WO2021169197A1 - 一种离心风机和空调装置 - Google Patents

一种离心风机和空调装置 Download PDF

Info

Publication number
WO2021169197A1
WO2021169197A1 PCT/CN2020/109648 CN2020109648W WO2021169197A1 WO 2021169197 A1 WO2021169197 A1 WO 2021169197A1 CN 2020109648 W CN2020109648 W CN 2020109648W WO 2021169197 A1 WO2021169197 A1 WO 2021169197A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottom plate
centrifugal fan
deflector
blades
motor
Prior art date
Application number
PCT/CN2020/109648
Other languages
English (en)
French (fr)
Inventor
黄焕文
林显洲
罗静宜
Original Assignee
华为技术有限公司
泛仕达机电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 泛仕达机电股份有限公司 filed Critical 华为技术有限公司
Priority to EP20921350.3A priority Critical patent/EP3961040B1/en
Publication of WO2021169197A1 publication Critical patent/WO2021169197A1/zh
Priority to US17/548,228 priority patent/US11898576B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/263Rotors specially for elastic fluids mounting fan or blower rotors on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps

Definitions

  • This application relates to the technical field of electronic equipment, in particular to a centrifugal fan and an air conditioner.
  • the centrifugal fan is the core component of the computer room air conditioner.
  • the efficiency of the centrifugal fan directly affects the energy efficiency of the air conditioner. How to improve the efficiency of the centrifugal fan while improving its cost performance has become the industry's focus.
  • FIG. 1 is a schematic cross-sectional structure diagram of a centrifugal fan in the prior art.
  • the cross-sectional structure diagram refers to a cross-sectional structure diagram perpendicular to the bottom plate and passing through the rotation axis of the motor.
  • a centrifugal fan includes a top plate 1, a bottom plate 2, blades 3, and a motor 4.
  • the motor 4 is mounted on the bottom plate 2, and the blades 3 are fixed between the top plate 1 and the bottom plate 2, and the blades 3 are arranged around the motor 4.
  • the aforementioned bottom plate 2 may be made of metal material, for example, formed by stamping an aluminum plate. Due to the influence of the processing technology, the bottom plate 2 made of metal material is substantially flat.
  • a right-angle groove 5 is formed between the bottom plate 2 and the housing of the motor 4. After air enters the groove 5, it is easy to form impact and cause impact loss; at the same time, the impact of airflow causes turbulent flow of air at the inlet of the impeller, which is easy to form on the surface of the blade 3. The vortex brings vortex loss, which reduces the aerodynamic efficiency of the fan while increasing the noise.
  • the application provides a centrifugal fan and an air conditioning device to improve the aerodynamic efficiency of the centrifugal fan and reduce the noise generated by the centrifugal fan.
  • the present application provides a centrifugal fan.
  • the centrifugal fan includes a top plate, a bottom plate, a motor, a deflector, and a plurality of blades, wherein the center positions of the plurality of bottom plates are provided with a motor mounting hole, and the motor has a motor housing ,
  • the motor housing is installed in the motor mounting hole and fixed to the bottom plate, and the motor at least partially extends between the bottom plate and the top plate.
  • the blades are fixed between the top plate and the bottom plate, and a plurality of blades are arranged around the motor.
  • the air deflector is sleeved on the outer peripheral side of the motor housing and can be detachably installed on the bottom plate.
  • the air deflector fills the groove formed between the motor housing and the bottom plate, so as to avoid the problem of increased resistance caused by the discontinuity of the shape when the air flows through the area between the motor housing and the bottom plate.
  • the shroud can also guide the airflow into and out of the centrifugal fan. The airflow evenly enters the centrifugal fan to reduce the vortex loss on the blades. At the same time, it improves the separation loss caused by the trailing edge, improves the aerodynamic efficiency of the centrifugal fan, and reduces Noise generated by airflow.
  • the end of the air deflector close to the bottom plate can be smoothly transitioned to the bottom plate.
  • the aerodynamic efficiency is improved and the noise is reduced.
  • the end of the air deflector away from the bottom plate can be smoothly transitioned to the outer peripheral side of the motor housing, which reduces the wind resistance between the air deflector and the motor housing, improves aerodynamic efficiency and reduces noise.
  • the outer surface profile of the air deflector there is no specific restriction on the outer surface profile of the air deflector, and can be selected according to requirements, for example, a linear shape or an arc shape can be selected.
  • a linear shape or an arc shape can be selected.
  • the outer surface of the air deflector is wavy or sinusoidal along the contour line from the end close to the bottom plate to the end far away from the bottom plate.
  • the aforementioned contour line is wavy or sinusoidal, which is more conducive to smooth transition between the deflector and the bottom plate, and at the same time smooth transition with the motor housing.
  • the top of the motor housing may have rounded corners.
  • the end of the air deflector away from the bottom plate is flush with the rounded corners of the motor housing toward the edge of the bottom plate, that is, the motor housing has The rounded area is exposed from the edge of the air deflector, which facilitates the heat dissipation of the motor and improves the heat dissipation efficiency of the motor.
  • the top of the motor housing has rounded corners, and the wind resistance is small.
