WO2023231518A1 - 风机及洗地机 - Google Patents

风机及洗地机 Download PDF

Info

Publication number
WO2023231518A1
WO2023231518A1 PCT/CN2023/082538 CN2023082538W WO2023231518A1 WO 2023231518 A1 WO2023231518 A1 WO 2023231518A1 CN 2023082538 W CN2023082538 W CN 2023082538W WO 2023231518 A1 WO2023231518 A1 WO 2023231518A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
impeller
fins
fan according
stator assembly
Prior art date
Application number
PCT/CN2023/082538
Other languages
English (en)
French (fr)
Inventor
王小伟
乔正忠
王喜
方佳旗
熊美健
蒋婷婷
吕琢
马寅辉
郑礼成
吴迪
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210618592.8A external-priority patent/CN114810639A/zh
Priority claimed from CN202210618489.3A external-priority patent/CN114922834A/zh
Priority claimed from CN202210622079.6A external-priority patent/CN114776614A/zh
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2023231518A1 publication Critical patent/WO2023231518A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation

Definitions

  • This application relates to the technical field of household appliances, especially fans and floor washing machines.
  • the floor washer is a kind of cleaning equipment that integrates sweeping, mopping and washing the floor.
  • the floor washer can be used in dry and wet environments to clean dry and wet garbage.
  • the floor washing machine has certain requirements for air suction performance, and the suction power of the floor washing machine is provided by the fan.
  • the impeller of the fan rotates under the drive of the motor.
  • the rotating impeller brings air into the fan from the inlet of the wind hood. After the air obtains greater kinetic energy under the action of the impeller, it flows in from the edge of the impeller along the radial direction of the impeller.
  • the diffuser expands the pressure and then flows out through the casing.
  • the floor scrubber requires a high fan speed, which results in a large amount of heat generated by the stator component of the fan. Moreover, the floor scrubber is used in both dry and wet environments. It also has certain waterproofing requirements for the fan and requires the airtightness of the fan structure. Better, when the airtightness of the fan is good, the heat of the stator assembly cannot be dissipated in time, resulting in poor heat dissipation effect of the fan.
  • This application aims to solve at least one of the technical problems existing in the prior art. To this end, this application proposes a fan and a floor washing machine having the above fan.
  • a shell assembly includes a shell and a casing, the casing is sleeved on the casing, and an air outlet channel is formed between the casing and the casing;
  • the stator assembly is installed in the casing
  • the rotor assembly is rotatably connected to the stator assembly, and the impeller is fixedly connected to the rotating shaft of the stator assembly;
  • the outer wall of the casing is provided with fins, and at least part of the structure of the fins is located in the air outlet channel.
  • the distance from the edge of the fin to the housing gradually increases in a direction toward the air inlet end of the air outlet channel.
  • the fan includes a diffuser, the diffuser is installed on the casing, the diffuser is provided with a plurality of diffusion blades, two adjacent diffusers A diffusion channel is formed between the blades, and the diffusion channel is located between the impeller and the air outlet channel.
  • the number M of the fins is greater than or equal to 3 and less than or equal to 17, and the number N of the diffusion blades is greater than or equal to 4 and less than or equal to 10.
  • the maximum thickness W of the fin is greater than or equal to 0.2 mm and less than or equal to 5 mm.
  • part of the casing is concave inward to form an arc-shaped curved surface, and the arc-shaped curved surface is used to guide the airflow in the air outlet channel to flow along the surface of the casing.
  • the fins are provided at the arcuate surface.
  • the casing is made of aluminum alloy material.
  • the surface of the casing undergoes at least one of electroplating, anodizing and passivation processes.
  • the fan includes a wind hood, the wind hood is connected to the housing assembly, the wind hood is provided on the impeller, and the wind hood is provided with an air inlet.
  • a shell assembly includes a shell and a casing, the casing is sleeved on the casing, and an air outlet channel is formed between the casing and the casing;
  • the stator assembly is installed in the casing
  • a rotor assembly is rotatably connected to the stator assembly, and an impeller is fixedly connected to the rotating shaft of the rotor assembly;
  • heat dissipation ribs are provided in the casing, and the heat dissipation ribs are in contact with the stator assembly to conduct heat of the stator assembly to the casing.
  • guide ribs are provided in the casing, and the guide ribs are used to guide the stator assembly into the casing.
  • a plurality of guide ribs are provided, and the plurality of guide ribs are arranged at intervals along the circumference of the casing.
  • heat dissipation ribs and multiple guide ribs there are multiple heat dissipation ribs and multiple guide ribs, and the heat dissipation ribs and the guide ribs are spaced and alternately arranged along the circumference of the casing.
  • the stator assembly is interference-fitted with a plurality of the guide ribs.
  • the mating surface of the stator assembly and the guide rib is an arc surface
  • the interference amount X between the stator assembly and the guide rib is equal to the outer diameter D of the stator assembly and Half of the difference between the diameter K1 of the reference circle formed by the two arc-shaped surfaces, the X is greater than or equal to 0.005 mm and less than or equal to 0.5 mm.
  • the casing includes an annular inner wall, the heat dissipation ribs are provided on the annular inner wall, and the sum of the arc length L of the heat dissipation ribs and the height H of the heat dissipation ribs is less than or equal to the annular shape.
  • the ratio of the outer diameter D of the stator assembly to the number of slots N of the stator assembly is greater than or equal to 1.25 and less than or equal to 20.
  • the casing is made of aluminum alloy material.
  • the fan includes a wind hood, the wind hood is connected to the housing assembly, the wind hood is provided on the impeller, and the wind hood is provided with an air inlet.
  • the driving device includes a casing, a stator assembly and a rotor assembly.
  • the stator assembly is installed in the casing.
  • the rotor assembly is rotationally connected to the stator assembly.
  • the rotor assembly is provided with a rotating shaft, and the rotating shaft is fixedly installed.
  • a diffuser includes a first diffusion structure and a casing.
  • the first diffusion structure is arranged between the impeller and the casing.
  • the casing includes a diffusion part and an air guide part.
  • the diffusion part Disposed outside the first diffusion structure and forming a diffusion channel with the first diffusion structure, one end of the housing away from the impeller is the air guide portion, and the air guide portion surrounds the machine
  • the shell forms an air duct, wherein, along the axial direction of the rotating shaft, the distance L2 from the end surface of the housing away from the impeller to the end surface of the first diffusion structure away from the impeller is greater than or equal to 1 mm and less than or equal to three times The length L1 of the first expansion structure.
  • the casing is provided with fins. At least part of the structure of the fins is located in the air duct. Along the axial direction of the rotating shaft, one end of the fins away from the impeller reaches The distance L3 from one end of the first diffusion structure away from the impeller is greater than L2.
  • the diffuser is further provided with a second diffusion structure.
  • the second diffusion structure is arranged in the air duct.
  • the length L4 of the structure is smaller than L2.
  • the distance L5 from the end surface of the second diffusion structure away from the impeller to the air outlet end surface of the air duct is greater than or equal to 1 mm.
  • guide ribs are provided in the casing, and the guide ribs are provided with arcuate surfaces, and the arcuate surfaces are used to support the stator.
  • the arcuate surface is in interference fit with the outer wall of the stator.
  • the distance from the end of the arcuate surface close to the impeller to the end of the primary diffusion structure away from the impeller is m1
  • the casing Fins are provided, at least part of the structure of the fins is located in the air duct, and the distance n1 from an end of the fins close to the impeller to an end of the primary diffusion structure away from the impeller is less than or equal to m1.
  • the distance from the end of the arcuate surface away from the impeller to the end of the primary diffusion structure away from the impeller is m2, and the fins
  • the distance L3 from the end far away from the impeller to the end far away from the impeller of the first-stage diffuser structure is greater than or equal to m2.
  • the first diffusion structure is circumferentially provided with a plurality of static blades, and the thickness of the static blades at one end close to the impeller is smaller than the thickness at an end far away from the impeller.
  • the number of the static blades is greater than or equal to 9 and less than or equal to 13.
  • a floor washing machine includes the fan of the above embodiment.
  • Figure 1 is a cross-sectional view of a fan according to the first embodiment of the present application
  • Figure 2 is a schematic structural diagram of a casing according to some embodiments of the present application.
  • Figure 3 is an enlarged view of position A shown in Figure 2;
  • Figure 4 is a top view of the casing of some embodiments of the present application.
  • Figure 5 is an enlarged view of location B shown in Figure 4.
  • FIG. 6 is a schematic structural diagram of a stator assembly according to some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of a casing according to some embodiments of the present application.
  • Figure 8 is an enlarged view of C shown in Figure 7;
  • Figure 9 is a schematic structural diagram of a fan according to some embodiments of the present application.
  • Figure 10 is a schematic structural diagram of a housing according to some embodiments of the present application.
  • Figure 11 is a diagram showing the relationship between the number of fins and the average winding temperature in fans according to some embodiments of the present application.
  • Figure 12 is a cross-sectional view of the fan in Figure 9;
  • Figure 13 is a cross-sectional view of the casing in Figure 7;
  • Figure 14 is a diagram showing the relationship between the number of fins, the air supply efficiency of the fan and the winding temperature in some embodiments of the present application;
  • Figure 15 is a noise spectrum diagram of fans according to some embodiments of the present application.
  • Figure 16 is a schematic diagram of the length relationship of arcuate surfaces in some embodiments of the present application.
  • Figure 17 is a schematic diagram of a fan equipped with a second expansion structure according to some embodiments of the present application.
  • Shell 100 air outlet channel 110, air guide part 111, diffuser part 112;
  • Chassis 200 guide ribs 210, arc surface 211, heat dissipation ribs 220, arc surface 230, first segment curved surface 231, second segment curved surface 232, fins 240, hypotenuse 241, head end 242, tail end 243, Ventilation slot 250, annular inner wall 260, first section casing 270, second section casing 280;
  • Stator assembly 300 stator core 310, winding 320;
  • Diffuser 500 diffusion blades 510, first diffusion structure 501, air outlet 520;
  • the second expansion structure 900 The second expansion structure 900.
  • the floor washer is a kind of cleaning equipment that integrates sweeping, mopping and washing the floor.
  • the floor washer can be used in dry and wet environments to clean dry and wet garbage.
  • the floor scrubber includes a suction fan and a roller brush fan.
  • the suction fan is used to drive the impeller to rotate to generate suction.
  • the roller brush fan is used to drive the roller brush to rotate and wipe the floor.
  • floor scrubbers are usually equipped with a wind hood for protection.
  • the rotor assembly of the fan drives the impeller to rotate, forming a large vacuum at the entrance of the wind hood and airflow. Inhale through the inlet of the hood.
  • the floor washing machine requires a large suction power and requires a high fan speed. When the speed is high, the stator component of the fan generates a large amount of heat.
  • the floor washing machine is used in dry and wet environments, which has a negative impact on the fan. Certain waterproof requirements require that the airtightness of the fan structure be better.
  • the airflow sucked by the fan is difficult to enter the interior of the fan, that is, the airflow sucked by the fan is difficult to flow through the stator assembly to dissipate heat.
  • the airtightness of the fan is better.
  • the heat of the stator assembly accumulates inside the casing and cannot be dissipated in time, which will cause the fan to overheat and be damaged.
  • the stator assembly usually includes a stator core and windings.
  • the stator core is cylindrical and open at both ends.
  • the windings are wound inside the stator core.
  • the windings usually protrude to both axial ends of the stator core.
  • the windings Its main function is to conduct current and generate induced potential to realize the conversion of electromechanical energy. During the operation of the fan, the current passes through the winding, and the winding will generate heat. Since the stator assembly is installed inside the casing, and the airtightness inside the casing is Better, the heat dissipation conditions inside the casing are poor.
  • stator assembly In the related art, if the stator assembly is directly connected with the inner peripheral wall of the casing through interference, due to the large contact area between the stator assembly and the inner peripheral wall of the casing, a huge interference pressing force is required when the stator assembly is pressed.
  • most fans usually have a stator installation part inside the casing. The stator assembly and the stator installation part are connected by bolts. The stator assembly is not in close contact with the inner wall of the casing, making it difficult for the heat of the stator assembly to be transferred to the casing. .
  • a fan 1000 according to the first embodiment of the present application includes a housing assembly, a stator assembly 300 and a rotor assembly 400 .
