WO2021177021A1 - 低炭素フェロマンガンの製造方法 - Google Patents
低炭素フェロマンガンの製造方法 Download PDFInfo
- Publication number
- WO2021177021A1 WO2021177021A1 PCT/JP2021/005689 JP2021005689W WO2021177021A1 WO 2021177021 A1 WO2021177021 A1 WO 2021177021A1 JP 2021005689 W JP2021005689 W JP 2021005689W WO 2021177021 A1 WO2021177021 A1 WO 2021177021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blown
- molten metal
- blowing
- slag
- carbon ferromanganese
- Prior art date
Links
- 229910000616 Ferromanganese Inorganic materials 0.000 title claims abstract description 56
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000007664 blowing Methods 0.000 claims abstract description 51
- 239000002893 slag Substances 0.000 claims abstract description 45
- 230000001590 oxidative effect Effects 0.000 claims abstract description 27
- 238000003756 stirring Methods 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 229910052751 metal Inorganic materials 0.000 claims description 66
- 239000002184 metal Substances 0.000 claims description 66
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 238000005261 decarburization Methods 0.000 abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000011572 manganese Substances 0.000 description 54
- 239000007789 gas Substances 0.000 description 45
- 238000000034 method Methods 0.000 description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 21
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 21
- 229910001882 dioxygen Inorganic materials 0.000 description 21
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 18
- 239000011261 inert gas Substances 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 9
- 239000000292 calcium oxide Substances 0.000 description 9
- 235000012255 calcium oxide Nutrition 0.000 description 9
- 229910052748 manganese Inorganic materials 0.000 description 9
- 238000007670 refining Methods 0.000 description 9
- 238000003723 Smelting Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 6
- 239000002826 coolant Substances 0.000 description 5
- 229910000514 dolomite Inorganic materials 0.000 description 5
- 239000010459 dolomite Substances 0.000 description 5
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 4
- 239000001095 magnesium carbonate Substances 0.000 description 4
- 235000014380 magnesium carbonate Nutrition 0.000 description 4
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000003517 fume Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- -1 band shale Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/35—Blowing from above and through the bath
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/36—Processes yielding slags of special composition
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/072—Treatment with gases
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C22/00—Alloys based on manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
- C22C33/06—Making ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C35/00—Master alloys for iron or steel
- C22C35/005—Master alloys for iron or steel based on iron, e.g. ferro-alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for producing low carbon ferromanganese.
- the manganese (Mn) component which is useful as an alloy component of steel products, is added at the end of converter refining in the case of the converter steelmaking method using blast furnace hot metal as the main raw material.
- the electric furnace steelmaking method using scrap as the main raw material it is added at the time of melting work.
- a ferromanganese (FeMn) alloy is generally used as the manganese component.
- This ferromanganese alloy is classified into high carbon ferromanganese (HCFemn), medium carbon ferromanganese (MCFemn), and low carbon ferromanganese (LCFemn) according to the carbon concentration contained, and its chemical composition is defined by the Japanese Industrial Standards (JIS). (See Table 1). Since MCFemn and LCFemn are usually produced by using an expensive silicon manganese (SiMn) alloy and a large amount of electric power, they are ferroalloys that are much more expensive than HCFemn.
- HCFemn high carbon ferromanganese
- MCFemn medium carbon ferromanganese
- LCFemn low carbon ferromanganese
- desiliconization method a silicon-manganese molten metal having a target carbon content is prepared in an electric furnace or the like, and then manganese oxide such as manganese ore is added to the molten metal to oxidize and remove silicon in the silicon-manganese molten metal. be.
- This method has a problem that the electric power cost increases because the electric furnace is used.
- K (a Mn ⁇ P CO ) / (a MnO ⁇ a C ) ⁇ ⁇ ⁇ (2)
- the notation (R) means that the component of the chemical formula R is in the slag
- the notation of [M] means that the component of the element M is in the molten ferromanganese
- a i is the component i.