  • the bottom plate in the technical solution of the present application may further include a mounting boss, the motor is installed on the bottom plate through the motor mounting hole on the mounting boss, and the air deflector can be disposed on the mounting boss.
  • This solution can make the installation boss have a transition surface, reduce the height of the deflector, and improve the strength of the deflector.
  • the centrifugal fan includes a metal bottom plate, a metal top plate and metal blades.
  • the deflector is made of plastic.
  • the main structure of the centrifugal fan is a metal structure with high strength, especially for high static pressure scenes, which can meet the strength requirements. Cooperating with the plastic deflector, it can improve the aerodynamic efficiency, reduce the noise, and also reduce the cost.
  • the air deflector may include at least two sub-air deflectors.
  • the above-mentioned at least two sub-flow guides are sequentially stacked in a direction away from the bottom plate, and the contour of the flow-guide formed after the above-mentioned sub-flow guides are stacked has a flow diversion effect.
  • a plurality of small-volume sub-flow hoods can be prepared to improve the strength of the flow hood and facilitate production and transportation.
  • the edge of the blade of the centrifugal fan includes the air inlet edge near the air inlet side, the air outlet edge near the air outlet side, and the concave suction surface and the pressure surface away from the above suction surface.
  • the edge and the outlet edge respectively have one-sided rounded corners facing the suction surface.
  • the present application also provides an air conditioner, which includes the centrifugal fan in any of the above technical solutions.
  • the centrifugal fan of the air conditioner can have high wind efficiency while meeting the strength requirements. It can also have lower noise.
  • Figure 1 is a schematic cross-sectional structure diagram of a centrifugal fan in the prior art
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a centrifugal fan provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of a structure of the air deflector provided by an embodiment of the application.
  • FIG. 4 is a partial structural cross-sectional view of a centrifugal fan in an embodiment of the application
  • Fig. 5 is a schematic diagram of a structure for installing steel rings in an embodiment of the application
  • FIG. 6 is a partial enlarged view of a cross-section of a centrifugal fan in an embodiment of the application
  • FIG. 7 is a schematic diagram of a structure of the air deflector in an embodiment of the application.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a centrifugal fan in an embodiment of the application.
  • Fig. 9 is a schematic diagram of a structure of a blade in an embodiment of the application.
  • the air-conditioning device includes a centrifugal fan, which is used as a blowing component of the air-conditioning device to make air flow and exchange heat.
  • a motor drives the impeller to rotate to make the air flow to form wind.
  • the centrifugal fan includes a bottom plate, a top plate, and a plurality of blades arranged between the bottom plate and the top plate.
  • a motor is also installed on the bottom plate to drive the blades to rotate.
  • the bottom plate can be made of metal, and the bottom plate made of metal is substantially flat.
  • the motor housing of the motor is installed on the bottom plate, and the motor housing extends between the bottom plate and the top plate, and a groove area is formed between the outer surface of the motor housing and the bottom plate, and the groove area will cause impact loss and noise.
  • the present application provides a new type of centrifugal fan and air conditioning device, which has high energy efficiency and low noise.
  • references described in this specification to "one embodiment” or “some embodiments”, etc. mean that one or more embodiments of the present application include a specific feature, structure, or characteristic described in combination with the embodiment. Therefore, the sentences “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless it is specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized.
  • FIG. 2 is a schematic cross-sectional structure diagram of a centrifugal fan provided by an embodiment of the application.
  • the schematic cross-sectional structure refers to a schematic cross-sectional structure perpendicular to the bottom plate and passing through the motor shaft.
  • the centrifugal fan provided in the embodiment of the present application includes a top plate 1, a bottom plate 2, a motor 4, a deflector 6 and a plurality of blades 3.
  • the bottom plate 2 has a motor mounting hole 21, the above-mentioned motor 4 has a motor housing 41, and the motor housing 41 extends into the above-mentioned motor mounting hole 21 and is fixed to the bottom plate 2.
  • At least part of the structure of the motor housing 41 extends into the bottom plate 2 and Between the top plates 1, the motor 4 is used to provide driving force for the rotation of the blade 3.
  • the motor housing 41 extends between the bottom plate 2 and the top plate 1 in the axial direction, and the axial direction of the motor housing 41 is substantially perpendicular to the bottom plate 2.
  • the plurality of blades 3 are fixed between the bottom plate 2 and the top plate 1 and are arranged in a ring around the motor mounting hole 21.
  • the air deflector 6 is detachably installed on the bottom plate 2, and the air deflector 6 is sleeved on the outer peripheral side of the motor housing 41 to realize the diversion between the outer peripheral side of the motor housing 41 and the base plate 2.