  • the housing assembly includes a housing 100 and a casing 200.
  • the housing 100 has an annular structure. There is a cavity inside the housing 100. Both ends of the housing 100 along the axial direction
  • the casing 200 has a roughly cylindrical structure.
  • the casing 200 is installed in the cavity of the casing 100. One end of the casing 200 extends into the cavity of the casing 100.
  • the casing 100 is set on the casing 200.
  • the casing 100 is located in the cavity of the casing 100.
  • the outside of the casing 200 surrounds the casing 200.
  • An air outlet channel 110 is defined between the inner peripheral wall of the casing 100 and the outer peripheral wall of the casing 200.
  • the air outlet channel 110 is annular. It should be noted that part of the casing 200 is located inside the air outlet channel 110 , and part of the casing 200 is located outside the air outlet channel 110 .
  • the airflow in the air outlet channel 110 can flow along the surface of the casing 200 .
  • stator assembly 300 is installed in the installation cavity of the casing 200.
  • a stator installation part can be provided in the installation cavity of the casing 200, and the stator assembly 300 and the stator installation part are connected by bolts. Or the stator assembly 300 and the installation cavity of the casing 200 are fixed by adhesive.
  • the rotor assembly 400 is rotationally connected to the stator assembly 300.
  • the rotating shaft 410 of the rotor assembly 400 is located in the stator core 310 of the stator assembly 300.
  • the rotating shaft 410 can be relative to the stator core 310. Turn.
  • the rotating shaft 410 is arranged along the axial direction of the casing 200.
  • the end of the rotating shaft 410 extends out of the bottom of the casing 200. At the same time, the end of the rotating shaft 410 also extends out of the bottom of the casing 100.
  • the end of the rotating shaft 410 is fixedly connected to the impeller 411.
  • the rotating shaft 410 is fixedly connected to the impeller 411. 410 can drive the impeller 411 to rotate, and the impeller 411 is located below the air outlet channel 110 .
  • the fan 1000 also includes a wind cover 600 and an end cover 700.
  • the wind cover 600 is installed at the bottom of the housing 100.
  • a sealing ring can be provided between the inner peripheral wall of the wind cover 600 and the outer peripheral wall of the housing 100 to form a seal. connect.
  • the air hood 600 is provided with an impeller cavity 620.
  • the impeller cavity 620 is connected with the air outlet channel 110.
  • the impeller 411 is located in the impeller cavity 620.
  • the air hood 600 covers the impeller 411.
  • An air inlet 610 is provided at the bottom of the air hood 600.
  • the end cap 700 is installed on the top of the casing 200 and covers the installation cavity of the casing 200 to ensure good sealing.
  • the casing 200 is provided with heat dissipation ribs 220.
  • the casing 200 includes an annular inner wall 260.
  • the annular inner wall 260 can be formed by the inner peripheral wall of the casing 200.
  • the heat dissipation ribs 220 are provided on the annular inner wall. 260, the heat dissipation ribs 220 are located between the casing 200 and the stator assembly 300.
  • the heat dissipation ribs 220 are in contact with the stator assembly 300.
  • the heat dissipation ribs 220 are in contact with the outer walls of the stator assembly 300.
  • the mating surfaces of the heat dissipation ribs 220 and the stator assembly 300 are in the form of The arc shape allows the heat dissipation ribs 220 to conduct heat from the stator assembly 300 to the casing 200. It can be understood that the heat dissipation ribs 220 can be integrally formed with the casing 200, which is easy to manufacture.
  • the rotor assembly 400 drives the impeller 411 to rotate, and the impeller 411 inhales the air flow.
  • a large vacuum is formed at the air inlet 610 of the air hood 600, and the air flow is sucked into the air inlet 610 of the air hood 600.
  • the air flows out from the outlet side, and the airflow is squeezed and obtains greater kinetic energy, thereby entering the air outlet channel 110.
  • the heat dissipation ribs 220 conduct the heat of the stator assembly 300 to the casing 200, and the airflow in the air outlet channel 110 can flow through the machine.
  • the surface of the casing 200 takes away the heat of the casing 200.
  • the mating surface of the heat dissipation rib 220 and the stator assembly 300 can also be in an irregular shape.
  • the distance between the heat dissipation rib 220 and the stator assembly 300 can be increased.
  • the heat conduction area enables the heat dissipation ribs 220 to conduct more heat, further enhancing the heat conduction effect of the heat dissipation ribs 220 .
  • multiple heat dissipation ribs 220 may be provided at intervals along the circumferential direction of the casing 200 .
  • Multiple heat dissipation ribs 220 may be provided to increase the size of the stator assembly.
  • the contact area is 300, thereby enhancing the heat conduction effect of the heat dissipation ribs 220.
  • the casing 200 is provided with guide ribs 210.
  • the guide ribs 210 are provided on the annular inner wall 260 of the casing 200, and the guide ribs 210 have a convex structure.
  • the guide ribs 210 can guide the stator assembly 300 to be installed into the casing 200 .
  • the stator assembly 300 has an interference fit with the guide rib 210.
  • the mating surface between the guide rib 210 and the stator assembly 300 is an arc-shaped surface 211.
  • the stator assembly 300 presses the guide rib 210, and the stator assembly 300 can closely fit the guide rib 210.
  • the guide ribs 210 can conduct the heat generated by the stator assembly 300 to the outer wall of the casing 200 to enhance the heat dissipation effect. It can be understood that the guide ribs 210 can be integrally formed with the casing 200 to facilitate manufacturing.
  • the mating surface of the guide rib 210 and the stator assembly 300 can also be in an irregular shape.
  • the area of the mating surface of the guide rib 210 and the stator assembly 300 can be increased to ensure that the stator assembly 300 is pressed into the 210 are closely matched, and at the same time, the heat conduction area between the guide ribs 210 and the stator assembly 300 can be increased to enhance the heat dissipation effect.
  • the multiple guide ribs 210 there may be multiple guide ribs 210 , and the multiple guide ribs 210 are arranged at intervals along the circumferential direction of the casing 200 .
  • three guide ribs 210 are arranged at intervals of 120 degrees from each other. .
  • Providing multiple guide ribs 210 can increase the contact area between the stator assembly 300 and the guide ribs 210 to enhance the heat conduction effect of the guide ribs 210 and take away more heat. At the same time, it can also make the pressing angle of the stator assembly 300 fixed, which facilitates Subsequent assembly of the stator assembly 300 and the end cover 700 follows.
  • Multiple guide ribs 210 can also be arranged at equidistant intervals along the circumferential direction of the casing 200.
  • three guide ribs 210 can be arranged, and the three guide ribs 210 are arranged 120 degrees apart from each other to ensure that the stator assembly 300 and the guide ribs 210 cooperate. The heat dissipation effect is better when it is firm.
  • there are multiple guide ribs 210 there are also multiple arc-shaped surfaces 211 of the guide ribs 210.
  • the multiple arc-shaped surfaces 211 are arranged at intervals in the circumferential direction of the casing 200, and a plurality of arc-shaped surfaces 211 are formed between them.
  • Reference circle, reference circle has diameter length.
  • the embodiment of the present application defines: the interference amount X between the stator assembly 300 and the guide rib 210 is equal to the outer diameter D of the stator assembly 300 and Half of the difference in the diameter K1 of the reference circle formed by the plurality of arcuate surfaces 211, X is greater than or equal to 0.005 mm, and X is less than or equal to 0.5 mm.
  • the diameter K1 of the reference circle is determined by the thickness of the guide rib 210.
  • the pressing force between the stator assembly 300 and the guide ribs 210 can be made moderate, and the assembly tightness and thermal conductivity performance of the stator assembly 300 and the guide ribs 210 can be taken into consideration. If If If the tightening force is too large, the structure of the stator assembly 300 and the guide ribs 210 will be damaged.
  • the embodiment of the present application limits: the interference pressing force F of the stator assembly 300 is less than or equal to 6000N.
  • the interference pressing force F is greater than 6000N, it will cause damage to the stator.
  • the assembly 300 and the guide ribs 210 may suffer relatively serious damage, for example, the guide ribs 210 may have defects such as cracks.
  • multiple heat dissipation ribs 220 and guide ribs 210 may be provided.
  • the heat dissipation ribs 220 and the guide ribs 210 are spaced and alternately arranged along the circumferential direction of the casing 200 , so that the stator assembly 300 The heat conduction is relatively uniform, and the pressing force on the stator assembly 300 is also relatively balanced.
  • three guide ribs 210 and three heat dissipation ribs 220 are provided.
  • the three guide ribs 210 are spaced 120 degrees along the circumferential direction of the casing 200.
  • the three heat dissipation ribs 220 are also provided at 120 degree intervals along the circumferential direction of the casing 200.
  • the heat dissipation ribs 220 is located between the two guide ribs 210 .
  • the heat dissipation ribs 220 can be transitionally matched with the stator assembly 300.
  • the heat dissipation ribs 220 play a heat dissipation role for the stator assembly 300.
  • the interference amount between the heat dissipation ribs 220 and the stator assembly 300 can be set to be smaller than the interference amount between the guide ribs 210 and the stator assembly 300, so that the heat dissipation ribs 220 can not only dissipate heat but also assist in positioning the stator assembly 300.
  • the role of assembly is the role of assembly.
  • embodiments of the present application define that the sum of the arc length L of the heat dissipation rib 220 and the height H of the heat dissipation rib 220 is less than or equal to the inner diameter K2 of the annular inner wall 260 .
  • the inner diameter of the annular inner wall 260 in this embodiment does not change within a certain range along the axial direction, and the inner diameter K2 of the annular inner wall 260 does not take into account the thickness of the heat dissipation rib 220 .
  • the inner diameter K2 of the annular inner wall 260 does not take into account the thickness of the heat dissipation rib 220 .
  • the stator core 310 of the stator assembly 300 is provided with stator slots.
  • the stator slots are used for winding the windings 320.
  • the number of slots of the stator slots is equal to the number of windings 320.
  • the number of slots of the stator assembly 300 is the number of stator slots.
  • the number of slots of the fan 1000 is The working performance is related to the number of slots of the stator assembly 300. Under different working conditions, the fan 1000 needs to meet different working performances.
  • the embodiments of the present application define that: the ratio of the outer diameter D of the stator assembly 300 to the number of slots N of the stator assembly 300 is greater than or equal to 1.25, and the ratio of the outer diameter D of the stator assembly 300 to the number N of slots of the stator assembly 300 is less than equals 20. It should be noted that the ratio of the outer diameter D of the stator assembly 300 to the number N of slots of the stator assembly 300 is the outer diameter D of the specified subassembly 300 divided by the number N of slots of the stator assembly 300 , and the outer diameter D of the stator assembly 300 is used as the numerator. , the number of slots N of the stator assembly 300 is used as the denominator. When the above conditions are met, the fan 1000 can be widely used in most environments and has strong applicability.
  • the casing 200 includes a first housing section 270 and a second housing section 280 arranged in a vertical direction.
  • the first housing section 270 is located in the second section of the housing. 280
  • the outer diameter of the second housing section 280 is smaller than the outer diameter of the first housing section 270
  • the air outlet channel 110 is located between the second housing section 280 and the outer shell 100 .
  • Part of the outer peripheral wall of the casing 200 is concave inward to form an arc-shaped curved surface 230, so that the outer diameter of the casing 200 gradually decreases in the direction toward the bottom of the casing 200, and the arc-shaped surface 230 is formed.
  • the curved surface 230 connects the first section casing 270 and the second section casing 280, so that the transition from the first section casing 270 to the second section casing 280 is smooth, and the wall thickness of the casing 200 is uniform.
  • this implementation For example, defects caused by stress concentration can be reduced.
  • the arc-shaped surface 230 has a larger area and can also enhance the thermal conductivity effect of the casing 200 .
  • the flow direction of the air flow in the air outlet channel 110 is parallel to the direction of the outer peripheral wall of the casing 200.
  • the windward surface area of the outer peripheral wall of the casing 200 is small, and the air flow can Less heat is taken away and the heat dissipation effect is poor.
  • the airflow in the air outlet duct 110 can collide with the arc-shaped curved surface 230.
  • the arc-shaped curved surface 230 can increase the windward area of the casing 200, and the airflow can take away more heat.
  • the airflow can move along the arc.
  • the curved surface 230 flows with less resistance, ensuring better ventilation of the air outlet channel 110 and taking into account the heat dissipation performance and air suction performance of the fan 1000.
  • the arc-shaped curved surface 230 includes a first section of curved surface 231 and a second section of curved surface 232.
  • the degree of inward concavity of the second section of curved surface 232 is greater than the degree of inward concavity of the first section of curved surface 231.
  • the first curved surface 231 is connected to the first shell 270 .
  • the first curved surface 231 is located above the air outlet channel 110 .
  • the first curved surface 231 is connected to the second curved surface 232 .
  • the second curved surface 232 is connected to the second shell.
  • the second section of the curved surface 232 is located in the air outlet channel 110.
