WO2021176784A1 - Co基合金構造体およびその製造方法 - Google Patents

Co基合金構造体およびその製造方法 Download PDF

Info

Publication number
WO2021176784A1
WO2021176784A1 PCT/JP2020/044870 JP2020044870W WO2021176784A1 WO 2021176784 A1 WO2021176784 A1 WO 2021176784A1 JP 2020044870 W JP2020044870 W JP 2020044870W WO 2021176784 A1 WO2021176784 A1 WO 2021176784A1
Authority
WO
WIPO (PCT)
Prior art keywords
based alloy
alloy structure
phase
treatment step
powder
Prior art date
Application number
PCT/JP2020/044870
Other languages
English (en)
French (fr)
Inventor
敦夫 太田
今野 晋也
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to CN202080005883.9A priority Critical patent/CN113597476B/zh
Priority to KR1020217012576A priority patent/KR102490974B1/ko
Priority to EP20875659.3A priority patent/EP3904548A4/en
Priority to US17/290,396 priority patent/US20220220583A1/en
Priority to SG11202108362Y priority patent/SG11202108362YA/en
Priority to TW110101929A priority patent/TWI799782B/zh
Publication of WO2021176784A1 publication Critical patent/WO2021176784A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/17Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by forging
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/01Main component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a Co-based alloy structure and a method for producing the same.
  • Co Cobalt
  • Co Co
  • Ni nickel
  • Co-based alloy has a higher material cost than the Ni-based alloy, but is excellent in corrosion resistance and wear resistance, and has the property of being easily solid-solved and strengthened. For this reason, Co-based alloys have been conventionally applied to turbine vanes, combustor members, friction stir welding tools, and the like.
  • Patent Document 1 the Co-based alloy of Patent Document 1 is known.
  • the matrix phase of Co mainly having an fcc structure (gamma-phase), a metal intermetallic compound fcc structure having an L1 2 structure Co 3 (Al, W) in atomic ratio,
  • ⁇ 'phase precipitated phase precipitated in a matrix phase grain
  • the particle size of the precipitated phase ( ⁇ 'phase) is set to be 50 nm to 1 ⁇ m, and the precipitated amount of the ⁇ 'phase is set to be 40 to 85% by volume.
  • ⁇ 'phase particles having a cubic shape having a particle size of 1 ⁇ m or less are precipitated in the matrix phase ( ⁇ phase).
  • the average particle size of the precipitated phase ( ⁇ 'phase) precipitated by the aging treatment is 150 nm or less (see paragraph 0006 of the same document).
  • the present disclosure has been made in view of these points, and an object thereof is to enhance the mechanical properties of the Co-based alloy structure.
  • the first disclosure is that the mass ratio is Al: 0.1 to 10%, W: 3.0 to 45%, the total of both is less than 50%, and the balance is unavoidable.
  • It is a Co-based alloy structure having a Co composition excluding target impurities.
  • the Co-based alloy structure consists of a Co-based matrix phase ( ⁇ phase) having an fcc structure and an atomic ratio of Co 3 (Al, W) or [(Co, X) 3 (Al, W, Z)] L1. It is composed of an intermetallic compound having an fcc structure having two structures, and has a precipitated phase ( ⁇ 'phase) which is precipitated in a dispersed state in the matrix phase.
  • the precipitated phase ( ⁇ 'phase) has a particle size of 10 nm to 1 ⁇ m, particles of the precipitated phase ( ⁇ 'phase) are uniformly arranged and precipitated, and the amount of precipitation is 40 to 85% by volume. It is configured to be.
  • the particle size of the precipitated phase ( ⁇ 'phase) precipitated in a dispersed state in the matrix phase ( ⁇ phase) is 10 nm to 1 ⁇ m, and the amount of the precipitated phase precipitated is 40 to 85% by volume. It is configured to be.
  • a large number of ⁇ 'phases including the particle size refined to the limit are precipitated with respect to the matrix phase ( ⁇ phase) and are in a dispersed state.
  • the total surface area at the interface between the matrix phase ( ⁇ phase) and a large number of ⁇ 'phases is relatively increased, and the distance between the particles of the ⁇ 'phase is relatively large. It will shrink.
  • the mechanical properties of the Co-based alloy structure can be enhanced.
  • the second disclosure is that in the first disclosure, the particle size of the precipitated phase ( ⁇ 'phase) is in the range of 10 nm or more and smaller than 50 nm.
  • the third disclosure is that in the first or second disclosure, the Co-based alloy structure is configured as a laminated model made of powder.
  • precipitates such as W compounds are precipitated in a fine state in the matrix phase ( ⁇ phase) and uniformly dispersed in the grain boundaries and / or grains of the laminated model made of powder. It will be in the state of. Further, in the matrix phase ( ⁇ phase), a large number of fine ⁇ 'phases are dispersed around the precipitate. As described above, in the Co-based alloy structure constructed as a laminated model made of powder, the action of strengthening the precipitation of both the above-mentioned precipitate and a large number of fine ⁇ 'phases occurs. As a result, in the third disclosure, the mechanical properties of the Co-based alloy structure can be further enhanced.
  • the fourth disclosure is that in the first or second disclosure, the Co-based alloy structure is configured as a powder HIP forged body made of powder.
  • the mechanical properties of the Co-based alloy structure can be enhanced.
  • the fifth disclosure is in the third or fourth disclosure, in which the powder has a mass ratio of Al: 2 to 5%, W: 17 to 25%, C: 0.05 to 0.15%, Ni: 20 to. It is 35%, Cr: 6 to 10%, Ta: 3 to 8%, and the balance has a Co composition excluding unavoidable impurities.
  • the particle size of the precipitated phase ( ⁇ 'phase) can be made finer. As a result, the mechanical properties of the Co-based alloy structure can be further enhanced.
  • the Co-based alloy structure is configured as a forged body.
  • the mechanical properties of the Co-based alloy structure can be enhanced.
  • the seventh disclosure is the method for producing a Co-based alloy structure according to the first or second disclosure, which comprises a solution treatment step of subjecting a precursor of the Co-based alloy structure to a solution treatment and a solution treatment step. It has an aging treatment step of aging the precursor of the treated Co-based alloy structure.
  • the aging treatment step includes a first aging treatment step and a second aging treatment step carried out after the first aging treatment step.
  • the aging temperature of the second aging treatment step is set to be higher than the aging temperature of the first aging treatment step.
  • the aging temperature of the second aging treatment step carried out after the first aging treatment step is set to be higher than the aging temperature of the first aging treatment step. Will be done.
  • the particle size of the ⁇ 'phase can be made as fine as possible in the structure of the Co-based alloy structure. Further, microsegregation is less likely to occur in the structure of the Co-based alloy structure, and the ⁇ 'phase is uniformly dispersed in the matrix phase ( ⁇ phase). As a result, the action of precipitation strengthening by the ⁇ 'phase is strengthened, and the mechanical properties of the Co-based alloy structure can be further enhanced.
  • the eighth disclosure is that in the method for producing a Co-based alloy structure of the seventh disclosure, the temperature of the solution treatment is 1100 ° C. or higher, and the aging temperature of the first aging treatment step is 500 to 700 ° C. The aging temperature of the second aging treatment step is 600 to 800 ° C.
  • the ninth disclosure is the method for producing a Co-based alloy structure according to the seventh or eighth disclosure, in which the precursor of the Co-based alloy structure is produced by a laminated molding method.
  • the mechanical properties of the Co-based alloy structure can be further enhanced.
  • the tenth disclosure is the method for producing a Co-based alloy structure according to the seventh or eighth disclosure, in which the precursor of the Co-based alloy structure is produced by a forging method.
  • the mechanical properties of the Co-based alloy structure can be enhanced.
  • the eleventh disclosure is the method for producing a Co-based alloy structure according to the seventh or eighth disclosure, in which the precursor of the Co-based alloy structure is produced by a powder HIP forging method.
  • the mechanical properties of the Co-based alloy structure can be enhanced.
  • the mechanical properties of the Co-based alloy structure can be enhanced.
  • FIG. 1 is a flow chart showing a process example of a method for manufacturing a Co-based alloy structure composed of a laminated model.
  • FIG. 2 is a schematic view schematically showing the structural state of a Co-based alloy structure composed of a laminated model.
  • FIG. 3 is a partially enlarged view showing part III of FIG. 2 in an enlarged manner.
  • FIG. 4 is a flow chart showing a process example of a method for manufacturing a Co-based alloy structure according to Modification 1 of the embodiment.
  • FIG. 5 is a flow chart showing a process example of a method for manufacturing a Co-based alloy structure according to the first modification of the embodiment.
  • FIG. 6 is an electron micrograph showing the tissue state of sample A.
  • FIG. 7 is an electron micrograph showing the tissue state of sample B.
  • FIG. 8 is a graph showing the relationship between the temperature (° C.) in Sample A and Sample B, the tensile strength (MPa), and the 0.2% proof stress (MPa).
  • the Co-based alloy has a melting point higher than that of a generally used Ni-based alloy by about 50 to 100 ° C., and the diffusion coefficient of the substituted element is smaller than that of the Ni-based alloy. Therefore, in the Co-based alloy, there is little structural change that occurs during use at high temperatures. Further, the Co-based alloy is rich in ductility as compared with the Ni-based alloy. Therefore, the Co-based alloy can be easily subjected to plastic working such as forging, rolling, and pressing. Therefore, Co-based alloys are expected to be used in a wider range of applications than Ni-based alloys.
  • the ⁇ 'phase of Co 3 Ti or Co 3 Ta which has been conventionally used as the strengthening phase, has a lattice constant mismatch of 1% or more with respect to the matrix phase ( ⁇ phase), which is disadvantageous in terms of creep resistance.
  • the intermetallic compound [Co 3 (Al, W)] used for the strengthening phase in the embodiment of the present disclosure has a large mismatch with the matrix phase ( ⁇ phase) of about 0.5%. It exhibits structure stability that surpasses that of Ni-based alloys that are precipitation-strengthened by the ⁇ 'phase.
  • the Co-based alloy exhibits an elastic modulus of 220 to 230 GPa, which is 10% or more larger than that of the Ni-based alloy of 200 GPa. Therefore, it can be used for applications that require high strength and high elasticity, such as springs, springs, wires, belts, and cable guides. Further, since the Co-based alloy is hard and has excellent wear resistance and corrosion resistance, it can also be used as a overlay material.
  • [Basic composition of Co-based alloy structure] in the Co-based alloy structure according to the embodiment of the present disclosure, in order to disperse an appropriate amount of the L1 type 2 intermetallic compound [Co 3 (Al, W)] or [(Co, X) 3 (Al, W, Z)]. , Ingredients and composition are specified.
  • the basic composition of the Co-based alloy structure is Al: 0.1 to 10% and W: 3.0 to 45% by mass ratio, and the balance has a cobalt (Co) composition excluding unavoidable impurities. There is.
  • Aluminum (Al) is the main constituent element of the ⁇ 'phase. Al also contributes to the improvement of oxidation resistance. If the Al content is less than 0.1%, the ⁇ 'phase does not precipitate, or even if it precipitates, it does not contribute to high temperature strength. However, excessive addition of Al promotes the formation of a fragile and hard phase. Therefore, the Al content is set in the range of 0.1 to 10%. The preferable lower limit of the Al content is 0.5%. The preferable upper limit of the Al content is 5.0%.
  • Tungsten (W) is a major constituent element of the ⁇ 'phase.