  • the air deflector 6 is located between the motor housing 41 and the bottom plate 2, and fills the groove formed between the motor housing 41 and the bottom plate 2, so as to avoid the discontinuity of the shape causing the airflow to flow through the motor housing 41 In the area between the bottom plate 2 and the area between the bottom plate 2, the increase in resistance caused by the problem, thereby reducing the impact loss.
  • the deflector 6 forms a transition between the bottom plate 2 and the motor 4, it can guide the airflow in and out of the centrifugal fan.
  • the airflow evenly enters the centrifugal fan to reduce the vortex loss on the blades 3 and improve the trailing edge.
  • the resulting separation loss improves the aerodynamic efficiency of the centrifugal fan, and reduces the narrow-frequency noise generated by the incoming turbulence and the leading edge of the blade 3 and the eddy broadband noise in the flow path of the blade 3.
  • the bottom plate 2, the top plate 1 and the blade 3 can all be made of metal. Specifically, each structure can be prepared by stamping, and then the blade 3 is fixed to the bottom plate 2 by welding. Between and top plate 1.
  • the main structure of the centrifugal fan is a metal structure with high strength, especially for high static pressure scenarios, which can meet the strength requirements.
  • the main body of the metallic centrifugal fan can be matched with the deflector 6, so that the centrifugal fan can not only meet the strength requirements, but also improve the aerodynamic efficiency of the centrifugal fan and reduce the operating noise of the centrifugal fan.
  • the material of the deflector 6 is not limited, and the material of the deflector 6 can be metal or plastic, such as acrylonitrile-butadiene-styrene copolymer (ABS), Engineering plastic alloy (PC+ABS), polyamide 6 (PA6), polyhexamethylene adipamide (PA66), glass fiber reinforced polybutylene terephthalate (PBT+ glass fiber), glass fiber reinforced polycarbonate Ester (PC+glass fiber), polyphosphate (PPE) or polypropylene (PP).
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PC+ABS Engineering plastic alloy
  • PA6 polyamide 6
  • PA66 polyhexamethylene adipamide
  • PBT+ glass fiber glass fiber reinforced polybutylene terephthalate
  • PC+glass fiber glass fiber reinforced polycarbonate Ester
  • PPE polyphosphate
  • PP polypropylene
  • the volume of the deflector 6 in this application is smaller. Therefore, the plastic deflector 6 is prepared by the method of plastic mold opening.
  • the cost is lower, and the cost can be reduced by approximately 9.3%.
  • the inventor found through experiments and analysis that when the centrifugal fan in the embodiment of the present application adopts the plastic deflector 6, the aerodynamic efficiency of the centrifugal fan can be increased by 1% to 2.5%, and the power consumption of each centrifugal fan can be reduced by 68W ⁇ 166W, for a typical data center of communication equipment, the annual electricity cost saved is about 600,000 ⁇ 1.45 million yuan.
  • the noise of the centrifugal fan can be reduced by 1dB(A) ⁇ 1.5dB(A), and the overall competitiveness of the product is greatly improved.
  • the diversion cover 6 when the diversion cover 6 is prepared by the plastic mold opening method, the diversion cover 6 can be adapted to the requirements of various working condition parameters, and has good adaptability.
  • the shape and size of the air deflector 6 can be specifically designed according to requirements.
  • one end of the air deflector 6 and the bottom plate 2 can be smoothly transitioned, and the air deflector 6 and the bottom plate 2 can be smoothly transitioned.
  • the gap between the air deflector 6 is less than 1.5mm; the end of the air deflector 6 away from the bottom plate 2 and the outer peripheral side of the motor housing 41 smoothly transition, and the gap between the air deflector 6 and the motor housing 41 is less than 1.5mm, so that the motor
  • the overall structure between the shell 41 and the bottom plate 2 is a smooth transition structure. This solution can improve the diversion effect and the noise reduction effect of the diversion cover 6.
  • the height of the deflector 6 is not limited, and can be any height within the range of 5 mm to 100 mm.
  • one end of the deflector 6 can be fixed in contact with the bottom plate 2, and the end away from the bottom plate 2 is flush with the top of the motor housing 41. This solution is beneficial to improve the diversion effect of the deflector 6 .
  • the height of the air deflector 6 is relatively high, which facilitates the formation of a relatively smooth transition between the motor housing 41 and the bottom plate 2.
  • the top of the motor housing 41 has rounded corners 411, that is, the side of the motor housing 41 away from the bottom plate 2 has a rounded contour, and the end of the air deflector 6 away from the bottom plate 2 and the rounded corners of the motor housing 41 411 faces the bottom plate 2 and is flush with the edge.
  • the highest point of the air deflector 6 is approximately flush with the lowest point of the rounded corner 411 of the motor housing 41, so that the air deflector 6 does not completely cover the top of the motor 4, and the motor 4 is removed from the air deflector 6 Exposing the height of the radius of the rounded corner 411 is beneficial to the heat dissipation of the motor 4.
  • the motor housing 41 has a rounded contour and also has a certain flow guiding effect, which is not easy to generate noise or cause low efficiency.
  • the air deflector 6 can be detachably installed on the bottom plate 2 for easy disassembly and installation, and easy maintenance.
  • the air deflector 6 can be screwed to the bottom plate 2.
  • the air deflector 6 may include a plurality of screw holes 61 through which the screws are fixedly connected to the bottom plate 2. reliable.