  • the first section of the curved surface 231 and the second section of the curved surface 232 of this embodiment can guide the air flow in the air outlet channel 110.
  • the air flow in the air outlet channel 110 sequentially flows along the first section of the casing 270, the first section of the curved surface 231, and the The surface of the second-stage curved surface 232 and the second-stage housing 280 flows smoothly, and the air flow flows smoothly, which can reduce the resistance to the air flow, so that the air suction performance of the fan 1000 is better.
  • the position of the guide ribs 210 is set corresponding to the arc-shaped surface 230 of the casing 200.
  • the guide ribs 210 directly conduct the heat of the stator assembly 300 to the arc-shaped surface 230, which can reduce heat conduction. The distance makes the heat conduction faster and can further enhance the heat dissipation effect.
  • the outer peripheral wall of the casing 200 is provided with fins 240.
  • the fins 240 are integrally formed with the casing 200.
  • the fins 240 have a convex sheet-like structure.
  • the fin 240 can be disposed at the outlet of the air outlet channel 110.
  • the structure of the fin 240 can extend into the air outlet channel 110.
  • the extension direction of the fin 240 can be the same as the flow direction of the air flow in the air outlet channel 110.
  • the fin 240 can extend into the air outlet channel 110.
  • the fins 240 can extend in the vertical direction, and the fins 240 have a resistance effect on the air flow, which can slow down the flow speed of the air flow, thereby prolonging the time for the air flow to pass through the fins 240, so that the air flow can fully conduct heat exchange with the fins 240, and the air flow can also It can fully carry out heat exchange with the casing 200, and then make full use of the air flow in the air outlet channel 110 to take away the heat of the casing 200 to enhance the heat dissipation effect.
  • the casing 200 can also conduct heat to the fins 240. Since the fins 240 are in a sheet shape, the heat conduction area can be increased, and the heat dissipation effect of the casing 200 is better.
  • the distance from the edge of the fin 240 to the casing 100 gradually increases in the direction toward the air inlet end of the air outlet channel 110 .
  • the edge of the fin 240 The distance to the housing 100 can be understood as the distance from the edge of the fin 240 to the busbar of the housing 100, so that the edge of the fin 240 forms a hypotenuse 241, and the hypotenuse 241 extends in a straight direction, so that the area of the fin 240 is smaller, thereby
  • the ventilation of the air outlet channel 110 can be good, thereby ensuring the air suction performance of the fan 1000.
  • the hypotenuse 241 may also extend along an arc direction.
  • the thickness of the fins 240 has a certain impact on the resistance of the airflow in the air outlet channel 110. According to a large amount of experimental data, the embodiment of the present application limits: the maximum thickness W of the fins 240 is greater than or equal to 0.2mm, and the maximum thickness W of the fins 240 Less than or equal to 5mm. It should be noted that the thickness of the fins 240 in this embodiment is uniform, and the thickness of each position of the fins 240 is the same. When the above conditions are met, the resistance of the fins 240 to the air flow in the air outlet channel 110 is moderate, so that the ventilation of the air outlet channel 110 is better, and the effect of extending the time for the air flow to pass through the fins 240 is also better.
  • the fins 240 can Taking into account the air suction performance and heat dissipation performance of the fan 1000. If the maximum thickness W of the fins 240 is less than 0.2 mm, the resistance of the fins 240 to the airflow of the air outlet channel 110 is small, and the effect of extending the time for the airflow to pass through the fins 240 is poor. If the maximum thickness W of the fins 240 is greater than 5 mm, the fins 240 will have greater resistance to the airflow of the air outlet channel 110 , which is not conducive to ventilation of the air outlet channel 110 and will affect the air suction performance of the fan 1000 .
  • the fins 240 are disposed at the arcuate surface 230 , and are connected to the arcuate surface 230 .
  • Multiple fins 240 can be provided, and the plurality of fins 240 are arranged along the arc.
  • the curved surface 230 is arranged circumferentially.
  • the curved surface 230 can guide the air flow along the curved surface 230 and reduce the resistance to the air flow.
  • the fins 240 can fully utilize the air flow to achieve heat exchange and take away the heat of the casing.
  • the fins The combination of 240 and curved surface 230 can ensure enhanced heat dissipation when the air flow is good, while taking into account both air suction performance and heat dissipation performance.
  • the positions of the stator assembly 300 , the arcuate surface 230 and the fins 240 are set correspondingly, so that the stator assembly 300 , the arcuate surface 230 and the fins 240 The smaller distance between them can reduce the distance of heat transfer, making the heat conduction faster.
  • the heat of the stator assembly 300 can be conducted to the outside of the casing 200 faster.
  • the airflow of the air outlet channel 110 can take away the heat. Further enhance the heat dissipation effect.
  • the plurality of fins 240 are spaced along the outer peripheral wall of the casing 200 .
  • the plurality of fins 240 can also be arranged along the outer periphery of the casing 200 .
  • the walls are arranged at equidistant intervals.
  • the provision of multiple fins 240 can increase the resistance of the fins 240 to the air flow of the air outlet channel 110, further prolong the time for the air flow of the air outlet channel 110 to pass through the fins 240, and achieve the effect of sufficient heat exchange.
  • multiple fins 240 can increase the heat conduction area, and the casing 200 can conduct more heat to the fins 240, further enhancing the heat dissipation effect.
  • a diffuser 500 is provided between the impeller 411 and the air outlet channel 110 .
  • the diffuser 500 is installed at the bottom of the casing 200 .
  • the diffuser 500 is located on the top of the casing 100 .
  • the diffuser 500 can convert the kinetic energy of the airflow into pressure energy, reducing the flow rate of the airflow to increase the pressure.
  • the diffuser 500 includes diffuser blades 510, which are arranged at an angle. 510 is provided with a plurality of diffuser blades 510 arranged at intervals along the circumference of the casing 100.
  • the diffuser blades 510 are located in the annular area at the bottom of the casing 100.
  • a diffusion channel is formed between two adjacent diffuser blades 510, and the airflow flows from The air outlet side of the impeller 411 flows out, obtains kinetic energy, and then enters the expansion channel.
  • the expansion channel converts the kinetic energy of the air flow into air pressure energy to achieve deceleration and pressurization of the air flow.
  • the number of fins 240 and the number of diffusion blades 510 can achieve a better heat dissipation effect.
  • the embodiment of the present application limits: the number M of fins 240 is greater than or equal to 3, and the number M of fins 240 is greater than or equal to 3, and the number of fins
  • the number M of 240 is less than or equal to 17, the number N of diffuser blades 510 is greater than or equal to 4, and the number N of diffuser blades 510 is less than or equal to 10.
  • the resistance of the fins 240 and the diffuser blades 510 to the airflow is small, and the effect of extending the airflow through the fins 240 is poor, and the airflow and the fins The heat exchange time of fin 240 is short, so the heat dissipation effect is poor.
  • the number of fins 240 is greater than 17, and the number N of diffuser blades 510 is greater than 10
  • the resistance of fins 240 and diffuser blades 510 to the air flow is greater, and the air outlet The ventilation of the passage 110 is poor, and the air suction performance of the fan 1000 is poor.
  • the embodiment of the present application limits the number N of the diffuser blades 510 to 8, and the number M of the fins 240 to 13.
  • Figure 11 shows when the number N of the diffuser blades 510 is 8.
  • the vertical axis is the winding average temperature
  • the horizontal axis is the number of fins 240.
  • the winding average temperature parameter on the vertical axis is the temperature of winding 320.
  • the fins 240 in the horizontal axis When the fins 240 in the horizontal axis
  • the average temperature of the winding 320 also changes.
  • the number of fins 240 is 13 or 15, the average temperature of the winding is the lowest.
  • the number N of the diffuser blades 510 is 8, the number of fins 240 is 13. At this time, the heat dissipation effect is better and the cost is lower.
  • the casing 200 is provided with a ventilation slot 250, and the ventilation slot 250 is formed by removing material.
  • Multiple ventilation slots 250 may be provided, and the plurality of ventilation slots 250 are arranged along the circumferential direction of the casing 200 .
  • three ventilation slots 250 are arranged at intervals of 120 degrees.
  • the ventilation slots 250 can increase the gap space to enhance the fluidity of the airflow inside the casing 200, and the airflow can take away the heat inside the casing 200, thereby enhancing the heat dissipation effect.
  • the casing 200 is made of aluminum alloy material through a casting process.
  • the aluminum alloy has the characteristics of low density, high strength, strong corrosion resistance, and large thermal conductivity, which can make the casing 200 have high structural strength and weight. Low, good heat dissipation performance and other advantages.
  • the surface of the casing 200 is required to have certain waterproofness and corrosion resistance. Based on this, it can be understood that for the above-mentioned embodiments, the surface of the casing 200 undergoes at least one of electroplating, anodizing, and passivation processes to form a protective film on the surface of the casing 200 to enhance corrosion resistance. properties, reducing defects on the surface of the casing 200, and also improving the surface gloss of the casing 200, making it more beautiful. In addition, the thickness of the protective film is very low, which has a low impact on the heat conduction of the casing 200 and does not affect the heat dissipation performance of the casing 200 .
  • the impeller is made of PPS material or PBT material.
  • PPS material is polyphenylene sulfide material, which is a new type of high-performance thermoplastic resin that can improve the structural strength and high temperature resistance of the impeller.
  • PBT material is polybutylene terephthalate material. It is a thermoplastic engineering polymer that can enhance the mechanical strength of the impeller and its high temperature resistance.
  • glass fiber material can also be added to the above-mentioned PPS material or PBT material to further enhance the structural strength and high temperature resistance of the impeller.
  • the fan 1000 also includes a circuit substrate 800 , which is located on the top of the casing 200 .
  • the circuit substrate 800 is located in the end cover 700 .
  • the circuit substrate 800 has leads connected to external power lines.
  • the fans used in handheld cleaning equipment have the characteristics of small size and high speed, and their speed can generally reach between 60,000 and 150,000 rpm.
  • the working process of the fan is as follows: the impeller rotates under the drive of the motor, and the rotating impeller brings the air into the fan from the inlet of the wind hood. After the air obtains greater kinetic energy under the action of the impeller, it flows in from the edge of the impeller along the radial direction of the impeller.
  • the diffuser expands the pressure and then flows out through the casing.
  • the fluid impacts the diffuser, casing and other structures, causing a large loss of kinetic energy of the fluid.
  • the fluid is prone to separation losses at the outlet end of the diffuser, causing the impeller to collapse. Fluid noise is generated at the connection with the diffuser, that is, the interference area and inside the diffuser.
  • this application provides a fan whose structure has an air duct, and the air duct has a certain parameter relationship with the axial length of the diffuser, which can reduce the diffuser outlet to a certain extent. Air flow separation loss at , thereby improving fluid noise.
  • FIG. 9 is a schematic diagram of the fan provided by the embodiment of the present application
  • Figure 12 is a cross-sectional view of the fan in Figure 9.
  • the fan 1000 provided by the embodiment of the present application includes a driving device and a diffuser 500 , impeller 411 and wind shield 600.
  • the driving device includes a casing 200, a stator assembly 300, and a rotor assembly 400.
  • the rotor assembly 400 is provided with a rotating shaft 410.
  • the diffuser 500 is set on the driving device, and the impeller 411 is set above the diffuser 500 and connected to the driving device. That is, the diffuser 500 is set between the driving device and the impeller 411. The air accelerated by the impeller 411 flows into the diffuser 500.
  • the air hood 600 is arranged on the impeller 411 and is connected to the diffuser 500 so that the impeller 411 forms a surrounding space.
  • An air inlet 610 is provided at the top of the air hood 600, and the air flows into the interior of the air hood 600 from the air inlet 610. That is the position of impeller 411.
  • the working process of the fan is as follows: the driving device drives the impeller 411 to rotate at high speed, and the impeller 411 drives the air to rotate so that the airflow obtains kinetic energy inside the wind cover 600.
  • the airflow enters the diffuser 500 from the bottom of the impeller 411, where the bottom of the impeller 411 reaches
  • the position of the air inlet at the top of the diffuser 500 is an interference area.
  • the interference area is prone to air flow noise.
  • the diffuser 500 needs to be set up so that the air flow in the interference area can quickly enter the diffuser 500 for expansion to reduce the air flow noise. Specifically, under the action of the diffuser 500, the pressure energy of the air flow is increased and the air flow velocity is accelerated. The diffused air flow flows out from the diffuser 500, and a negative pressure is formed at the opening of the wind cover 600 so that the air flows into the fan uninterruptedly. , thereby achieving the purpose of air supply.
  • the diffuser 500 includes a first diffusion structure 501 and a housing 100 .