- the activity, P j is the partial pressure (atm) of the component j.
- the values of the equilibrium constants K, a Mn , and a C can be calculated using the thermodynamic data of known literature.
- the decarburization limit of the ferromanganese molten metal can be known by obtaining the relationship between the equilibrium [C] concentration in the molten metal and the molten metal temperature under the conditions of the following equations (3) and (4).
- a MnO 1 ... (3)
- P is the total pressure (1 atm)
- P Mn is equal to the vapor pressure of Mn at that temperature.
- atm is a unit of pressure
- 1 atm 101325 Pa.
- Patent Document 1 As a method of blowing oxygen gas into a high carbon ferromanganese molten metal to blow it, in Patent Document 1 and Patent Document 2, oxygen gas is blown into the high carbon ferromanganese molten metal from the bottom tuyere of the reactor. A method of oxidizing and removing carbon in the molten metal has been proposed.
- Patent Document 3 proposes a method of oxidizing and removing carbon in the molten metal by blowing oxygen gas from the top-blown lance while stirring the molten metal by blowing an inert gas from the bottom tuyere. There is.
- Patent Document 4 proposes a method of blowing oxygen gas from a furnace bottom tuyere to decarburize a high-carbon ferromanganese molten metal by mixing oxygen gas with water vapor and an inert gas in a low coal region. Has been done.
- Patent Document 5 oxygen gas and an inert gas are mixed and blown from the bottom tuyere to stir the molten metal, and oxygen gas is blown from the top blown lance to decarburize the molten metal of high carbon ferromanganese.
- a method of reducing the bottom-blown oxygen flow rate and the bottom-blown inert gas flow rate as the smelting progresses has been proposed.
- Patent Document 6 and Patent Document 7 propose a method in which an inert gas is mixed with top-blown oxygen and sprayed.
- Patent Document 8 and Patent Document 9 propose a method of controlling the slag composition by adding a slag-forming agent.
- a slag-forming agent By controlling the slag composition using manganese oxide such as manganese ore and manganese sintered ore so that the activity of MnO in the slag becomes close to 1 during blowing, the Mn yield is improved. be.
- Patent Documents 1 to 3 have the following problems. That is, in general, manganese has a strong affinity for oxygen and is easily oxidized by oxygen gas to form slag, and since the vapor pressure is high, evaporation becomes active as the molten metal temperature rises, and manganese scatters outside the system as fume dust. It tends to be easy. Therefore, with these technologies, not only is it difficult to decarburize by simply blowing or blowing oxygen gas into the molten metal, but also the yield of Mn is reduced, resulting in medium- and low-carbon ferromanganese. There was a problem that it could not be manufactured economically.
- Patent Documents 4 to 9 also has the following problems to be solved.
- high-temperature blowing is performed for decarburization and refining of molten ferromanganese.
- the method of mixing an inert gas with the top-blown oxygen gas and spraying it onto the ferromanganese molten metal is a fire point (top-blown oxygen gas), which is a site where decarburization is likely to occur at the highest temperature.
- top-blown oxygen gas top-blown oxygen gas
- the position where it collides with the molten metal surface will be cooled by the inert gas, and since it is thought that manganese vapor is originally generated at the fire point and the CO partial pressure is lowered, the inert gas is used. The effect of lowering the CO partial pressure is small.
- an object of the present invention is to blow an oxidizing gas from a molten ferromanganese in a converter type reaction vessel.
- the purpose of the present invention is to propose a method for producing low carbon ferromanganese that can enjoy a high Mn yield when decarburizing.
- oxidizing gas is blown from the top-blown slag onto the bath surface of the high-carbon ferromanganese molten metal contained in the reaction vessel provided with the top-blown lance and the bottom-blown tuyere to decarburize.