  • the aforementioned air deflector 6 can also be snap-connected to the bottom plate 2.
  • the deflector 6 has a plurality of buckles
  • the bottom plate 2 has a plurality of bayonet openings, so that the buckles of the deflector 6 and The above-mentioned bayonet is engaged to realize the installation of the deflector 6.
  • the connection structure does not require auxiliary components, and the structure is relatively simple.
  • the centrifugal fan is a partial structural cross-sectional view of a centrifugal fan in an embodiment of the application.
  • the cross-sectional structure diagram refers to a cross-sectional structure diagram perpendicular to the bottom plate and passing through the axis of the motor mounting hole, and the cross-sectional structure diagram shows the centrifugal fan The top plate, bottom plate and blades.
  • the bottom plate 2 has a mounting boss 22, and the motor mounting hole 21 is located on the mounting boss 22.
  • the above-mentioned mounting boss 22 can increase the strength of the motor mounting hole 21, thereby improving the reliability and stability of the mounting of the motor 4.
  • the centrifugal fan further includes a mounting steel ring 42 for mounting the motor 4.
  • the mounting steel ring 42 is welded to the motor housing 41, and can also be fixedly mounted on the mounting boss 22.
  • the structure of the mounting steel ring 42 can be as shown in FIG. 5.
  • the mounting steel ring 42 can be screwed to the bottom plate 2 for easy installation and removal.
  • the above-mentioned deflector 6 can be arranged on the above-mentioned mounting boss 22, and the above-mentioned mounting boss 22 can also have a certain diversion effect to reduce the deflector 6 volume of.
  • the installation boss 22 may also have a relatively smooth transition surface to improve the diversion effect of the installation boss 22.
  • the outer surface of the deflector 6 and the outer surface of the installation platform can be smoothly transitioned, so that the two form a relatively smooth transition surface to improve the diversion effect.
  • the contour shape of the air deflector 6 is not specifically limited.
  • the contour of the air deflector 6 along the end close to the bottom plate 2 to the end far away from the bottom plate 2 may be linear, arc, or wavy. Or sine wave.
  • the outer surface of the deflector 6 is an arc-shaped surface.
  • 6 is a partial enlarged view of a cross-section of a centrifugal fan in an embodiment of the application.
  • the cross-sectional structure diagram shows a partial enlarged view of the air deflector part in a cross-sectional structure diagram perpendicular to the bottom plate and passing through the motor shaft. Please refer to FIG.
  • FIG. 7 is a schematic structural diagram of the air deflector 6 in the embodiment of the application. As shown in FIG. 7, in an optional embodiment, the outline of the air deflector 6 is wave-shaped.
  • the aforementioned air deflector 6 may include at least two sub-air deflectors.
  • the above-mentioned at least two sub-flow guides are sequentially stacked in a direction away from the bottom plate 2, and the outline of the flow-guide 6 formed after the above-mentioned sub-flow guides are stacked has a flow diversion effect.
  • a plurality of smaller sub-air deflectors can be prepared to improve the strength of the air deflector 6 and facilitate production and transportation.
  • the baffle 6 when the baffle 6 is installed inside the centrifugal fan, it should avoid all the blades 3 and be located between the blades 3 and the motor 4. Specifically, the maximum outer diameter of the baffle 6 is equal to the minimum inner diameter of the blade 3 on the bottom plate 2 of the wind turbine, and the minimum inner diameter of the baffle 6 is equal to the diameter of the main body of the motor housing 41. This design ensures that the blade 3 and the top plate 1 The integrity of the rotor is conducive to the guarantee of the efficiency of the wind turbine.
  • FIG. 8 is a schematic cross-sectional structure diagram of a centrifugal fan in an embodiment of the application.
  • the schematic cross-sectional structure refers to a schematic cross-sectional structure parallel to the bottom plate and passing through the blades.
  • FIG. 9 is a schematic diagram of a blade in the embodiment of the application. Schematic. As shown in Figs. 8 and 9, the blade 3 has a plurality of edges, including an air inlet edge 31 on the air inlet side and an air outlet edge 32 on the air outlet side.
  • the blade 3 has a concave surface and a convex surface.
  • the concave surface of the blade 3 is the suction surface 33 and the convex surface is the pressure surface.
  • the air inlet edge 31 and the air outlet edge 32 of the blade 3 have single-sided rounded corners facing the suction surface 33, that is, the air inlet edge 31 and the air outlet edge 32 do not have rounded corners on the pressure surface.
  • the blade 3 is usually chamfered on both sides, or rounded on both sides.
  • a single-sided fillet 34 is made on the edge of the blade 3, which can simplify the manufacturing process and improve the airflow operation efficiency.
  • This solution is beneficial to reduce the wind resistance of the blades 3 and improve the efficiency of the centrifugal fan.
  • the radius R of the single-sided fillet 34 is equal to the thickness D of the blade 3, the wind resistance of the blade 3 is the smallest, and the efficiency of the centrifugal fan is the highest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种离心风机和空调装置,该离心风机包括顶板(1)、底板(2)、电机(4)、导流罩(6)和多个叶片(3);其中,底板(2)的中心位置设置有电机安装孔(21),电机(4)具有电机壳(41),上述电机壳(41)安装于电机安装孔(21)且固定于底板(2),该电机(4)至少部分伸入底板(2)与顶板(1)之间,叶片(3)固定于顶板(1)与底板(2)之间,多个叶片(3)环绕电机(4)设置,上述导流罩(6)套设于电机壳(41)的外周侧,且可拆卸安装于底板(2),导流罩(6)填补了电机壳(41)与底板(2)之间形成的凹槽,从而可以避免外形的不连续导致气流流经电机壳(41)与底板(2)之间的区域时,造成的阻力增加问题,从而减少冲击损失;该导流罩(6)还可以对进出离心风机内部的气流起到导流作用,提高离心风机气动效率,并降低气流产生的噪声。