  • the first expansion structure 501 is disposed on the top of the casing 200, that is, above the casing 200 as shown in Figure 12.
  • the first expansion structure 501 is connected to the casing 200 and can be fixed with the casing 200 through screws.
  • the rotating shaft 410 of the driving device It can pass through the first expansion structure 501 .
  • the casing 100 of the diffuser 500 is provided with a diffusing part 112 and an air guide part 111.
  • the diffusing part 112 of the casing 100 is disposed outside the first diffusing structure 501 and forms a diffusing channel with the first diffusing structure 501.
  • the casing 100 is provided with an air guide portion 111 .
  • the portion of the casing 100 that protrudes from the diffuser 112 is the air guide portion 111 .
  • the air guide portion 111 surrounds the casing 200 to form an air outlet channel 110 .
  • the air guide 111 is a portion of the end of the casing 100 away from the impeller 411 that protrudes downward from the first diffusion structure 501 .
  • the air guide 111 has the function of guiding the airflow to stabilize the airflow before it flows out of the fan.
  • the traditional fan does not have an air outlet channel 110, and the air flow is directly discharged from the air outlet 520 of the diffuser 500 after being pressurized by the diffuser 500. The air flow is prone to separation losses at the air outlet 520, and turbulence is easily formed at the air outlet 520.
  • the fan provided in the embodiment of the present application is provided with an air outlet channel 110 to guide and stabilize the pressurized air flow, so that the air flow becomes more stable before flowing out of the fan. Stable, including more stable flow speed and flow direction, effectively reducing the separation loss at the air flow outlet position of the fan, and improving air supply efficiency.
  • the distance L2 from the end surface of the casing 100 away from the impeller 411 to the end surface of the first diffusion structure 501 away from the impeller 411 is greater than or equal to 1 mm, and is less than or equal to three times the first diffusion structure 501 The length of L1.
  • L1 is the length of the first diffusion structure 501 along the axial direction of the rotation axis 410 . It can be understood that L1 is also the length of the diffusion part 112 of the housing 100 of the diffuser 500 along the rotation axis 410 .
  • the length in the axial direction, L2 is the length of the air guide portion 111 in the axial direction of the rotating shaft 410 . It can be understood that according to the verification of each platform plan, when L2 is greater than or equal to 1 mm and less than or equal to three times L1 along the axial direction of the rotating shaft 410, the corresponding high-speed fan noise performance is better.
  • the impeller 411 of the fan is disposed at one end of the rotating shaft 410, and the rotating shaft 410 of the driving device drives the impeller 411 to rotate to drive the air to rotate, so that the air flow obtains kinetic energy.
  • the impeller 411 is arranged above the first diffusion structure 501 so that the airflow enters the diffuser 500 for diffusion after being accelerated by the impeller 411. That is, the first diffusion structure 501 is arranged between the impeller 411 and the casing 200.
  • the impeller 411 is provided with a wind cover 600, and the bottom of the wind cover 600 contacts the casing 100 of the diffuser 500.
  • the wind cover 600 is provided with a contact portion 630, and the contact portion 630 surrounds the casing 100, that is, the contact portion 630
  • the inner wall of the housing 100 is in contact with the housing 100
  • the contact portion 630 has an interference fit with the housing 100 so that the contact surfaces of the air cover 600 and the housing 100 are in close contact, thereby preventing airflow from flowing out between the air cover 600 and the housing 100 .
  • the wind shroud 600 is fixedly connected to the housing 100 of the diffuser 500 .
  • the arrangement of the wind hood 600 forms a cavity between the impeller 411 and the wind hood 600, which is conducive to the acceleration of air in the cavity to obtain kinetic energy.
  • An air inlet 610 is provided at the top of the wind hood 600, and the air flows into the fan 1000 from the air inlet 610. .
  • the casing 200 is provided with a plurality of fins 240 , and the plurality of fins 240 are circumferentially arranged outside the casing 200 . Since the fins 240 are arranged along the axis of the rotating shaft 410, the fins 240 also have a guiding effect on the air flow. After the air flow is diffused by the diffuser 500, the direction of movement of the air flow when entering the air outlet channel 110 is to spiral around the casing 200. When the airflow moves downward to the position of the fin 240, the airflow will hit the fin 240 and change the direction of movement. Under the guidance of the fin 240, the airflow moves downward in the vertical direction.
  • the fins 240 may be designed in an arc shape, that is, the fins 240 are spirally arranged around the casing 200. In this way, when the airflow moves to the position of the fins 240, it will continue to move in a spiral downward direction until it reaches the position of the fins 240. Outflow fan.
  • the distance L3 from the end of the fin 240 away from the impeller 411 to the end of the first diffusion structure 501 away from the impeller 411 is greater than L2.
  • the fin 240 has a head end 242 and a tail end 243.
  • the head end 242 is located at the upper part and the tail end 243 is located at the lower part. It can be understood that the head end 242 is the end of the fin 240 close to the impeller 411 and the tail end 243 is far away from the fin 240.
  • L3 is larger than L2, that is, the tail end 243 of the fin 240 needs to be arranged outside the air guide part 111.
  • the advantage of this arrangement is that when the airflow flows out of the air guide part 111, it can continue to be guided through the fin 240 and the flow direction is very stable, thereby further It can reduce the separation loss at the air flow outlet position and improve the air supply efficiency of the fan.
  • L3 is smaller than L2
  • the fins 240 are completely disposed in the air outlet channel 110, and the tail ends 243 of the fins 240 are located above the bottom of the air guide portion 111.
  • the disadvantage of this arrangement is that the airflow passes through the air outlet channel 110. The inside of the channel 110 is guided by the fins 240. When it flows out of the air outlet channel 110, since the casing 200 has no other guide structure, it is still easy to form separation losses at the airflow outlet.
  • the diffuser 500 is also provided with a second expansion structure 900.
  • the second expansion structure 900 can be a two-stage expansion structure or a two-stage expansion structure plus a three-stage expansion structure, that is, a second expansion structure.
  • the diffusion structure 900 may be a two-stage diffusion structure or a multi-stage diffusion structure including a two-stage diffusion structure and a three-stage diffusion structure.
  • the second diffusion structure 900 is arranged in the air outlet channel 110 and is located away from the first diffusion structure 501.
  • the length L4 of the second diffusion structure is smaller than L2.
  • L4 is smaller than L2, which means that the second diffusion structure 900 needs to be arranged inside the air outlet channel 110, and a part of the air guide 111 needs to protrude downward from the secondary diffusion structure 900.
  • the advantage of this arrangement is that the airflow is After being diffused by the first diffuser structure 501 and the second diffuser structure 900, the flow direction of the airflow can also be made more stable through the air outlet channel 110.
  • the fins 240 can also be provided at the casing 200, and the tail ends 243 of the fins 240 can be partially protruded from the casing.
  • the air guide part 111 of 100 When the airflow flows out of the air guide portion 111, it can continue to be guided through the fins 240 in a very stable flow direction, thereby further reducing the separation loss at the airflow outlet position and improving the air supply efficiency of the fan.
  • the tail ends 243 of the fins 240 are disposed below the bottom of the air guide portion 111 , that is, part of the fins 240 needs to be disposed outside the air outlet channel 110 , so that the airflow in the air outlet channel 110 is facilitated.
  • the flow direction at the outlet is more stable and separation loss is less likely to occur.
  • the distance L5 from the end surface of the second expansion structure 900 away from the impeller 411 to the air outlet end surface of the air duct is greater than or equal to 1 mm.
  • L5 is greater than or equal to 1 mm, it means that the length of the air outlet channel 110 in the axial direction of the rotating shaft is greater than 1 mm.
  • L5 is greater than or equal to 1mm, when the airflow flows out from the second diffusion structure 900 because the fan is provided with an air outlet channel 110, the airflow will not immediately flow in other directions, and the airflow will flow along the air outlet channel 110 for a certain distance. , it will flow out of the fan only after being stabilized and guided by the air outlet channel 110, thereby reducing the separation loss to a certain extent.
  • the second expansion structure 900 is not limited to a two-stage expansion structure and a three-stage expansion structure.
  • the second expansion structure 900 can also include a multi-stage expansion structure, and when it includes a multi-stage expansion structure, The same applies to the above relational expressions and will not be repeated here.
  • the diffuser 500 may be a vane diffuser or a vaneless diffuser.
  • the vaneless diffuser usually consists of only two parallel smooth walls. It has a simple structure and low cost. It has the advantages of flat performance curve and wide range of stable operating conditions.
  • the diameter of the vaneless diffuser is longer, and the gas flow loss is larger; the vane diffuser is composed of a certain number of vanes evenly distributed along the circumference of the parallel smooth wall surface of the vaneless diffuser.
  • the gas medium in the vaneless diffuser is When flowing in the pressure vessel, the direction angle remains basically unchanged.
  • the gas in the blade diffuser, the gas must flow in the direction of the blades, so the flow condition is better, the flow loss is small, and the efficiency is high.
  • the first diffusion structure 501 when a vane diffuser is used, that is, when the first diffusion structure 501 uses a vane diffuser, the first diffusion structure 501 is provided with a hub and a plurality of static blades. Specifically, a plurality of stator blades are circumferentially arranged on the hub, wherein the thickness of the end of the stator blades close to the impeller 411 is smaller than the thickness of the end far away from the impeller 411 .
  • the end of the stator blade close to the impeller 411 is the head edge, and the end far away from the impeller 411 is the trailing edge.
  • the noise performance of the fan is better when the number of static blades is greater than or equal to 9 and less than or equal to 13. According to relevant tests, setting 9 to 13 static blades can make the static blades more efficient. The spacing between blades reaches the spacing under better working conditions. It can be seen from the graph in Figure 5 that when the number of fins 240 is set to less than 9, the noise gradually increases as the number of fins 240 decreases. When the number of fins 240 is set to 9 to 13, the noise is smaller. And it is stable. When the number of fins 240 is greater than 13, the noise will increase again. And the winding temperature of the fan is also related to the number of fins 240.
  • the winding temperature gradually increases with the decrease of the fins 240.
  • the winding temperature Small and stable, when the number of fins 240 is greater than 13, the winding temperature will rise.
  • FIG 15 is a noise spectrum diagram of the fan.
  • the abscissa in the noise spectrum diagram represents frequency, and the ordinate represents amplitude at that frequency.
  • the thick line which is the bottom curve, is the improved structure of the present application
  • the thin line which is the top curve, is the structure before improvement.
  • the thick line is the change curve of the sound pressure level corresponding to the frequency when L2 is greater than or equal to 1mm and less than or equal to three times of L1
  • the thin line is the change curve of the sound pressure level of the fan before the structural improvement corresponding to the frequency.
  • Sound pressure level is generally used to represent the strength of the sound signal, that is, the pressure pulse.
  • guide ribs 210 are provided inside the casing 200 .
  • the guide ribs 210 are provided with arcuate surfaces 211 , and the arcuate surfaces 211 are used to support the stator assembly 300 . It should be noted that along the axial direction of the rotating shaft 410, the distance from the end of the arcuate surface 211 close to the impeller 411 to the end of the first diffusion structure 501 away from the impeller 411 is m1.
  • the casing 200 is provided with fins 240.
  • the fins 240 At least partially located in the air outlet channel 110 , the distance n1 from the end of the fin 240 close to the impeller 411 to the end of the first diffusion structure 501 away from the impeller 411 is less than or equal to m1.
  • the distance L3 from the end of the arcuate surface 211 away from the impeller 411 to the end of the first diffusion structure 501 away from the impeller 411 is m2.
  • the distance L3 from the end of the fin 240 away from the impeller 411 to the end of the first diffusion structure 501 away from the impeller 411 is greater than equal to m2.
  • the casing 100 of the diffuser 500 will not interfere with the casing 200 after installation, which is beneficial to the installation of the fan and is Sufficient space is reserved for the air outlet channel 110 .
  • the air outlet channel 110 has enough space to install the fins 240 to meet the installation number of the fins 240 . This setting is helpful to improve the outlet diversion of the fan.
  • the floor washing machine according to the embodiment of the present application includes the fan 1000 of the above embodiment. Therefore, the floor washing machine can achieve the technical effects of the above embodiment, which will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种风机以及具有该风机的洗地机,其中风机(1000)包括壳体组件、定子组件(300)和转子组件(400)。壳体组件包括外壳(100)和机壳(200),外壳(100)套设于机壳(200),外壳(100)与机壳(200)之间形成出风通道(110),定子组件(300)安装于机壳(200)内,转子组件(400)与定子组件(300)转动连接,转子组件(400)的转轴(410)固定连接有叶轮(411),机壳(200)的外壁设有翅片(240),至少部分翅片(240)位于出风通道(110)内。在保证在气流的流动性较好的情况下,增强散热,同时兼顾吸风性能和散热性能。