- the slag composition is such that the value of (CaO + MgO) / (Al 2 O 3 + SiO 2 ) is 0.4 or more and 5.0 or less based on the mass of the slag composition during blowing.
- the method for producing low-carbon ferromanganese of the present invention constructed as described above also comprises. a. From the bottom blowing tuyere, the stirring gas is blown so that the stirring power density is 500 W / t or more. b. Adding an auxiliary material containing MgO before or during blowing, Is considered to be a more preferred embodiment.
- the MnO in the slag when the ferromanganese molten metal is smelted by spraying an oxidizing gas, the MnO in the slag can be efficiently reduced by the carbon in the molten metal by optimizing the slag composition. It is possible to obtain a high Mn yield. In addition, according to the present invention, a higher Mn yield can be obtained by optimizing the stirring power density of the bottom blowing gas.
- FIG. 1 is an example of equipment effective for carrying out the method of the present invention.
- HCFemn high carbon ferromanganese
- the molten high carbon ferromanganese molten metal 2 is charged into the reaction vessel 1 which is an example of the upper bottom blown converter.
- Oxidizing gas is sprayed from the top blowing lance 3 onto the surface of the molten metal 2 in the container.
- the oxidizing gas means a pure oxygen gas or an oxygen mixed gas.
- the bottom blowing tuyere 4 is configured to blow a non-oxidizing gas into the molten metal 2.
- a pipe 5 for guiding the non-oxidizing gas is connected to the bottom blowing tuyere 4. Then, in the example of FIG. 1, a flow rate control valve 8 is installed in each of the pipe 6 for guiding the non-oxidizing gas to the top blowing lance 3 and the pipe 7 for guiding the oxygen gas.
- various additive 9s can be charged from the furnace opening.
- a slag 10 is formed on the molten metal 2.
- an auxiliary raw material containing MgO, ferromanganese as a coolant, or the like can be used as the additive material 9.
- top blowing lance 3 it is preferable to use a Laval nozzle for the top blowing lance 3, and when a plurality of nozzles are used, it is preferable to arrange the top blowing lance 3 rotationally symmetrically with respect to the lance axis. Further, since the top-blown lance 3 uses a porous lance, the firing point area is wider than that of the single-hole lance, and oxygen can be efficiently supplied to the molten metal, so that the top-blown lance 3 is suitable for mass production.
- the molten metal 2 of high-carbon ferromanganese is charged into the reaction vessel 1. Then, from before charging the molten metal 2 to during refining, a required amount of non-oxidizing gas is blown into the molten metal 2 from the bottom blowing tuyere 4 to stir the molten metal 2. After that, the top blowing lance 3 is lowered from above, and an oxidizing gas is blown onto the bath surface of the molten metal 2 to start decarburization blowing. If necessary, an auxiliary raw material containing MgO can be added before the start of blowing.
- an oxygen mixed gas in which 30 vol% or less of a non-oxidizing gas is mixed with the oxygen gas or the oxygen gas can be used.
- Ar is preferable as the non-oxidizing gas to be mixed.
- the top-blown oxidizing gas is more preferably an oxygen mixed gas having a non-oxidizing gas of 10 vol% or less, and more preferably a pure oxygen gas.
- the non-oxidizing gas blown from the bottom blowing tuyere Ar, CO or CO 2 or a mixed gas thereof may be used from the viewpoint of efficient stirring without increasing the nitrogen concentration in the molten metal. preferable.
- the value of (CaO + MgO) / (Al 2 O 3 + SiO 2 ) is 0.4 or more and 5.0 or less based on the mass of the slag composition during blowing. Adjust the slag composition.
- auxiliary raw materials such as alloy, quicklime and dolomite, Mn ore, blast furnace slag and the like may be appropriately added.
- the value of (CaO + MgO) / (Al 2 O 3 + SiO 2 ) is smaller than 0.4 or larger than 5.0, the solid phase ratio of the slag 10 increases.