  • W has an action of solid solution strengthening the matrix. If the W content is less than 3.0%, the ⁇ 'phase does not precipitate, or even if it precipitates, it does not contribute to high temperature strength. On the other hand, when the W content exceeds 45%, the formation of a harmful phase is promoted. Therefore, the W content is set in the range of 3.0 to 45%.
  • the preferred upper limit of the W content is 30%.
  • the preferable lower limit of the W content is 4.5%.
  • Group (I) and Group (II) In the basic component system of CoW-Al, one or more alloy components (selective elements) selected from at least one of group (I) and group (II) are added as necessary. When a plurality of alloy components selected from the group (I) are added, the total addition amount is selected in the range of 0.001 to 2.0%. When a plurality of alloy components selected from group (II) are added, the total amount of addition is selected in the range of 0.1 to 50%.
  • Group (I) is a group consisting of B, C, Y, La, and mischmetal.
  • B Boron
  • B is an alloy component that segregates at grain boundaries to strengthen the grain boundaries. B contributes to the improvement of high temperature strength. The effect of adding B becomes remarkable at 0.001% or more. However, if B is added in excess, the processability is impaired. Therefore, the upper limit of the amount of B added is set to 1.0%. The preferable upper limit of the amount of B added is 0.5%.
  • Yttrium (Y), lanthanum (La), and mischmetal are all effective components for improving oxidation resistance.
  • Y, La, and mischmetal all exhibit oxidation resistance when the addition amount is 0.01% or more.
  • the upper limit of the addition amount of each of Y, La, and misch metal is set to 1.0%.
  • the preferable upper limit of the addition amount of each of Y, La, and misch metal is 0.5%.
  • Group (II) is a group consisting of Ni, Cr, Ti, Fe, V, Nb, Ta, Mo, Zr, Hf, Ir, Re, and Ru.
  • the expression (K x ⁇ '/ ⁇ C x ⁇ ' / Cx ⁇ ) shows a concentration ratio of a predetermined element contained in gamma 'phase for a given element contained in the matrix phase (gamma phase).
  • a partition coefficient ⁇ 1 is a stabilizing element of the ⁇ 'phase.
  • the partition coefficient ⁇ 1 is a stabilizing element of the matrix phase ( ⁇ phase).
  • Titanium (Ti), vanadium (V), niobium (Nb), tantalum (Ta), and molybdenum (Mo) are elements for stabilizing the ⁇ 'phase.
  • Ti titanium
  • V vanadium
  • Nb niobium
  • Ta tantalum
  • Mo molybdenum
  • Nickel (Ni) is replaced with Co in L1 2 type intermetallic compound is a component for improving the heat resistance and / or corrosion resistance.
  • the amount of Ni added is 1.0% or more, the effect of the addition (heat resistance and / or corrosion resistance) can be seen.
  • the upper limit of the amount of Ni added is set to 50%.
  • the preferable upper limit of the amount of Ni added is 40%.
  • Ni replaces each of Al and W to improve the stability of the ⁇ 'phase. As a result, it enables the stable existence of the ⁇ 'phase up to higher temperatures.
  • Iridium (Ir) is replaced with Co in L1 2 type intermetallic compound is a component for improving the heat resistance and / or corrosion resistance. If the amount of Ir added is 1.0% or more, the effect of the addition can be seen. However, excessive addition of Ir produces a harmful compound phase. Therefore, the upper limit of the amount of Ir added is set to 50%. The preferable upper limit of the amount of Ir added is 40%.
  • Iron (Fe) has the effect of replacing Co and improving workability. This effect becomes remarkable when the amount of Fe added is 1.0% or more. However, if Fe is added in excess, for example, when the amount of Fe added exceeds 10%, it causes instability of the structure in a high temperature region. Therefore, the upper limit of the amount of Fe added is set to 10%. The preferable upper limit of the amount of Fe added is 5.0%.
  • Chromium (Cr) is an alloy component that forms a dense oxide film on the surface of the Co-based alloy structure and improves oxidation resistance. Cr also contributes to the improvement of high temperature strength and / or corrosion resistance. Such an effect becomes remarkable when the amount of Cr added is 1.0% or more. However, if Cr is added in excess, it causes deterioration in workability. Therefore, the upper limit of the amount of Cr added is set to 20%. The preferable upper limit of the amount of Cr added is 15%.
  • Molybdenum (Mo) is an alloy component effective for stabilizing the ⁇ 'phase and strengthening the solid solution of the matrix.
  • Mo content is 1.0% or more, the effect of adding Mo is observed.
  • the upper limit of the Mo content is set to 15%.
  • the preferred upper limit of the Mo content is 10%.
  • Rhenium (Re) and ruthenium (Ru) are alloy components that are effective in improving oxidation resistance.
  • the addition effect of Re and Ru is remarkable at 0.5% or more.
  • the upper limit of the amount of Re and Ru added is set to 10%.
  • the preferable upper limits of the amount of Re added and the amount of Ru added are both 5.0%.
  • Titanium (Ti), niobium (Nb), zirconium (Zr), vanadium (V), tantalum (Ta), and hafnium (Hf) are all alloys that are effective in stabilizing the ⁇ 'phase and / or improving high-temperature strength. It is an ingredient.
  • Ti 0.5% or more
  • Nb 1.0% or more
  • Zr 1.0% or more
  • V 0.5% or more
  • Ta 1.0% or more
  • Hf hafnium
  • the additive effect is obtained.
  • the upper limit of the addition amount of each of Ti, Nb, Zr, V, Ta, and Hf is Ti: 10%, Nb: 20%, Zr: 10%, V: 10%, Ta: 20%, Hf: 10. Set to%.
  • [Gin size of ⁇ 'phase] L1 2 type intermetallic compound [Co 3 (Al, W)] or [(Co, X) 3 (Al , W, Z) ] is a particle size of 10 nm ⁇ 1 [mu] m of precipitated phase (gamma prime phase) (1000 nm ) Is configured to be a particle. If the particle size exceeds 1 ⁇ m, mechanical properties such as strength and hardness will deteriorate.
  • the preferred particle size of the ⁇ 'phase is in the range of 10 nm or more and smaller than 50 nm.
  • [Amount of ⁇ 'phase precipitated] L1 2 type intermetallic compound [Co 3 (Al, W)] or [(Co, X) 3 (Al , W, Z) ] is precipitated amount of precipitated phase (gamma prime phase) 40 to 85 volume% It is configured to be. If the amount of precipitation is less than 40%, the action of strengthening precipitation becomes insufficient. On the other hand, if the amount of precipitation exceeds 85%, ductile deterioration may occur in the Co-based alloy structure.
  • the Co-based alloy structure is configured as, for example, a laminated model made of powder.
  • the additive manufacturing body is formed by an additive manufacturing method (AM method).
  • the additive manufacturing method is a method of forming a layered model by selectively melting and solidifying powder produced by a gas atomization method or the like using a 3D printer using a laser or the like as a heat source.
  • raw materials for the laminated model Al: 2 to 5%, W: 17 to 25%, C: 0.05 to 0.15%, Ni: 20 to 35%, Cr: 6 to 10% by mass ratio, It is preferable to use a powder having a Ta: 3 to 8% and a Co composition (hereinafter referred to as “raw material powder”) with the balance excluding unavoidable impurities.
  • raw material powder a powder having a Ta: 3 to 8% and a Co composition
  • FIG. 1 shows an example of a method for manufacturing a Co-based alloy structure composed of a laminated model.
  • the manufacturing method includes, as main steps, a powder manufacturing step S1, a selective laser melting step S2, a solution treatment step S3, and an aging treatment step S4.
  • a powder manufacturing step S1 a powder manufacturing step
  • S2 a selective laser melting step
  • S3 a solution treatment step
  • S4 an aging treatment step
  • the powder production step S1 is a step of producing a powder as a raw material of the Co-based alloy structure.
  • the powder has a predetermined chemical composition, for example, the raw material powder.
  • a gas atomizing method is used as a method for producing the powder. Specifically, the sample is dissolved in the atmosphere of an inert gas after vacuum exhaust or in the atmosphere by performing high-frequency induction heating using a gas atomizing device. Then, a high-pressure gas (gas such as helium, argon, nitrogen, etc.) is sprayed onto the sample to prepare a spherical powder having a size of about several tens of ⁇ m.
  • a high-pressure gas gas such as helium, argon, nitrogen, etc.
  • the particle size of the powder is preferably 5 ⁇ m or more and 100 ⁇ m or less from the viewpoint of handleability in the selective laser melting step (S2) of the next step and filling property of the alloy powder bed. If the particle size of the powder is less than 5 ⁇ m, the fluidity of the alloy powder is lowered in the next step S2 (the formability of the alloy powder bed is lowered), which causes the shape accuracy of the laminated model to be lowered. On the other hand, when the particle size of the powder exceeds 100 ⁇ m, it becomes difficult to control the local melting and quenching solidification of the alloy powder bed in the next step S2, the melting of the powder becomes insufficient, or the surface roughness of the laminated model increases. It becomes a factor to do.
  • the particle size of the powder is more preferably 10 ⁇ m or more and 70 ⁇ m or less, and further preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the selective laser melting step S2 is a step of forming a laminated model having a desired shape by a selective laser melting (SLM) method using the powder produced in the powder manufacturing step S1.
  • SLM selective laser melting
  • the step S2 includes an alloy powder bed preparation step (S21) in which the powder produced in the powder preparation step S1 is spread to prepare an alloy powder bed having a predetermined thickness, and a predetermined alloy powder bed.
  • the region includes a laser melt coagulation element step (S22) in which the region is irradiated with laser light to locally melt and quench the powder in the region.
  • the microstructure of the laminated model is controlled in order to obtain the desired microstructure as the final laminated model. That is, in order to control the microstructure of the laminated model, the local melting and quenching solidification of the powder bed are controlled.
  • the solution treatment step S3 is a step of subjecting the laminated model (precursor of the Co-based alloy structure) obtained by the selective laser melting step S2 to the solution treatment.
  • the temperature condition of the solution treatment is set in the range of 1100 ° C. or higher and 1200 ° C. or lower.
  • the preferred temperature for the solution treatment is 1160 ° C.
  • the holding time of the solution treatment is preferably set to 0.5 hours or more and 10 hours or less.
  • the cooling method after the heat treatment is not particularly limited, and for example, any one of water cooling, oil cooling, air cooling, and furnace cooling may be carried out.
  • the solution treatment step S3 recrystallization of the matrix crystal grains occurs inside the laminated model (precursor of the Co-based alloy structure) obtained in the selective laser melting step S2, which occurs during quenching and solidification.
  • the internal strain of the laminated model is alleviated.
  • the aging treatment step S4 is a step of applying the aging treatment to the laminated model (precursor of the Co-based alloy structure) that has been solution-treated by the solution-forming treatment step S3. Specifically, the aging treatment step S4 includes a first aging treatment step S41 and a second aging treatment step S42.
  • the first aging treatment step S41 is carried out after passing through the solution treatment step S3.
  • the condition of the aging temperature in the first aging treatment step S41 is preferably set in the range of 500 ° C. or higher and 700 ° C. or lower.
  • the holding time of the first aging treatment step S41 is preferably set to 0.5 hours or more and 30 hours or less.
  • the second aging treatment step S42 is carried out after passing through the first aging treatment step S41.
  • the aging temperature of the second aging treatment step S42 is set to be higher than the aging temperature of the first aging treatment step S41.
  • the condition of the aging temperature in the second aging treatment step S42 is preferably set in the range of 600 ° C. or higher and 800 ° C. or lower.