Description

风机及洗地机
相关申请的交叉引用
本申请要求于2022年06月01日提交的申请号为202210618489.3、名称为“风机及洗地机”,于2022年06月01日提交的申请号为202210618592.8、名称为“风机及洗地机”,以及于2022年06月01日提交的申请号为202210622079.6、名称为“风机及清洁设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及家用电器技术领域,特别涉及风机及洗地机。
背景技术
洗地机是一种集扫地、拖地、洗地为一体的清洁设备,洗地机可以运用在干环境和湿环境中,以清扫干湿垃圾。
洗地机对吸风性能有一定的要求,洗地机的吸力由风机提供。相关技术中,风机的叶轮在马达的驱动下旋转,旋转的叶轮将空气从风罩入口处带入风机,空气在叶轮的作用下获得较大的动能后,沿叶轮径向,从叶轮边缘流入扩压器进行扩压,再经机壳流出。
洗地机要求风机的转速较高,导致风机的定子组件发热量较大,并且洗地机运用在干环境和湿环境中,还对风机有一定的防水性要求,要求风机的结构的密闭性较好,在风机的密闭性较好的情况下,定子组件的热量无法及时散出,导致风机的散热效果较差。
此外,气流从叶轮流出并进入扩压器时,流体对扩压器以及机壳等结构造成冲击,使流体的动能损失较大,并且流体在扩压器的出口尾端易产生分离损失,从而导致叶轮与扩压器的连接处即干涉区以及扩压器内部产生流体噪声。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种风机以及具有上述风机的洗地机。
根据本申请的第一方面实施例的风机,包括:
壳体组件,包括外壳和机壳,所述外壳套设于所述机壳,所述外壳与所述机壳之间形成出风通道;
定子组件,安装于所述机壳内;
转子组件,与所述定子组件转动连接,所述定子组件的转轴固定连接有叶轮;
其中,所述机壳的外壁设有翅片,所述翅片的至少部分结构位于所述出风通道内。
根据本申请的一些实施例,所述翅片设有多个,多个所述翅片沿所述机壳的周向设置。
根据本申请的一些实施例,所述翅片的边缘至所述外壳的距离,沿朝向所述出风通道的进风端的方向逐渐增大。
根据本申请的一些实施例,所述风机包括扩压器,所述扩压器安装于所述机壳,所述扩压器设有多个扩压叶片,相邻的两个所述扩压叶片之间形成扩压通道,所述扩压通道位于所述叶轮与所述出风通道之间。
根据本申请的一些实施例,所述翅片的数量M大于等于3,且小于等于17,所述扩压叶片的数量N大于等于4,且小于等于10。
根据本申请的一些实施例,所述翅片的最大厚度W大于等于0.2mm,且小于等于5mm。
根据本申请的一些实施例,部分所述机壳向内凹入形成弧形曲面,所述弧形曲面用于引导所述出风通道内的气流沿所述机壳的表面流动。
根据本申请的一些实施例,所述翅片设于所述弧形曲面处。
根据本申请的一些实施例,所述机壳由铝合金材料制成。
根据本申请的一些实施例,所述机壳的表面经过电镀、阳极氧化和钝化工艺处理中至少一种。
根据本申请的一些实施例,所述风机包括风罩,所述风罩连接于所述壳体组件,所述风罩罩设于所述叶轮,所述风罩开设有进风口。
根据本申请的第二方面实施例的风机,包括:
壳体组件,包括外壳和机壳,所述外壳套设于所述机壳,所述外壳与所述机壳之间形成出风通道;
定子组件,安装于所述机壳内;
转子组件,与所述定子组件转动连接,所述转子组件的转轴固定连接有叶轮;
其中,所述机壳内设有散热筋,所述散热筋抵接于所述定子组件,以将所述定子组件的热量传导至所述机壳。
根据本申请的一些实施例,所述散热筋设有多个,多个所述散热筋沿所述机壳的周向间隔设置。
根据本申请的一些实施例,所述机壳内设有导向筋,所述导向筋用于引导所述定子组件装入所述机壳。
根据本申请的一些实施例,所述导向筋设有多个,多个所述导向筋沿所述机壳的周向间隔设置。
根据本申请的一些实施例,所述散热筋设有多个,所述导向筋设有多个,所述散热筋和所述导向筋均沿所述机壳的周向间隔且交替设置。
根据本申请的一些实施例,所述定子组件与多个所述导向筋过盈配合。
根据本申请的一些实施例,所述定子组件与所述导向筋的配合面为弧形面,所述定子组件与所述导向筋的过盈量X等于所述定子组件的外径D与多个所述弧形面形成的参考圆的直径K1的差值的一半,所述X大于等于0.005mm,且小于等于0.5mm。
根据本申请的一些实施例,所述机壳包括环形内壁,所述散热筋设于所述环形内壁,所述散热筋的弧长L与所述散热筋的高度H的和小于等于所述环形内壁的内径K2。
根据本申请的一些实施例,所述定子组件的外径D与所述定子组件的槽数N的比值大于等于1.25,且小于等于20。
根据本申请的一些实施例,所述机壳由铝合金材料制成。
根据本申请的一些实施例,所述风机包括风罩,所述风罩连接于所述壳体组件,所述风罩罩设于所述叶轮,所述风罩开设有进风口。
根据本申请的第三方面实施例的风机,包括:
驱动装置,包括机壳、定子组件和转子组件,所述定子组件安装于所述机壳内,所述转子组件与所述定子组件转动连接,所述转子组件设置有转轴,所述转轴固定设置有叶轮,所述叶轮罩设有风罩;
扩压器,包括第一扩压结构和外壳,所述第一扩压结构设置于所述叶轮和所述机壳之间,所述外壳包括扩压部和导风部,所述扩压部设置于所述第一扩压结构的外侧并与所述第一扩压结构形成扩压通道,所述外壳远离所述叶轮的一端为所述导风部,所述导风部围绕所述机壳形成风道,其中,沿所述转轴的轴向,所述外壳远离所述叶轮的端面至所述第一扩压结构远离所述叶轮的端面的距离L2大于等于1mm,并且小于等于三倍的所述第一扩压结构的长度L1。
根据本申请的一些实施例,所述机壳设置有翅片,所述翅片的至少部分结构位于所述风道,沿所述转轴的轴向,所述翅片远离所述叶轮的一端至所述第一扩压结构远离所述叶轮的一端的距离L3大于L2。
根据本申请的一些实施例,所述扩压器还设置有第二扩压结构,所述第二扩压结构设置于所述风道内,沿所述转轴的轴向,所述第二扩压结构的长度L4小于L2。
根据本申请的一些实施例,沿所述转轴的轴向,所述第二扩压结构远离所述叶轮的端面至所述风道的出风口端面的距离L5大于等于1mm。
根据本申请的一些实施例,所述机壳内设置有导向筋,所述导向筋设置有弧形面,所述弧形面用于支撑所述定子。
根据本申请的一些实施例,所述弧形面与所述定子的外壁过盈配合。
根据本申请的一些实施例,沿所述转轴的轴向,所述弧形面靠近所述叶轮的一端至所述一级扩压结构远离所述叶轮的一端的距离为m1,所述机壳设置有翅片,所述翅片的至少部分结构位于所述风道,所述翅片靠近所述叶轮的一端至所述一级扩压结构远离所述叶轮的一端的距离n1小于等于m1。
根据本申请的一些实施例,沿所述转轴的轴向,所述弧形面远离所述叶轮的一端至所述一级扩压结构远离所述叶轮的一端的距离为m2,所述翅片远离所述叶轮的一端至所述一级扩压结构远离所述叶轮的一端的距离L3大于等于m2。
根据本申请的一些实施例,所述第一扩压结构周向设置有多个静叶片,所述静叶片靠近所述叶轮的一端的厚度比远离所述叶轮的一端的厚度小。
根据本申请的一些实施例,所述静叶片的片数大于等于9片并且小于等于13片。
根据本申请的第四方面实施例的洗地机,包括以上实施例的风机。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
下面结合附图和实施例对本申请做进一步的说明,其中:
图1为本申请第一方面实施例的风机的剖视图;
图2为本申请一些实施例的机壳的结构示意图;
图3为图2中示出的A处的放大图;
图4为本申请一些实施例的机壳的俯视图;
图5为图4中示出的B处的放大图;
图6为本申请一些实施例的定子组件的结构示意图;
图7为本申请一些实施例的机壳的结构示意图;
图8为图7中示出的C处的放大图;
图9为本申请一些实施例的风机的结构示意图;
图10为本申请一些实施例的外壳的结构示意图;
图11为本申请一些实施例的风机中翅片的数量与绕组均温的关系图;
图12为图9中的风机剖视图;
图13为图7中机壳的剖视图;
图14为本申请一些实施例的翅片的数量与风机的送风效率以及绕组温度的关系图;
图15为本申请一些实施例的风机的噪音频谱图;
图16为本申请一些实施例的弧形面的长度关系示意图;以及
图17为本申请一些实施例的设置有第二扩压结构的风机示意图。
附图标记:
风机1000;
外壳100、出风通道110、导风部111、扩压部112;
机壳200、导向筋210、弧形面211、散热筋220、弧形曲面230、第一段曲面231、第二段曲面232、翅片240、斜边241、头端242、尾端243、通风槽250、环形内壁260、第一段壳体270、第二段壳体280;
定子组件300、定子铁芯310、绕组320;
转子组件400、转轴410、叶轮411;
扩压器500、扩压叶片510、第一扩压结构501、出气口520;
风罩600、进风口610、叶轮腔620、抵接部630;
端盖700;
电路基板800。
第二扩压结构900。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
洗地机是一种集扫地、拖地、洗地为一体的清洁设备,洗地机可以运用在干环境和湿环境中,以清扫干湿垃圾。洗地机包括有吸风风机和滚刷风机,吸风风机用于驱动叶轮转动,从而产生吸力,滚刷风机用于驱动滚刷转动,对地面进行擦拭。
相关技术中,洗地机通常设置有风罩,以起到保护作用,对于用于吸风的风机,风机的转子总成带动叶轮旋转,在风罩的入口处形成较大的真空度,气流从风罩的入口吸入。洗地机需要较大的吸力,对风机的转速要求较高,在转速较大的情况下,风机的定子组件发热量较大,并且洗地机运用在干环境和湿环境中,对风机有一定的防水性要求,要求风机的结构的密闭性较好,例如,风机吸入的气流难以进入风机的内部,即风机吸入的气流难以流经定子组件而对其散热,在风机的密闭性较好的情况下,定子组件的热量堆积在机壳内部,无法及时散出,会导致风机过热而损坏,目前,洗地机的风机存在一定的改进空间。
需要解释的是,定子组件通常包括定子铁芯和绕组,定子铁芯呈筒状,两端开口,绕组绕制在定子铁芯内,绕组通常凸出至定子铁芯的轴向两端,绕组的主要作用是传导电流从而产生感应电势,以实现机电能量的转换,在风机的运行中,电流经过绕组,绕组会产生热量,由于定子组件安装在机壳的内部,且机壳内部的密闭性较好,机壳内部的散热条件较差。
相关技术中,如果定子组件直接与机壳的内周壁过盈连接,由于定子组件与机壳的内周壁接触面积较大,在压装定子组件时需要极大的过盈压入力,现有的压装设备难以满足如此大的过盈压入力需求,并且,在压装后,定子组件也难以被拆卸下来。目前,大部分的风机,通常是在机壳内设置定子安装部,定子组件与定子安装部通过螺栓连接,定子组件与机壳的内壁接触不紧密,导致定子组件的热量难以传导至机壳上。
基于此,参照图1所示,根据本申请第一方面实施例的风机1000,包括壳体组件、定子组件300和转子组件400。
参照图1、图2、图9和图10所示,具体地,壳体组件包括外壳100和机壳200,外壳100呈环形结构,外壳100内部具有空腔,外壳100沿轴向的两端开口,机壳200呈大致的圆柱体结构,机壳200安装于外壳100的空腔内,机壳200的一端伸入外壳100的空腔内,外壳100套设于机壳200,外壳100位于机壳200的外部并环绕机壳200,外壳100的内周壁与机壳200的外周壁之间限定出出风通道110,出风通道110呈环形。需要说明的是,部分的机壳200位于出风通道110内,部分的机壳200位于出风通道110外,出风通道110内的气流可以沿机壳200的表面流动。
更具体地,机壳200内具有安装腔,定子组件300安装于机壳200的安装腔内,可以在机壳200的安装腔内设置定子安装部,定子组件300与定子安装部通过螺栓连接,或者定子组件300与机壳200的安装腔通过粘胶固定。转子组件400与定子组件300转动连接,具体地,转子组件400的转轴410位于定子组件300的定子铁芯310内,转轴410与定子铁芯310之间具有间隙,转轴410可以相对定子铁芯310转动。转轴410沿机壳200的轴向设置,转轴410的端部伸出机壳200的底部,同时转轴410的端部也伸出外壳100的底部,转轴410的端部与叶轮411固定连接,转轴410可以带动叶轮411转动,叶轮411位于出风通道110的下方。
为了密封性较好,风机1000还包括风罩600和端盖700,风罩600安装于外壳100的底部,风罩600的内周壁与外壳100的外周壁之间可以设置密封圈,以形成密封连接。风罩600内设有叶轮腔620,叶轮腔620与出风通道110连通,叶轮411位于叶轮腔620内,风罩600罩设于叶轮411,风罩600的底部开设有进风口610。端盖700安装于机壳200的顶部,端盖700封盖机壳200的安装腔,以保证密封性良好。
参照图2和图3所示,机壳200内设有散热筋220,具体地,机壳200包括环形内壁260,环形内壁260可以由机壳200的内周壁形成,散热筋220设置于环形内壁260上,散热筋220位于机壳200与定子组件300之间,散热筋220与定子组件300抵接,散热筋220与定子组件300的外壁贴合,散热筋220与定子组件300的配合面呈弧形,使得散热筋220可以将定子组件300的热量传导至机壳200,可以理解的是,散热筋220可以与机壳200一体成型,制造方便。
在风机1000工作时,转子组件400驱动叶轮411转动,叶轮411吸入气流,风罩600的进风口610处形成较大的真空度,气流被吸入风罩600的进风口610,气流由叶轮411的出风侧流出,气流受挤压,获得较大的动能,从而进入出风通道110,同时散热筋220将定子组件300的热量传导至机壳200,出风通道110内的气流可以流经机壳200的表面,带走机壳200的热量,在风机1000密封性较好的情况下,实现增强风机1000散热效果,减轻定子组件300热量堆积、无法及时散出的情况。