- the viscosity of the slag increases and the fluidity of the slag decreases, which is not preferable because MnO in the slag 10 cannot be efficiently reduced into the molten metal.
- a more preferable lower limit is 1.0 or more, and a more preferable upper limit is 3.0 or less.
- the slag composition during slag is the composition at the time when the slag is sufficiently slag, and can be confirmed by the analysis at the end of slag.
- the activity a MnO of MnO can be kept high, and the activity a MnO in the slag 10 can be maintained at a high level. MnO can be reduced into the molten metal with higher efficiency.
- the upper limit is not particularly limited, but is less than 1.0.
- the feathers in the molten metal 2 are winged under the condition that the stirring power density ⁇ of the molten metal 2 represented by the following equation (5) is 500 W / t or more. It is preferable to supply the bottom blowing gas from the mouth 4. This is because the slag-metal reaction can be promoted and the Mn oxide (MnO) in the slag 10 can be recovered in the molten metal by stirring the molten metal at an appropriate stirring power density. More preferably, the stirring power density is 600 W / t or more.
- ⁇ 6.183 ⁇ (Q ⁇ T l / (60 ⁇ W )) ⁇ [ln ⁇ 1 + h / (1.02 ⁇ 10 -4 ⁇ (101325 ⁇ P)) ⁇ + ⁇ 1- (T g / T l) ) ⁇ ] ⁇ ⁇ ⁇ ⁇ (5)
- ⁇ bottom blowing gas stirring power density (W / t)
- Q bottom blowing gas flow rate (Nm 3 / h)
- W ferromanganese molten metal amount (t)
- T l ferromanganese molten metal temperature (° C.).
- T g bottom blowing gas temperature (° C.)
- h bath depth (distance from the stationary bath surface to the bottom of the reaction vessel) (m)
- P atmospheric pressure (1 atm).
- the oxidizing gas is blown from the top blowing lance 3 so that the flow velocity at the time of reaching the bath surface calculated by the following formulas (6) to (9) is 70 m / s or more and 150 m / s or less. Is preferable. The reason is that by operating within this range, oxygen can be blown without being blocked by Mn steam (fume) and while suppressing the scattering of molten metal, so that the decarboxylation efficiency is improved. This is because a high Mn yield can be obtained. More preferably, the flow rate at the time of reaching the bath surface is in the range of 80 m / s or more and 130 m / s or less.
- P 0 on lance nozzle before the pressure of the oxidizing gas (atm)
- P e the outlet pressure (atm)
- U 0 release speed of the oxidizing gas from the top lance (m / s)
- U Flow velocity (m / s) when the oxidizing gas reaches the bath surface from the top blown lance
- L Lance height (distance from the nozzle outlet of the top blown lance to the bath surface at rest) (mm)
- D Top blown Nozzle outlet diameter (mm) of the lance
- C A constant number (-) representing the spread of a jet of oxidizing gas.
- the ferromanganese molten metal temperature T l is 1700 ° C. or less when the carbon concentration in the molten metal [C]: 2.0 mass% or more.
- [C] It is desirable to operate at 1750 ° C. or lower when the temperature is 1.5 mass% or more and less than 2.0 mass%.
- auxiliary raw materials such as alloys, quicklime and dolomite, Mn ore, slag and the like as the coolant 9 as necessary during this decarburization refining. ..
- auxiliary raw material containing MgO examples include magnesite (a substance obtained by firing dolomite or magnesite and crushing it and then hardening it with cement or the like) or magnesite (a mineral mainly composed of magnesium carbonate).
- the above-mentioned top blowing lance 3 is raised to stop the blowing of the oxidizing gas. Further, after the top-blown lance 3 is raised, it is preferable to add a reducing agent such as FeSi or Simn while stirring with the bottom-blown gas to reduce and recover the oxidized Mn (MnO) in the slag.