  • the holding time of the second aging treatment step S42 is preferably set to 0.5 hours or more and 20 hours or less.
  • the cooling methods of the first and second aging treatment steps S41 and S42 are not particularly limited, and for example, any one of water cooling, oil cooling, air cooling, and furnace cooling may be carried out.
  • a corrosion-resistant coating layer may be formed on the laminated model obtained by the solution treatment step S3 or the aging treatment step S4, if necessary.
  • the surface finish may be applied to the laminated model obtained by the solution treatment step S3 or the aging treatment step S4.
  • the particle size of the precipitated phase ( ⁇ 'phase) precipitated in a dispersed state in the matrix phase ( ⁇ phase) is 10 nm to 1 ⁇ m, and the precipitated phase ( ⁇ 'phase). Is configured to have a precipitation amount of 40 to 85% by volume. In such a configuration, a large number of ⁇ 'phases including the particle size refined to the limit are precipitated with respect to the matrix phase ( ⁇ phase) and are in a dispersed state.
  • the total surface area at the interface between the matrix phase ( ⁇ phase) and a large number of ⁇ 'phases is relatively increased, and the distance between the particles of the ⁇ 'phase is relatively large. It shrinks (less than 100 nm). That is, in the matrix phase ( ⁇ phase), the ⁇ 'phase containing the particles refined to the limit is uniformly precipitated and strengthened. Then, the precipitation strengthening improves the mechanical properties (particularly the tensile strength and the proof stress (0.2% proof stress)) especially at a high temperature. Therefore, in the Co-based alloy structure according to the embodiment of the present disclosure, the mechanical properties due to the action of precipitation strengthening can be enhanced.
  • the "dispersed state” means a state in which a plurality of ⁇ 'phases are uniformly arranged in the matrix phase ( ⁇ phase).
  • the particle size of the ⁇ 'phase is preferably in the range of 10 nm or more and smaller than 50 nm. If a large number of the ⁇ 'phases refined in this way are precipitated with respect to the matrix phase ( ⁇ phase) and dispersed, the effect of precipitation strengthening by the ⁇ 'phase is enhanced, and the machine of the Co-based alloy structure is machined. The characteristics can be further enhanced.
  • the Co-based alloy structure is configured as a laminated model made of powder.
  • the solidification rate of the powder as a raw material at the time of modeling the additive manufacturing body becomes very high as compared with conventional casting or the like.
  • a fine solidified structure is formed in the laminated model.
  • FIGS. 2 and 3 by performing heat treatment (materialization treatment and aging treatment) on the laminated model after modeling, W is formed in the grain boundaries and / or grains of the laminated model.
  • the compound is precipitated in a fine state and uniformly dispersed in the matrix phase ( ⁇ phase).
  • the Co-based alloy structure constructed as a laminated model made of powder, it is possible to obtain the action of strengthening the precipitation of both the W compound and a large number of fine precipitation phases ( ⁇ 'phases). Become.
  • the Co-based alloy structure according to the embodiment of the present disclosure can further enhance the mechanical properties.
  • FIGS. 2 and 3 show the texture state when the W compound is precipitated
  • the carbide phase may be precipitated in the grain boundaries and / or grains of the laminated model instead of the W compound.
  • both the W compound and the carbide phase may precipitate at the grain boundaries and / or inside the grains of the laminated model.
  • the powder used as the raw material of the laminated structure has a mass ratio of Al: 2 to 5%, W: 17 to 25%, C: 0.05 to 0.15%, Ni: 20 to 35%, Cr: 6. It is ⁇ 10%, Ta: 3 ⁇ 8%, and the balance has a Co composition excluding unavoidable impurities.
  • the particle size of the precipitated phase ( ⁇ 'phase) can be made finer. As a result, the mechanical properties of the Co-based alloy structure can be further enhanced.
  • the aging temperature of the second aging treatment step carried out after the first aging treatment step is higher than the aging temperature of the first aging treatment step.
  • the temperature of the solution treatment is 1100 ° C. or higher
  • the aging temperature of the first aging treatment step is 500 to 700 ° C.
  • the aging temperature of the second aging treatment step is 600 to 800 ° C. Is set to. This makes it possible to reduce the particle size of the precipitated phase ( ⁇ 'phase) to the utmost limit in the structure of the Co-based alloy structure.
  • microsegregation is less likely to occur in the structure of the Co-based alloy structure, and the ⁇ 'phase is uniformly dispersed in the matrix phase ( ⁇ phase).
  • the action of precipitation strengthening by the ⁇ 'phase is strengthened, and the mechanical properties of the Co-based alloy structure can be further enhanced.
  • the Co-based alloy structure configured as a laminated model made of powder has been described, but the present invention is not limited to this embodiment.
  • the precursor of the Co-based alloy structure may be configured as a forged body manufactured by a forging method instead of the laminated model manufactured by the laminated molding method. That is, as a method for producing the Co-based alloy structure, the powder manufacturing step (S1) and the selective laser melting step (S2) shown in FIG. 1 are replaced with the forging step (S5) by the forging method (see FIG. 4). ) May be adopted.
  • the forging method a relatively coarse solidified structure is formed in the structure immediately after casting, but the structure is homogenized by hot forging, which is a subsequent process, and the crystal grains are refined by recrystallization. Further, by going through the solution treatment step S3 and the aging treatment step S4 shown in FIG. 1, the particles of the precipitated phase ( ⁇ 'phase) are further refined and microsegregation occurs in the structure of the Co-based alloy structure. It becomes difficult. Therefore, even in the case of a Co-based alloy structure made of a forged body, the mechanical properties can be enhanced as in the above embodiment.
  • the precursor of the Co-based alloy structure may be configured as a powder HIP forged body manufactured by the powder HIP forging method instead of the laminated model manufactured by the laminated molding method. That is, as a method for producing the Co-based alloy structure, a form (see FIG. 5) in which the selective laser melting step (S2) shown in FIG. 1 is replaced with the HIP processing step (S6) by the powder HIP forging method is adopted. You may.
  • the HIP treatment step (S6) is a step of loading the powder prepared in the powder manufacturing step (S1) into a can and sintering it by high temperature and hydrostatic pressure.
  • the structure of the powder produced in the powder production step (S1) is rapidly cooled and solidified by, for example, a gas atomization method.
  • the W compound and / or the carbide phase and the like are made finer and dispersed in the grain boundaries and / or grains.
  • the ⁇ 'phase particles become finer in the structure of the Co-based alloy structure and microsegregation is less likely to occur. Therefore, even in the case of a Co-based alloy structure made of a powdered HIP forged product, the mechanical properties can be enhanced as in the above embodiment.
  • the powder preparation step (S1) shown in FIGS. 1 and 5 there is no particular limitation on the method and method for producing the powder which is the raw material of the Co-based alloy. That is, in the powder preparation step (S1), the conventional method and method can be used. For example, a mother alloy ingot production element step of mixing, melting, and casting raw materials so as to have a desired chemical composition to produce a mother alloy ingot (master ingot), and an atomizing element step of forming an alloy powder from the mother alloy ingot. And may be done.
  • the atomizing method is not particularly limited, and the conventional methods and methods can be used. For example, the centrifugal force atomizing method may be adopted instead of the gas atomizing method described above.
  • sample A is a Co-based alloy structure composed of a laminated model produced through all the steps shown in FIG.
  • Sample A contains particles in a precipitated phase ( ⁇ 'phase) having a particle size smaller than 50 nm (see FIG. 6).
  • sample B is a Co-based alloy structure composed of a laminated model produced through all steps other than the second aging treatment step (S42) shown in FIG.
  • Sample B contains ⁇ 'phase particles having a particle size of about 250 nm (see FIG. 7).
  • a powder (raw material powder) as a raw material of the laminated model described in the above embodiment was prepared by the powder preparation step (S1) shown in FIG. Specifically, after mixing a predetermined raw material, a process for producing a mother alloy ingot was carried out by melting and casting by a vacuum high-frequency induction melting method to prepare a mother alloy ingot. Next, the atomizing element step of redissolving the mother alloy ingot to form an alloy powder by a gas atomizing method in an argon gas atmosphere was performed. Next, the obtained powder was subjected to an alloy powder classifier step for controlling the particle size.
  • a laminated model (diameter 8 mm ⁇ height 60 mm) was produced by the selective laser melting step (S2) shown in FIG.
  • the conditions for selective laser melting (SLM) are that the thickness h of the alloy powder bed is 100 ⁇ m, the output P of the laser beam is 100 W, and the scanning speed S (mm / s) of the laser beam is variously changed.
  • the solution treatment step (S3) shown in FIG. 1 was carried out on the laminated model (precursor) produced by the selective laser melting step (S2).
  • the temperature of the solution treatment is 1160 ° C.
  • the retention time of the solution treatment is 4 hours.
  • an aging treatment step was carried out on the laminated model (precursor) that had been subjected to the materialization treatment. Specifically, in sample A, both the first aging treatment step (S41) and the second aging treatment step (S42) shown in FIG. 1 were carried out. On the other hand, in sample B, only the first aging treatment step (S41) shown in FIG. 1 was carried out. That is, in sample B, the second aging treatment step (S42) shown in FIG. 1 is not carried out.
  • the temperature of the first aging treatment step (S41) is 650 ° C.
  • the holding time of the first aging treatment step (S41) is 24 hours.
  • the temperature of the second aging treatment step (S42) is 760 ° C.
  • the holding time (S42) of the second aging treatment step is 16 hours.
  • sample A in which both the first and second aging treatment steps were carried out, a large number of refined samples were compared with sample B in which only the first aging treatment step was carried out. It can be seen that the particles of the precipitated phase ( ⁇ 'phase) are precipitated in a uniformly dispersed state in the matrix phase ( ⁇ phase). That is, in sample A, as a result of the ⁇ 'phase being uniformly dispersed in the matrix phase ( ⁇ phase), microsegregation does not occur in the structure of the Co-based alloy structure.
  • FIG. 8 shows a graph showing the relationship between the tensile strength and the 0.2% proof stress (MPa) with the change in temperature (° C.) in Sample A and Sample B.
  • both the tensile strength and 0.2% proof stress values are generally higher than the tensile strength and 0.2% proof stress values in sample B.
  • rice field Specifically, the tensile strength of sample A was about 100 MPa higher than the tensile strength of sample B in the range of about 20 ° C to 600 ° C.
  • the 0.2% proof stress of sample A was about 20 MPa higher than the 0.2% proof stress of sample B in the range of about 20 ° C to 600 ° C.
  • the present disclosure can be industrially used as a Co-based alloy structure suitable for applications requiring high temperature strength, high strength, high elasticity, etc. and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)