可以理解的是,散热筋220与定子组件300的配合面也可以呈不规则形状,可以通过增大散热筋220与定子组件300的配合面的面积,进而增大散热筋220与定子组件300的导热面积,使得散热筋220可以传导更多的热量,进一步增强散热筋220的导热效果。
参照图2和图4所示,可以理解的是,散热筋220可以设有多个,多个散热筋220沿机壳200的周向间隔设置,散热筋220设置多个可以增大与定子组件300的接触面积,从而增强散热筋220的导热效果,例如,散热筋220设置有3个,3个散热筋220相互间隔120度设置,热量传导较为均匀,导热效果较好。
参照图1至图4所示,可以理解的是,机壳200内设有导向筋210,具体地,导向筋210设置于机壳200的环形内壁260上,导向筋210呈凸起状结构,导向筋210可以引导定子组件300装入机壳200内。具体地,定子组件300与导向筋210过盈配合,导向筋210与定子组件300的配合面为弧形面211,定子组件300压紧导向筋210,定子组件300可以与导向筋210紧密贴合,使得导向筋210可以将定子组件300产生的热量传导至机壳200的外壁,增强散热效果。可以理解的是,导向筋210可以与机壳200一体成型,以便于制造。
可以理解的是,导向筋210与定子组件300的配合面也可以呈不规则形状,可以通过增大导向筋210与定子组件300的配合面的面积,以保证定子组件300压入后与导向筋210配合紧密,同时,还可以增大导向筋210与定子组件300的导热面积,而增强散热效果。
参照图3和图4所示,可以理解的是,导向筋210可以设有多个,多个导向筋210沿机壳200的周向间隔设置,例如,3个导向筋210相互间隔120度设置。设置多个导向筋210可以增加定子组件300与导向筋210的接触面积,以增强导向筋210的导热效果,带走更多的热量,同时,还可以使得定子组件300的压入角度固定,便于后续定子组件300与端盖700的装配。多个导向筋210也可以沿机壳200的周向等距间隔设置,例如,导向筋210可以设置3个,3个导向筋210相互间隔120度设置,在保证定子组件300与导向筋210配合牢固的情况下,散热效果较佳。可以理解的是,当导向筋210设有多个,导向筋210的弧形面211也有多个,多个弧形面211机壳200的周向间隔设置,多个弧形面211之间形成参考圆,参考圆具有直径长度。
参照图3、图5和图6所示,对于上述的实施例,根据大量实验数据,本申请实施例限定:定子组件300与导向筋210的过盈量X等于定子组件300的外径D与多个弧形面211形成的参考圆的直径K1的差值的一半,X大于等于0.005mm,且X小于等于0.5mm条件,参考圆的直径K1由导向筋210的厚度决定。当满足上述的条件时,可以使得定子组件300与导向筋210之间的压紧力较为适中,可以兼顾定子组件300与导向筋210的装配松紧适合度和导热性能。如果X小于0.005mm,定子组件300与导向筋210之间的压紧力过低,定子组件300容易松脱,并且,定子组件300与导向筋210的贴合不够紧密,导热效果较差。如果X大于0.5mm,定子组件300与导向筋210压紧力过大,在压装时,定子组件300需要的过盈压入力过大,不利于装配,并且,定子组件300与导向筋210压紧力过大,还会对定子组件300与导向筋210的结构产生损伤。
进一步地,对于上述的实施例,本申请实施例限定:定子组件300的过盈压入力F小于等于6000N。当满足上述条件时,在压装定子组件300时,可以使得定子组件300和导向筋210之间的压紧力较低,减轻损坏结构的情况,如果过盈压入力F大于6000N,会对定子组件300和导向筋210产生比较严重的损害,例如,会使导向筋210出现裂纹等缺陷。
参照图2和图4所示,可以理解的是,散热筋220和导向筋210可以设有多个,散热筋220和导向筋210沿机壳200的周向间隔且交替设置,使得定子组件300的热量传导较为均匀,并且使得定子组件300所受的压紧力也较为平衡。例如,导向筋210和散热筋220均设置3个,3个导向筋210沿机壳200的周向间隔120度,3个散热筋220也沿机壳200的周向间隔120度设置,散热筋220位于两个导向筋210之间。
可以理解的是,散热筋220可以与定子组件300过渡配合,例如,当散热筋220与定子组件300间隙配合,散热筋220对定子组件300起散热作用,当散热筋220与定子组件300过盈配合,可以设置散热筋220与定子组件300之间的过盈量小于导向筋210与定子组件300之间的过盈量,使得散热筋220起散热作用的同时也可以对定子组件300起辅助定位装配的作用。
在散热筋220与定子组件300过盈配合的情况下,如果散热筋220与定子组件300的配合面的面积过大,定子组件300需要较大的过盈压入力,会影响定子组件300装配于机壳200内。基于此,参照图3和图5所示,根据大量实验数据,本申请的实施例限定:散热筋220的弧长L与散热筋220的高度H的和小于等于环形内壁260的内径K2。需要说明的是,本实施例的环形内壁260的内径沿轴向在一段范围内不变,环形内壁260的内径K2不考虑散热筋220的厚度。当满足上述的条件时,可以在定子组件300的过盈压入力较小的情况下,达到较好的散热效果,且不影响定子组件300与机壳200装配,如果L+H大于K2,会使得散热筋220与的定子组件300的压紧力过大,在压装时,需要较大的过盈压入力,不利于定子组件300的装配。
定子组件300的定子铁芯310上开设有定子槽,定子槽用于缠绕绕组320,定子槽的槽数等于绕组320的数量,定子组件300的槽数即为定子槽的槽数,风机1000的工作性能与定子组件300的槽数有关,在不同的工作情况下,风机1000需要满足不同的工作性能。基于此,本申请的实施例限定:定子组件300的外径D与定子组件300的槽数N的比值大于等于1.25,且定子组件300的外径D与定子组件300的槽数N的比值小于等于20。需要说明的是,定子组件300的外径D与定子组件300的槽数N的比值是指定子组件300的外径D除以定子组件300的槽数N,定子组件300的外径D作为分子,定子组件300的槽数N作为分母。当满足上述的条件时,风机1000可以广泛地运用于大多数的环境中,适用性较强。
参照图1和图7所示,可以理解的是,机壳200包括沿竖直方向设置的第一段壳体270和第二段壳体280,第一段壳体270位于第二段壳体280的下方,第二段壳体280的外径小于第一段壳体270的外径,出风通道110位于第二段壳体280与外壳100之间。部分的机壳200的外周壁向内凹入形成弧形曲面230,使得机壳200在弧形曲面230区域位置处,机壳200的外径沿朝向机壳200底部的方向逐渐减小,弧形曲面230连接第一段壳体270和第二段壳体280,使得第一段壳体270至第二段壳体280过渡平滑,机壳200的壁厚均匀,在生产制造时,本实施例可以减轻因应力集中而出现缺陷的情况,同时,弧形曲面230的面积较大,还可以增强机壳200的导热效果。
对于机壳200的外周壁沿竖直方向设置的方案,出风通道110的气流的流动方向与机壳200的外周壁的设置方向平行,机壳200外周壁的迎风面面积较小,气流能够带走的热量较少,散热效果较差。本实施例中,出风风道110内的气流可以碰撞于弧形曲面230,弧形曲面230可以使得机壳200的迎风面积增大,气流可以带走更多的热量,同时,气流沿弧形曲面230流动,阻力较小,保证出风通道110的通风性较好,兼顾风机1000的散热性能和吸风性能。
参照图1所示,具体地,弧形曲面230包括第一段曲面231和第二段曲面232,第二段曲面232向内凹入的程度大于第一段曲面231向内凹入的程度,第一段曲面231与第一段壳体270连接,第一段曲面231位于出风通道110的上方,第一段曲面231与第二段曲面232连接,第二段曲面232与第二段壳体280连接,部分的第二段曲面232位于出风通道110内。对于设置直角过渡面连接第一段壳体270和第二段壳体280的方案,气流会受极大的阻力,使得出风通道110的通风性较差,从而风机1000的吸风性能受到影响。而本实施例的第一段曲面231和第二段曲面232可以引导出风通道110内的气流流动,出风通道110内的气流依次沿第一段壳体270、第一段曲面231、第二段曲面232和第二段壳体280的表面流动,气流流动顺畅,可以减小对气流的阻力,以使得风机1000的吸风性能较好。
可以理解的是,对于上述的实施例,导向筋210的位置与机壳200的弧形曲面230对应设置,导向筋210直接将定子组件300的热量传导至弧形曲面230,可以减小热量传导的距离,使得热量传导更快,可以进一步增强散热效果。
参照图1、图7和图8所示,可以理解的是,机壳200的外周壁设有翅片240,翅片240与机壳200一体成型,翅片240呈凸起片状结构,翅片240可以设置于出风通道110的出口处,翅片240部分的结构可以伸入出风通道110内,翅片240的延伸方向可以与出风通道110内的气流的流动方向相同,翅片240可以沿竖直方向延伸,翅片240对气流具有阻力作用,可以减缓气流的流动速度,从而可以延长气流经过翅片240的时间,使得气流可以与翅片240充分地进行热交换,气流也可以与机壳200充分地进行热交换,进而充分地利用出风通道110内的气流,将机壳200的热量带走,以增强散热效果。另外,由于翅片240与机壳200连接,机壳200也可以将热量传导至翅片240,由于翅片240呈片状,可以增大导热面积,对机壳200的散热效果较佳。
参照图1所示,可以理解的是,翅片240的边缘至外壳100的距离,沿朝向出风通道110的进风端的方向逐渐增大,当外壳100为旋转体时,翅片240的边缘至外壳100的距离可以理解为翅片240的边缘至外壳100的母线的距离,使得翅片240的边缘形成斜边241,斜边241沿直线方向延伸,使得翅片240的面积较小,从而使得翅片240对出风通道110内气流的阻力适当减小,可以使得出风通道110的通风性良好,从而保证风机1000的吸风性能。可以理解的是,斜边241也可以是沿弧线方向延伸。
翅片240的厚度对出风通道110内的气流的阻力具有一定影响,根据大量实验数据,本申请实施例限定:翅片240的最大厚度W大于等于0.2mm,且翅片240的最大厚度W小于等于5mm。需要说明的是,本实施例的翅片240的厚度均匀,翅片240每一处位置的厚度均相同。当满足上述条件时,翅片240对出风通道110内的气流的阻力适中,使得出风通道110的通风性较好,延长气流经过翅片240的时间的效果也较好,翅片240可以兼顾风机1000的吸风性能及散热性能。如果翅片240的最大厚度W小于0.2mm,翅片240对出风通道110的气流的阻力较小,延长气流经过翅片240的时间的效果较差。如果翅片240的最大厚度W大于5mm,翅片240对出风通道110的气流的阻力较大,不利于出风通道110通风,会影响风机1000的吸风性能。
参照图1和图7所示,可以理解的是,翅片240设置于弧形曲面230处,翅片240与弧形曲面230连接,翅片240可以设置多个,多个翅片240沿弧形曲面230的周向设置,弧形曲面230可以引导气流沿弧形曲面230流动,减小对气流的阻力,翅片240可以充分地利用气流实现热交换,带走机壳的热量,翅片240与弧形曲面230组合,可以保证在气流的流动性较好的情况下,增强散热,同时兼顾吸风性能和散热性能。
参照图1和图7所示,对于上述的实施例,可以理解的是,定子组件300、弧形曲面230及翅片240的位置对应设置,使得定子组件300、弧形曲面230和翅片240之间的距离较小,可以减小热量传递的距离,使得热量传导更快,定子组件300的热量可以更快地被传导至机壳200外部,出风通道110的气流将热量带走,可以进一步增强散热效果。
参照图1和图7所示,可以理解的是,翅片240设有多个,多个翅片240沿机壳200的外周壁间隔设置,多个翅片240也可以沿机壳200的外周壁等距间隔设置,设置多个翅片240可以增大翅片240对出风通道110的气流的阻力,进一步延长出风通道110的气流经过翅片240的时间,达到充分热交换的效果,并且,多个翅片240可以增大导热面积,机壳200可以传导更多的热量至翅片240,进一步增强散热效果。
参照图1和图10所示,可以理解的是,叶轮411与出风通道110之间设有扩压器500,扩压器500安装于机壳200的底部,扩压器500位于外壳100的空腔内,扩压器500可以将气流的动能转化为气压能,降低气流的流速以实现增加压力,具体地,扩压器500包括扩压叶片510,扩压叶片510倾斜设置,扩压叶片510设有多个,扩压叶片510沿外壳100的周向间隔设置,扩压叶片510位于外壳100底部的环形区域内,相邻的两个扩压叶片510之间形成扩压通道,气流从叶轮411的出风侧流出,获得动能,再进入扩压通道内,扩压通道将气流的动能转化为气压能,实现气流的减速增压。
对于上述的实施例,翅片240的数量与扩压叶片510的数量配合会达到较好的散热效果,根据实际经验,本申请实施例限定:翅片240的数量M大于等于3,且翅片240的数量M小于等于17,扩压叶片510的数量N大于等于4,且扩压叶片510的数量N小于等于10。当满足上述的条件时,出风通道110内的气流流动性较好,散热效果较佳,可以同时兼顾风机1000的散热性能和吸风性能。如果翅片240的数量小于3,且扩压叶片510的数量N小于4,翅片240及扩压叶片510对气流的阻力较小,延长气流经过翅片240的效果较差,气流与翅片240的热交换时间较短,从而散热效果较差,如果翅片240的数量大于17,且扩压叶片510的数量N大于10,片240及扩压叶片510对气流的阻力较大,出风通道110的通风性较差,风机1000的吸风性能较差。
对于上述的实施例,进一步地,本申请实施例限定扩压叶片510的数量N为8,翅片240的数量M为13,参照图11,图11为当扩压叶片510的数量N为8时,绕组均温与翅片数量的关系图,纵轴为绕组均温,横轴为翅片240的数量,纵轴的绕组均温参数即为绕组320的温度,当横轴中翅片240数量参数发生变化时,绕组320均温也发生变化,当翅片240数量为13或15时,绕组均温最低,为了节省成本,当扩压叶片510的数量N为8时,翅片240数量为13,此时,散热效果较佳,成本较低。