Description

一种离心风机和空调装置
相关申请的交叉引用
本申请要求在2020年02月29日提交中国专利局、申请号为202020229013.7、申请名称为“一种离心风机和空调装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种离心风机和空调装置。
背景技术
随着通信设备的发展,机房空调装置的高能效的需求逐日攀升。离心风机作为机房空调装置的核心部件,离心风机效率的高低直接影响空调装置的能效;如何在提高离心风机效率的同时提高其性价比成为行业的发力点。
图1为现有技术中一种离心风机的剖面结构示意图,具体的,该剖面结构示意图指的是在垂直于底板且过电机转轴方向的剖面结构示意图。如图1所示,一种离心风机包括顶板1、底板2、叶片3和电机4,上述电机4安装于底板2,叶片3固定于顶板1和底板2之间,且叶片3环绕电机4设置。现有技术中,上述底板2可以采用金属材质制备,例如利用铝板冲压形成,受到加工工艺的影响,金属材质的底板2大致为平面。底板2与电机4的外壳之间形成直角凹槽5,空气进入上述凹槽5后,容易形成冲击带来冲击损失;同时,气流冲击导致叶轮入口空气来流紊流,容易在叶片3表面形成涡旋带来涡旋损失,在降低风机气动效率的同时加大噪声。
发明内容
本申请提供了一种离心风机和空调装置,以提高离心风机的气动效率,降低离心风机产生的噪声。
第一方面,本申请提供了一种离心风机,该离心风机包括顶板、底板、电机、导流罩和多个叶片,其中,多个底板的中心位置设置有电机安装孔,电机具有电机壳,电机壳安装于电机安装孔且固定于底板,该电机至少部分伸入底板与顶板之间。叶片固定于顶板与底板之间,多个叶片环绕电机设置。上述导流罩套设于电机壳的外周侧,且可拆卸安装于底板。该方案中,导流罩填补了电机壳与底板之间形成的凹槽,从而可以避免外形的不连续导致气流流经电机壳与底板之间的区域时,造成的阻力增加问题,从而减少冲击损失。该导流罩还可以对进出离心风机内部的气流起到导流作用,气流均匀进入离心风机的内部降低叶片上的涡流损失,同时改善尾缘产生的分离损失,提高离心风机气动效率,并降低气流产生的噪声。
在具体设置上述导流罩时,可以使导流罩靠近底板的一端与底板平滑过渡。以减少导流罩与底板之间的过渡处产生的风阻,提高气动效率,降低噪声。
此外,还可以使导流罩远离底板的一端与电机壳的外周侧平滑过渡,减少导流罩与电 机壳之间产生的风阻,提高气动效率,降低噪声。
本申请具体的技术方案中,对导流罩的外表面轮廓不做具体限制,可以根据需求选择,例如可以选择直线形或者弧形。但是,当导流罩的外表面沿靠近底板的一端到远离底板的一端轮廓线为波浪形或者正弦波形。上述轮廓线为波浪形或者正弦波形,更加有利于实现导流罩与底板之间平滑过渡,同时与电机壳平滑过渡。
在具体设置上述电机壳时,电机壳的顶部可以具有圆角,该方案下,使导流罩远离底板的一端与电机壳的圆角朝向底板的边缘平齐,即电机壳具有圆角的区域从导流罩的边缘露出,便于电机进行散热,提高电机的散热效率。此外,该方案中,电机壳的顶部具有圆角,风阻较小。
本申请技术方案中的底板还可以包括安装凸台,电机穿过上述安装凸台上的电机安装孔安装于底板,上述导流罩可以设置于安装凸台。该方案可以使安装凸台具有过渡表面,减小导流罩的高度,从而提高导流罩的强度。
采用本申请的技术方案,可以利用金属制作底板、顶板和叶片,即离心风机包括金属底板、金属顶板和金属叶片。利用塑料制作导流罩,该方案中,离心风机的主体结构为金属结构,强度较高,特别是对于高静压场景,可以满足强度要求。配合塑料导流罩,可以提高气动效率,降低噪音,还可以降低成本。
具体设置上述导流罩时,上述导流罩可以包括至少两个子导流罩。上述至少两个子导流罩沿远离底板方向依次叠置,上述子导流罩叠置后形成的导流罩的轮廓具有导流效果。该方案中,可以制备多个体积较小的子导流罩,以提高导流罩的强度,且便于制作和运输。
离心风机的叶片边沿包括靠近进风侧的进风沿,和靠近出风侧的出风沿,还有凹面的吸力面和背离上述吸力面的压力面,本申请技术方案中的叶片的进风沿和出风沿分别具有朝向吸力面的单侧圆角。该方案可以简化叶片的制作工艺,还可以降低叶片的风阻。
上述单侧圆角的半径R1与叶片的厚度D满足:R1=αD,其中:0.5≤α≤1.5。有利于降低叶片的风阻,提高离心风机的效率。具体的,当上述单侧圆角的半径R1与叶片的厚度D相等时,叶片的风阻最小,离心风机的效率最高。
第二方面,本申请还提供了一种空调装置,该空调装置包括上述任意技术方案中的离心风机,该空调装置的离心风机在满足强度要求的情况下,可以具有较高的风动效率,还可以具有较低的噪音。
附图说明
图1为现有技术中一种离心风机的剖面结构示意图;
图2为本申请实施例提供的离心风机的一种剖面结构示意图;
图3为本申请实施例提供的导流罩的一种结构示意图;
图4为本申请实施例中离心风机的一种部分结构剖视图;
图5为本申请实施例中安装钢圈的一种结构示意图;
图6为本申请实施例中离心风机的一种剖面局部放大图;
图7为本申请实施例中导流罩的一种结构示意图;
图8为本申请实施例中离心风机的一种剖面结构示意图;
图9为本申请实施例中叶片的一种结构示意图。
附图标记说明:
1-顶板;                           2-底板;
21-电机安装孔;                    22-安装凸台;
3-叶片;                           31-进风沿;
32-出风沿;                        33-吸力面;
34-单侧圆角;                      4-电机;
41-电机壳;                        411-圆角;
42-安装钢圈;                      5-凹槽;
6-导流罩;                         61-螺钉孔。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便理解本申请实施例提供的离心风机和空调装置,下面首先介绍一下其应用场景。