Abstract

Co基合金構造体は、fcc構造を有するCo主体のマトリックス相(γ相)と、原子比でCo3(Al,W)などのL12構造を有するfcc構造の金属間化合物からなり、マトリックス相において分散した状態で析出する析出相(γ´相)と、を有する。γ´相は、粒径が10nm~1μmであり、γ'相の粒子が一様に配置して析出しており、かつ析出量が40~85体積%となるように構成されている。

Description

Co基合金構造体およびその製造方法
 本発明は、Co基合金構造体およびその製造方法に関する。
 コバルト(Co)基合金は、ニッケル(Ni)基合金とともに代表的な耐熱合金材料であり、超合金とも称されて例えばタービン(ガスタービン、蒸気タービンなど)の高温部材に広く用いられている。また、Co基合金は、Ni基合金と比べて材料コストが高い一方、耐食性および耐摩耗性に優れており、固溶強化しやすいという特性を有する。このため、Co基合金は、従来からタービン静翼、燃焼器部材、摩擦攪拌接合用工具などに適用されてきた。
 このようなCo基合金に関し、例えば特許文献1のCo基合金が知られている。具体的に、特許文献1には、fcc構造を有するCo主体のマトリックス相(γ相)と、原子比でCo(Al,W)のL1構造を有するfcc構造の金属間化合物からなり、マトリックス相の粒内に析出する析出相(γ´相)と、を有するCo基合金が開示されている。
特許第4996468号公報
 特許文献1のCo基合金では、析出相(γ´相)の粒径が50nm~1μmであり、かつγ´相の析出量が40~85体積%となるように設定されている。そして、同文献の各図(特に図2、図3)には、粒径が1μm以下の立方体形状を有するγ´相の粒子が、マトリックス相(γ相)に析出していることが見受けられる。また、同文献には、時効処理で析出した析出相(γ´相)の平均粒径が150nm以下となるとの記載もある(同文献の段落0006参照)。
 しかしながら、特許文献1の各図を参照しても、粒径が50nm未満となるγ´相がほとんど析出していないことが把握される。更に、γ´相の粒子同士の距離が100nmより大きい箇所が存在している。すなわち、上記Co基合金では、極限まで微細化されたγ´相がマトリックス相(γ相)に対して多数析出し、分散(一様に配置)していなかった。このため、上記Co基合金材では、粒径が50nm未満となるように極限まで微細化されたγ´相に基づく析出強化の作用が得られにくく、その結果として当該作用による機械的特性(特に引張強さおよび耐力)が不十分となっていた。
 本開示は斯かる点に鑑みてなされたものであり、その目的は、Co基合金構造体における機械的特性を高めることにある。
 上記の目的を達成するために、第1の開示は、質量比でAl:0.1~10%、W:3.0~45%で両者の合計が50%未満であって、残部が不可避的不純物を除きCoの組成を有するCo基合金構造体である。Co基合金構造体は、fcc構造を有するCo主体のマトリックス相(γ相)と、原子比でCo(Al,W)又は〔(Co,X)(Al,W,Z)〕のL1構造を有するfcc構造の金属間化合物からなり、マトリックス相において分散した状態で析出する析出相(γ´相)と、を有する。そして、析出相(γ´相)は、粒径が10nm~1μmであり、析出相(γ’相)の粒子が一様に配置して析出しており、かつ析出量が40~85体積%となるように構成されている。
 この第1の開示では、マトリックス相(γ相)において分散した状態で析出する析出相(γ´相)の粒径が10nm~1μmであり、かつγ´相の析出量が40~85体積%となるように構成されている。かかる構成では、極限まで微細化された粒子径を含むγ´相が、マトリックス相(γ相)に対して多数析出し、分散した状態となる。その結果、Co基合金構造体の組織内では、マトリックス相(γ相)と多数のγ´相との界面における総表面積が相対的に増加しかつγ´相の粒子同士の距離が相対的に縮まるようになる。すなわち、マトリックス相(γ相)において極限まで微細化された粒子を含むγ´相が一様に析出強化された状態となる。そして、当該析出強化により特に高温における機械的特性が向上する。したがって、第1の開示では、Co基合金構造体の機械的特性を高めることができる。
 第2の開示は、第1の開示において、析出相(γ´相)の粒径は、10nm以上でありかつ50nmよりも小さい範囲である。
 この第2の開示では、微細化されたγ´相がマトリックス相(γ相)に対して多数析出し、分散した状態となることにより、γ´相による析出強化の作用が強化され、Co基合金構造体の機械的特性をより一層高めることができる。
 第3の開示は、第1または第2の開示において、Co基合金構造体は、粉末からなる積層造形体として構成されている。
 この第3の開示において、粉末からなる積層造形体の粒界および/または粒内には、W化合物などの析出物が、マトリックス相(γ相)において微細な状態で析出しかつ一様に分散した状態となる。さらに、マトリックス相(γ相)において、上記析出物の周囲には、多数の微細なγ´相が分散された状態となる。このように、粉末からなる積層造形体として構成されたCo基合金構造体では、上記析出物と、多数の微細なγ´相との双方の析出強化による作用が生じる。その結果、第3の開示では、Co基合金構造体の機械的特性をより一層高めることができる。
 第4の開示は、第1または第2の開示において、Co基合金構造体は、粉末からなる粉末HIP鍛造体として構成されている。
 この第4の開示では、Co基合金構造体の機械的特性を高めることができる。
 第5の開示は、第3または第4の開示において、粉末は、質量比でAl:2~5%、W:17~25%、C:0.05~0.15%、Ni:20~35%、Cr:6~10%、Ta:3~8%であって、残部が不可避的不純物を除きCoの組成を有する。
 この第5の開示において、上記組成を有する粉末からなる積層造形体であれば、析出相(γ´相)の粒径を微細化することが可能となる。その結果、Co基合金構造体の機械的特性をより一層高めることができる。
 第6の開示は、第1または第2の開示において、Co基合金構造体は、鍛造体として構成されている。
 この第6の開示では、Co基合金構造体の機械的特性を高めることができる。
 第7の開示は、第1または第2の開示のCo基合金構造体の製造方法であって、Co基合金構造体の前駆体に対して溶体化処理を施す溶体化処理工程と、溶体化処理を施したCo基合金構造体の前駆体に対して時効処理を施す時効処理工程と、を有する。時効処理工程は、第1の時効処理工程と、第1の時効処理工程の後に実施される第2の時効処理工程と、を含む。そして、第2の時効処理工程の時効温度は、第1の時効処理工程の時効温度よりも高くなるように設定されている。
 この第7の開示において、時効処理工程では、第1の時効処理工程の後に実施される第2の時効処理工程の時効温度が、第1の時効処理工程の時効温度よりも高くなるように設定される。かかる設定により、Co基合金構造体の組織内においてγ´相の粒径を極限まで微細化することが可能となる。さらに、Co基合金構造体の組織内においてミクロ偏析が生じにくくなり、マトリックス相(γ相)においてγ´相が均一に分散されるようになる。その結果、γ´相による析出強化の作用が強化され、Co基合金構造体の機械的特性をより一層高めることができる。
 第8の開示は、第7の開示のCo基合金構造体の製造方法において、溶体化処理の温度は1100℃以上であり、第1の時効処理工程の時効温度は500~700℃であり、第2の時効処理工程の時効温度は600~800℃である。
 この第8の開示では、上記第7の開示と同様の作用効果を得ることができる。
 第9の開示は、第7または第8の開示のCo基合金構造体の製造方法において、Co基合金構造体の前駆体は、積層造形法により製造される。
 第9の開示では、Co基合金構造体の機械的特性をより一層高めることができる。
 第10の開示は、第7または第8の開示のCo基合金構造体の製造方法において、Co基合金構造体の前駆体は、鍛造法により製造される。
 この第10の開示では、Co基合金構造体の機械的特性を高めることができる。
 第11の開示は、第7または第8の開示のCo基合金構造体の製造方法において、Co基合金構造体の前駆体は、粉末HIP鍛造法により製造される。
 この第11の開示では、Co基合金構造体の機械的特性を高めることができる。
 本開示によると、Co基合金構造体の機械的特性を高めることができる。
図1は、積層造形体からなるCo基合金構造体の製造方法の工程例を示すフロー図である。 図2は、積層造形体からなるCo基合金構造体の組織状態を概略的に示した概略図である。 図3は、図2のIII部を拡大して示した部分拡大図である。 図4は、実施形態の変形例1に係るCo基合金構造体の製造方法の工程例を示すフロー図である。 図5は、実施形態の変形例1に係るCo基合金構造体の製造方法の工程例を示すフロー図である。 図6は、サンプルAの組織状態を示した電子顕微鏡写真である。 図7は、サンプルBの組織状態を示した電子顕微鏡写真である。 図8は、サンプルAおよびサンプルBにおける温度(℃)と、引張強さ(MPa)および0.2%耐力(MPa)との関係を示したグラフである。