由于机壳200内部较为密闭,通风性较差,基于此,参照图2和图4所示,可以理解的是,机壳200内设有通风槽250,通风槽250由去除材料的方式形成,通风槽250可以设置有多个,多个通风槽250沿机壳200的周向设置,例如,3个通风槽250间隔120度设置。通风槽250可以增加间隙空间,以增强机壳200内部的气流的流动性,气流可以带走机壳200内部的热量,从而增强散热效果。
可以理解的是,机壳200由铝合金材料通过铸造工艺铸造而成,铝合金具有密度低、强度高、耐腐蚀性强、导热系数大的特点,可以使得机壳200具有结构强度大、重量低、散热性能好等优点。
由于风机1000对防水性有一定要求,要求机壳200的表面具有一定的防水性和耐腐蚀性。基于此,可以理解的是,对于上述的实施例,机壳200的表面经过电镀、阳极氧化和钝化工艺处理中至少一种,在机壳200的表面形成一层保护膜,可以增强耐腐蚀性,减少机壳200表面出现缺陷的情况,还可以提高机壳200表面光泽度,更加美观。另外,保护膜的厚度很低,对机壳200的导热影响较低,并不影响机壳200的散热性能。
可以理解的是,叶轮由PPS材料或PBT材料制成,PPS材料即为聚苯硫醚材料,是一种新型高性能热塑性树脂,可以提高叶轮的结构强度及耐高温性。PBT材料即为聚对苯二甲酸丁二酯材料,是一种热塑性的工程聚合物,可以增强叶轮的机械强度耐高温性。另外,还可在上述的PPS材料或PBT材料中添加玻璃纤维材料,可以进一步增强叶轮的结构强度及耐高温性。
参照图1所示,可以理解的是,风机1000还包括电路基板800,电路基板800位于机壳200的顶部,电路基板800位于端盖700内,电路基板800具有与外部电源线连接的引线。
此外,手持式清洁设备,例如洗地机,所使用的风机具有体积小、转速高等特点,其转速一般可以达到6万~15万rpm之间。风机的工作过程如下:叶轮在马达的驱动下旋转,旋转的叶轮将空气从风罩入口处带入风机,空气在叶轮的作用下获得较大的动能后,沿叶轮径向,从叶轮边缘流入扩压器进行扩压,再经机壳流出。气流从叶轮流出并进入扩压器时,流体对扩压器以及机壳等结构造成冲击,使流体的动能损失较大,并且流体在扩压器的出口尾端易产生分离损失,从而导致叶轮与扩压器的连接处即干涉区以及扩压器内部产生流体噪声。
针对这类风机的技术问题,本申请提供一种风机,该风机的结构具有风道,且风道与扩压器的轴向长度具有一定参数关系,能够在一定程度上减小扩压器出口处的气流分离损失,从而改善流体噪音。
现参照图9和图12所示,其中图9为本申请实施例提供的风机示意图,图12为图9中的风机的剖视图,本申请实施例提供的风机1000包括驱动装置、扩压器500、叶轮411以及风罩600。驱动装置包括机壳200、定子组件300、转子组件400,转子组件400设置有转轴410。扩压器500设置在驱动装置上,叶轮411设置在扩压器500上方并连接驱动装置即扩压器500设置在驱动装置和叶轮411之间,经过叶轮411加速的空气流入扩压器500,风罩600罩设在叶轮411上并且风罩600连接扩压器500,使得叶轮411处形成包围空间,风罩600的顶部设置有进风口610,空气从进风口610位置处流入风罩600内部即叶轮411所处的位置。其中,风机的工作过程如下:驱动装置驱动叶轮411高速旋转,叶轮411带动空气旋转使得气流在风罩600内部获得动能,气流从叶轮411的底部进入扩压器500,其中,叶轮411的底部至扩压器500顶部的进气口的位置为干涉区,干涉区容易产生气流噪声,需要设置扩压器500使干涉区的气流快速进入扩压器500中进行扩压,以减小气流噪声,具体的,在扩压器500的作用下气流的压能增加并且气流流速加快,经过扩压的气流从扩压器500流出,并且风罩600的开口处形成负压使得空气不间断地流入风机,从而达到送风的目的。
需要说明的是,扩压器500包括第一扩压结构501和外壳100。第一扩压结构501设置在机壳200的顶部即如图12所示的机壳200上方,第一扩压结构501连接机壳200并能够通过螺钉与机壳200固定,驱动装置的转轴410能够穿过第一扩压结构501。扩压器500的外壳100设置有扩压部112和导风部111,外壳100的扩压部112设置在第一扩压结构501的外侧并且与第一扩压结构501形成扩压通道。外壳100设置有导风部111,外壳100突出于扩压部112的部分为导风部111,导风部111围绕机壳200形成出风通道110。具体的,导风部111为外壳100远离叶轮411的一端向下突出于第一扩压结构501的部分,导风部111具有引导气流的流动使气流流出风机前趋向稳定的作用。传统风机不设置出风通道110,气流经过扩压器500增压之后直接从扩压器500的出气口520排出,气流容易在出气口520处形成分离损失,并且容易在出气口520处形成紊流,使得风机的送风效率降低,相较于传统风机的劣势,本申请实施例提供的风机设置有出风通道110对增压后的气流进行导向稳定,使气流在流出风机前变得更稳定,其中包括流速和流向更稳定,有效减小风机的气流出口位置处的分离损失,提高送风效率。
需要说明的是,沿转轴410的轴向,外壳100远离叶轮411的端面至第一扩压结构501远离叶轮411的端面的距离L2大于等于1mm,并且小于等于三倍的第一扩压结构501的长度L1。具体的,如图12所示,L1为第一扩压结构501沿转轴410的轴向上的长度,可以理解的是,L1也为扩压器500的外壳100的扩压部112沿转轴410的轴向上的长度,L2为导风部111沿转轴410的轴向上的长度。可以理解的是,根据各平台方案的验证,沿转轴410的轴向,L2大于等于1mm并且小于等于三倍的L1时,对应的高速风机噪音表现较好。
需要说明的是,风机的叶轮411设置于转轴410的一端,驱动装置的转轴410驱动叶轮411旋转从而带动空气转动,使气流获得动能。具体的,叶轮411设置在第一扩压结构501的上方,使得气流在经过叶轮411加速之后进入扩压器500进行扩压,即第一扩压结构501设置在叶轮411和机壳200之间。叶轮411罩设置有风罩600,风罩600的底部抵接扩压器500的外壳100,具体的,风罩600设置有抵接部630并且抵接部630围绕外壳100,即抵接部630的内壁抵接外壳100,抵接部630与外壳100过盈配合使得风罩600与外壳100的接触面紧密贴合,防止气流从风罩600与外壳100之间流出。在另一些实施例中,风罩600与扩压器500的外壳100固定连接。风罩600的设置使得叶轮411与风罩600之间形成空腔,有利于空气在空腔内加速从而获得动能,风罩600的顶部设置有进风口610,空气从进风口610处流入风机1000。
参照图7和图13所示,机壳200设置有多个翅片240,多个翅片240周向设置在机壳200的外部。由于翅片240沿转轴410的轴向上设置的,翅片240对气流还具有导向作用,气流经过扩压器500的扩压之后,进入出风通道110时的运动方向是围绕机壳200螺旋向下转动的,当气流向下运动至翅片240位置处时,气流会撞向翅片240从而改变运动方向,在翅片240的导向作用下气流沿竖直方向向下运动。在另一些实施例中,翅片240可以设计成弧线型,即翅片240围绕机壳200螺旋设置,这样设计时气流运动至翅片240位置处会继续沿着螺旋向下的方向运动直至流出风机。
需要说明的是,如图12所示,沿转轴410的轴向,翅片240远离叶轮411的一端至第一扩压结构501远离叶轮411的一端的距离L3大于L2。翅片240具有头端242和尾端243,头端242位于上部,尾端243位于下部,可以理解的是,头端242为翅片240靠近叶轮411的一端,尾端243为翅片240远离叶轮411的一端。L3大于L2即翅片240的尾端243需要设置在导风部111之外,这样设置的优点是当气流流出导风部111时,还可以继续经过翅片240进行导向很稳定流向,从而进一步的减小气流出口位置处的分离损失,提高风机的送风效率。可以理解的是,当L3小于L2时,即将翅片240完全设置于出风通道110之内,翅片240的尾端243位于导风部111底部的上方,这样设置的缺点是气流在出风通道110内经过翅片240导向,流出出风通道110时由于机壳200没有其他的导向结构,在气流出口处仍然容易形成分离损失。
需要说明的是,扩压器500还设置有第二扩压结构900,第二扩压结构900可以为二级扩压结构或者二级扩压结构加上三级扩压结构等,即第二扩压结构900可以为二级扩压结构或者包含二级扩压结构和三级扩压结构等多级扩压结构。当扩压器500设置有第一扩压结构501和第二扩压结构900时,如图17所示,第二扩压结构900设置于出风通道110内并位于第一扩压结构501远离叶轮411的一端,沿转轴410的轴向,第二扩压结构的长度L4小于L2。可以理解的是,L4小于L2即表示第二扩压结构900需设置在出风通道110内部,导风部111需要有一部分向下突出于二级扩压结构900,这样设置的优点是气流在经过第一扩压结构501和第二扩压结构900的扩压之后,还能经过出风通道110使得气流的流向更稳定。
需要说明的是, 当扩压器设置第一扩压结构501和第二扩压结构900时,同样可以在机壳200处设置翅片240,并且使翅片240的尾端243部分突出于外壳100的导风部111。当气流流出导风部111时,还可以继续经过翅片240进行导向很稳定流向,从而进一步的减小气流出口位置处的分离损失,提高风机的送风效率。可以理解的是,翅片240的尾端243设置在导风部111的底部的下方,即翅片240需要有一部分设置在出风通道110之外,这样设置有利于气流在出风通道110的出口处的流向更稳定,不易产生分离损失。
需要说明的是,沿转轴的轴向,第二扩压结构900远离叶轮411的端面至风道的出风口端面的距离L5大于等于1mm。当L5大于等于1mm时,即表示出风通道110在转轴的轴向上的长度大于1mm。根据相关试验,L5大于等于1mm时,气流从第二扩压结构900流出时由于风机设置有出风通道110,气流不会立刻向其他方向流动,气流还会沿着出风通道110流动一定距离,经过出风通道110的稳定和导向之后才会流出风机,从而在一定程度上减小分离损失。
需要说明的是,第二扩压结构900不局限于设置二级扩压结构和三级扩压结构,第二扩压结构900还可以包含多级扩压结构,并且包含多级扩压结构时同样适用于上述关系式,在此不再一一赘述。可以理解的是,扩压器500可以为叶片扩压器或无叶扩压器。无叶扩压器通常只有两个平行光滑的壁面组成,它结构简单,造价低廉,而目具有性能曲线平坦,稳定工况范围较宽的优点。但无叶扩压器直径较长,气体流动损失较大;叶片扩压器是在无叶扩压器平行光滑的壁面内,沿圆周均布一定数量的叶片而组成,气体介质在无叶扩压器内流动时,方向角基本保持不变。但在叶片扩压器内,气体必须按照叶片方向流动,所以,流动状况较好,流动损失小,效率高。
需要说明的是,当使用叶片扩压器时,即第一扩压结构501使用叶片扩压器时,第一扩压结构501设置有轮毂和多个静叶片。具体的,多个静叶片周向设置于轮毂,其中,静叶片靠近叶轮411的一端的厚度比远离叶轮411的一端的厚度小。静叶片靠近叶轮411的一端为头缘,远离叶轮411的一端为尾缘,当气流从头缘流入时,气体对静叶片的压力小,气流流至尾缘后,气体对静叶片的压力增大。
参照图14所示,在本申请实施例中,静叶片的片数大于等于9片并且小于等于13片时风机的噪音表现较好,根据相关试验,设置9至13片的静叶片可以使静叶片之间的间距达到较好的工况下的间距。由图5的曲线图可以看出,当翅片240的片数设置小于9片时,噪音随着翅片240的减少逐渐增加,翅片240的片数设置为9至13片时噪音较小并且稳定,当翅片240的片数大于13片时,噪音会重新增加。并且风机的绕组温度也与翅片240的设置数量相关,当翅片240设置小于9片时,绕组温度随着翅片240的减少逐渐增加,翅片240数量设置为9至13片时绕组温度较小并且稳定,当翅片240数量大于13片时,绕组温度会回升。
参照图15所示,为风机的噪音频谱图。噪音频谱图中的横坐标表示频率,纵坐标表示该频率下的振幅。图6中有两条曲线,粗线即底下的那条曲线为本申请改进的结构,细线即顶上的那条曲线为改进前的结构。可以理解的是,粗线为满足L2大于等于1mm,并且小于等于三倍的L1时的声压级对应频率的变化曲线,细线为结构改进前的风机的声压级对应频率的变化曲线。一般使用声压级来表示声音信号也就是压力脉的强弱。由图可以看出在风机工作频率为2KHz至20KHz之间,粗线的声压级大部分比较细线的声压级小,表示满足L2大于等于1mm,并且小于等于三倍的L1时,在风机工作频率为2KHz至20KHz之间时,产生的噪音小。
参照图2、3和16所示,机壳200的内部设置有导向筋210,导向筋210设置有弧形面211,弧形面211用于支撑定子组件300。需要说明的是,沿转轴410的轴向,弧形面211靠近叶轮411的一端至第一扩压结构501远离叶轮411的一端的距离为m1,机壳200设置有翅片240,翅片240至少部分位于出风通道110,翅片240靠近叶轮411的一端至第一扩压结构501远离叶轮411的一端的距离n1小于等于m1。弧形面211远离叶轮411的一端至第一扩压结构501远离叶轮411的一端的距离为m2,翅片240远离叶轮411的一端至第一扩压结构501远离叶轮411的一端的距离L3大于等于m2。由于机壳200的上半部分较窄,下半部分较宽,当满足上述关系时,扩压器500的外壳100在安装后不会于机壳200产生干涉,有利于风机的安装,并且为出风通道110预留了足够的空间。同时出风通道110拥有足够的空间来安装翅片240,满足翅片240的安装数量。这样设置有利于改善风机的出口分流。
根据本申请实施例的洗地机,包括上述实施例的风机1000,因此,洗地机可以达到上述实施例的技术效果,在此不再赘述。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。