- a reducing agent such as FeSi or Simn
- This example is an example in which 25 tons of molten metal of high carbon ferromanganese (HCFemn) is charged into a cylindrical top-bottom blowing type smelting furnace having an inner diameter of about 2.3 m, and decarburization smelting is performed.
- the HCFeMn used here corresponded to No. 2 (Mn: 73 mass%, C: 6.9 mass%) shown in Table 1, and the temperature immediately after charging was 1334 to 1341 ° C.
- Ar was blown from the bottom blowing tuyere, and while stirring the molten metal, pure O 2 was blown from the top blowing lance.
- the oxygen supply rate was 40 Nm 3 / min from the start to the end of refining.
- Mn yield W 1 / (W 2 + W 3 + W 4 ) ⁇ 100 ⁇ ⁇ ⁇ (10)
- ⁇ Mn Mn yield (%)
- W 1 Mn mass (kg) in the product FeMn
- W 2 Mn mass (kg) in the HCFeMn molten metal
- W 3 Mn mass added as the Mn-containing alloy.
- the stirring power density ⁇ of the bottom blowing gas is at a level of 500 W / t or more (treatment Nos. 9, 20 and 21).
- the Mn yield ⁇ Mn was higher than the level at which the stirring power density ⁇ was less than 500 W / t (treatment No. 19). It is considered that this is because the slag-metal reaction was promoted and the Mn oxide in the slag could be efficiently reduced and recovered by stirring the molten metal with an appropriate stirring power density ⁇ .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
(MnO)+[C]=[Mn]+CO ・・・(1)
K=(aMn・PCO)/(aMnO ・aC) ・・・(2)
ここで、(R)との表記は化学式Rの成分がスラグ中にあることを、[M]との表記は元素Mの成分がフェロマンガン溶湯中にあることを表し、aiは成分iの活量、Pjは成分jの分圧(atm)である。平衡定数K、aMn、aCの値は既知文献の熱力学データを用いて計算することができる。そして、下記(3)、(4)式の条件のもとで溶湯中の平衡[C]濃度と溶湯温度の関係を求めることにより、フェロマンガン溶湯の脱炭限界を知ることができる。
aMnO =1 ・・・(3)
P=PMn+PCO=1 ・・・(4)
ただし、上記(4)式においてPは全圧(1atm)であり、PMnはその温度でのMnの蒸気圧に等しいとする。ここで、atmは圧力の単位で、1atm=101325Paである。
例えば、炉底羽口から酸素ガスまたは酸素ガスと不活性ガスの混合ガスを吹きこむ方法(特許文献4および5)では、フェロマンガン溶湯の脱炭精錬について、前述したように、高温吹錬が必須であることに加えて、羽口近傍が酸素ガスによる酸化反応熱により一層の高温に曝されることが予想される。したがって、羽口の溶損による溶湯の漏洩を防止するために高度な操業技術を必要とするとともに、不活性ガスのみを吹きこむ場合と比較して羽口寿命が著しく低下し、耐火物コストの大幅な上昇が避けられない。
a.上記底吹き羽口からは、撹拌動力密度にして500W/t以上となるように撹拌用ガスの吹きこみを行うこと、
b.吹錬開始前または吹錬中にMgOを含有する副原料を添加すること、
がより好ましい実施形態になりうるものと考えられる。
ε=6.183×(Q×Tl/(60×W))×[ln{1+h/(1.02×10-4×(101325×P))}+{1-(Tg/Tl)}] ・・・(5)
ここで、ε:底吹きガスの撹拌動力密度(W/t)、Q:底吹きガス流量(Nm3/h)、W:フェロマンガン溶湯量(t)、Tl:フェロマンガン溶湯温度(℃)、Tg:底吹きガス温度(℃)、h:浴深(静止時浴面から反応容器底までの距離)(m)、P:大気圧力(1atm)である。
U0=740{1-(Pe/P0)2/7}1/2 ・・・(7)
U/U0=D/2CL ・・・(8)
C=0.016+0.19/((P0/0.97)-1.034) ・・・(9)