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。
 [Co基合金構造体の基本的性質]
 Co基合金は、一般的に利用されているNi基合金に比較して融点が50~100℃程度高く、置換型元素の拡散係数がNi基よりも小さい。このため、Co基合金では、高温での使用中に生じる組織変化が少ない。また、Co基合金は、Ni基合金と比較して延性に富んでいる。このため、Co基合金は、鍛造,圧延,プレス等の塑性加工が容易となる。したがって、Co基合金は、Ni基合金よりも広い用途の展開が期待されている。
 従来から強化相に使用されてきたCoTiまたはCoTaのγ’相は、マトリックス相(γ相)に対する格子定数のミスマッチが1%以上であり、耐クリープ性の面から不利である。これに対し、本開示の実施形態において強化相に使用される金属間化合物〔Co(Al,W)〕は、マトリックス相(γ相)とのミスマッチが大きくても0.5%程度であり、γ’相により析出強化されたNi基合金を凌駕する組織安定性を呈する。
 更に、Co基合金は、Ni基合金の200GPaと比較して、220~230GPaと1割以上大きな弾性率を示す。このため、ゼンマイ,バネ,ワイヤ,ベルト,ケーブルガイド等、高強度,高弾性が必要な用途にも使用可能である。また、Co基合金は、硬質でありかつ耐磨耗性,耐食性に優れていることから、肉盛り材としても使用可能である。
 [Co基合金構造体の基本組成]
 本開示の実施形態に係るCo基合金構造体では、L1型金属間化合物〔Co(Al,W)〕又は〔(Co,X)(Al,W,Z)〕を適量分散させるため、成分および組成を特定している。Co基合金構造体の基本組成は、質量比でAl:0.1~10%,W:3.0~45%であり、残部が不可避的不純物を除きコバルト(Co)の組成を有している。
 アルミニウム(Al)は、γ’相の主要な構成元素である。Alは、耐酸化性の向上にも寄与する。Alの含有量が0.1%未満では、γ’相が析出せず、或いは析出しても高温強度に寄与しない。しかし、Alを過剰に添加すると、脆弱で硬質な相の生成を助長する。したがって、Alの含有量は、0.1~10%の範囲に設定される。Al含有量の好ましい下限は0.5%である。Al含有量の好ましい上限は5.0%である。
 タングステン(W)は、γ’相の主要な構成元素である。Wは、マトリックスを固溶強化する作用を有する。Wの含有量が3.0%未満では、γ’相が析出せず、或いは析出しても高温強度に寄与しない。一方、Wの含有量が45%を超えると、有害相の生成を助長する。したがって、Wの含有量は、3.0~45%の範囲に設定される。W含有量の好ましい上限は30%である。W含有量の好ましい下限は4.5%である。
 [グループ(I)およびグループ(II)]
 Co-W-Alの基本成分系では、グループ(I)およびグループ(II)の少なくともいずれか一方から選ばれた一種又は二種以上の合金成分(選択元素)が必要に応じて添加される。グループ(I)から選ばれた複数の合金成分を添加する場合には、添加量の合計を0.001~2.0%の範囲で選択する。また、グループ(II)から選ばれた複数の合金成分を添加する場合には、添加量の合計を0.1~50%の範囲で選定する。
 グループ(I)は、B,C,Y,La,ミッシュメタルからなるグループである。
 ホウ素(B)は、結晶粒界に偏析して粒界を強化する合金成分である。Bは、高温強度の向上に寄与する。Bの添加効果は、0.001%以上で顕著になる。しかし、Bを過剰に添加すると、加工性が損なわれる。したがって、Bの添加量の上限は、1.0%に設定される。B添加量の好ましい上限は0.5%である。
 炭素(C)は、Bと同様に、粒界強化に有効である。また、Cは、炭化物となって析出し、高温強度を向上させる。このような効果は、Cの添加量が0.001%以上のときに得られる。しかし、Cを過剰に添加すると、加工性および/または靭性が損なわれる。したがって、Cの添加量の上限は、2.0%に設定される。C添加量の好ましい上限は1.0%である。
 イットリウム(Y),ランタン(La),およびミッシュメタルは、いずれも耐酸化性の向上に有効な成分である。特に、Y,La,およびミッシュメタルは、いずれも添加量が0.01%以上であるときに耐酸化性が発揮される。しかし、Y,La,およびミッシュメタルの各々を過剰に添加すると、組織安定性に悪影響を及ぼしうる。したがって、Y,La,およびミッシュメタルの各々の添加量の上限は、1.0%に設定される。Y,La,およびミッシュメタルの各々の添加量の好ましい上限は0.5%である。
 グループ(II)は、Ni,Cr,Ti,Fe,V,Nb,Ta,Mo,Zr,Hf,Ir,Re,Ruからなるグループである。
 グループ(II)の合金成分は、分配係数の大きな元素ほどγ’相の安定化に効果的である。分配係数K γ’/γは、K γ’/γ=C γ’/Cxγ〔ただし、C γ’:γ’相のx元素濃度(原子%),C γ:マトリックス(γ)相のx元素濃度(原子%)〕と表される。当該式(K γ’/γ=C γ’/Cxγ)は、マトリックス相(γ相)に含まれる所定元素に対するγ’相に含まれる所定元素の濃度比を示す。分配係数≧1は、γ’相の安定化元素である。分配係数<1は、マトリックス相(γ相)の安定化元素である。チタン(Ti),バナジウム(V),ニオブ(Nb),タンタル(Ta),モリブデン(Mo)は、γ’相を安定化させるための元素である。特に、Taでは、γ’相を安定化させるための効果が他の元素よりも発現しやすい。
 ニッケル(Ni)は、L1型金属間化合物のCoと置換し、耐熱性および/または耐食性を改善する成分である。Niの添加量が1.0%以上であれば、添加による効果(耐熱性および/または耐食性)がみられる。しかし、Niを過剰に添加すると、有害な化合物相が生成される。したがって、Niの添加量の上限は、50%に設定される。Ni添加量の好ましい上限は40%である。また、Niは、AlおよびWの各々と置換し、γ’相の安定度を向上させる。その結果、より高温までγ’相の安定した存在を可能にする。
 イリジウム(Ir)は、L1型金属間化合物のCoと置換し、耐熱性および/または耐食性を改善する成分である。Irの添加量が1.0%以上であれば、添加による効果がみられる。しかし、Irを過剰に添加すると、有害な化合物相が生成される。したがって、Irの添加量の上限は、50%に設定される。Ir添加量の好ましい上限は40%である。
 鉄(Fe)は、Coと置換し、加工性を改善する作用がある。当該作用は、Feの添加量が1.0%以上のときに顕著となる。しかし、例えばFeの添加量が10%を超える場合のように、Feを過剰に添加すると、高温域における組織の不安定化をもたらす原因となる。したがって、Feの添加量の上限は、10%に設定される。Fe添加量の好ましい上限は5.0%である。
 クロム(Cr)は、Co基合金構造体の表面に緻密な酸化皮膜を生成し、耐酸化性を向上させる合金成分である。また、Crは、高温強度および/または耐食性の改善に寄与する。このような効果は、Crの添加量が1.0%以上のときに顕著となる。しかし、Crを過剰に添加すると、加工性が劣化する原因となる。したがって、Crの添加量の上限は、20%に設定される。Cr添加量の好ましい上限は15%である。
 モリブデン(Mo)は、γ’相の安定化およびマトリックスの固溶強化に有効な合金成分である。特に、Moの含有量が1.0%以上であるときに、Moの添加効果がみられる。しかし、Moを過剰に添加すると、加工性が劣化する原因となる。このため、Moの含有量の上限は、15%に設定される。Mo含有量の好ましい上限は10%である。
 レニウム(Re)およびルテニウム(Ru)は、耐酸化性の向上に有効な合金成分である。ReおよびRuは、いずれも0.5%以上で添加効果が顕著となる。しかし、Re,Ruの各々を過剰に添加すると、有害相の生成が誘発する。したがって、Re,Ruの添加量の上限は、いずれも10%に設定される。Re添加量およびRu添加量の好ましい上限は、いずれも5.0%である。
 チタン(Ti),ニオブ(Nb),ジルコニウム(Zr),バナジウム(V),タンタル(Ta),ハフニウム(Hf)は、いずれもγ’相の安定化および/または高温強度の向上に有効な合金成分である。特に、Ti:0.5%以上,Nb:1.0%以上,Zr:1.0%以上,V:0.5%以上,Ta:1.0%以上,Hf:1.0%以上であるときに、添加効果が得られる。しかし、Ti,Nb,Zr,V,Ta,Hfの各々を過剰に添加すると、有害相の生成および/または融点降下の原因となる。したがって、Ti,Nb,Zr,V,Ta,Hfの各々の添加量の上限は、Ti:10%,Nb:20%,Zr:10%,V:10%,Ta:20%,Hf:10%に設定される。
