成物の製造方法。
  10.  請求項1~7のいずれか1つに記載のアスファルト組成物と、骨材と、を含むアスファルト混合物。
  11.  工程1:(DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させてポリエステルを得る工程、並びに
     工程2:加熱した骨材と、アスファルトと、工程1で得られたポリエステルとを混合する工程
    を含む、アスファルト混合物の製造方法。
  12.  前記工程2における前記混合する工程において、
     (i)加熱した骨材に、アスファルトを添加及び混合した後、ポリエステルを添加及び混合する、
     (ii)加熱した骨材に、アスファルト及びポリエステルを同時に添加及び混合する、又は
     (iii)加熱した骨材に、事前に加熱混合したアスファルトとポリエステルとの混合物を添加及び混合する、
    請求項11に記載のアスファルト混合物の製造方法。
  13.  前記ポリエチレンテレフタレートが、回収されたポリエチレンテレフタレートである、請求項11又は12に記載のアスファルト混合物の製造方法。
  14.  (DSC測定による吸熱量)-(DSC測定による発熱量)の値が5J/g以上30J/g以下であり、かつ、固有粘度(IV)が0.6以上1.05以下であるポリエチレンテレフタレートを、アルコール及びカルボン酸化合物の存在下、180℃以上235℃以下の条件下で4時間以上、エステル交換させる、ポリエステルの製造方法。
PCT/JP2021/008697 2020-03-06 2021-03-05 アスファルト組成物 WO2021177444A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/908,929 US20230091707A1 (en) 2020-03-06 2021-03-05 Asphalt composition
EP21763542.4A EP4116489A4 (en) 2020-03-06 2021-03-05 ASPHALT COMPOSITION
CN202180018790.4A CN115244134B (zh) 2020-03-06 2021-03-05 沥青组合物
MX2022011004A MX2022011004A (es) 2020-03-06 2021-03-05 Composicion de asfalto.
BR112022017615A BR112022017615A2 (pt) 2020-03-06 2021-03-05 Composição de asfalto

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-039313 2020-03-06
JP2020039313 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021177444A1 true WO2021177444A1 (ja) 2021-09-10

Family

ID=77614048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008697 WO2021177444A1 (ja) 2020-03-06 2021-03-05 アスファルト組成物

Country Status (7)

Country Link
US (1) US20230091707A1 (ja)
EP (1) EP4116489A4 (ja)
JP (1) JP2021138950A (ja)
CN (1) CN115244134B (ja)
BR (1) BR112022017615A2 (ja)
MX (1) MX2022011004A (ja)
WO (1) WO2021177444A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4257749A1 (de) * 2022-04-05 2023-10-11 OAT green tech solutions GmbH Verfahren zur herstellung einer fahrbahnoberfläche mit verringerter emission von mikroplastik