本申请实施例提供的空调装置包括离心风机,离心风机作为空调装置的送风部件,使空气进行流动换热。一般通过电机带动叶轮转动,使空气流动形成风。具体的,离心风机包括底板、顶板和设置于底板与顶板之间的多个叶片,在底板还安装有电机,以驱动叶片转动。现有技术中,底板可以由金属制备而成,而金属制备的底板大致为平面。因此,电机的电机壳安装于底板,电机壳伸入底板与顶板之间,则电机壳外表面与底板之间形成凹槽区域,该凹槽区域会形成冲击损失以及噪声。为了解决上述问题,本申请提供了一种新型的离心风机和空调装置,该离心风机能效较高且噪声低。
为了清楚的理解本申请技术方案,下面将结合具体实施例和附图对本申请提供的机箱进行详细说明。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个、两个或两个以上。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图2为本申请实施例提供的离心风机的一种剖面结构示意图,具体的,该剖面结构示意图指的是垂直于底板且过电机转轴的剖面结构示意图,图3为本申请实施例提供的导流罩的一种结构示意图。请参考图2,本申请实施例中提供的离心风机包括顶板1、底板2、电机4、导流罩6和多个叶片3。其中,底板2具有电机安装孔21,上述电机4具有电机壳41,电机壳41伸入上述电机安装孔21并固定于底板2,该电机壳41的至少部分结构伸入底板2与顶板1之间,该电机4用于为叶片3转动提供驱动力。上述电机壳41沿轴 向方向伸入上述底板2与顶板1之间,则电机壳41的轴向方向大致与底板2垂直。上述多个叶片3固定于底板2与顶板1之间,且围绕上述电机安装孔21呈环形排列。上述导流罩6可拆卸安装于底板2,且上述导流罩6套设于上述电机壳41的外周侧,以实现上述电机壳41的外周侧与底板2之间的导流。该方案中,导流罩6位于电机壳41与底板2之间,填补了电机壳41与底板2之间形成的凹槽,从而可以避免外形的不连续导致气流流经电机壳41与底板2之间的区域时,造成的阻力增加问题,从而减少冲击损失。当导流罩6在底板2和电机4之间形成过渡后,可以对进出离心风机内部的气流起到导流作用,气流均匀进入离心风机的内部降低叶片3上的涡流损失,同时改善尾缘产生的分离损失,提高离心风机气动效率,并降低来流紊流与叶片3前缘产生的窄频噪声及叶片3流道中的涡流宽频噪声。
请继续参考图2,在具体制备上述离心风机时,底板2、顶板1和叶片3可以均采用金属材质,具体可以采用冲压的方式制备各个结构,再利用焊接的方式使叶片3固定于底板2与顶板1之间。该方案中,离心风机的主体结构为金属结构,强度较高,特别是对于高静压场景,可以满足强度要求。该方案中,金属材质的离心风机主体可以配合导流罩6,使离心风机在满足强度要求的同时,还可以提高离心风机的气动效率,降低离心风机运行的噪声。
在具体制备上述导流罩6时,导流罩6的材质不做限制,导流罩6的材质可以为金属也可以为塑料,例如丙烯腈-丁二烯-苯乙烯共聚物(ABS)、工程塑料合金(PC+ABS)、聚酰胺6(PA6)、聚己二酰己二胺(PA66)、玻纤增强聚对苯二甲酸丁二醇酯(PBT+玻纤)、玻纤增强聚碳酸酯(PC+玻纤)、聚磷酸酯(PPE)或者聚丙烯(PP)。当上述导流罩6为塑料导流罩6时,可以利用塑胶开模的方式制备该导流罩6。与现有设计中,采用塑胶开模制备底板2和叶片3一体结构的方案相比,本申请中的导流罩6的体积较小,因此,采用塑胶开模的方式制备塑料导流罩6成本较低,大约成本可降低9.3%。此外,发明人通过实验和分析发现,当本申请实施例中离心风机采用塑料导流罩6时,离心风机的气动效率可以提高1%~2.5%,则每台离心风机的功耗可以降低68W~166W,对于一个典型的通信设备的数据中心,每年节省的电费约为60万~145万元。该离心风机的噪声可以降低1dB(A)~1.5dB(A),产品的整体竞争力大幅提高。此外,采用塑胶开模方式制备导流罩6时,可以实现该导流罩6适应各种工况参数的需求,具有较好的适应性。
上述导流罩6的形状和尺寸可以根据需求具体设计,为了提高导流罩6的导流效果,可以使导流罩6的一端与底板2平滑过渡,且使导流罩6与底板2之间的缝隙小于1.5mm;导流罩6远离底板2的一端与电机壳41的外周侧平滑过渡,且使导流罩6与电机壳41之间的缝隙小于1.5mm,从而使电机壳41与底板2之间整体为平滑过渡的结构,该方案可以提高导流罩6的导流效果以及降噪效果。
导流罩6的高度不做限制,可以为5mm~100mm范围内的任意高度。具体的实施例中,可以使导流罩6一端与底板2接触固定,而远离底板2的一端与电机壳41的顶部平齐,该方案中,有利于提高导流罩6的导流效果。且导流罩6的高度较高,便于在电机壳41与底板2之间形成较为平缓的过渡。
请参考图2,电机壳41的顶部具有圆角411,即电机壳41远离上述底板2的一侧具有圆角轮廓,导流罩6远离底板2的一端与电机壳41的圆角411朝向底板2的边缘平齐。本实施例中,导流罩6的最高点与电机壳41圆角411边缘的最低点大致平齐,则可以使导流 罩6不完全遮盖电机4顶部,使电机4从导流罩6露出上述圆角411的半径高度,有利于电机4的散热。电机壳41具有圆角轮廓,也具有一定的导流效果,不易产生噪声或者导致效率低下。
导流罩6可拆卸安装于底板2,以便于拆卸和安装,便于维护。具体的,上述导流罩6可以螺钉安装于底板2,如图3所示,导流罩6可以包括多个螺钉孔61,螺钉穿过上述螺钉孔61与底板2固定连接,该连接方式较为可靠。在其它的实施例中,上述导流罩6还可以与底板2卡合连接,例如,导流罩6具有多个卡扣,底板2具有多个卡口,使导流罩6的卡扣与上述卡口卡合,实现导流罩6的安装,该连接结构无需辅助部件,结构较为简单。
图4为本申请实施例中一种离心风机的部分结构剖视图,具体的,该剖面结构示意图指的是垂直于底板且过电机安装孔轴线的剖面结构示意图,该剖面结构示意图示出了离心风机的顶板、底板以及叶片。请参考图4,一种实施例中,上述底板2具有安装凸台22,电机安装孔21位于上述安装凸台22。上述安装凸台22能够提高电机安装孔21的强度,从而提高电机4安装的可靠性和稳定性。具体的,如图2所示,该离心风机还包括用于安装电机4的安装钢圈42,该安装钢圈42与电机壳41焊接连接,也可以固定安装于上述安装凸台22,具体的该安装钢圈42的结构可以如图5所示。上述安装钢圈42可以螺钉连接于底板2,以便于安装和拆卸。