 [γ’相の粒径]
 L1型の金属間化合物〔Co(Al,W)〕又は〔(Co,X)(Al,W,Z)〕は、析出相(γ´相)の粒径が10nm~1μm(1000nm)の粒子となるように構成されている。1μmを超える粒径では、強度,硬さ等の機械的特性が劣化してしまう。γ´相の好ましい粒径は、10nm以上でありかつ50nmよりも小さい範囲である。
 [γ’相の析出量]
 L1型の金属間化合物〔Co(Al,W)〕又は〔(Co,X)(Al,W,Z)〕は、析出相(γ´相)の析出量が40~85体積%となるように構成されている。当該析出量が40%未満では析出強化による作用が不十分となる。一方、当該析出量が85%を超えてしまうと、Co基合金構造体において延性劣化が生じるおそれがある。
 [積層造形体]
 Co基合金構造体は、例えば、粉末からなる積層造形体として構成されている。積層造形体は、積層造形法(Additive Manufacturing、AM法)により形成される。積層造形法は、ガスアトマイズ法などにより作製した粉末を、レーザなどを熱源とした3Dプリンタを用いて選択的に溶融および凝固することにより積層造形体を成形する方法である。
 積層造形体の原材料としては、質量比でAl:2~5%、W:17~25%、C:0.05~0.15%、Ni:20~35%、Cr:6~10%、Ta:3~8%であって、残部が不可避的不純物を除きCoの組成を有する粉末(以下「原料粉末」という)を用いるのが好ましい。この原料粉末を用いて後述の製造方法を実施することにより、上記原料粉末と同様の組成を有する積層造形体が得られる。
 [積層造形体からなるCo基合金構造体の製造方法]
 次に、積層造形体からなるCo基合金構造体の製造方法の一例を図1に示す。当該製造方法は、主な工程として、粉末作製工程S1と、選択的レーザ溶融工程S2と、溶体化処理工程S3と、時効処理工程S4と、を有する。以下、各工程について説明する。
 [粉末作製工程]
 粉末作製工程S1は、Co基合金構造体の原材料となる粉末を作製する工程である。当該粉末は、例えば上記原料粉末のような所定の化学組成を有する。
 当該粉末を作製する方法としては、例えばガスアトマイズ法が用いられる。具体的には、ガスアトマイズ装置を用いて、高周波誘導加熱を行うことにより真空排気後の不活性ガス雰囲気中または大気中において試料の溶解を行う。その後、高圧のガス(ヘリウム、アルゴン、窒素などのガス)を当該試料に対して吹きつけることにより、数十μm程度の球状の粉末を作製する。
 粉末の粒径は、次工程の選択的レーザ溶融工程(S2)におけるハンドリング性や合金粉末床の充填性の観点から、5μm以上100μm以下が好ましい。粉末の粒径が5μm未満になると、次工程S2において合金粉末の流動性が低下し(合金粉末床の形成性が低下し)、積層造形体の形状精度が低下する要因となる。一方、粉末の粒径が100μm超になると、次工程S2において合金粉末床の局所溶融および急冷凝固の制御が難しくなり、粉末の溶融が不十分になり、あるいは積層造形体の表面粗さが増加する要因となる。そして、粉末の粒径は、10μm以上70μm以下がより好ましく、10μm以上50μm以下が更に好ましい。
 [選択的レーザ溶融工程]
 選択的レーザ溶融工程S2は、粉末作製工程S1により作製された粉末を用いて選択的レーザ溶融(SLM)法により所望形状の積層造形体を形成する工程である。
 図1に示すように、工程S2は、粉末作製工程S1により作製された粉末を敷き詰めて所定厚さの合金粉末床を用意する合金粉末床用意素工程(S21)と、合金粉末床の所定の領域にレーザ光を照射して該領域の粉末を局所溶融および急冷凝固させるレーザ溶融凝固素工程(S22)と、を含む。合金粉末床用意素工程(S21)とレーザ溶融凝固素工程(S22)とを繰り返し実施することにより、積層造形体(すなわち、Co基合金構造体の前駆体)が形成される。
 選択的レーザ溶融工程S2では、最終的な積層造形体として望ましい微細組織を得るために、積層造形体の微細組織を制御する。すなわち、積層造形体の微細組織を制御するために、粉末床の局所溶融および急冷凝固を制御する。
 [溶体化処理工程]
 溶体化処理工程S3は、選択的レーザ溶融工程S2により得られた積層造形体(Co基合金構造体の前駆体)に対して溶体化処理を施す工程である。溶体化処理の温度条件としては、1100℃以上1200℃以下の範囲に設定される。溶体化処理の好ましい温度は1160℃である。また、溶体化処理の保持時間は、0.5時間以上10時間以下に設定されるのが好ましい。なお、熱処理後の冷却方法としては、特に限定されず、例えば水冷、油冷、空冷、炉冷のいずれかの方法を実施すればよい。
 溶体化処理工程S3により、選択的レーザ溶融工程S2により得られた積層造形体(Co基合金構造体の前駆体)の内部において、母相結晶粒の再結晶が生じ、急冷凝固の際に生じた積層造形体の内部ひずみが緩和される。また、再結晶により、母相結晶粒の平均結晶粒径を20μm以上145μm以下の範囲に粗大化制御することが好ましい。該平均結晶粒径が20μm未満または145μm超であると、最終的なCo基合金構造体として十分なクリープ特性が得られない。
 [時効処理工程]
 時効処理工程S4は、溶体化処理工程S3により溶体化処理を施した積層造形体(Co基合金構造体の前駆体)に対して時効処理を施す工程である。具体的に、時効処理工程S4は、第1の時効処理工程S41と、第2の時効処理工程S42と、を含む。
 第1の時効処理工程S41は、溶体化処理工程S3を経た後に実施される。第1の時効処理工程S41における時効温度の条件としては、500℃以上700℃以下の範囲に設定されるのが好ましい。第1の時効処理工程S41の保持時間は、0.5時間以上30時間以下に設定されるのが好ましい。
 第2の時効処理工程S42は、第1の時効処理工程S41を経た後に実施される。第2の時効処理工程S42の時効温度は、第1の時効処理工程S41の時効温度よりも高くなるように設定される。具体的に、第2の時効処理工程S42における時効温度の条件としては、600℃以上800℃以下の範囲に設定されるのが好ましい。第2の時効処理工程S42の保持時間は、0.5時間以上20時間以下に設定されるのが好ましい。
 第1および第2の時効処理工程S41,S42の冷却方法としては、特に限定されず、例えば水冷、油冷、空冷、炉冷のいずれかの方法を実施すればよい。
 なお、図示しないが、溶体化処理工程S3または時効処理工程S4によって得られた積層造形体に対し、必要に応じて、耐食性被覆層を形成してもよい。または、溶体化処理工程S3または時効処理工程S4によって得られた積層造形体に対して表面仕上げを施してもよい。
 [実施形態の作用効果]
 以上のように、Co基合金構造体では、マトリックス相(γ相)において分散した状態で析出する析出相(γ´相)の粒径が10nm~1μmであり、かつ析出相(γ´相)の析出量が40~85体積%となるように構成されている。かかる構成では、極限まで微細化された粒子径を含むγ´相が、マトリックス相(γ相)に対して多数析出し、分散した状態となる。その結果、Co基合金構造体の組織内では、マトリックス相(γ相)と多数のγ´相との界面における総表面積が相対的に増加しかつγ´相の粒子同士の距離が相対的に縮まるようになる(100nmよりも小さくなる)。すなわち、マトリックス相(γ相)において極限まで微細化された粒子を含むγ´相が一様に析出強化された状態となる。そして、当該析出強化により特に高温における機械的特性(特に引張強さおよび耐力(0.2%耐力))が向上する。したがって、本開示の実施形態に係るCo基合金構造体では、上記析出強化の作用による機械的特性を高めることができる。なお、本開示の実施形態において、「分散した状態」とは、複数のγ´相が、マトリックス相(γ相)内において一様に配置された状態をいう。
 また、γ´相の粒径は、10nm以上でありかつ50nmよりも小さい範囲となるのが好ましい。このように微細化されたγ´相がマトリックス相(γ相)に対して多数析出し、分散した状態であれば、γ´相による析出強化の作用が強化され、Co基合金構造体の機械的特性をより一層高めることができる。
 また、Co基合金構造体は、粉末からなる積層造形体として構成されている。積層造形法において、特にレーザを熱源とした金属3Dプリンタを用いた場合には、積層造形体の造形時に原材料となる粉末の凝固速度が従来の鋳造などと比較して非常に速くなる。その結果、積層造形体では微細な凝固組織が形成される。そして、図2および図3に示すように、造形後の積層造形体に対して熱処理(容体化処理および時効処理)を施すことにより、積層造形体の粒界および/または粒内には、W化合物が、マトリックス相(γ相)において微細な状態で析出しかつ一様に分散した状態となる。さらに、マトリックス相(γ相)において、W化合物の周囲には、多数の微細な析出相(γ´相)が分散された状態となる。このように、粉末からなる積層造形体として構成されたCo基合金構造体では、W化合物と、多数の微細な析出相(γ´相)との双方の析出強化による作用を得ることが可能となる。その結果、本開示の実施形態に係るCo基合金構造体では、機械的特性をより一層高めることができる。