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820636A (ja) 1994-07-07 1996-01-23 Mitsubishi Rayon Co Ltd トナー用架橋ポリエステル樹脂
JPH10239903A (ja) 1997-02-27 1998-09-11 Sanyo Chem Ind Ltd 静電荷像現像用トナーバインダー
JPH11133668A (ja) 1997-10-31 1999-05-21 Sanyo Chem Ind Ltd トナーバインダー
JP2004163808A (ja) 2002-11-15 2004-06-10 Kao Corp トナー用結着樹脂組成物
JP2006096799A (ja) 2004-09-28 2006-04-13 Yamaken Plant Kk 舗装材用プラスチック組成物の製造方法
WO2009004745A1 (ja) * 2007-07-01 2009-01-08 Ftex Incorporated ポリエチレンテレフタレート系グラフト共重合樹脂およびその成形体の製造方法
WO2017033682A1 (ja) * 2015-08-27 2017-03-02 花王株式会社 トナー用結着樹脂組成物
WO2017077748A1 (ja) * 2015-11-04 2017-05-11 花王株式会社 トナー用結着樹脂組成物
WO2019017334A1 (ja) * 2017-07-18 2019-01-24 花王株式会社 アスファルト組成物
WO2019100058A1 (en) * 2017-11-20 2019-05-23 Resinate Materials Group, Inc. Polyol compositions from thermoplastic polyesters and their use in hot-melt adhesives and binders
JP2020200459A (ja) * 2019-06-05 2020-12-17 花王株式会社 アスファルト混合物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138430A (ja) * 2001-11-01 2003-05-14 Toyobo Co Ltd 熱融着性複合繊維、不織布及び壁紙
EP2325229A1 (en) * 2009-11-13 2011-05-25 Cytec Surface Specialties, S.A. Polyesters for coatings
CN102181134B (zh) * 2011-03-22 2012-08-29 中公高科养护科技股份有限公司 抗车辙剂、沥青材料及制备方法
CN103509356B (zh) * 2013-09-18 2016-09-28 深圳百亿莱实业有限公司 沥青混合料改性材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820636A (ja) 1994-07-07 1996-01-23 Mitsubishi Rayon Co Ltd トナー用架橋ポリエステル樹脂
JPH10239903A (ja) 1997-02-27 1998-09-11 Sanyo Chem Ind Ltd 静電荷像現像用トナーバインダー
JPH11133668A (ja) 1997-10-31 1999-05-21 Sanyo Chem Ind Ltd トナーバインダー
JP2004163808A (ja) 2002-11-15 2004-06-10 Kao Corp トナー用結着樹脂組成物
JP2006096799A (ja) 2004-09-28 2006-04-13 Yamaken Plant Kk 舗装材用プラスチック組成物の製造方法
WO2009004745A1 (ja) * 2007-07-01 2009-01-08 Ftex Incorporated ポリエチレンテレフタレート系グラフト共重合樹脂およびその成形体の製造方法
WO2017033682A1 (ja) * 2015-08-27 2017-03-02 花王株式会社 トナー用結着樹脂組成物
WO2017077748A1 (ja) * 2015-11-04 2017-05-11 花王株式会社 トナー用結着樹脂組成物
WO2019017334A1 (ja) * 2017-07-18 2019-01-24 花王株式会社 アスファルト組成物
WO2019100058A1 (en) * 2017-11-20 2019-05-23 Resinate Materials Group, Inc. Polyol compositions from thermoplastic polyesters and their use in hot-melt adhesives and binders
JP2020200459A (ja) * 2019-06-05 2020-12-17 花王株式会社 アスファルト混合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Guideline for Pavement Design and Construction", JAPAN ROAD ASSOCIATION
See also references of EP4116489A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4257749A1 (de) * 2022-04-05 2023-10-11 OAT green tech solutions GmbH Verfahren zur herstellung einer fahrbahnoberfläche mit verringerter emission von mikroplastik

Also Published As

Publication number Publication date
US20230091707A1 (en) 2023-03-23
EP4116489A4 (en) 2024-03-20
MX2022011004A (es) 2022-10-07
CN115244134A (zh) 2022-10-25
EP4116489A1 (en) 2023-01-11
CN115244134B (zh) 2023-09-01
JP2021138950A (ja) 2021-09-16
BR112022017615A2 (pt) 2022-10-18

Similar Documents

Publication Publication Date Title
US11168215B2 (en) Asphalt composition
US10662110B2 (en) Asphalt composition for paving roads
JP6624524B2 (ja) アスファルト組成物
JP2020200459A (ja) アスファルト混合物
US20200181409A1 (en) Asphalt composition for road pavement
WO2018134921A1 (ja) 道路舗装用アスファルト組成物
US11958975B2 (en) Asphalt composition
WO2021177443A1 (ja) アスファルト組成物
WO2018003151A1 (ja) 道路舗装用アスファルト組成物
WO2021177444A1 (ja) アスファルト組成物
JP7201159B2 (ja) アスファルト組成物、舗装用アスファルト混合物、及び舗装体
JP2022093060A (ja) アスファルト改質剤の製造方法
US11708669B2 (en) Road paving method
WO2022071508A1 (ja) アスファルト改質剤
US20210147295A1 (en) Asphalt composition
WO2022004706A1 (ja) アスファルト改質剤
JP2023079024A (ja) アスファルト改質剤
JP2021191821A (ja) アスファルト混合物
JP2021063221A (ja) アスファルト組成物
JP2023079026A (ja) アスファルト改質剤
JP2023079808A (ja) アスファルト組成物
JP2022058303A (ja) 改質アスファルト用アスファルト改質剤
JP2023079030A (ja) アスファルト改質剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763542

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022017615

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021763542

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022017615

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220902