ここで、FO2:上吹きランスからの酸化性ガスの供給速度(Nm3/h)、n:上吹きランスのノズル孔数(個)、d:上吹きランスのノズルのスロート径(mm)、P0:酸化性ガスの上吹きランスノズル前圧力(atm)、Pe:同出口圧力(atm)、U0:上吹きランスからの酸化性ガスの噴出流速(m/s)、U:上吹きランスからの酸化性ガスの浴面到達時流速(m/s)、L:ランス高さ(上吹きランスのノズル出口から、静止時浴面までの距離)(mm)、D:上吹きランスのノズル出口径(mm)、C:酸化性ガスのジェットの広がりを表す常数(-)である。
ηMn=W1/(W2+W3+W4)×100 ・・・(10)
ここで、ηMn:Mn歩留(%)、W1:製品FeMn中のMn質量(kg)、W2:HCFeMn溶湯中のMn質量(kg)、W3:Mn含有合金として添加したMn質量(kg)、W4:酸化Mnとして添加したMn質量(kg)である。
1atm=101325Pa
2 溶湯
3 ランス
4 羽口
5 非酸化性ガス配管
6 非酸化性ガス配管
7 酸素配管
8 流量調節弁
9 添加材
10 スラグ
Claims (3)
- 上吹きランスおよび底吹き羽口を備えた反応容器内に収容した高炭素のフェロマンガン溶湯の浴面上に、上吹きランスから酸化性ガスを吹きつけて脱炭し、低炭素のフェロマンガンを製造するに際し、吹錬中のスラグ組成の質量基準で(CaO+MgO)/(Al2O3+SiO2)の値が0.4以上かつ5.0以下となるようにスラグ組成を調整することを特徴とする低炭素フェロマンガンの製造方法。
- 前記底吹き羽口からは、撹拌動力密度にして500W/t以上となるように撹拌用ガスの吹きこみを行うことを特徴とする請求項1に記載の低炭素フェロマンガンの製造方法。
- 吹錬開始前または吹錬中にMgOを含有する副原料を添加することを特徴とする請求項1または2に記載の低炭素フェロマンガンの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227030926A KR20220134642A (ko) | 2020-03-06 | 2021-02-16 | 저탄소 페로망간의 제조 방법 |
JP2021520447A JP7036993B2 (ja) | 2020-03-06 | 2021-02-16 | 低炭素フェロマンガンの製造方法 |
US17/802,389 US20230167518A1 (en) | 2020-03-06 | 2021-02-16 | Method for producing low-carbon ferromanganese |
EP21765152.0A EP4116443A4 (en) | 2020-03-06 | 2021-02-16 | PROCESS FOR PRODUCING LOW-CARBON FERROMANGAN |
ZA2022/09929A ZA202209929B (en) | 2020-03-06 | 2022-09-06 | Method for producing low-carbon ferromanganese |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020038790 | 2020-03-06 | ||
JP2020-038790 | 2020-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021177021A1 true WO2021177021A1 (ja) | 2021-09-10 |
Family
ID=77613479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/005689 WO2021177021A1 (ja) | 2020-03-06 | 2021-02-16 | 低炭素フェロマンガンの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230167518A1 (ja) |
EP (1) | EP4116443A4 (ja) |
JP (1) | JP7036993B2 (ja) |
KR (1) | KR20220134642A (ja) |
WO (1) | WO2021177021A1 (ja) |
ZA (1) | ZA202209929B (ja) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4879716A (ja) | 1972-01-13 | 1973-10-25 | ||
JPS529616A (en) | 1975-07-11 | 1977-01-25 | Elektrometallurgie Gmbh | Decarburizing of high carbon ferro mangan mangan or high carbon ferro chrom |
JPS5497521A (en) | 1978-01-17 | 1979-08-01 | Creusot Loire | Refining of ferromanganese |
JPS6056051A (ja) | 1983-09-06 | 1985-04-01 | Japan Metals & Chem Co Ltd | 中・低炭素フエロマンガンの製造方法 |
JPS61291947A (ja) | 1985-06-18 | 1986-12-22 | Kawasaki Steel Corp | 中炭素または低炭素フェロマンガンの製造方法 |