Claims (31)

  1. 风机,包括:
    壳体组件,包括外壳和机壳,所述外壳套设于所述机壳,所述外壳与所述机壳之间形成出风通道;
    定子组件,安装于所述机壳内;以及
    转子组件,与所述定子组件转动连接,所述定子组件的转轴固定连接有叶轮;
    其中,所述机壳的外壁设有翅片,所述翅片的至少部分结构位于所述出风通道内。
  2. 根据权利要求1所述的风机,其中,所述翅片设有多个,多个所述翅片沿所述机壳的周向设置。
  3. 根据权利要求1或2所述的风机,其中,所述翅片的边缘至所述外壳的距离,沿朝向所述出风通道的进风端的方向逐渐增大。
  4. 根据权利要求1至3任一项所述的风机,还包括扩压器,所述扩压器安装于所述机壳,所述扩压器设有多个扩压叶片,相邻的两个所述扩压叶片之间形成扩压通道,所述扩压通道位于所述叶轮与所述出风通道之间。
  5. 根据权利要求4所述的风机,其中,所述翅片的数量M大于等于3,且小于等于17,所述扩压叶片的数量N大于等于4,且小于等于10。
  6. 根据权利要求1至5任一项所述的风机,其中,所述翅片的最大厚度W大于等于0.2mm,且小于等于5mm。
  7. 根据权利要求1至6任一项所述的风机,其中,部分所述机壳向内凹入形成弧形曲面,所述弧形曲面用于引导所述出风通道内的气流沿所述机壳的表面流动。
  8. 根据权利要求7所述的风机,其中,所述翅片设于所述弧形曲面处。
  9. 根据权利要求1至8任一项所述的风机,其中,所述机壳由铝合金材料制成。
  10. 根据权利要求1至9任一项所述的风机,其中,所述机壳的表面经过电镀、阳极氧化和钝化工艺处理中至少一种。
  11. 根据权利要求1至10任一项所述的风机,还包括风罩,其中所述风罩连接于所述壳体组件,所述风罩罩设于所述叶轮,所述风罩开设有进风口。
  12. 风机,包括:
    壳体组件,包括外壳和机壳,所述外壳套设于所述机壳,所述外壳与所述机壳之间形成出风通道;
    定子组件,安装于所述机壳内;以及
    转子组件,与所述定子组件转动连接,所述转子组件的转轴固定连接有叶轮;
    其中,所述机壳内设有散热筋,所述散热筋抵接于所述定子组件,以将所述定子组件的热量传导至所述机壳。
  13. 根据权利要求12所述的风机,其中,所述散热筋设有多个,多个所述散热筋沿所述机壳的周向间隔设置。
  14. 根据权利要求13所述的风机,其中,所述机壳内设有导向筋,所述导向筋用于引导所述定子组件装入所述机壳。
  15. 根据权利要求14所述的风机,其中,所述导向筋设有多个,多个所述导向筋沿所述机壳的周向间隔设置。
  16. 根据权利要求15所述的风机,其中,所述散热筋设有多个,所述导向筋设有多个,所述散热筋和所述导向筋均沿所述机壳的周向间隔且交替设置。
  17. 根据权利要求16所述的风机,其中,所述定子组件与多个所述导向筋过盈配合。
  18. 根据权利要求17所述的风机,其中,所述定子组件与所述导向筋的配合面为弧形面,所述定子组件与所述导向筋的过盈量X等于所述定子组件的外径D与多个所述弧形面形成的参考圆的直径K1的差值的一半,所述X大于等于0.005mm,且小于等于0.5mm。
  19. 根据权利要求12至18任一项所述的风机,其中,所述机壳包括环形内壁,所述散热筋设于所述环形内壁,所述散热筋的弧长L与所述散热筋的高度H的和小于等于所述环形内壁的内径K2。
  20. 根据权利要求12至19任一项所述的风机,其中,所述定子组件的外径D与所述定子组件的槽数N的比值大于等于1.25,且小于等于20。
  21. 风机,包括:
    驱动装置,包括机壳、定子组件和转子组件,所述定子组件安装于所述机壳内,所述转子组件与所述定子组件转动连接,所述转子组件设置有转轴,所述转轴固定设置有叶轮,所述叶轮罩设有风罩;以及
    扩压器,包括第一扩压结构和外壳,所述第一扩压结构设置于所述叶轮和所述机壳之间,所述外壳包括扩压部和导风部,所述扩压部设置于所述第一扩压结构的外侧并与所述第一扩压结构形成扩压通道,所述外壳远离所述叶轮的一端为所述导风部,所述导风部围绕所述机壳形成风道,其中,沿所述转轴的轴向,所述外壳远离所述叶轮的端面至所述第一扩压结构远离所述叶轮的端面的距离L2大于等于1mm,并且小于等于三倍的所述第一扩压结构的长度L1。
  22. 根据权利要求21所述的风机,其中,所述机壳设置有翅片,所述翅片的至少部分结构位于所述风道,沿所述转轴的轴向,所述翅片远离所述叶轮的一端至所述第一扩压结构远离所述叶轮的一端的距离L3大于L2。
  23. 根据权利要求21或22所述的风机,其中,所述扩压器还设置有第二扩压结构,所述第二扩压结构设置于所述风道内,沿所述转轴的轴向,所述第二扩压结构的长度L4小于L2。
  24. 根据权利要求23所述的风机,其中,沿所述转轴的轴向,所述第二扩压结构远离所述叶轮的端面至所述风道的出风口端面的距离L5大于等于1mm。
  25. 根据权利要求22至18任一项所述的风机,其中,所述机壳内设置有导向筋,所述导向筋设置有弧形面,所述弧形面用于支撑所述定子。
  26. 根据权利要求25所述的风机,其中,所述弧形面与所述定子的外壁过盈配合。
  27. 根据权利要求26所述的风机,其中,沿所述转轴的轴向,所述弧形面靠近所述叶轮的一端至所述第一扩压结构远离所述叶轮的一端的距离为m1,所述机壳设置有翅片,所述翅片的至少部分结构位于所述风道,所述翅片靠近所述叶轮的一端至所述第一扩压结构远离所述叶轮的一端的距离n1小于等于m1。
  28. 根据权利要求27所述的风机,其中,沿所述转轴的轴向,所述弧形面远离所述叶轮的一端至所述一级扩压结构远离所述叶轮的一端的距离为m2,所述翅片远离所述叶轮的一端至所述一级扩压结构远离所述叶轮的一端的距离L3大于等于m2。
  29. 根据权利要求21至28任一项所述的风机,其中,所述第一扩压结构周向设置有多个静叶片,所述静叶片靠近所述叶轮的一端的厚度比远离所述叶轮的一端的厚度小。
  30. 根据权利要求29所述的风机,其中,所述静叶片的片数大于等于9片并且小于等于13片。
  31. 洗地机,包括根据权利要求1至30任一项所述的风机。
PCT/CN2023/082538 2022-06-01 2023-03-20 风机及洗地机 WO2023231518A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210618489.3 2022-06-01
CN202210618592.8A CN114810639A (zh) 2022-06-01 2022-06-01 风机及洗地机
CN202210618592.8 2022-06-01
CN202210618489.3A CN114922834A (zh) 2022-06-01 2022-06-01 风机及洗地机
CN202210622079.6 2022-06-01
CN202210622079.6A CN114776614A (zh) 2022-06-01 2022-06-01 风机及清洁设备

Publications (1)

Publication Number Publication Date
WO2023231518A1 true WO2023231518A1 (zh) 2023-12-07

Family

ID=89026849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082538 WO2023231518A1 (zh) 2022-06-01 2023-03-20 风机及洗地机

Country Status (1)

Country Link
WO (1) WO2023231518A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058542A1 (en) * 2003-09-12 2005-03-17 Kruegel Roy F. Air turbine starter with unitary inlet and stator
CN113027795A (zh) * 2021-04-27 2021-06-25 广东威灵电机制造有限公司 风机及清洁设备
CN214480129U (zh) * 2021-02-23 2021-10-22 胡忠景 一种具有散热装置的马达
CN113775544A (zh) * 2021-09-06 2021-12-10 广东威灵电机制造有限公司 一种电风机及清洁设备
CN114776614A (zh) * 2022-06-01 2022-07-22 广东威灵电机制造有限公司 风机及清洁设备
CN114810639A (zh) * 2022-06-01 2022-07-29 广东威灵电机制造有限公司 风机及洗地机
CN114922834A (zh) * 2022-06-01 2022-08-19 广东威灵电机制造有限公司 风机及洗地机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058542A1 (en) * 2003-09-12 2005-03-17 Kruegel Roy F. Air turbine starter with unitary inlet and stator
CN214480129U (zh) * 2021-02-23 2021-10-22 胡忠景 一种具有散热装置的马达
CN113027795A (zh) * 2021-04-27 2021-06-25 广东威灵电机制造有限公司 风机及清洁设备
CN113775544A (zh) * 2021-09-06 2021-12-10 广东威灵电机制造有限公司 一种电风机及清洁设备
CN114776614A (zh) * 2022-06-01 2022-07-22 广东威灵电机制造有限公司 风机及清洁设备
CN114810639A (zh) * 2022-06-01 2022-07-29 广东威灵电机制造有限公司 风机及洗地机
CN114922834A (zh) * 2022-06-01 2022-08-19 广东威灵电机制造有限公司 风机及洗地机

Similar Documents

Publication Publication Date Title
WO2014097627A1 (ja) 遠心ファン
CN114810639A (zh) 风机及洗地机
CN106958538B (zh) 离心风机及具有其的吸尘器
CN114776614A (zh) 风机及清洁设备
CN113775570A (zh) 扩压器组件、电风机及清洁设备
WO2021169197A1 (zh) 一种离心风机和空调装置
CN217354846U (zh) 风机及洗地机
WO2023231518A1 (zh) 风机及洗地机
CN209984154U (zh) 一种高速吸尘器马达
CN114922834A (zh) 风机及洗地机
CN215521386U (zh) 扩压器组件、电风机及清洁设备
WO2022143328A1 (zh) 离心风机、家用电器、蜗壳和烹饪器具
CN107040090B (zh) 叶轮组件、集成式电机和家用电器
CN112928849B (zh) 电机风罩、电机
CN216111362U (zh) 一种蜗壳式节能风机
CN201750290U (zh) 新型冷却方式的直流吸尘器电机
TW201837322A (zh) 遠心風扇、成型用模具及流體輸送裝置
CN113074137B (zh) 送风装置及吸尘器
CN217354847U (zh) 风机及洗地机
CN210565332U (zh) 一种高效离心风机进风口的结构
WO2023029421A1 (zh) 扩压器组件、电风机及清洁设备
CN214959048U (zh) 一种径向出风的无刷干湿两用马达
CN217582625U (zh) 内壁阶梯降噪结构及其风机
WO2023108921A1 (zh) 风机及其清洁设备
CN217502041U (zh) 风机及清洁设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814716

Country of ref document: EP

Kind code of ref document: A1