当离心风机的底板2具有安装凸台22时,上述导流罩6则可以设置于上述安装凸台22,上述安装凸台22也可以起到一定的导流效果,以减小导流罩6的体积。
为了提高导流效果,上述安装凸台22也可以具有较为平滑的过渡表面,提高安装凸台22的导流效果。当然,如图2所示,可以使导流罩6的外表面与安装平台的外表面平滑过渡,以使两者形成较为平滑的过渡表面,以提高导流效果。
在具体的实施例中,导流罩6的轮廓形状不做具体限制,例如,上述导流罩6沿靠近底板2的一端到远离底板2的一端轮廓可以为直线形、弧线形、波浪形或者正弦波形。如图3所示,导流罩6的外表面为弧线形的表面。图6为本申请实施例中离心风机的一种剖面局部放大图,该剖面结构示意图示出的是垂直于底板且过电机转轴的剖面结构示意图中,导流罩部分的局部放大图。请参考图6,上述导流罩6的轮廓线为正弦波形,该方案的导流罩6的导流效果较好,且降噪明显。图7为本申请实施例中导流罩6的一种结构示意图,如图7所示,可选的实施例中,上述导流罩6的轮廓线为波浪形。
在具体的实施例中,上述导流罩6可以包括至少两个子导流罩。上述至少两个子导流罩沿远离底板2方向依次叠置,上述子导流罩叠置后形成的导流罩6的轮廓具有导流效果。该方案中,可以制备多个体积较小的子导流罩,以提高导流罩6的强度,且便于制作和运输。
本申请技术方案中,导流罩6安装在离心风机内部时,应避开所有的叶片3,位于叶片3与电机4之间。具体应当使:导流罩6的最大外径等于叶片3在风轮底板2的最小内径,导流罩6的最小内径等于电机壳41主体的直径,这种设计保证了叶片3与顶板1的完整性有利于风轮效率的保证。
图8为本申请实施例中离心风机的一种剖面结构示意图,具体的,该剖面结构示意图指的是平行于底板且过叶片的剖面结构示意图,图9为本申请实施例中叶片的一种结构示意图。如图8和图9所示,叶片3具有多个边沿,其中包括位于进风侧的进风沿31,和位 于出风侧的出风沿32。叶片3具有凹面和凸面,其中,叶片3凹面为吸力面33,凸面为压力面。本申请的技术方案中,叶片3的进风沿31和出风沿32具有朝向吸力面33的单侧圆角,即进风沿31与出风沿32在压力面不具有圆角。现有技术中,叶片3通常双侧倒角,或者双面圆角。与现有技术相比,本申请技术方案中在叶片3的边沿制作单侧圆角34,可以简化制作工艺,提高气流运行效率。
请继续参考图9,在具体制备上述单侧圆角34时,可以使上述单侧圆角34的半径R1与叶片3的厚度D满足:R=αD,其中:0.5≤α≤1.5。该方案有利于降低叶片3的风阻,提高离心风机的效率。具体的,当上述单侧圆角34的半径R与叶片3的厚度D相等时,叶片3的风阻最小,离心风机的效率最高。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种离心风机,其特征在于,包括:
    顶板;
    底板,具有电机安装孔;
    多个叶片,设置于所述顶板和所述底板之间,多个叶片分别与所述顶板和所述底板固定,多个所述叶片环绕所述电机安装孔设置;
    电机,具有电机壳,所述电机壳安装于所述电机安装孔,与所述底板固定连接,所述电机壳至少部分伸入所述底板与所述顶板之间;
    导流罩,可拆卸的安装于所述底板,所述导流罩套设于所述电机壳外周侧。
  2. 如权利要求1所述的离心风机,其特征在于,所述导流罩靠近所述底板的一端与所述底板平滑过渡。
  3. 如权利要求1所述的离心风机,其特征在于,所述导流罩远离所述底板的一端与所述电机壳的外周侧平滑过渡。
  4. 如权利要求1~3任一项所述的离心风机,其特征在于,所述导流罩的外表面沿靠近所述底板的一端到远离所述底板的一端轮廓线为波浪形或者正弦波形。
  5. 如权利要求1所述的离心风机,其特征在于,所述电机壳的顶部具有圆角,所述导流罩远离所述底板的一端与所述电机壳的圆角朝向所述底板的边缘平齐。
  6. 如权利要求1所述的离心风机,其特征在于,所述底板具有安装凸台,所述电机安装孔位于所述安装凸台,所述导流罩设置于所述安装凸台上。
  7. 如权利要求1所述的离心风机,其特征在于,所述底板为金属底板,所述顶板为金属顶板,所述叶片为金属叶片;所述导流罩为塑料导流罩。
  8. 如权利要求1所述的离心风机,其特征在于,所述叶片的进风沿和出风沿分别具有朝向吸力面的单侧圆角。
  9. 如权利要求8所述的离心风机,其特征在于,所述单侧圆角的半径R1与所述叶片的厚度D满足:R1=αD,其中:0.5≤α≤1.5。
  10. 如权利要求1所述的离心风机,其特征在于,所述导流罩包括至少两个叠置的子导流罩。
  11. 一种空调装置,其特征在于,包括如权利要求1至10任一项所述的离心风机。
PCT/CN2020/109648 2020-02-29 2020-08-17 一种离心风机和空调装置 WO2021169197A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20921350.3A EP3961040B1 (en) 2020-02-29 2020-08-17 Centrifugal fan and air conditioning device
US17/548,228 US11898576B2 (en) 2020-02-29 2021-12-10 Centrifugal fan and air conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020229013.7U CN212536105U (zh) 2020-02-29 2020-02-29 一种离心风机和空调装置
CN202020229013.7 2020-02-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/548,228 Continuation US11898576B2 (en) 2020-02-29 2021-12-10 Centrifugal fan and air conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2021169197A1 true WO2021169197A1 (zh) 2021-09-02