 なお、図2および図3では、W化合物が析出した場合の組織状態を示したが、このW化合物ではなく、炭化物相が積層造形体の粒界および/または粒内に析出する場合もある。或いは、W化合物および炭化物相の双方が積層造形体の粒界および/または粒内に析出する場合もある。
 また、積層構造体の原材料となる粉末は、質量比でAl:2~5%、W:17~25%、C:0.05~0.15%、Ni:20~35%、Cr:6~10%、Ta:3~8%であって、残部が不可避的不純物を除きCoの組成を有する。このような組成を有する粉末からなる積層造形体であれば、析出相(γ´相)の粒径を微細化することが可能となる。その結果、Co基合金構造体の機械的特性をより一層高めることができる。
 また、Co基合金構造体の製造方法において、時効処理工程では、第1の時効処理工程の後に実施される第2の時効処理工程の時効温度が、第1の時効処理工程の時効温度よりも高くなるように設定される。具体的に、溶体化処理の温度が1100℃以上であり、第1の時効処理工程の時効温度が500~700℃であり、第2の時効処理工程の時効温度が600~800℃となるように設定される。これにより、Co基合金構造体の組織内において析出相(γ´相)の粒径を極限まで微細化することが可能となる。さらに、Co基合金構造体の組織内においてミクロ偏析が生じにくくなり、マトリックス相(γ相)においてγ´相が均一に分散されるようになる。その結果、γ´相による析出強化の作用が強化され、Co基合金構造体の機械的特性をより一層高めることができる。
 [実施形態の変形例1]
 上記実施形態では、粉末からなる積層造形体として構成されたCo基合金構造体を説明したが、この形態に限られない。具体例として、Co基合金構造体の前駆体は、積層造形法により製造された積層造形体に代えて、鍛造法により製造された鍛造体として構成されていてもよい。すなわち、Co基合金構造体の製造方法として、図1に示した粉末作製工程(S1)および選択的レーザ溶融工程(S2)を、鍛造法による鍛造工程(S5)に置き換えた形態(図4参照)を採用してもよい。
 鍛造法において、鋳造直後の組織では比較的粗大な凝固組織が形成されるが、後工程である熱間鍛造により当該組織が均質化されかつ結晶粒が再結晶により微細化される。さらに、図1で示した溶体化処理工程S3および時効処理工程S4を経ることにより、Co基合金構造体の組織内において析出相(γ´相)の粒子がより微細化されかつミクロ偏析が生じにくくなる。したがって、鍛造体からなるCo基合金構造体であっても、上記実施形態と同様に、機械的特性を高めることができる。
 [実施形態の変形例2]
 また、Co基合金構造体の前駆体は、積層造形法により製造された積層造形体に代えて、粉末HIP鍛造法により製造された粉末HIP鍛造体として構成されていてもよい。すなわち、Co基合金構造体の製造方法として、図1に示した選択的レーザ溶融工程(S2)を、粉末HIP鍛造法によるHIP処理工程(S6)に置き換えた形態(図5参照)を採用してもよい。
 HIP処理工程(S6)は、粉末作製工程(S1)で作製した粉末を缶に装填し、高温および静水圧化により焼結する工程である。粉末作製工程(S1)で作製した粉末の組織は、例えばガスアトマイズ法により急冷凝固される。これにより、粒界および/または粒内においてW化合物および/または炭化物相などが微細化しかつ分散した状態となる。そして、溶体化処理工程(S3)および時効処理工程(S4)を経ることにより、Co基合金構造体の組織内においてγ´相の粒子がより微細化されかつミクロ偏析が生じにくくなる。したがって、粉末HIP鍛造体からなるCo基合金構造体であっても、上記実施形態と同様に、機械的特性を高めることができる。
 [その他の実施形態]
 図1および図5に示した粉末作製工程(S1)において、Co基合金の原材料である粉末を作製する方法および手法に特段の限定はない。すなわち、粉末作製工程(S1)では、従前の方法および手法を利用することが可能である。例えば、所望の化学組成となるように原料を混合、溶解、鋳造して母合金塊(マスターインゴット)を作製する母合金塊作製素工程と、該母合金塊から合金粉末を形成するアトマイズ素工程とを行ってもよい。また、アトマイズ方法にも特段の限定はなく、従前の方法および手法を利用できる。例えば、上述したガスアトマイズ法に代えて、遠心力アトマイズ法を採用してもよい。
 以上、本開示についての実施形態を説明したが、本開示は上述の実施形態のみに限定されず、本開示の範囲内で種々の変更が可能である。
 以下、下記工程を経て作製されたサンプルA(実施例)およびサンプルB(比較例)により、本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 ここで、サンプルAは、図1に示した全ての工程を経て作製された積層造形体からなるCo基合金構造体である。サンプルAは、粒径が50nmよりも小さい析出相(γ´相)の粒子を含む(図6参照)。一方、サンプルBは、図1に示した第2の時効処理工程(S42)以外の全ての工程を経て作製された積層造形体からなるCo基合金構造体である。サンプルBは、粒径が約250nmとなるγ´相の粒子を含む(図7参照)。
 まず、サンプルAおよびサンプルBを作製するために、上記実施形態において説明した積層造形体の原材料となる粉末(原料粉末)を、図1に示した粉末作製工程(S1)により作製した。具体的には、所定の原料を混合した後、真空高周波誘導溶解法により溶解および鋳造して母合金塊を作製する母合金塊作製素工程を行った。次に、該母合金塊を再溶解して、アルゴンガス雰囲気中のガスアトマイズ法により合金粉末を形成するアトマイズ素工程を行った。次に、得られた粉末に対して、粒径を制御するための合金粉末分級素工程を行った。
 上記原料粉末を用いて図1に示した選択的レーザ溶融工程(S2)により積層造形体(直径8mm×高さ60mm)を作製した。選択的レーザ溶融(SLM)の条件は、合金粉末床の厚さhを100μmとし、レーザ光の出力Pを100Wとし、レーザ光の走査速度S(mm/s)を種々変更することによって局所入熱量P/S(単位:W・S/mm=J/mm)を制御した。局所入熱量の制御は、冷却速度の制御に相当する。
 選択的レーザ溶融工程(S2)により作製した積層造形体(前駆体)に対し、図1に示した溶体化処理工程(S3)を実施した。本実験において、溶体化処理の温度は1160℃である。溶体化処理の保持時間は4時間である。
 次に、容体化処理を施した積層造形体(前駆体)に対し、時効処理工程を実施した。具体的に、サンプルAでは、図1に示した第1の時効処理工程(S41)および第2の時効処理工程(S42)の双方を実施した。一方、サンプルBでは、図1に示した第1の時効処理工程(S41)のみを実施した。すなわち、サンプルBでは、図1に示した第2の時効処理工程(S42)を実施していない。
 本実験において、第1の時効処理工程(S41)の温度は650℃である。第1の時効処理工程(S41)の保持時間は24時間である。また、第2の時効処理工程(S42)の温度は760℃である。第2の時効処理工程の保持時間(S42)は16時間である。
 図6および図7を参照すると、第1および第2の時効処理工程の双方を実施したサンプルAでは、第1の時効処理工程のみを実施したサンプルBと比較して、微細化された多数の析出相(γ´相)の粒子が、マトリックス相(γ相)において均一に分散した状態で析出していることがわかる。すなわち、サンプルAでは、マトリックス相(γ相)においてγ´相が均一に分散した結果、Co基合金構造体の組織内においてミクロ偏析が生じないようになっている。
 サンプルAおよびサンプルBにおいて、温度(℃)の変化に伴う引張強さおよび0.2%耐力(MPa)の関係を示したグラフを図8に示す。
 図8によれば、サンプルAでは、引張強さおよび0.2%耐力の双方の数値が、サンプルBにおける引張強さおよび0.2%耐力の数値よりも全体的に上回るという結果が得られた。具体的に、サンプルAの引張強さは、約20℃から600℃の範囲において、サンプルBの引張強さに対し100MPa程度上回っていた。また、サンプルAの0.2%耐力は、約20℃から600℃の範囲において、サンプルBの0.2%耐力に対し20MPa程度上回っていた。
 以上のように、本実験において、第1の時効処理工程(S41)および第2の時効処理工程(S42)を経ることにより極限まで微細化されたγ´相の粒子を有する実施例のサンプルAでは、第1の時効処理工程(S41)のみを行った比較例のサンプルBに対して機械的特性(引張強さおよび0.2%耐力)が向上することがわかった。
 本開示は、高温強度、高強度、高弾性などが要求される用途に好適なCo基合金構造体およびその製造方法として産業上の利用が可能である。