US4662937A (en) * | 1984-05-28 | 1987-05-05 | Nippon Steel Corporation | Process for production of high-manganese iron alloy by smelting reduction |
JPS62230951A (ja) | 1986-03-31 | 1987-10-09 | Kobe Steel Ltd | 中・低炭素フエロマンガンの製造方法 |
JPS63290242A (ja) * | 1987-03-11 | 1988-11-28 | ティッセン シュタール アクチェンゲゼルシャフト | 低炭素低シリコンフェロマンガンの製造方法およびその実施のための転炉およびランス |
JPH01316437A (ja) | 1988-06-14 | 1989-12-21 | Kawasaki Steel Corp | 中、低炭素フェロマンガンの製造方法 |
JPH02166256A (ja) | 1988-12-21 | 1990-06-26 | Kawasaki Steel Corp | 中・低炭素フェロマンガンの溶製方法 |
JPH02247313A (ja) * | 1989-03-22 | 1990-10-03 | Kawasaki Steel Corp | 中・低炭素フェロマンガンの製造方法 |
JPH11279630A (ja) * | 1998-03-26 | 1999-10-12 | Kawasaki Steel Corp | 高清浄度鋼の溶製方法 |
JPH11293332A (ja) | 1998-04-10 | 1999-10-26 | Kawasaki Steel Corp | フェロマンガン溶湯の脱炭精錬方法 |
JP2008240126A (ja) * | 2007-03-28 | 2008-10-09 | Jfe Steel Kk | ステンレス溶鋼の精錬方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6067608A (ja) * | 1983-09-22 | 1985-04-18 | Japan Metals & Chem Co Ltd | 中・低炭素フエロマンガンの製造方法 |
JP2021028404A (ja) * | 2017-11-27 | 2021-02-25 | 水島合金鉄株式会社 | 中低炭素フェロマンガンの製造方法 |
-
2021
- 2021-02-16 EP EP21765152.0A patent/EP4116443A4/en active Pending
- 2021-02-16 WO PCT/JP2021/005689 patent/WO2021177021A1/ja active Application Filing
- 2021-02-16 KR KR1020227030926A patent/KR20220134642A/ko not_active Application Discontinuation
- 2021-02-16 US US17/802,389 patent/US20230167518A1/en active Pending
- 2021-02-16 JP JP2021520447A patent/JP7036993B2/ja active Active
-
2022
- 2022-09-06 ZA ZA2022/09929A patent/ZA202209929B/en unknown
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4879716A (ja) | 1972-01-13 | 1973-10-25 | ||
JPS529616A (en) | 1975-07-11 | 1977-01-25 | Elektrometallurgie Gmbh | Decarburizing of high carbon ferro mangan mangan or high carbon ferro chrom |
JPS5497521A (en) | 1978-01-17 | 1979-08-01 | Creusot Loire | Refining of ferromanganese |
JPS6056051A (ja) | 1983-09-06 | 1985-04-01 | Japan Metals & Chem Co Ltd | 中・低炭素フエロマンガンの製造方法 |
US4662937A (en) * | 1984-05-28 | 1987-05-05 | Nippon Steel Corporation | Process for production of high-manganese iron alloy by smelting reduction |
JPS61291947A (ja) | 1985-06-18 | 1986-12-22 | Kawasaki Steel Corp | 中炭素または低炭素フェロマンガンの製造方法 |
JPS62230951A (ja) | 1986-03-31 | 1987-10-09 | Kobe Steel Ltd | 中・低炭素フエロマンガンの製造方法 |
JPS63290242A (ja) * | 1987-03-11 | 1988-11-28 | ティッセン シュタール アクチェンゲゼルシャフト | 低炭素低シリコンフェロマンガンの製造方法およびその実施のための転炉およびランス |