Family

ID=74526222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109648 WO2021169197A1 (zh) 2020-02-29 2020-08-17 一种离心风机和空调装置

Country Status (4)

Country Link
US (1) US11898576B2 (zh)
EP (1) EP3961040B1 (zh)
CN (1) CN212536105U (zh)
WO (1) WO2021169197A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021214267A1 (de) * 2021-12-13 2023-06-15 Ziehl-Abegg Se Axial-, Diagonal- oder Radialventilator
CN114738317B (zh) * 2022-05-10 2024-03-26 浙江尚扬通风设备有限公司 低损耗离心风机用叶轮组件及其风机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204800A (ja) * 2002-12-26 2004-07-22 Denso Corp 遠心式送風機
US20160025107A1 (en) * 2014-07-24 2016-01-28 Delphi Technologies, Inc. Centrifugal fan with reduced motor cooling noise
CN105317743A (zh) * 2015-09-07 2016-02-10 珠海格力电器股份有限公司 离心风机和空调器
CN109854531A (zh) * 2019-03-28 2019-06-07 中山宜必思科技有限公司 一种叶轮及其应用的离心风机
CN209908803U (zh) * 2019-03-29 2020-01-07 中山宜必思科技有限公司 一种带导流装置的后向离心风机
CN209908804U (zh) * 2019-04-04 2020-01-07 中山宜必思科技有限公司 一种离心风机
CN210068559U (zh) * 2019-03-28 2020-02-14 中山宜必思科技有限公司 一种叶轮及其应用的离心风机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7108482B2 (en) * 2004-01-23 2006-09-19 Robert Bosch Gmbh Centrifugal blower
US7467931B2 (en) * 2005-02-04 2008-12-23 O'TOOLE John Blower system for generating controlled columnar air flow
EP2189663B1 (en) * 2008-11-21 2016-04-27 Hitachi, Ltd. Centrifugal compressor and associated manufacturing method
JP2010196694A (ja) 2009-01-30 2010-09-09 Sanyo Electric Co Ltd 遠心式送風機、及び空気調和装置
US10550847B2 (en) * 2011-03-26 2020-02-04 Ebm-Papst St. Georgen Gmbh & Co. Kg Mixed-flow or diagonal ventilating fan with consistent cooling
JP5832804B2 (ja) * 2011-07-25 2015-12-16 ミネベア株式会社 遠心式ファン
CN202789608U (zh) 2012-08-22 2013-03-13 宁波贝德尔电讯电机有限公司 一种圆形管道后倾离心式外转子风机
US9404511B2 (en) * 2013-03-13 2016-08-02 Robert Bosch Gmbh Free-tipped axial fan assembly with a thicker blade tip
CN203161647U (zh) 2013-03-26 2013-08-28 广东美的电器股份有限公司 离心风轮及具有该离心风轮的空调器
CN203175982U (zh) 2013-04-03 2013-09-04 宁波朗迪叶轮机械有限公司 离心风叶
JP5705945B1 (ja) * 2013-10-28 2015-04-22 ミネベア株式会社 遠心式ファン
CN203756593U (zh) 2013-12-31 2014-08-06 顿力集团有限公司 高效离心风轮
DE102014006756A1 (de) * 2014-05-05 2015-11-05 Ziehl-Abegg Se Laufrad für Diagonal- oder Radialventilatoren, Spritzgusswerkzeug zur Herstellung eines solchen Laufrades sowie Gerät mit einem solchen Laufrad
CN204663976U (zh) 2015-05-27 2015-09-23 常山卫邦风机有限公司 一种离心风机叶轮
CN105090107A (zh) 2015-07-21 2015-11-25 依必安派特风机(上海)有限公司 后向离心风机叶轮以及离心风机
CN209041172U (zh) 2018-10-19 2019-06-28 宁波奥克斯电气股份有限公司 一种离心风轮及天花机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204800A (ja) * 2002-12-26 2004-07-22 Denso Corp 遠心式送風機
US20160025107A1 (en) * 2014-07-24 2016-01-28 Delphi Technologies, Inc. Centrifugal fan with reduced motor cooling noise
CN105317743A (zh) * 2015-09-07 2016-02-10 珠海格力电器股份有限公司 离心风机和空调器
CN109854531A (zh) * 2019-03-28 2019-06-07 中山宜必思科技有限公司 一种叶轮及其应用的离心风机
CN210068559U (zh) * 2019-03-28 2020-02-14 中山宜必思科技有限公司 一种叶轮及其应用的离心风机
CN209908803U (zh) * 2019-03-29 2020-01-07 中山宜必思科技有限公司 一种带导流装置的后向离心风机
CN209908804U (zh) * 2019-04-04 2020-01-07 中山宜必思科技有限公司 一种离心风机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961040A4 *

Also Published As

Publication number Publication date
EP3961040B1 (en) 2023-04-26
EP3961040A1 (en) 2022-03-02
CN212536105U (zh) 2021-02-12
US20220099106A1 (en) 2022-03-31
EP3961040A4 (en) 2022-06-15
US11898576B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2021169197A1 (zh) 一种离心风机和空调装置
EP2270338B1 (en) Blower and heat pump device using same
US20140102676A1 (en) Air-conditioning apparatus
CN105526691B (zh) 导风组件及轴流柜机
WO2020098406A1 (zh) 空调室内机和空调器
TWI794759B (zh) 風扇
WO2023279817A1 (zh) 风机组件和空调器
CN105937500A (zh) 离心风扇
WO2023109287A1 (zh) 离心风机和电器设备
CN214661053U (zh) 导流式轴流风轮及具有其的轴流风机
CN213808155U (zh) 风机装置以及空调室外机
CN103016369A (zh) 一种新型小展弦比叶根斜切扭曲叶片型轴流通风机
CN210565332U (zh) 一种高效离心风机进风口的结构
WO2023231518A1 (zh) 风机及洗地机
CN2594694Y (zh) 空调机
CN218862940U (zh) 降噪导流圈和风机
CN217582543U (zh) 一种整流网罩风扇
CN219083263U (zh) 一种贯流风道及其空调器
WO2021139508A1 (zh) 扩压器、送风装置及吸尘设备
CN213270457U (zh) 一种滚边通风器
CN214065273U (zh) 一种排风装置及应用其的燃气热水器
CN216290567U (zh) 一种便于散热的电机控制器用整流模块安装结构
KR101826348B1 (ko) 횡류팬 및 이를 구비한 공기 조화기
CN216767853U (zh) 风机叶片及离心风机
CN214791564U (zh) 一种新型降噪导流圈及具有其的风机组件、空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020921350

Country of ref document: EP

Effective date: 20211124

NENP Non-entry into the national phase

Ref country code: DE