Claims (11)

  1.  質量比でAl:0.1~10%、W:3.0~45%で両者の合計が50%未満であって、残部が不可避的不純物を除きCoの組成を有するCo基合金構造体であって、
     前記Co基合金構造体は、
     fcc構造を有するCo主体のマトリックス相(γ相)と、
     原子比でCo(Al,W)又は〔(Co,X)(Al,W,Z)〕のL1構造を有するfcc構造の金属間化合物からなり、前記マトリックス相において分散した状態で析出する析出相(γ´相)と、を有し、
     前記析出相(γ´相)は、粒径が10nm~1μmであり、前記析出相(γ’相)の粒子が一様に配置して析出しており、かつ析出量が40~85体積%となるように構成されている、Co基合金構造体。
  2.  請求項1に記載のCo基合金構造体において、
     前記析出相(γ´相)の粒径は、10nm以上でありかつ50nmよりも小さい範囲である、Co基合金構造体。
  3.  請求項1または2に記載のCo基合金構造体において、
     前記Co基合金構造体は、粉末からなる積層造形体として構成されている、Co基合金構造体。
  4.  請求項1または2に記載のCo基合金構造体において、
     前記Co基合金構造体は、粉末からなる粉末HIP鍛造体として構成されている、Co基合金構造体。
  5.  請求項3または4に記載のCo基合金構造体において、
     前記粉末は、質量比でAl:2~5%、W:17~25%、C:0.05~0.15%、Ni:20~35%、Cr:6~10%、Ta:3~8%であって、残部が不可避的不純物を除きCoの組成を有する、Co基合金構造体。
  6.  請求項1または2に記載のCo基合金構造体において、
     前記Co基合金構造体は、鍛造体として構成されている、Co基合金構造体。
  7.  請求項1または2に記載のCo基合金構造体の製造方法であって、
     前記Co基合金構造体の前駆体に対して溶体化処理を施す溶体化処理工程と、
     前記溶体化処理を施した前記Co基合金構造体の前駆体に対して時効処理を施す時効処理工程と、を有し、
     前記時効処理工程は、第1の時効処理工程と、前記第1の時効処理工程の後に実施される第2の時効処理工程と、を含み、
     前記第2の時効処理工程の時効温度は、前記第1の時効処理工程の時効温度よりも高くなるように設定されている、Co基合金構造体の製造方法。
  8.  請求項7に記載のCo基合金構造体の製造方法において、
     前記溶体化処理の温度は1100℃以上であり、
     前記第1の時効処理工程の時効温度は500~700℃であり、
     前記第2の時効処理工程の時効温度は600~800℃である、Co基合金構造体の製造方法。
  9.  請求項7または8に記載のCo基合金構造体の製造方法において、
     前記Co基合金構造体の前駆体は、積層造形法により製造される、Co基合金構造体の製造方法。
  10.  請求項7または8に記載のCo基合金構造体の製造方法において、
     前記Co基合金構造体の前駆体は、鍛造法により製造される、Co基合金構造体の製造方法。
  11.  請求項7または8に記載のCo基合金構造体の製造方法において、
     前記Co基合金構造体の前駆体は、粉末HIP鍛造法により製造される、Co基合金構造体の製造方法。
PCT/JP2020/044870 2020-03-02 2020-12-02 Co基合金構造体およびその製造方法 WO2021176784A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080005883.9A CN113597476B (zh) 2020-03-02 2020-12-02 一种Co基合金结构体的制造方法
KR1020217012576A KR102490974B1 (ko) 2020-03-02 2020-12-02 Co기 합금 구조체 및 그 제조 방법
EP20875659.3A EP3904548A4 (en) 2020-03-02 2020-12-02 CO-BASED ALLOY STRUCTURE AND PROCESS OF PRODUCTION
US17/290,396 US20220220583A1 (en) 2020-03-02 2020-12-02 Co-based alloy structure and method for manufacturing same
SG11202108362Y SG11202108362YA (en) 2020-03-02 2020-12-02 Co-BASED ALLOY STRUCTURE AND METHOD FOR MANUFACTURING SAME
TW110101929A TWI799782B (zh) 2020-03-02 2021-01-19 鈷基合金構造體及其製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-035211 2020-03-02
JP2020035211A JP6952237B2 (ja) 2020-03-02 2020-03-02 Co基合金構造体およびその製造方法

Publications (1)

Publication Number Publication Date
WO2021176784A1 true WO2021176784A1 (ja) 2021-09-10

Family

ID=77613278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044870 WO2021176784A1 (ja) 2020-03-02 2020-12-02 Co基合金構造体およびその製造方法

Country Status (8)

Country Link
US (1) US20220220583A1 (ja)
EP (1) EP3904548A4 (ja)
JP (1) JP6952237B2 (ja)
KR (1) KR102490974B1 (ja)
CN (1) CN113597476B (ja)
SG (1) SG11202108362YA (ja)
TW (1) TWI799782B (ja)
WO (1) WO2021176784A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065319A (ja) * 2008-09-08 2010-03-25 Alstom Technology Ltd 耐熱コバルト基超合金
JP4996468B2 (ja) 2005-09-15 2012-08-08 独立行政法人科学技術振興機構 高耐熱性,高強度Co基合金及びその製造方法
US20120312434A1 (en) * 2011-06-09 2012-12-13 General Electric Company Cobalt-nickel base alloy and method of making an article therefrom
JP5174775B2 (ja) * 2009-09-17 2013-04-03 株式会社日立製作所 摩擦撹拌用ツール
JP2018168400A (ja) * 2017-03-29 2018-11-01 三菱重工業株式会社 Ni基合金積層造形体の熱処理方法、Ni基合金積層造形体の製造方法、積層造形体用Ni基合金粉末、およびNi基合金積層造形体
JP2019507247A (ja) * 2016-01-08 2019-03-14 シーメンス アクティエンゲゼルシャフト 付加製造方法又ははんだ付け、溶接、粉末及び部品のためのガンマ、ガンマ’−コバルト基合金

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174775A (ja) * 1974-12-23 1976-06-28 Tokyo Shibaura Electric Co Garasufukugotainyoruyokino fushihoho oyobi sonosochi
JP5144269B2 (ja) * 2005-10-11 2013-02-13 独立行政法人科学技術振興機構 加工性を改善した高強度Co基合金及びその製造方法
US20110268989A1 (en) * 2010-04-29 2011-11-03 General Electric Company Cobalt-nickel superalloys, and related articles
JP5582532B2 (ja) * 2010-08-23 2014-09-03 大同特殊鋼株式会社 Co基合金
CN105088017B (zh) * 2015-09-08 2017-06-23 钢铁研究总院 一种双相高密度可铸锻动能钨镍钴合金及制备方法
JP6425275B2 (ja) * 2016-12-22 2018-11-21 株式会社 東北テクノアーチ Ni基耐熱合金
JP6425274B2 (ja) * 2016-12-22 2018-11-21 株式会社 東北テクノアーチ Ni基耐熱合金
JP6509290B2 (ja) * 2017-09-08 2019-05-08 三菱日立パワーシステムズ株式会社 コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法
CN109207799B (zh) * 2018-09-11 2020-04-10 厦门大学 一种稳定γ′相强化的Co-Ni-V-Al基高温合金
CN109321786B (zh) * 2018-12-14 2020-10-23 北京科技大学 一种钴基高温合金及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4996468B2 (ja) 2005-09-15 2012-08-08 独立行政法人科学技術振興機構 高耐熱性,高強度Co基合金及びその製造方法
JP2010065319A (ja) * 2008-09-08 2010-03-25 Alstom Technology Ltd 耐熱コバルト基超合金
JP5174775B2 (ja) * 2009-09-17 2013-04-03 株式会社日立製作所 摩擦撹拌用ツール
US20120312434A1 (en) * 2011-06-09 2012-12-13 General Electric Company Cobalt-nickel base alloy and method of making an article therefrom
JP2019507247A (ja) * 2016-01-08 2019-03-14 シーメンス アクティエンゲゼルシャフト 付加製造方法又ははんだ付け、溶接、粉末及び部品のためのガンマ、ガンマ’−コバルト基合金
JP2018168400A (ja) * 2017-03-29 2018-11-01 三菱重工業株式会社 Ni基合金積層造形体の熱処理方法、Ni基合金積層造形体の製造方法、積層造形体用Ni基合金粉末、およびNi基合金積層造形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904548A4

Also Published As

Publication number Publication date
EP3904548A4 (en) 2022-04-20
TW202134447A (zh) 2021-09-16
TWI799782B (zh) 2023-04-21
KR102490974B1 (ko) 2023-01-26
CN113597476B (zh) 2022-08-12
EP3904548A1 (en) 2021-11-03
KR20210113156A (ko) 2021-09-15
US20220220583A1 (en) 2022-07-14
CN113597476A (zh) 2021-11-02
JP2021138978A (ja) 2021-09-16
SG11202108362YA (en) 2021-10-28
JP6952237B2 (ja) 2021-10-20

Similar Documents

Publication Publication Date Title
US11325189B2 (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
CN110462073B (zh) Ni基合金层叠造形体、及其热处理方法、制造方法
JP7012468B2 (ja) 超合金物品及び関連物品の製造方法
JP6713071B2 (ja) コバルト基合金積層造形体の製造方法
JP5652730B1 (ja) Ni基超耐熱合金及びその製造方法
WO2020179080A1 (ja) コバルト基合金製造物、該製造物の製造方法、およびコバルト基合金物品
WO2020121367A1 (ja) コバルト基合金積層造形体、コバルト基合金製造物、およびそれらの製造方法
JP6924874B2 (ja) コバルト基合金材料
JP2008520826A (ja) チタンアルミニウムを基礎とした合金
WO2020179084A1 (ja) コバルト基合金製造物、およびコバルト基合金物品
JP2018024938A (ja) 超合金物品及び関連物品の製造方法
JPH0116292B2 (ja)
JP2018508652A (ja) 耐食性物品および製造方法
WO2021176784A1 (ja) Co基合金構造体およびその製造方法
US10179943B2 (en) Corrosion resistant article and methods of making
JP7223877B2 (ja) コバルト基合金材料およびコバルト基合金製造物
JP2008179845A (ja) ナノ構造化超合金構造部材及び製造方法
CN115066510B (zh) 钴铬合金粉末
RU2771192C1 (ru) Порошок сплава на основе кобальта, спечённое тело из сплава на основе кобальта и способ изготовления спечённого тела из сплава на основе кобальта
JP2022042490A (ja) コバルト基合金構造体の製造方法、および該製造方法により得られるコバルト基合金構造体
CN115066510A (zh) 钴铬合金粉末

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020875659

Country of ref document: EP

Effective date: 20210421

NENP Non-entry into the national phase

Ref country code: DE