JPH01316437A (ja) | 1988-06-14 | 1989-12-21 | Kawasaki Steel Corp | 中、低炭素フェロマンガンの製造方法 |
JPH02166256A (ja) | 1988-12-21 | 1990-06-26 | Kawasaki Steel Corp | 中・低炭素フェロマンガンの溶製方法 |
JPH02247313A (ja) * | 1989-03-22 | 1990-10-03 | Kawasaki Steel Corp | 中・低炭素フェロマンガンの製造方法 |
JPH11279630A (ja) * | 1998-03-26 | 1999-10-12 | Kawasaki Steel Corp | 高清浄度鋼の溶製方法 |
JPH11293332A (ja) | 1998-04-10 | 1999-10-26 | Kawasaki Steel Corp | フェロマンガン溶湯の脱炭精錬方法 |
JP2008240126A (ja) * | 2007-03-28 | 2008-10-09 | Jfe Steel Kk | ステンレス溶鋼の精錬方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4116443A4 |
Also Published As
Publication number | Publication date |
---|---|
ZA202209929B (en) | 2024-01-31 |
EP4116443A1 (en) | 2023-01-11 |
JPWO2021177021A1 (ja) | 2021-09-10 |
JP7036993B2 (ja) | 2022-03-15 |
EP4116443A4 (en) | 2024-05-22 |
US20230167518A1 (en) | 2023-06-01 |
KR20220134642A (ko) | 2022-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101560513B1 (ko) | 제강 슬래그 환원 처리 장치 및 제강 슬래그 환원 처리 설비 | |
JP5954551B2 (ja) | 転炉製鋼法 | |
KR100749023B1 (ko) | 극저린강의 전로 정련 방법 | |
JP6164151B2 (ja) | 転炉型精錬炉による溶鉄の精錬方法 | |
WO2020230561A1 (ja) | 製鋼スラグの改質方法およびランス | |
JP5983492B2 (ja) | 溶銑の予備処理方法 | |
WO2021177021A1 (ja) | 低炭素フェロマンガンの製造方法 | |
JP6726777B1 (ja) | 低炭素フェロマンガンの製造方法 | |
JP4329724B2 (ja) | 転炉スクラップ増配方法 | |
JP3854482B2 (ja) | 溶銑の予備処理方法及び精錬方法 | |
CA2397539C (en) | Method for the treatment of slag from electric steel plants | |
JP4630031B2 (ja) | 酸化鉄含有鉄原料の還元・溶解方法 | |
JP4120161B2 (ja) | 鉄浴型溶融還元炉の操業方法 | |
RU2350661C1 (ru) | Способ выплавки рельсовой стали в дуговой электропечи | |
JPS6123243B2 (ja) | ||
JP5304816B2 (ja) | 溶鋼の製造方法 | |
JP5544818B2 (ja) | 高クロム鋼の溶製方法 | |
RU2364632C2 (ru) | Способ получения стали | |
KR100225249B1 (ko) | 슬로핑 발생 억제를 위한 잔류 슬래그량 조절방법 | |
JP4513340B2 (ja) | 溶銑の脱燐処理方法 | |
JP2023147218A (ja) | 溶鉄の脱燐方法 | |
JPH01312020A (ja) | 溶銑の昇温脱燐法 | |
JPH024938A (ja) | 中炭素および低炭素フェロマンガンの製造方法 | |
JP2020105553A (ja) | 溶銑脱硫方法 | |
JPH11293332A (ja) | フェロマンガン溶湯の脱炭精錬方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021520447 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21765152 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227030926 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217055075 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2021765152 Country of ref document: EP Effective date: 20221006 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |