WO2022143328A1 - 离心风机、家用电器、蜗壳和烹饪器具 - Google Patents

离心风机、家用电器、蜗壳和烹饪器具 Download PDF

Info

Publication number
WO2022143328A1
WO2022143328A1 PCT/CN2021/140408 CN2021140408W WO2022143328A1 WO 2022143328 A1 WO2022143328 A1 WO 2022143328A1 CN 2021140408 W CN2021140408 W CN 2021140408W WO 2022143328 A1 WO2022143328 A1 WO 2022143328A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
impeller
segment
section
centrifugal fan
Prior art date
Application number
PCT/CN2021/140408
Other languages
English (en)
French (fr)
Inventor
任志文
林健
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011638814.XA external-priority patent/CN112780599A/zh
Priority claimed from CN202120942818.0U external-priority patent/CN215109673U/zh
Priority claimed from CN202110605278.1A external-priority patent/CN113309714B/zh
Priority claimed from CN202121204407.8U external-priority patent/CN215293002U/zh
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Publication of WO2022143328A1 publication Critical patent/WO2022143328A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps

Definitions

  • the present application relates to the technical field of fans, and in particular, to a centrifugal fan, a household appliance, a volute and a cooking utensil.
  • Centrifugal fans are widely used in industrial equipment, such as range hood products, due to their advantages of large air volume, low noise and low cost.
  • Embodiments of the present application provide a centrifugal fan, a household appliance, a volute, and a cooking appliance.
  • the centrifugal fan of the embodiment of the present application includes an impeller assembly, including an impeller body and a hub, the hub includes a first side surface and a second side surface opposite to each other, the impeller body includes a first section and a second section, and the first section is connected to the first side surface, the second segment is connected to the second side surface, and the diameter of the first segment and the diameter of the second segment gradually increase in the direction away from the hub;
  • volute comprising a volute body and a volute tongue
  • the impeller assembly is mounted in the volute body, and the volute tongue is spaced from the impeller assembly
  • a motor connected to the wheel hub, is used for driving the impeller assembly to rotate.
  • the motor is located on the side where the second side is located, the length of the first segment is B1, the length of the second segment is B2, B1>B2 and B1, B2>0 .
  • the included angle between the outer diameter of the first segment and the axial direction of the first segment is a1, and the angle between the outer diameter of the second segment and the axial direction of the second segment is a1.
  • the included angle is a2, a1 ⁇ a2, a1 ⁇ 0° and 0° ⁇ a2 ⁇ 10°.
  • both ends of the impeller body are equal in diameter.
  • the maximum outer diameter of the impeller assembly is D1
  • the length of the second segment is B2
  • the radius of the connection between the volute tongue and the volute body is the radius of the volute, and the radius of the volute gradually increases in the direction of approaching the hub.
  • the radius of the volute close to the motor is R1
  • the radius of the volute away from the motor is R2
  • the radius of the volute close to the hub is R2.
  • the shell radius is R3, R1 ⁇ R2 ⁇ R3 and R1, R2, R3>0.
  • the tongue depth gradually increases away from the hub.
  • the impeller assembly further includes a reinforcing rib mounted on the impeller body.
  • the household appliance according to the embodiment of the present application includes the centrifugal fan according to any of the above embodiments.
  • the volute of the embodiment of the present application includes: a casing having an accommodating cavity for accommodating the impeller, two air inlets of the volute are formed at the two axial ends of the accommodating cavity, and the side of the casing is provided with an air outlet that communicates with the accommodating cavity for air discharge;
  • the stepped volute tongue structure is arranged at the inner edge of the air outlet, and includes at least two volutes arranged obliquely toward the direction of the air outlet.
  • the volute is a linear volute or a curved volute.
  • At least two of the volute tongues are the same or different in shape.
  • the curved volute is recessed away from the air outlet.
  • the volute tongue surface of the curved volute tongue is formed by a smooth transition connection between the front inclined circular arc surface and the rear inclined circular arc surface, and the front inclined circular arc surface and the rear inclined circular arc surface are formed by a smooth transition.
  • the intersection is the most concave part of the curved volute tongue, wherein the front inclined circular arc surface is an arc surface formed by inclining towards the direction away from the motor, and the rear inclined circular arc surface is inclined towards the direction close to the motor
  • the formed arc surface, the front inclined circular arc surface and the rear inclined circular arc surface are asymmetrical with respect to the intersection line.
  • the curved volute tongue includes a front end surface and a rear end surface
  • the contour line of the front end surface has a first arc segment
  • the contour line of the rear end surface has a second arc segment
  • the The intersection contour line of the front inclined circular arc surface and the rear inclined circular arc surface has a third circular arc segment
  • the smooth curved surface formed between the contour line of the front end surface and the intersection contour line constitutes the front inclined circle Arc surface
  • the smooth curved surface formed between the contour line of the rear end surface and the contour line of the intersection line constitutes a rear inclined arc surface
  • the radius of the first arc segment is larger than the radius of the second arc segment and smaller than the radius of the third arc segment.
  • the center of the impeller is defined as point O, the first circular arc segment, the second circular arc segment, the third circular arc segment, the front inclined circular arc surface and the rear
  • point O the center of the impeller
  • the point with the smallest distance from the outer edge of the impeller on the inclined circular arc surface is defined as point A, wherein the angle a between the line connecting the point A and point O and the horizontal plane passing through point O is in the range of 60- 95°.
  • the included angles between the line connecting point A and point O on the first circular arc segment and the second circular arc segment and the horizontal plane passing through point O are a1 and a2.
  • the angle between the line connecting point A and point O on the third arc segment and the horizontal plane passing through point O is a3.
  • the included angles between the connecting line and the horizontal plane passing through point O are a4 and a5, wherein the a1 and a2 are greater than any one of a3, a4 or a5, and the a4 and a5 are greater than a3.
  • the centrifugal fan according to the embodiment of the present application includes an impeller, a motor and the volute as described in the above-mentioned embodiments, the impeller is mounted on the rotating shaft of the motor and is placed in the accommodating cavity, and the casing includes a front plate, The rear plate and the enclosure plate arranged between the front plate and the rear plate, two air inlets are respectively opened at the positions corresponding to the front plate and the rear plate and the impeller, and the impeller includes a front end ring and a rear end ring, which are arranged at the front end.
  • the intersection of the front inclined circular arc surface and the rear inclined circular arc surface corresponds to the position of the split ring.
  • the impeller further includes a plurality of first vanes disposed between the front end ring and the split ring and a plurality of second vanes disposed between the split ring and the rear end ring , wherein, in the axial direction of the impeller, the length of the first blade is greater than the length of the second blade; the first blade is divided into an inlet section, a middle section and a rear section, wherein in all In the radial direction of the impeller, the lengths of the inlet section, the middle section and the rear section decrease sequentially.
  • the household appliance according to the embodiment of the present application includes the centrifugal fan according to any of the above embodiments.
  • the casing is provided with a first air inlet, a second air inlet and an air outlet, and the air outlet is located between the first air inlet and the second air inlet;
  • the drive assembly is connected to the housing and is close to the second air inlet;
  • At least two impellers each of which includes a hub, a first segment body and a second segment body, the hub is connected to the drive assembly, and the first segment body and the second segment body are respectively connected On both sides of the wheel hub, the second segment body is disposed close to the drive assembly, and the ratio of the axial length of the first segment body to the axial length of the second segment body is between 1.0-2.5.
  • the axial length of the first segment is 55-153 mm, and the axial length of the second segment is 30-60 mm.
  • the axial length of the first segment is 83 mm and the axial length of the second segment is 60 mm.
  • the first segment body includes a first fixing member and a plurality of first blades, and a plurality of the first blades are arranged on the
  • the first blade faces the first air inlet
  • the second segment body includes a second fixing member and a plurality of second blades, the plurality of second blades are arranged between the hub and the second fixing member, and the second blades face the second In the air inlet, the ratio of the axial length of the first vane to the axial length of the second vane is between 1.0-2.5.
  • the distance between the driving assembly and the second air inlet is greater than or equal to 15 mm.
  • both the first vane and the second vane include:
  • the rear section, the two ends of the rear section are respectively connected with the middle section and the hub, the ratio of the inner and outer diameters of the inlet section is greater than the ratio of the inner and outer diameters of the middle section, and the inner and outer diameters of the middle section are The ratio of diameters is greater than the ratio of inner and outer diameters of the rear section.
  • the ratio of inner and outer diameters of the inlet section is 0.85-0.90
  • the ratio of inner and outer diameters of the middle section is 0.80-0.85
  • the ratio of inner and outer diameters of the rear section is 0.70-0.80.
  • the inlet installation angle of the inlet section is 60°-80°
  • the outlet installation angle is 0°-25°
  • the inlet installation angle of the middle section and the rear section is 70°- 90°
  • the outlet installation angle is 0°-30°.
  • the at least two impellers include a first impeller and a second impeller
  • the housing includes a first volute and a second volute
  • the first volute and the second volute The first air inlet, the second air inlet and the air outlet are arranged on the upper part
  • the drive assembly is located between the first volute and the second volute
  • the first impeller is located in the first volute.
  • the second impeller is located in the second volute.
  • the cooking appliance according to the embodiment of the present application includes the centrifugal fan according to any one of the above embodiments.
  • FIG. 1 is a schematic structural diagram of a centrifugal fan according to an embodiment of the present application.
  • Fig. 2 is another structural schematic diagram of the centrifugal fan according to the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an impeller assembly according to an embodiment of the present application.
  • Fig. 4 is the enlarged view of A place in Fig. 3;
  • FIG. 5 is a rear view of a volute of a centrifugal fan according to an embodiment of the present application.
  • Fig. 6 is the sectional view at B-B place in Fig. 5;
  • Fig. 7 is the sectional view at B-B place in Fig. 5;
  • Fig. 8 is the sectional view at C-C place in Fig. 5;
  • Fig. 9 is the sectional view at D-D place among Fig. 5;
  • Centrifugal fan 100 impeller assembly 10, impeller body 11, first section 11a, second section 11b, hub 12, first side 121, second side 122, reinforcing rib 13, volute 20, volute body 21, volute tongue 22.
  • Motor 30 ;
  • FIG. 10 is a schematic structural diagram of a centrifugal fan in the prior art
  • FIG. 11 is a schematic structural diagram of a volute in the prior art
  • FIG. 12 is a schematic structural diagram of a centrifugal fan in an embodiment of the application.
  • Fig. 13 is the partial structure schematic diagram of Fig. 12;
  • Fig. 14 is the partial structure schematic diagram of Fig. 13;
  • Fig. 15 is the partial structure schematic diagram of Fig. 14;
  • 16 is a schematic structural diagram of a motor fixing mechanism in an embodiment of the application.
  • Fig. 17 is the partial structure schematic diagram of Fig. 16;
  • FIG. 18 is a schematic structural diagram of the first fixing rod in FIG. 16;
  • Fig. 19 is the partial structure schematic diagram of Fig. 18;
  • FIG. 20 is a schematic structural diagram of the second fixing rod in FIG. 16;
  • FIG. 21 is a schematic structural diagram of a centrifugal fan in another embodiment of the application.
  • Fig. 22 is the structural representation of the volute in Fig. 21;
  • Figure 23 is a cross-sectional view of the volute in Figure 22;
  • A is the middle dividing line of the dividing circle
  • 25 is a schematic structural diagram of an impeller in an embodiment of the application.
  • Figure 26 is a schematic structural diagram of the first blade in Figure 25;
  • FIG. 27 is a schematic diagram of an exploded structure of a centrifugal fan according to an embodiment of the application.
  • FIG. 28 is a schematic diagram of the partial structure shown in FIG. 27;
  • Figure 29 is a schematic perspective view of the assembly shown in Figure 27;
  • Fig. 30 is an internal schematic view of the dust blocking assembly of the centrifugal fan shown in Fig. 29 in the first position;
  • Figure 31 is an enlarged schematic view of the structure at A shown in Figure 30;
  • Figure 32 is an internal schematic view of the dust blocking assembly of the centrifugal fan shown in Figure 29 in the second position;
  • FIG. 33 is a schematic structural diagram of a first blade according to an embodiment of the application.
  • Housing 1 first volute 11; second volute 12; first air inlet 13; second air inlet 14; air outlet 15; first impeller 2; hub 21; first segment 22; second segment 23; third fixing piece 24; first fixing piece 221; first vane 222; second fixing piece 231; second vane 232; inlet section 2221; middle section 2222; rear section 2223; second impeller 3; drive assembly 4; the drive member 41; the first drive shaft 42; the second drive shaft 43.
  • a first feature "on” or “under” a second feature may include that the first and second features are in direct contact, or that the first and second features are not in direct contact but through Additional feature contacts between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the centrifugal fan 100 includes an impeller assembly 10 , a volute 20 and a motor 30 .
  • the impeller assembly 10 includes an impeller body 11 and a hub 12.
  • the hub 12 includes a first side 121 and a second side 122 that are opposite to each other.
  • the impeller body 11 includes a first section 11a and a second section 11b.
  • the first section 11a is connected to the first side. 121
  • the second segment 11 b is connected to the second side surface 122
  • the diameter d1 of the first segment 11 a and the diameter d2 of the second segment 11 b gradually increase in the direction away from the hub 12 .
  • the volute 20 includes a volute body 21 and a volute tongue 22 , the impeller assembly 10 is installed in the volute body 21 , and the volute tongue 22 is spaced from the impeller assembly 10 .
  • the motor 30 is connected to the hub 12 for driving the impeller assembly 10 to rotate.
  • the working area of the centrifugal fan 100 is mainly concentrated in the vicinity of the hub 12.
  • the airflow velocity in the working area is larger, and the noise generated by the volute tongue 22 is greater.
  • the airflow velocity in the area away from the hub 12 is smaller, and the noise is smaller but the work is less. .
  • the diameter d1 of the first section 11a and the diameter d2 of the second section 11b are gradually increased in the direction away from the hub 12 , so that the gap between the impeller body 11 and the volute tongue 22 is in the direction close to the hub 12 .
  • the setting is gradually increased, so that the clearance of the volute tongue 22 in the area close to the hub 12 becomes larger, and the noise becomes smaller, and the clearance of the volute tongue 22 in the area far from the hub 12 becomes smaller, and the work efficiency increases.
  • the centrifugal fan 100 may be a multi-blade centrifugal fan, and the multi-blade centrifugal fan may be a left-handed centrifugal fan or a right-handed centrifugal fan. Viewed from the side of the motor, the impeller rotates clockwise, which is called a right-handed centrifugal fan, and when it rotates counterclockwise, it is called a left-handed centrifugal fan.
  • the centrifugal fan 100 may be a double-suction centrifugal fan.
  • the double-suction centrifugal fan includes two volutes 20 and two impeller assemblies 10 , and the impeller assemblies 10 correspond to the volutes 20 one-to-one.
  • the double suction centrifugal fan includes a motor 30 , and the motor 30 is arranged between the two volutes 20 and the two impeller assemblies 10 .
  • the motor 30 can supply energy to the two impeller assemblies 10 at the same time, which effectively saves the cost and reduces the volume of the double suction centrifugal fan.
  • the double suction centrifugal fan has four air inlets and two air outlets, that is, the two ends of the impeller assembly 10 are two air inlets, and if there are two impeller assemblies 10, there are four air inlets.
  • the two airflow suction ports of the double suction centrifugal fan close to the motor 30 are hindered by the motor 30, so the two airflow suction ports of the double suction centrifugal fan close to the motor 30 are compared with the two airflows of the double suction centrifugal fan far away from the motor 30.
  • the air flow at the suction port is small.
  • the two airflow suction ports of the double suction centrifugal fan close to the motor 30 can also be used to ventilate and dissipate heat for the motor 30 , thereby reducing the temperature of the motor 30 .
  • the first segment 11a may be connected to the periphery of the first side surface 121 , that is, the diameter of one end of the first segment 11a close to the first side surface 121 is the same as the diameter of the first side surface 121 ; the first segment 11a may also be connected to the middle of the first side surface 121 Connection, that is, the diameter of one end of the first segment 11a close to the first side surface 121 is smaller than the diameter of the first side surface 121; the first segment 11a can also be partially connected to the periphery of the first side surface 121, and the other part is connected to the middle of the first side surface 121.
  • the diameter of the end of the first section 11a close to the first side 121 is smaller than the diameter of the first side 121 but the first section 11a is arranged tangentially to the periphery of the first side 121, and the connection position of the first section 11a and the first side 121
  • the diameter of the end of the first section 11a close to the first side 121 is smaller than the diameter of the first side 121 but the first section 11a is arranged tangentially to the periphery of the first side 121, and the connection position of the first section 11a and the first side 121
  • the second segment 11b may be connected to the periphery of the second side surface 122 , that is, the diameter of one end of the second segment 11b close to the second side surface 122 is the same as the diameter of the second side surface 122 ; the second segment 11b may also be connected to the middle of the second side surface 122 Connection, that is, the diameter of one end of the second segment 11b close to the second side surface 122 is smaller than the diameter of the second side surface 122; the second segment 11b can also be partially connected to the periphery of the second side surface 122, and the other part is connected to the middle of the second side surface 122.
  • the diameter of the end of the second segment 11b close to the second side surface 122 is smaller than the diameter of the second side surface 122, but the second segment 11b is arranged tangentially to the periphery of the second side surface 122, and the connection position of the second segment 11b and the second side surface 122 There are many, which are not specifically limited here.
  • the diameter of the end of the first segment 11a close to the first side surface 121 may be the same as the diameter of the end of the second segment 11b close to the second side surface 122, and the diameter of the end of the first segment 11a close to the first side surface 121 may also be It is different from the diameter of the end of the second segment 11b close to the second side surface 122 .
  • the diameter of the first section 11a close to the first side 121 and the diameter of the second section 11b close to the second side 122 are the same, and one end of the first section 11a close to the first side 121 is connected to the periphery of the first side 121, and the first section 11a has the same diameter.
  • One end of the second section 11b close to the second side surface 122 is connected to the peripheral edge of the second side surface 122 .
  • the diameter d1 of the first section 11a may increase equidistantly along the direction away from the hub 12 , that is, the first section 11a is in a straight line with the outer contour of the same plane in the axial direction;
  • the direction can also be increased unequally, that is, the outer contour line of the first segment 11a and the axial direction located on the same plane can be in the shape of a concave arc, a convex arc, a wave shape, etc., and the first segment 11a and the axial direction are located on the same plane.
  • the diameter d2 of the second segment 11b may increase at equal distances in the direction away from the hub 12 , that is, the second segment 11b and the outer contour line of the same plane in the axial direction are straight; the diameter d2 of the second segment 11b is along the distance away from the hub 12
  • the direction can also be increased unequally, that is, the outer contour line of the second segment 11b and the axial direction on the same plane can be in the shape of a concave arc, a convex arc, a wave shape, etc., and the second segment 11b is located on the same plane as the axial direction.
  • There are many shapes of the outer contour of the plane which are not specifically limited here.
  • the shape of the outer contour line of the first section 11a and the axial direction on the same plane may be the same as or different from the shape of the outer contour line of the second section 11b and the axial direction on the same plane, which is not limited herein.
  • the first section 11a includes a plurality of first fan blades, and the number of the first fan blades can be 10, 20, 30, 40, 50, 100, etc., and the specific number can be adjusted according to needs, which is not discussed here. Make specific restrictions.
  • the first fan blade may be a forward fan blade, a backward fan blade, or a straight fan blade, which is not specifically limited herein.
  • the second section 11b includes a plurality of second fan blades, and the number of the second fan blades can be 10, 20, 30, 40, 50, 100, etc., and the specific number can be adjusted according to needs, which is not specified here. Make specific restrictions.
  • the number of the second fan blades may be the same as or different from the number of the first fan blades.
  • volute body 21 There are many shapes of the volute body 21 , which can be in the shape of a cylinder, a circular truncated cone, etc.
  • the shape of the volute body 21 is adapted to the shape of the impeller body 11 , which is not specifically limited here.
  • the volute body 21 may include a volute plate, a side plate, a leg, etc., and the volute body 21 has the function of supporting and protecting.
  • the volute 22 is used to prevent part of the gas from circulating in the volute 20 , and the volute 22 is spaced from the impeller assembly 10 to prevent the volute 22 from hindering the movement of the impeller assembly 10 .
  • the hub 12 is provided with a through hole, and the output shaft of the motor 30 is matched with the through hole; another example, the output shaft of the motor 30 is snap-fitted with the hub 12; another example, the motor 30 The output shaft is indirectly connected with the hub 12 by connecting with the impeller body 11 .
  • the motor 30 is located on the side where the second side surface 122 is located, the length of the first section 11a is B1, the length of the second section 11b is B2, B1>B2 and B1 , B2>0.
  • Both ends along the axial direction of the impeller body 11 are the air inlets of the impeller assembly 10 , that is, the end of the first section 11a away from the hub 12 and the end of the second section 11b away from the hub 12 are both air inlets.
  • the motor 30 is located on the side where the second side surface 122 is located, which will affect the air intake of the air inlet located in the second section 11b, so that the intake air volume of the second section 11b is compared with that of the first section 11a without the obstruction of the fan. It should be small so that the main pressurization area of the entire impeller body 11 is not located in the middle of the impeller body 11 , but is located closer to the motor 30 than the middle of the impeller body 11 .
  • B1>B2 is set, that is, the hub 12 is set in the main supercharging area of the impeller body 11, so that the diameter d2 of the first section 11a and the second section 11b at the main supercharging area is smaller, that is, the diameter d2 at the main supercharging area is smaller.
  • the volute tongues 22 of the first section 11a and the second section 11b have large clearances, which effectively reduces the noise in the main supercharging area.
  • the length B1 of the first section 11a means the approximate length of the first section 11a along the axial direction of the impeller body 11 , that is, the length of the first section 11a in the axial direction of the impeller body 11 at different positions is different. All must be equal, and B1 may be the approximate length of the first segment 11 a along the axial direction of the impeller body 11 .
  • the length B2 of the second section 11b means the approximate length of the second section 11b in the axial direction of the impeller body 11 , that is, the lengths of the second section 11b in the axial direction of the impeller body 11 at different positions are not necessarily equal, B2 The approximate length of the second segment 11b in the axial direction of the impeller body 11 may be taken.
  • the included angle between the outer diameter of the first segment 11a and the axial direction of the first segment 11a is a1, and the outer diameter of the second segment 11b and the second segment 11b
  • the included angle in the axial direction is a2, a1 ⁇ a2, a1 ⁇ 0° and 0° ⁇ a2 ⁇ 10°. If the angle of a1 or a2 is too large, the diameter d1 of the first section 11a or the diameter d2 of the second section 11b in the main work area will be too small, thereby affecting the air volume performance of the centrifugal fan 100 .
  • a1 can be 0°, 3°, 5°, 9°, 9.5°, etc.
  • a2 can be 0.5°, 2°, 4°, 6°, 8°, 9.5°, etc. The angle is not specifically limited here.
  • the outer diameter of the first segment 11a means the outer contour line of the first segment 11a located on the same plane as the axial direction.
  • the outer contour line may be a straight line or a curved line.
  • the outer diameter of the first segment 11a can be obtained by connecting the start point and end point of the outer contour line, or the outer diameter of the first segment 11a can be obtained by connecting the start point and the midpoint of the outer contour line, or by connecting the A tangent of the outer contour line is used as the outer diameter of the first segment 11a, and the outer diameter of the first segment 11a may be approximately the same as the extending direction of the outer contour line, which is not specifically limited herein.
  • the outer diameter of the second segment 11b means the outer contour line of the second segment 11b located on the same plane as the axial direction.
  • the outer contour line can be a straight line or a curved line.
  • the outer contour line can be The outer diameter of the second segment 11b can be obtained by connecting the starting point and the end point of the outer contour line, the outer diameter of the second segment 11b can also be obtained by connecting the starting point and the midpoint of the outer contour line, or by connecting a certain part of the outer contour line.
  • the tangent line is used as the outer diameter of the second segment 11b, and the outer diameter of the second segment 11b may be substantially the same as the extending direction of the outer contour line, which is not specifically limited herein.
  • the diameters of both ends of the impeller body 11 are equal, that is, the diameter of the end of the first segment 11a away from the hub 12 is equal to the diameter of the end of the second segment 11b away from the hub 12 .
  • the volute 20 can be set as a cylinder that is convenient for production, which is convenient for the production of the centrifugal fan 100 .
  • the diameter d1 of the first segment 11a close to the hub 12 is the same as the diameter d2 of the second segment 11b close to the hub 12, the diameter d1 of the first segment 11a away from the hub 12 is also the same as the diameter d2 of the second segment 11b away from the hub 12, This arrangement not only facilitates production, but also improves the working efficiency of the motor.
  • the maximum outer diameter of the impeller assembly 10 is D1
  • the length of the second segment 11 b is B2
  • the length of the first segment 11a cannot be too large or too small
  • the length of B1 can also take a value within the interval of 0.4*D1 to D1.
  • the radius of the connection between the volute tongue 22 and the volute body 21 is the radius of the volute 20 , and the radius of the volute 20 gradually increases along the direction close to the hub 12 .
  • the radius of the volute 20 near the motor 30 is R1
  • the radius of the volute 20 where the volute 20 is far from the motor 30 is R2
  • the radius of the volute 20 is R2 .
  • the radius of the volute 20 near the hub 12 is R3, R1 ⁇ R2 ⁇ R3 and R1, R2, R3>0.
  • the hub 12 is located in the main pressurization area of the centrifugal fan 100, so the air flow at the hub 12 is larger, and the air inlet far from the motor 30 is not blocked by the fan, and the air inlet near the motor 30 has a larger air flow, Therefore, the air flow of the volute 20 close to the motor 30, the air flow of the volute 20 away from the fan, and the air flow of the volute 20 close to the hub 12 increase successively, so that the volute 20 is close to the motor 30.
  • the radius R1 of the volute 20, the volute The radius R2 of the volute 20 where the casing 20 is far away from the motor 30 and the radius R3 of the volute 20 where the volute 20 is close to the hub 12 are sequentially increased, thereby effectively reducing the noise of the centrifugal fan 100 .
  • the tongue depth gradually increases away from the hub 12 .
  • the depth of the volute tongue is closely related to the noise of the centrifugal fan 100. Generally, the depth of the volute tongue is large, the noise is high, but the aerodynamic performance is better, otherwise, the noise is small.
  • the depth ⁇ 1 of the volute tongue close to the hub 12 is smaller, which effectively reduces the noise there, while the depth ⁇ 2 of the volute tongue at the position far from the hub 12 is larger, which effectively improves the aerodynamic performance there.
  • the smaller depth ⁇ 1 of the volute tongue close to the hub 12 means that the position close to the hub 12 is a shallow tongue, and the position farther away from the hub 12 has a larger depth ⁇ 2 of the volute tongue, which means that the position away from the hub 12 is Deep tongue.
  • the standard of the deep tongue and the shallow tongue is not fixed, as long as it is ensured that the depth of the volute at the position close to the hub 12 is greater than that at the position far from the hub 12 .
  • the depth of the volute tongue is the angle between the straight line passing through the center of the impeller assembly 10 and the straight line passing through the center of the volute tongue 22 and the center of the impeller assembly 10.
  • the straight line passing through the center of the impeller assembly 10 is usually along the vertical A line that extends straight or horizontally.
  • the positive direction of the depth of the volute tongue is the reverse direction of the rotation direction of the impeller assembly 10, that is, the more volute tongues 22 extending in the opposite direction of the rotation direction of the impeller assembly 10, the more the volute tongue The greater the depth, and vice versa.
  • the impeller assembly 10 further includes a reinforcing rib 13 , and the reinforcing rib 13 is installed on the impeller body 11 .
  • the reinforcing rib 13 is used for fixing the impeller body 11 to enhance the structural stability of the impeller body 11 .
  • the reinforcing rib 13 can extend along the circumferential direction of the impeller body 11 , and the reinforcing rib 13 can also extend at a certain angle with the circumferential direction of the impeller body 11 , for example, the reinforcing rib 13 and the circumferential direction of the impeller body 11 are 5°, 10° , 15°, 20°, 30°, 40° and other angles, which are not specifically limited here.
  • the impeller assembly 10 may include one reinforcing rib 13, or may include a plurality of reinforcing ribs 13, such as 2, 3, 4, etc., the extending directions of the plurality of reinforcing ribs 13 may be different, and the extending directions of the plurality of reinforcing ribs 13 It can also be the same, and the plurality of reinforcing ribs 13 may intersect or be spaced apart from each other, as long as the reinforcing ribs 13 can play a role in strengthening the structural stability of the impeller body 11 , which is not specifically limited here.
  • the reinforcing rib 13 connects the circumferential side surfaces of the first segment 11a along the circumferential direction of the first segment 11a 360 degrees in the middle of the first segment 11a
  • the structural strength of the first section 11a can be ensured, and on the other hand, in the axial and radial directions, the reinforcing rib 13 will not cause additional vibration to the rotational stability of the first section 11a.
  • the embodiment of the present application also discloses a household appliance.
  • the household appliance includes, but is not limited to, appliances such as oil fume equipment, integrated stoves, etc., which have oil fume exhaust and power supply, and electric appliances such as hair dryers and vacuum cleaners, which have centrifugal fans 100. Take household appliances as lampblack equipment as an example to illustrate.
  • the household appliance may be an upper row type kitchen appliance, a lower row type kitchen appliance, or a side row type kitchen appliance, which is not specifically limited herein.
  • the household appliance includes a centrifugal fan 100
  • the household appliance also includes but is not limited to components such as a box, a deflector, and a check valve.
  • the deflector, the centrifugal fan 100, and the check valve are all installed on the box.
  • the oil fume enters the box through the deflector, and the centrifugal fan 100 installed in the box works.
  • the oil fume is sucked into the centrifugal fan 100 under the centrifugal force of the centrifugal fan 100 and discharged from the airflow outlet of the centrifugal fan 100 into the check valve.
  • the oil fume is poured back into the centrifugal fan 100, thereby realizing the discharge of the oil fume.
  • a check valve refers to a valve whose opening and closing member is a circular valve flap and acts by its own weight and medium pressure to block the backflow of the medium.
  • the check valve can be a lift check valve and a swing check valve.
  • centrifugal fans with large air volume and low cost are widely used in industrial equipment; they often have a large axial width, which leads to an increase in the unbalanced characteristics of airflow in the axial direction, which in turn leads to the aerodynamic characteristics of the entire fan. and noise characteristics are affected; for centrifugal fans, the volute and tongue structure plays a crucial role in the above two performances, however, it is often difficult to achieve both.
  • the centrifugal fan 100' includes at least one motor 10' distributed in the middle, which is used to provide power to the fan 100'; on the left and right sides of the motor 10', there are a set of impellers 11' and a volute 12'. , the volute 12' is fixed by the fan bracket 13'.
  • the fan 100' is a centrifugal form with axial air inlet and radial air outlet. Therefore, the two sides of the motor 10' are the air inlets 14' of the fan 100'. It has the effect of increasing the air volume, and on the other hand, the air flow of the tuyere has a heat dissipation effect on the motor 10 ′. And as shown in FIG.
  • the fan 100' has only one volute tongue 15', and the minimum distance between the volute tongue 15' and the impeller 11' is t, and the volute tongue 15' has a great influence on the aerodynamic and noise performance of the centrifugal fan 100', This traditional structure is difficult to optimize the overall performance.
  • the present application proposes a centrifugal fan 100 .
  • the centrifugal fan 100 of some embodiments of the present application will be described below with reference to FIGS. 12-26 .
  • an embodiment of the present application provides a centrifugal fan 100, which can be applied to household appliances such as range hoods, microwave ovens, etc.
  • the centrifugal fan 100 can be a double-suction centrifugal fan, Of course, the centrifugal fan may also be a single-suction centrifugal fan.
  • the centrifugal fan 100 may include: two volutes 10, two impellers 11, a motor 12 and The fixing mechanism for a centrifugal fan, wherein the fixing mechanism for the centrifugal fan can fix the volute 10 and the motor 12 at the same time, specifically, the fixing mechanism for the centrifugal fan includes a first fan support 13 and a second fan support 14, the said The first fan support 13 is provided with a first fixing rod 15, the second fan support 14 is provided with a second fixing rod 16, the first fixing rod 15 is clamped with the second fixing rod 16 to fix the motor 12 on the between the first fan support 13 and the second fan support 14 .
  • the design of the two volutes 10 improves the exhaust air volume of the centrifugal fan 100 , each volute 10 has a accommodating cavity, the two impellers 11 correspond to the two volutes 10 one-to-one, and each volute 10 has a one-to-one correspondence.
  • An impeller 11 is arranged in the accommodating cavity of the casing 10. The axis of the impeller 11 is parallel or coincident with the axis of the accommodating cavity.
  • the two volutes 10 are respectively located on opposite sides of the motor 12, and each volute 10 has an air outlet.
  • the motor 12 includes a first rotating shaft 120 and a second rotating shaft 121 oppositely arranged, the first rotating shaft 120 and the second rotating shaft 121 are respectively connected with the two impellers 11 to drive Rotation of the impeller 11 .
  • the motor 12 is located outside the volute 10 , of course, the application is not limited to this, and at least part of the motor 12 may also be located in the accommodating cavity of the volute 10 .
  • the motor 12 drives the impeller 11 to rotate, and the impeller 11 drives the airflow to flow from the air inlet 102 to the air outlet 101 .
  • the radial dimension of the motor 12 is smaller than the radial dimension of the accommodating cavity. Therefore, whether the motor 12 is arranged in the accommodating cavity or outside the accommodating cavity, there is a gap between the peripheral wall of the motor 12 and the inner wall of the accommodating cavity in the radial direction, which can prevent the motor 12 from blocking the axial end of the accommodating cavity and make the volute 10
  • There can be two opposite air inlets 102 which can improve the working efficiency of the centrifugal fan 100 .
  • first rotating shaft 120 and the second rotating shaft 121 can rotate synchronously.
  • first rotating shaft 120 and the second rotating shaft 121 can also be independently controlled, thereby increasing the number of centrifugal fans. 100 structural diversity.
  • the first fan support 13 and the second fan support 14 are both hollow rectangular supports, the first fan support 13 and the second fan support 14 are respectively sleeved on the ends of the two volutes 10, and the first fan support 13 and the second fan support 14 Parts of the first fan bracket 13 and the second fan bracket 14 are located at the air outlet 101 so that the air inlets 102 of the two volutes 10 close to each other are spaced from the corresponding air outlet 101 .
  • a groove 150 is defined at the clamping end of the first fixing rod 15 , and an elastic member 17 is arranged in the groove 150 , and the upper part of the elastic member 17 is provided with a groove 150 .
  • a sliding block 18 is provided, and a slideway 160 that is adapted to the first fixing rod 15 is defined on the second fixing rod 16 .
  • the top surface of the sliding block 18 protrudes from the groove 150 , and matches The inner top surface of the slideway 160 is in contact with the top surface of the slider 18 to generate pressure on the elastic member 17 .
  • the slideway 160 has an inlet end and an outlet end, which are arranged above the outlet end.
  • the engaging portion 19 wherein the bottom surface of the engaging portion 19 is in contact with the top surface of the slider 18 .
  • the clamping end of the first fixing rod 15 can be slid into the slideway 160 of the second fixing rod 16 from the inlet end, and the clamping end of the first fixing rod 15 slides During the sliding process in the slideway 160 , the top surface of the slider 18 abuts against the inner top surface of the slideway 160 to generate downward pressure on the slide block 18 , thereby compressing the elastic member 17 to deform until the first fixing rod 15 is deformed.
  • the clamping end slides out of the slideway 160 from the outlet end, the inner top surface of the slideway 160 does not exert downward pressure on the slider 18, the elastic member 17 bounces the slider 18, and the slider 18 of the pop-up 18 is connected to the clamping
  • the bottom surface of the part 19 abuts, and then forms an interference fit with the clamping part 19 , so as to realize the clamping and fixing of the first fixing rod 15 and the second fixing rod 16 .
  • the slider 18 can be pressed downward, at this time the elastic member 17 is compressed and deformed, and the slider 18 slides into the slideway 160 from the outlet end.
  • the slider 18 is subjected to the force of the inner top surface of the slideway 160 and compresses the elastic member 17 until the slider 18 slides out of the slideway 160 from the inlet end, the slider 18 releases the compression on the elastic member 17, and the elastic member 17 recovers
  • the deformation makes the first fixing rod 15 separate from the second fixing rod 16 , thereby realizing the disassembly of the motor 12 .
  • the first fixing rod 15 and the second fixing rod 16 can also be snap-connected using the following structures, and the specific matching structure is as follows: the first fixing rod 15 A groove 150 is opened at the end of the groove 150, an elastic member 17 is arranged in the groove 150, a slider 18 is arranged above the elastic member 17, and the second fixing rod 16 is opened to fit the first fixing rod 15.
  • the slideway 160 is matched, and the top surface of the slider 18 protrudes from the groove 150 and abuts with the inner top surface of the slideway 160 and the top surface of the slide block 18, so that the The elastic member 17 generates pressure, and a limit hole communicated with the slideway 160 is opened above the slideway 160 , and the limiter hole is adapted to the slider 18 .
  • the clamping end of the first fixing rod 15 can be slid into the slideway 160 of the second fixing rod 16 from the inlet end, and the clamping end of the first fixing rod 15 slides During the sliding process in the slideway 160, the top surface of the slider 18 abuts against the inner top surface of the slideway 160 to generate downward pressure on the slide block 18, thereby compressing the elastic member 17 to deform until the slide block 18 slides along the sliding path.
  • the elastic member 17 recovers its deformation and ejects the slider 18 out of the limit hole.
  • the top of the slider 18 is stuck in the limit into the hole, so as to realize the clamping and fixing of the first fixing rod 15 and the second fixing rod 16 .
  • the slider 18 can be pressed down, the elastic member 17 is compressed and deformed, the slider 18 slides into the slideway 160 from the limiting hole, and slides in the slideway 160 In the middle, the slider 18 is subjected to the force of the inner top surface of the slideway 160 to compress the elastic member 17 until the slider 18 slides out of the slideway 160, the slider 18 releases the compression of the elastic member 17, and the elastic member 17 recovers its deformation.
  • the first fixing rod 15 is separated from the second fixing rod 16 , so as to realize the disassembly of the motor 12 .
  • the first fixing rod 15 may also be provided with a buckle
  • the second fixing rod 16 may also be provided with a clamping slot
  • the first fixing rod 15 and the second fixing rod 16 The card connection is realized through the buckle and the card slot.
  • the present application does not limit the manners of the first fixing rod 15 and the second fixing rod 16 , as long as the first fixing rod 15 and the second fixing rod 16 can be clamped within the scope of protection of the present application.
  • the cross-section of the first fixing rod 15 is T-shaped, and the first fixing rod 15 includes a strip-shaped first base 151 and a vertical connection to the first base 151 .
  • the reinforcing rib 152 is provided with the groove 150 on the reinforcing rib 152
  • the second fixing rod 16 is provided with a slideway 160 with a T-shaped cross section.
  • One end of the first base 151 is fixed on the first fixing rod 15
  • a first limiting groove 153 is defined at one end of the reinforcing rib 152 away from the groove 150 , and a first annular limiting groove surrounds the hollow position of the first fan support 13 .
  • the positioning member 130 , the first limiting groove 153 is clamped with the first annular limiting member 130 , so as to realize the fixing of the first fixing rod 15 and the first fan support 13 .
  • the second fixing rod 16 includes a T-shaped second base 161 and a clamping portion 19 provided on the top of the second base 161 .
  • the bottom surface of the clamping portion 19 and the surface of the second base 161 form a first Two limiting grooves 162 surround the second annular limiting member 140 in the hollow position of the second fan support 14 , and the second limiting groove 162 is engaged with the second annular limiting member 140 , thereby realizing the connection between the second fixing rod 16 and the second annular limiting member 140 . Fixing of the fan bracket 14 .
  • first fixing rods 15 are evenly arranged on the first annular limiting member 130 of the first fan support 13 .
  • Three second fixing rods 16 are also set at the corresponding positions of the limiting member 140 , so that the first fan support 13 and the second fan support 14 stably fix the motor 12 on the first fan support 13 and the second fan through the fixing rods thereon. between the brackets 14 .
  • first positioning ribs 131 are provided at at least two corners of the first fan support 13
  • second positioning ribs 141 are set at corresponding positions of the second fan support 14 .
  • the rib 131 is detachably connected to the second positioning rib 141 .
  • the first fan support 13 and the second fan support 14 can be positioned by the first positioning rib 131 and the second positioning rib 141. Then, the first fixing rod 15 and the second fixing rod 16 are clamped, thereby improving the assembly efficiency of the first fixing rod 15 and the second fixing rod 16 .
  • the top surface of the slider 18 is an arc-shaped transition surface 180
  • the entrance end of the slideway 160 has an arc-shaped surface 163 matched with the arc-shaped transition surface 180 .
  • the arc-shaped surface 163 can guide the arc-shaped transition surface 180 .
  • the sliding of the slider 18 can be reduced through the cooperation between the arc-shaped transition surface 180 and the arc-shaped surface 163 .
  • the resistance of entering the slideway 160 enables the slider 18 to smoothly slide into the slideway 160 .
  • the volute 10 in this embodiment includes a housing 103 and a stepped volute tongue structure 104 .
  • the housing 103 includes a front plate 105, a rear plate 106, and a surrounding plate 107 disposed between the front plate 105 and the rear plate 106.
  • the front plate 105 is provided with an air inlet 102 at a position facing the impeller 11.
  • Another air inlet 102 is opened at the position facing the impeller 11, the enclosure plate 107 is formed into an open ring shape, and one end of the stepped volute tongue structure 104 is connected with one end of the enclosure plate 107 in the circumferential direction to form an accommodation cavity together.
  • the other end of the volute tongue structure 104 is spaced apart from the other end of the shroud 107 in the circumferential direction to form the air outlet 101 .
  • the gas enters the accommodating cavity from the air inlet 102 under the action of the impeller 11 , and then flows out from the air outlet 101 .
  • the stepped volute tongue structure 104 includes at least two volute tongues 108 that are obliquely arranged in a direction close to the air outlet 101 .
  • the gap between the volute tongue and the impeller at the bottom is small, which can ensure the current collecting effect of the volute, so that the wind pressure and flow of the fan are not lost, and the aerodynamic performance of the fan is improved.
  • the strong impact on the volute tongue can effectively reduce the aerodynamic noise.
  • the two volutes 108 can be integrally formed to form the stepped volute structure 104 , or the two volutes 108 can be separately formed and then assembled to form the stepped volute structure 104 .
  • the present embodiment takes the stepped volute tongue structure 104 formed by two volute tongues 108 as an example for description.
  • the shapes of the two volute tongues 108 may be the same or different, which are not limited in this embodiment.
  • the two volutes 108 are respectively defined as a first volute R1 and a second volute R2.
  • the second volute R2 is located above the first volute R1, and both the first volute R1 and the second volute R2 may be straight protruding outwards.
  • the radii of the volutes, ie the first volute R1 and the second volute R2 are unchanged, and R2 is not equal to R1.
  • the second volute R2 is closer to the air outlet, that is, the gap with the impeller is larger, which can avoid the strong impact of the airflow on the volute, thereby effectively reducing aerodynamic noise.
  • the first volute tongue R1 is closer to the impeller, which can ensure the current collecting effect of the volute, so that the wind pressure and flow of the fan are not lost, and the aerodynamic performance of the fan is improved.
  • the first volute R1 and the second volute R2 have the same shape, and both are curved volutes, and the above-mentioned curved volutes are directed away from the row.
  • the direction of the tuyere is concave and asymmetrical arc-shaped volute.
  • the curved volute tongue includes a front end surface, a volute tongue surface, a rear end surface and a fixed surface.
  • the fixed surface is located on the side opposite to the volute tongue surface.
  • the contour lines of the front and rear ends of the enclosure plate 107 are coincident along the axial projection of the motor 12, and the enclosure plate 107 is at a position close to the air outlet 101.
  • a fixing plate is provided, the fixing surface of the first volute tongue R1 is in contact with the fixing plate, and the fixing surface of the first volute tongue R1 and the fixing plate are fixedly connected by screws.
  • the volute surface of each volute tongue 108 is formed by connecting the front inclined circular arc surface 108a and the rear inclined circular arc surface 108b smoothly and transitionally, and the front inclined circular arc surface 108a and the rear inclined arc surface 108a
  • the intersection line 108c of the arc surface 108b is the most concave part of the curved volute tongue, wherein the front inclined arc surface 108a is an arc surface formed by inclining toward the direction away from the motor 12, and the rear inclined arc
  • the surface 108b is an arc surface formed inclined toward the motor 12 .
  • the contour line of the front end surface of each volute tongue 108 has a first arc segment 108d
  • the contour line of the rear end surface has a second arc segment 108e
  • the contour line of the intersection line 108c of the circular arc surface 108a and the rear inclined circular arc surface 108b has a third circular arc segment 108f
  • the smooth curved surface formed between the contour line of the front end surface and the contour line of the intersection line constitutes the front
  • the inclined arc surface 108a, the smooth curved surface formed between the contour line of the rear end surface and the intersection contour line constitutes the rear inclined arc surface 108b;
  • the radius R5 of the first arc segment 108d is larger than the first arc segment 108d.
  • the radius R3 of the second arc segment 108e is smaller than the radius R4 of the third arc segment 108f.
  • the radius of the volute tongue 108 is constantly changing, and the radius R3 of the side of the volute tongue 108 close to the motor 12 is the smallest, and the radius R4 of the volute tongue 108 at the intersection line in the middle is the largest, and the volute tongue 108 is close to the motor 12.
  • the radius R5 of the air inlet 102 on one side is between the two.
  • the household appliance itself will generate noise, and the airflow at the volute tongue 108 forms a new noise source.
  • R4>R5>R3 the noise of the household appliance itself can be made as close as possible to the noise generated by the volute tongue, so that the noise generated by the volute tongue is as close as possible. Good to cancel the original noise of household appliances.
  • the center of the impeller 11 is defined as point O, the first circular arc segment 108d, the second circular arc segment 108e, the third circular arc segment 108f,
  • the front inclined circular arc surface 108a and the rear inclined circular arc surface 108b have the point with the smallest distance from the outer edge of the impeller 11, which is defined as point A, wherein the line connecting the point A and the point O and the horizontal plane passing the point O
  • the range value of the included angle a between them is 60-95°.
  • the included angles between the line connecting the point A and the point O on the first circular arc segment 108d and the second circular arc segment 108e and the horizontal plane passing the point O are a1, a2
  • the angle between the line connecting point A and point O on the third arc segment 108f and the horizontal plane passing through point O is a3.
  • the included angles between the line connecting point A and point O and the horizontal plane passing through point O are a4 and a5, wherein a1 and a2 are greater than any of a3, a4 and a5, and a4 and a5 are greater than a3 .
  • the initial angle a of the volute tongue 108 at different positions is also different.
  • the impeller 11 includes a front end ring 110 , a rear end ring 111 , a split ring 112 arranged between the front end ring 110 and the rear end ring 111 , and a plurality of split rings 112 arranged between the front end ring 110 and the rear end ring 112
  • the first blade 113 and the plurality of second blades 114 disposed between the split ring 112 and the rear end ring 111, wherein the intersection 108c of the front inclined circular arc surface 108a and the rear inclined circular arc surface 108b and the The position of the dividing circle 112 corresponds to.
  • the airflow velocity of the impeller 11 in the split ring 112 is relatively large, and the cross-sectional area at the corresponding intersection line 108c is large, so that the airflow velocity at the position with the large cross-sectional area is fast, thereby making the airflow around the exhaust port more uniform, avoiding Vibration of the volute due to uneven airflow.
  • the first blade 113 is arranged close to the air outlet 101
  • the second blade 114 is arranged away from the air outlet 101
  • the first blade 113 close to the air outlet 101 transports the fluid from the outside into the volute 10
  • Its speed direction is more inclined to the axial direction of the impeller 11 to increase the air volume of the centrifugal fan 100
  • the second blade 114110 of the part far from the air outlet 101 is generally to throw the fluid out of the volute 10, that is, its speed direction is more inclined.
  • a pressure is provided for the fluid to flow to the air outlet 101 to increase the speed of the fluid flowing to the air outlet 101.
  • the flow rate of the fluid in the middle part of the air outlet 101 is greater than that of the air outlet 101.
  • the intersection 108c of the front inclined circular arc surface 108a and the rear inclined circular arc surface 108b in this embodiment corresponds to the position of the split ring 112 .
  • the length of the first vane 113 is greater than the length of the second vane 114; specifically, the length of the first vane 113 is greater than the second vane
  • the length of 114 can greatly increase the suction volume of the entire fan.
  • the first blade 113 is divided into an inlet section 113a, a middle section 113b and a rear section 113c, wherein, in the radial direction of the impeller 11, the inlet section 113a, The lengths of the middle section 113b and the rear section 113c are successively reduced. Specifically, since the airflow enters the impeller from the axial direction and finally exits the impeller radially, its airflow angle is gradually deflected from 0° to 90°, dividing the first vane 113 into an inlet section 113a and a middle section 113b with gradually increasing radial lengths As well as the rear section 113c, the work efficiency of the blade can be improved.
  • centrifugal fans generally use double-sided inlets compared to traditional centrifugal fans, and have a larger impeller width.
  • the inlet width limited by the inlet width, the performance of the motor cannot be maximized, and the impeller width cannot be unlimited. Expand, otherwise it will not have the effect of increasing the flow.
  • OTR over the range, located above the stove
  • microwave oven refers to a microwave oven with the function of a range hood. It is generally hung above the stove and can absorb the smoke and water vapor generated by the stove below during the heating process.
  • the OTR microwave oven is equipped with a fan for absorbing oil fume.
  • the fan mostly adopts a multi-blade centrifugal impeller.
  • the overall size of the OTR microwave oven is certain, and its cavity volume is one of the important indicators.
  • the diameter of the multi-blade centrifugal impeller limits the cavity volume.
  • the most important factor in design is that the ratio of the outer diameter of the centrifugal impeller to the width of the impeller is generally recommended to be between 0.4-0.6, otherwise the fan efficiency will be reduced. Due to the installation structure of the OTR, when the diameter of the fan remains unchanged, the air intake and suction volume are small, and the effect of absorbing oil fume is poor.
  • a centrifugal fan As shown in FIGS. 27 to 33 , a centrifugal fan according to an embodiment of the present application includes:
  • housing 1 the housing 1 is provided with a first air inlet 13, a second air inlet 14 and an air outlet 15, and the air outlet 15 is located between the first air inlet 13 and the second air inlet 14;
  • the drive assembly 4 the drive assembly 4 is connected to the housing 1 and is close to the second air inlet 14;
  • At least two impellers each of which includes a hub 21, a first segment body 22 and a second segment body 23, the hub 21 is connected to the drive assembly 4, and the first segment body 22 and the second segment body 23 are respectively connected to the hub 21
  • the second segment body 23 is disposed close to the drive assembly 4 on both sides of the first segment body 22 , and the ratio of the axial length of the first segment body 22 to the axial length of the second segment body 23 is between 1.0-2.5.
  • the centrifugal fan is applicable to any equipment that needs ventilation, such as microwave ovens, ovens, range hoods, air conditioners, ventilation fans, and the like.
  • At least two impellers are driven by one drive assembly 4, which improves the overall air output and air output efficiency of the centrifugal fan, without using a larger power or volume of the drive assembly 4, changing the number of impellers, and without changing the centrifugal fan.
  • the width of the impeller on the premise of ensuring the original outer diameter-width ratio, that is, the optimal size of the impeller, reduces the cost of the centrifugal fan and improves the overall air output and air output efficiency of the centrifugal fan.
  • Each impeller includes a hub 21, a first segment body 22 and a second segment body 23.
  • the hub 21 is connected to the drive assembly 4, and the hub 21 serves as the connection between the impeller and the drive assembly 4. Partly, the hub 21 is driven to move by the drive assembly 4 to realize the rotation of the impeller.
  • the casing 1 is provided with a first air inlet 13, a second air inlet 14 and an air outlet 15.
  • the impeller also includes a first segment body 22 and a second segment body 23.
  • the first segment body 22 and the second segment body 23 are located at On both sides of the hub 21, the airflow entering from the first air inlet 13 enters the first segment body 22, and then flows out from the air outlet 15, and the airflow entering from the second air inlet 14 enters the second segment body 23, and then flows out. flow out from the air outlet 15 .
  • the air in the outside world enters the first segment body 22 and the second segment body 23 from the first air inlet 13 and the second air inlet 14 at the same time, and passes through the first segment body 22 and the second segment body 22.
  • the drive assembly 4 is connected to the casing 1, and the casing 1 serves as the installation base of the drive assembly 4 to provide stable power output for at least two impellers. At least two impellers can be connected to one side of the drive assembly 4 in a series upstream and downstream relationship, or can be connected to one side of the drive assembly 4 in a parallel parallel relationship, or two independent impellers, which do not affect each other. The relationship is connected on both sides of the drive assembly 4.
  • the drive assembly 4 is arranged close to the second air inlet 14 , which causes the drive assembly 4 to affect the air intake volume of the second air inlet 14 .
  • the axial length of the first section body 22 and the axial direction of the second section body 23 The length is improved.
  • the impeller has a symmetrical structure.
  • the axial length of the second segment body 23 is greater than the axial length of the first segment body 22 , that is, the axial length of the second segment body 23 close to the drive assembly 4 is smaller than the axial length of the second segment body 23 away from the first segment body 22 axial length.
  • the size of the second accommodating cavity is smaller than that of the first accommodating cavity, and within the same time , the first accommodating cavity can transport more air flow, that is, the air inlet volume, air outlet volume and air outlet efficiency of the first segment body 22 are all greater than those of the second segment body 23 .
  • the impeller is not only designed in sections, but also has different axial lengths, which ultimately maximizes the work of the impeller, increases the effective work length, increases the air volume and efficiency of the centrifugal fan, and is conducive to the realization of the centrifugal fan. of compactness and miniaturization.
  • the ratio of the outer diameter to the axial length of the traditional impeller is between 0.4 and 0.6, beyond this range, the air volume and efficiency of the impeller will be reduced.
  • the ratio of the axial length of the first segment body 22 to the axial length of the second segment body 23 is set between 1.0-2.5.
  • the ratio is selected between 1.0 and 2.5, it can ensure that the axial length of the first segment body 22 and the axial length of the second segment body 23 will not be too large, so that the outer diameter of the first segment body 22 will not be too large.
  • the ratio to the axial length and the ratio of the outer diameter of the second segment body 23 to the axial length are as close as possible to 0.4-0.6 to ensure the left and right performance of the centrifugal fan.
  • the rotation of the at least two impellers is realized by the driving assembly 4, and the rotational speeds of the impellers in the at least two impellers can be set to be the same or different.
  • the embodiments of the present application include at least two impellers.
  • the two impellers can be connected to one side of the drive assembly 4 in a series upstream and downstream relationship, or in a parallel parallel relationship on one side of the drive assembly 4, or two independent The impellers are connected on both sides of the drive assembly 4 in a non-interfering relationship.
  • the three impellers may be connected to one side of the drive assembly 4 in a series upstream and downstream relationship, or may be connected in parallel and parallel to one side of the drive assembly 4, or two Two independent impellers are connected on both sides of the drive assembly 4 in a non-interfering relationship, and the other impeller is connected in series or in parallel on one side of the drive assembly 4, forming a structure with two impellers on one side and one impeller on the other side.
  • four or more impellers reference may be made to the arrangement of two or three impellers, which will not be repeated here. As shown in Figures 27-29 and 32, in one embodiment, two impellers are included.
  • At least two impellers include a first impeller 2 and a second impeller 3.
  • the first impeller 2 and the second impeller 3 have exactly the same structure.
  • the first impeller 2 includes a hub 21, a first segment body 22 and a second segment body 23.
  • the hub 21, the first segment body 22 and the second segment body 23 of the second impeller 3, the dimensions of the first segment body 22 and the second segment body 23 in the first impeller 2 and the second impeller 3 are the same as mentioned above. How to set.
  • the casing 1 in order to facilitate the arrangement and installation of the first impeller 2 and the second impeller 3 , as shown in FIGS. 27 to 29 and 32 , the casing 1 includes a first volute 11 and a second volute Shell 12, the first volute 11 is provided with a first air inlet 13, a second air inlet 14 and an air outlet 15, the first impeller 2 is located in the first volute 11, for the first impeller 2, the first volute
  • the casing 11 is provided with two air inlets and one air outlet 15, which are the first air inlet 13, the second air inlet 14 and the air outlet 15 respectively. Under the action of the driving assembly 4, the first impeller 2 passes through the first air inlet.
  • the first volute 11 has the same structure as the second volute 12.
  • the second volute 12 is also provided with a first air inlet 13, a second air inlet 14 and an air outlet 15.
  • the second impeller 3 is located in the second volute. 12, for the second impeller 3, the second volute 12 is provided with two air inlets and one air outlet 15, which are the first air inlet 13, the second air inlet 14 and the air outlet 15 respectively.
  • the second impeller 3 and the second impeller 3 both realize two-way air intake through the first air inlet 13 and the second air inlet 14, and realize one-way air outlet through the air outlet 15, which further increases the centrifugal fan.
  • the second air inlet 14 of the first volute 11 is opposite to the second air inlet 14 of the second volute 12 in terms of the air intake volume and the air outlet volume.
  • the drive assembly 4 is located between the first volute 11 and the second volute 12, and is connected to the first volute 11 and the second volute 12.
  • the drive assembly 4 is connected to the second air inlet 14 of the first volute 11. and the distance between the driving assembly 4 and the second air inlet 14 of the second volute 12 .
  • the size of this distance affects the air intake volume of the second air inlet 14 , that is, affects the air intake volume, the air output volume and the second segment body 23 of the first impeller 2 and the second segment body 23 of the second impeller 3 . efficiency.
  • the distance affects the air intake volume of the second air inlet 14 to a certain extent, and the size of the distance is positively related to the size of the intake air volume, and negatively related to the volume of the centrifugal fan. Therefore, it is necessary to balance the volume of the centrifugal fan and the overall air intake volume of the centrifugal fan.
  • the distance from the second air inlet 14 of the first volute 11 and the distance between the driving assembly 4 and the second air inlet 14 of the second volute 12 is greater than or equal to 15 mm.
  • the rotational speeds of the first impeller 2 and the second impeller 3 are the same, so as to achieve uniform air discharge.
  • the driving assembly 4 drives the first impeller 2 and the second impeller 3 to move synchronously.
  • the same driving member 41 may be shared, or the first impeller 2 and the second impeller 3 may be driven by two driving members 41.
  • the impeller 3 is driven independently. In one embodiment, as shown in FIGS. 27 to 29 and FIG. 32 , the first impeller 2 and the second impeller 3 share one driving member 41 .
  • the driving assembly 4 includes a driving member 41 , a first driving shaft 42 and a second driving shaft 43 , and the first driving shaft 42 and the second driving shaft 43 are located on two sides of the driving member 41 respectively. Further, the first volute 11 and the second volute 12 have a symmetrical structure with respect to the drive assembly 4, that is, the first impeller 2 and the second impeller 3 have a symmetrical structure with respect to the drive assembly 4. The two impellers 3 are respectively connected on both sides of the drive assembly 4 .
  • the driving member 41 is a motor
  • the first impeller 2 is connected to the first drive shaft 42
  • the second impeller 3 is connected to the second drive shaft 43 .
  • the axial length of the first segment body 22 is 55-153 mm, and the axial length of the second segment body 23 is 30-60 mm. More specifically, the axial length of the first segment body 22 is 83 mm, and the axial length of the second segment body 23 is 60 mm.
  • the outer diameters of the first segment body 22 and the second segment body 23 are the same, both are 85mm, the inner diameters of the first segment body 22 and the second segment body 23 are the same, both are 70mm, and the maximum outer diameter of the housing 1 is 107mm.
  • the first segment body 22 includes a first fixing member 221 and a plurality of first blades 222 , and the plurality of first blades 222 are evenly spaced between the hub 21 and the first fixing member 221 During this time, the first blade 222 faces the first air inlet 13 .
  • the second segment body 23 includes a second fixing member 231 and a plurality of second blades 232 . The plurality of second blades 232 are evenly spaced between the hub 21 and the second fixing member 231 , and the second blades 232 face the second air inlet 14 .
  • the axial length of the second vane 232 is smaller than the axial length of the first vane 222 , and further, the ratio of the axial length of the first vane 222 to the axial length of the second vane 232 is between 1.0-2.5. According to the foregoing, the width of the first segment body 22 is greater than the width of the second segment body 23 to increase the air intake and air output volume of the first segment body 22 .
  • the second air inlets 14 of the shell 12 are arranged opposite to each other, and the second section 23 of the first impeller 2 and the second section 23 of the second impeller 3 share an air inlet passage, resulting in the air volume entering from the first air inlet 13 being greater than Therefore, the axial length of the first blade 222 of the first impeller 2 is set to be larger than the axial length of the second blade 232 of the first impeller 2 to improve the air volume entering from the second air inlet 14 .
  • the utilization ratio of the air inlet and outlet air volume is high, so that the axial length of the first blade 222 can match the air intake volume distributed from the first air inlet 13, and the axial length of the second blade 232 can match the air intake from the second air inlet 14. Allocated intake air volume.
  • the first blade 222, the hub 21 and the first fixing member 221 are enclosed to form a first accommodating cavity
  • the second blade 232, the hub 21 and the second fixing member 231 are enclosed to form a second accommodating cavity
  • the size of the first accommodating cavity is larger than that of the first accommodating cavity.
  • the size of the two accommodating chambers can improve the utilization rate of the airflow by the first impeller 2 by segmenting the first impeller 2 .
  • first blade 222 and the second blade 232 may be two independent structural members, or the first blade 222 and the second blade 232 may be provided with an integrated structure, which is divided by the hub 21 and close to the first air inlet 13. One side is the first blade 222 , and the side close to the second air inlet 14 is the second blade 232 .
  • the airflow attack angles at different axial sections of the first blade 222 and the second blade 232 can be changed to improve the flow field of the centrifugal fan, thereby improving the aerodynamic performance of the centrifugal fan and noise performance.
  • Using the centrifugal fan provided by this application can meet the requirement of 400 CFM (cubic feet per minute cubic feet per minute per minute of a certain volume of air flow through unit time), and the number of the first blade and the second blade is 48 pieces.
  • the inlet installation angle and the outlet installation angle of the blade determine the shape and relative position of the blade on the hub 21, and also affect the flow stability of the airflow. Therefore, the inlet installation angle and the outlet installation angle are set within a reasonable range, and the inlet installation angle and the outlet installation angle are reasonably matched, which is conducive to the flow of air, so that the air outlet 15 of the first volute 11 and the second volute 12 The airflow velocity distribution is more uniform and the airflow is more stable, which can effectively reduce the vortex noise formed by the airflow of the centrifugal fan.
  • the inlet installation angle of the first vane 222 is 80°
  • the outlet installation angle is 15°
  • the inlet installation angle of the second blade 232 is 75°
  • the outlet installation angle is 5°.
  • the hub 21 in the prior art is a flat plate, and the airflow entering the centrifugal impeller will directly impact the hub 21, and then deflect 90° along the hub 21 to flow out.
  • the vertical impact of the airflow may easily cause
  • the damage of the hub 21 and the sudden change of the airflow direction may easily lead to the instability of the airflow direction, resulting in loss of kinetic energy. Therefore, in order to reduce the impact of the airflow on the hub 21 and the loss of kinetic energy, the centrifugal fan further includes a first deflector, through which the flow direction of the airflow is guided.
  • the first air guide plate can be provided in both the first segment body 22 and the second segment body 23, or only in the first segment body 22.
  • the second segment body 23 is provided with a first deflector, but the position of the first deflector should be as close as possible to the position of the hub 21 to maximize the first segment body 22 and/or the second segment body 23 , to ensure the air outlet efficiency.
  • the size of the first accommodating cavity is larger than the size of the second accommodating cavity, and it can be determined that the air volume from the first accommodating cavity is larger.
  • the first deflector in order to facilitate the arrangement of the first deflector, the first deflector is connected on the side of the hub 21 facing the first blade 222 .
  • the surface of the first deflector is an arc-shaped surface facing the first air inlet 13 and the air outlet 15.
  • the air flow contacts the first deflector, which avoids the contact between the air flow and the hub 21.
  • the direct impact of the hub 21 guides the airflow through the arc surface to avoid sudden changes in the flow direction, and the airflow gradually transitions along the guide surface, reducing the kinetic energy loss, making the airflow faster, and improving the efficiency of the centrifugal fan.
  • a second deflector is provided on the side of the hub 21 of the second impeller 3 facing the first blade 222 .
  • the structure and function of the second deflector are similar to those described above, and will not be repeated here.
  • the connection of the second deflector on the hub 21 can also increase the strength and rigidity of the hub 21 .
  • the first deflector can be connected to the hub 21 in a detachable connection manner, which can be screw connection, plug connection or screw connection, which is convenient for assembly or replacement.
  • the first deflector can also be connected to the hub 21 in a non-detachable manner, and can be integrally constructed or bonded to reduce the impact of internal shaking on the dynamic balance of the first impeller 2 .
  • the second deflector can be connected to the hub 21 in a detachable manner, which can be screwed, plugged or screwed, so as to facilitate assembly or replacement.
  • the second deflector can also be connected to the hub 21 in a non-detachable manner, and can be integrally constructed or bonded to reduce the influence of internal shaking on the dynamic balance of the second impeller 3 .
  • a first shaft hole is provided in the middle of the hub 21 of the first impeller 2 , and the first shaft hole is used to cooperate with the first drive shaft 42 , and the first drive shaft 42 drives the first impeller 2 During the rotation process, the position on the hub 21 that is closer to the first shaft hole is subjected to greater force and is more likely to be damaged.
  • a first reinforcing rib is provided, and the size of the first reinforcing rib gradually decreases from the first shaft hole to the edge of the hub 21. size.
  • the first reinforcing rib may be provided only on the side of the hub 21 facing the first blade 222 , or only on the side of the hub 21 facing the second blade 232 , or the first reinforcing rib may be provided on both sides of the hub 21 at the same time. .
  • a second shaft hole is provided in the middle of the hub 21 of the second impeller 3, and the second shaft hole is used to cooperate with the second drive shaft 43.
  • the hub 21 can also be provided with a second reinforcing rib.
  • the second reinforcing rib gradually decreases from the second shaft hole to the edge of the hub 21 , and the size may refer to the size of the second reinforcing rib along the axial direction, or may refer to the size along the radial direction.
  • the second reinforcing rib may be provided only on the side of the hub 21 facing the first blade 222 , or only on the side of the hub 21 facing the second blade 232 , or both sides of the hub 21 may be provided with the second reinforcing rib at the same time .
  • the first drive shaft 42 and the first impeller 2 and the second impeller 3 can be set as non-detachable connections, which can be realized by gluing or an integrated structure, or the first drive shaft 42 or the second drive shaft 42 or the second drive shaft.
  • the shaft 43 is provided with at least one anti-rotation surface, the anti-rotation surface is a plane, the first shaft hole of the first impeller 2 and the first drive shaft 42 and the second shaft hole of the second impeller 3 and the second drive shaft 43 are contoured.
  • the shape of the blades in addition to segmenting the first impeller 2 and the second impeller 3 and designing the inlet installation angle and the outlet installation angle, the shape of the blades can also be designed. According to the foregoing, the axial dimension of the first segment body 22 is larger than the axial dimension of the second segment body 23. Therefore, the full utilization of the first segment body 22 can increase the air volume of the centrifugal fan.
  • the first blade 222 and the second blade 232 each include an inlet section 2221, a middle section 2222 and a rear section 2223, the inlet section 2221 faces the first air inlet 13, and the middle section 2222 is connected to the inlet section 2221 and located in the inlet section Downstream of 2221, the two ends of the rear section 2223 are respectively connected with the middle section 2222 and the hub 21.
  • the airflow passes through the inlet section 2221, the middle section 2222 and the rear section 2223 in turn. .
  • the airflow is gradually deflected along the axial direction, and the deflection angle at different positions is different.
  • the deflection angle and flow velocity difference on the first vane 222 are even greater.
  • the airflow angle at the inlet section 2221 is biased towards the axial direction, and when the airflow reaches the middle section 2222 and the rear section 2223, the airflow angle turns to radial, causing flow separation near the inlet section 2221. Therefore, it can be determined that the first vane 222
  • the middle section 2222 and the rear section 2223 are the main work sections of the first blade 222.
  • the ratio of the inner and outer diameters of the inlet section 2221 is greater than the ratio of the inner and outer diameters of the middle section 2222, and the ratio of the inner and outer diameters of the middle section 2222 is greater than that of the rear section.
  • Ratio of inner and outer diameters of segment 2223 That is to say, the width of the inlet section 2221 is smaller than the width of the middle section 2222, the width of the middle section 2222 is smaller than the width of the rear section 2223, and the morphological parameters of the first blade 222 are adaptively changed with the axial direction to slow down the inlet section. While the 2221 flow is separated, the working capacity of the middle section 2222 and the rear section 2223 is increased to achieve the purpose of increasing the air volume.
  • the ratio of the inner and outer diameters of the inlet section 2221 is 0.85-0.90
  • the ratio of the inner and outer diameters of the middle section 2222 is 0.80-0.85
  • the ratio of the inner and outer diameters of the rear section 2223 is 0.85-0.85.
  • the ratio is 0.70-0.80.
  • the values of the ratio of the inner and outer diameters at the inlet section 2221, the ratio of the inner and outer diameters of the middle section 2222, and the ratio of the inner and outer diameters of the rear section 2223 include the endpoint values.
  • the inlet installation angle of the inlet section 2221 is 60°-80°
  • the outlet installation angle is 0°-25°
  • the inlet installation angles of the middle section 2222 and the rear section 2223 are the same, which is 70° -90°
  • the outlet installation angle is the same, 0°-30°.
  • the axial length of the first vane 222 is greater than the axial length of the second vane 232.
  • the longer axial length accommodates The connection between the first blade 222 and the first fixing member 221 and the hub 21 is unreliable. Therefore, a third fixing member 24 is also provided between the hub 21 and the first fixing member 221.
  • the third fixing member 24 is connected.
  • the third fixing member 24 may be arranged inside the first accommodating cavity, or may be arranged outside the first accommodating cavity. In one embodiment, the third fixing member 24 is arranged outside the first accommodating cavity, and the third fixing member 24 Piece 24 is an annular plate.
  • the embodiments of the present application also provide a cooking appliance, including the centrifugal fan in any of the above embodiments.
  • the cooking appliance is an OTR microwave oven.
  • the first impeller 2 and the second impeller 3 are segmented and the shape of the first blade 222 is designed to improve the air volume and efficiency of the OTR microwave oven. . That is to say, under the condition that the external dimensions of the OTR microwave oven remain unchanged, a larger air volume can be obtained by using the centrifugal fan of this embodiment to ensure the volume of the cavity.
  • the centrifugal fan of this embodiment can simultaneously obtain a larger air volume and a larger cavity volume, maximize the development of the characteristics of the centrifugal fan, and avoid the OTR microwave oven to achieve a certain air volume. It is necessary to adopt the case of double fans, thereby reducing the cost of OTR.

Abstract

离心风机、家用电器、蜗壳和烹饪器具,离心风机(100),包括:叶轮组件(10),包括叶轮本体(11)以及轮毂(12),轮毂(12)包括相背的第一侧面(121)和第二侧面(122),叶轮本体(11)包括第一段(11a)和第二段(11b),第一段(11a)连接在第一侧面(121),第二段(11b)连接在第二侧面(122),第一段(11a)的直径和第二段(11b)的直径沿远离轮毂(12)的方向逐渐增大;蜗壳(20),包括蜗壳本体(21)以及蜗舌(22),蜗舌(22)与叶轮组件(10)间隔;电机(30)连接轮毂(12),用于驱动叶轮组件(10)转动。该离心风机能够降低噪音,增加了做功效率。

Description

离心风机、家用电器、蜗壳和烹饪器具
优先权信息
本申请请求2020年12月31日向中国国家知识产权局提交的、专利申请号为202011638814.X,2021年04月30日向中国国家知识产权局提交的、专利申请号为202120942818.0,2021年5月31日向中国国家知识产权局提交的、专利申请号为202110605278.1、202121204407.8的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及风机技术领域,特别涉及一种离心风机、家用电器、蜗壳和烹饪器具。
背景技术
离心风机因其风量大、噪声小、成本低等优点,被广泛地应用于工业设备上,例如油烟机产品上。
然而,在现有技术中,气流在离心风机的轴向方向上分布不平衡,使得离心风机在使用过程中噪音较大,而通常降低离心风机噪音的方法又会对离心风机的工作效率产生较大影响。
发明内容
本申请实施方式提供了一种离心风机、家用电器、蜗壳和烹饪器具。
本申请实施方式的离心风机包括叶轮组件,包括叶轮本体以及轮毂,所述轮毂包括相背的第一侧面和第二侧面,所述叶轮本体包括第一段和第二段,所述第一段连接在所述第一侧面,所述第二段连接在所述第二侧面,所述第一段的直径和所述第二段的直径沿远离所述轮毂的方向逐渐增大;
蜗壳,包括蜗壳本体以及蜗舌,所述叶轮组件安装于所述蜗壳本体内,所述蜗舌与所述叶轮组件间隔;
电机,连接所述轮毂,用于驱动所述叶轮组件转动。
在某些实施方式中,所述电机位于所述第二侧面所在的一侧,所述第一段的长度为B1,所述第二段的长度为B2,B1>B2且B1、B2>0。
在某些实施方式中,所述第一段的外径与所述第一段的轴向方向的夹角为a1,所述第二段的外径与所述第二段的轴向方向的夹角为a2,a1<a2,a1≥0°且0°<a2<10°。
在某些实施方式中,所述叶轮本体的两端的直径相等。
在某些实施方式中,所述叶轮组件的最大外径为D1,所述第二段的长度为B2,0.4*D1≤B2≤D1且D1、B2>0。
在某些实施方式中,所述蜗舌与所述蜗壳本体的连接处的半径为蜗壳半径,所述蜗壳半径沿靠近所述轮毂的方向逐渐增大。
在某些实施方式中,所述蜗壳靠近所述电机处的蜗壳半径为R1,所述蜗壳远离所述电机处的蜗壳半径为R2,所述蜗壳靠近所述轮毂处的蜗壳半径为R3,R1<R2<R3且R1、R2、R3>0。
在某些实施方式中,所述蜗舌深度沿远离所述轮毂的方向逐渐增加。
在某些实施方式中,所述叶轮组件还包括加强筋,所述加强筋安装于所述叶轮本体。
本申请实施方式的家用电器,包括上述任一实施方式的离心风机。
本申请实施方式的蜗壳包括:壳体,具有用于容纳叶轮的容纳腔,所述容纳腔的轴向两端形成所述蜗壳的两个进风口,所述壳体的侧部设有连通所述容纳腔以供气流排出的排风口;
阶梯状蜗舌结构,设置在所述排风口的内侧边缘处,包括至少两个朝靠近所述排风口的方向倾斜排布的蜗舌。
在某些实施方式中,所述蜗舌为直线形蜗舌或曲线形蜗舌。
在某些实施方式中,至少两个所述蜗舌的形状相同或不同。
在某些实施方式中,所述曲线形蜗舌朝远离所述排风口的方向凹陷。
在某些实施方式中,所述曲线形蜗舌的蜗舌面由前倾斜圆弧面以及后倾斜圆弧面平滑过渡连接而成, 且所述前倾斜圆弧面以及后倾斜圆弧面的交线处为所述曲线形蜗舌的最凹处,其中,所述前倾斜圆弧面为朝远离电机的方向倾斜形成的弧面,所述后倾斜圆弧面为朝靠近电机的方向倾斜形成的弧面,所述前倾斜圆弧面与后倾斜圆弧面相对于所述交线不对称。
在某些实施方式中,所述曲线形蜗舌包括前端面与后端面,所述前端面的轮廓线具有第一圆弧段,所述后端面的轮廓线具有第二圆弧段,所述前倾斜圆弧面以及后倾斜圆弧面的交线轮廓线具有第三圆弧段,所述前端面的轮廓线和所述交线轮廓线之间连成的平滑曲面构成所述前倾斜圆弧面,所述后端面的轮廓线和所述交线轮廓线之间连成的平滑曲面构成后倾斜圆弧面;所述第一圆弧段的半径大于所述第二圆弧段的半径且小于所述第三圆弧段的半径。
在某些实施方式中,定义所述叶轮的圆心为O点,所述第一圆弧段、所述第二圆弧段、所述第三圆弧段、所述前倾斜圆弧面以及后倾斜圆弧面具有与所述叶轮外缘距离最小的点定义为A点,其中,所述A点与O点的连线与过O点的水平面之间的夹角a的范围值为60-95°。
在某些实施方式中,所述第一圆弧段、所述第二圆弧段上的A点与O点的连线与过O点的水平面之间的夹角为a1、a2,所述第三圆弧段上的A点与O点的连线与过O点的水平面之间的夹角为a3,所述前倾斜圆弧面以及后倾斜圆弧面上的A点与O点的连线与过O点的水平面之间的夹角为a4、a5,其中,所述a1、a2大于a3、a4或a5中的任一个,且所述a4、a5大于a3。
本申请实施方式的离心风机,包括叶轮、电机以及如上述实施方式所述的蜗壳,所述叶轮安装在所述电机的转轴上并置于所述容纳腔,所述壳体包括前板、后板以及设置在前板、后板之间的围板,两个进风口分别开设在前板、后板与所述叶轮对应的位置,所述叶轮包括前端圈、后端圈、设置在前端圈与所述后端圈之间的分割圈,所述前倾斜圆弧面以及后倾斜圆弧面的交线与所述分割圈位置对应。
在某些实施方式中,所述叶轮还包括设置在前端圈与所述分割圈之间的多个第一叶片以及设置在所述分割圈与所述后端圈之间的多个第二叶片,其中,在所述叶轮的轴向上,所述第一叶片的长度大于所述第二叶片的长度;所述第一叶片被分割成入口段、中部段以及后部段,其中,在所述叶轮的径向上,所述入口段、中部段以及后部段的长度依次减小。
本申请实施方式的家用电器,包括上述任一实施方式的离心风机。
本申请实施方式的离心风机,包括:
壳体,所述壳体上设置有第一进风口、第二进风口和出风口,所述出风口位于所述第一进风口与所述第二进风口之间;
驱动组件,所述驱动组件连接在所述壳体上并靠近所述第二进风口;
至少两个叶轮,每一所述叶轮均包括轮毂、第一段体和第二段体,所述轮毂连接在所述驱动组件上,所述第一段体和所述第二段体分别连接在轮毂的两侧,所述第二段体靠近所述驱动组件设置,所述第一段体的轴向长度与所述第二段体的轴向长度之比在1.0-2.5之间。
在某些实施方式中,所述第一段体的轴向长度为55-153mm,所述第二段体的轴向长度为30-60mm。
在某些实施方式中,所述第一段体的轴向长度为83mm,所述第二段体的轴向长度为60mm。
在某些实施方式中,所述第一段体包括第一固定件和多个第一叶片,多个所述第一叶片设置在所述
轮毂和所述第一固定件之间,所述第一叶片朝向所述第一进风口;
所述第二段体包括第二固定件和多个第二叶片,多个所述第二叶片设置在所述轮毂和所述第二固定件之间,所述第二叶片朝向所述第二进风口,所述第一叶片的轴向长度与所述第二叶片的轴向长度之比在1.0-2.5之间。
在某些实施方式中,所述驱动组件与所述第二进风口之间的距离大于等于15mm。
在某些实施方式中,所述第一叶片和所述第二叶片均包括:
入口段,所述入口段朝向所述第一进风口;
中间段,所述中间段连接在所述入口段上并位于所述入口段的下游;
后部段,所述后部段的两端分别与所述中间段和所述轮毂连接,所述入口段的内外径之比大于所述中间段的内外径之比,所述中间段的内外径之比大于所述后部段的内外径之比。
在某些实施方式中,所述入口段的内外径之比为0.85-0.90,所述中间段的内外径之比为0.80-0.85,所述后部段的内外径之比为0.70-0.80。
在某些实施方式中,所述入口段的入口安装角为60°-80°,出口安装角为0°-25°,所述中间段和所述后部段的入口安装角为70°-90°,出口安装角为0°-30°。
在某些实施方式中,所述至少两个叶轮包括第一叶轮和第二叶轮,所述壳体包括第一蜗壳和第二蜗壳,所述第一蜗壳和所述第二蜗壳上均设置有所述第一进风口、第二进风口和出风口,所述驱动组件位于所述第一蜗壳和所述第二蜗壳之间,所述第一叶轮位于所述第一蜗壳内,所述第二叶轮位于所述第二蜗壳内。
本申请实施方式的烹饪器具,包括上述任一实施方式的离心风机。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的离心风机的结构示意图;
图2是本申请实施方式的离心风机的另一结构示意图;
图3是本申请实施方式的叶轮组件的结构示意图;
图4是图3中A处的放大图;
图5是本申请实施方式的离心风机的蜗壳的后视图;
图6是图5中B-B处的剖面图;
图7是图5中B-B处的剖面图;
图8是图5中C-C处的剖面图;
图9是图5中D-D处的剖面图;
图1至图9中主要元件符号说明:
离心风机100、叶轮组件10、叶轮本体11、第一段11a、第二段11b、轮毂12、第一侧面121、第二侧面122、加强筋13、蜗壳20、蜗壳本体21、蜗舌22、电机30;
图10为现有技术中离心风机的结构示意图;
图11为现有技术中蜗壳的结构示意图;
图12为本申请一个实施例中离心风机的结构示意图;
图13为图12的局部结构示意图;
图14为图13的局部结构示意图;
图15为图14的局部结构示意图;
图16为本申请一个实施例中电机固定机构的结构示意图;
图17为图16的局部结构示意图;
图18为图16中第一固定杆的结构示意图;
图19为图18的局部结构示意图;
图20为图16中第二固定杆的结构示意图;
图21为本申请另一个实施例中离心风机的结构示意图;
图22为图21中蜗壳的结构示意图;
图23为图22中蜗壳的截面图;
图24为本申请另一个实施例中蜗壳的局部结构示意图,A为分割圈的中间分割线;
图25为本申请一个实施例中叶轮的结构示意图;
图26为图25中第一叶片的结构示意图;
图10至图26中主要元件符号说明:
离心风机100'、电机10'、叶轮11'、蜗壳12'、进风口13'、转轴101'、电机支架102'、定子103'、风机支架104'、螺钉孔位14'、离心风机100、蜗壳10、排风口101、进风口102、壳体103、阶梯状蜗舌结 构104、前板105、后板106、围板107、蜗舌108、前倾斜圆弧面108a、后倾斜圆弧面108b、交线108c、第一圆弧段108d、第二圆弧段108e、第三圆弧段108f、叶轮11、前端圈110、后端圈111、分割圈112、第一叶片113、入口段113a、中部段113b、后部段113c、第二叶片114电机12、第一转动轴120、第二转动轴121、第一风机支架13、第一环形限位件130、第一定位筋131、第二风机支架14、第二环形限位件140、第二定位筋141、第一固定杆15、有凹槽150、第一底座151、加强筋条152、第一限位槽153、第二固定杆16、滑道160、第二底座161、第二限位槽162、弧形表面163、弹性件17、滑块18、弧形过渡面180、卡接部19;
图27为本申请实施例的离心风机的分解结构示意图;
图28为图27所示的部分结构示意图;
图29为图27所示的装配立体示意图;
图30为图29所示的离心风机的挡尘组件在第一位置的内部示意图;
图31为图30所示的A处的放大结构示意图;
图32为图29所示的离心风机的挡尘组件在第二位置的内部示意图;
图33为本申请实施例的第一叶片的结构示意图;
图27至图33中主要元件符号说明:
壳体1;第一蜗壳11;第二蜗壳12;第一进风口13;第二进风口14;出风口15;第一叶轮2;轮毂21;第一段体22;第二段体23;第三固定件24;第一固定件221;第一叶片222;第二固定件231;第二叶片232;入口段2221;中间段2222;后部段2223;第二叶轮3;驱动组件4;驱动件41;第一驱动轴42;第二驱动轴43。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
在本申请的实施方式中,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的实施方式的不同结构。为了简化本申请的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。本申请的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1至图3,本申请实施方式的离心风机100包括叶轮组件10、蜗壳20和电机30。叶轮组件10包括叶轮本体11以及轮毂12,轮毂12包括相背的第一侧面121和第二侧面122,叶轮本体11包括第一段11a和第二段11b,第一段11a连接在第一侧面121,第二段11b连接在第二侧面122,第一段11a的直径d1和第二段11b的直径d2沿远离轮毂12的方向逐渐增大。蜗壳20包括蜗壳本体21以及蜗舌22,叶轮组件10安装于蜗壳本体21内,蜗舌22与叶轮组件10间隔。电机30连接轮毂12,用于驱动叶轮组件10转动。
离心风机100的做功区域主要集中在轮毂12附近,做功区域中的气流流速较大,与蜗舌22产生的噪音就较大,远离轮毂12的区域气流流速较小,噪音较小但做功较少。
本申请实施方式通过将第一段11a的直径d1与第二段11b的直径d2沿远离轮毂12的方向逐渐增大设置,使得叶轮本体11与蜗舌22之间的间隙沿靠近轮毂12的方向逐渐增大设置,从而使得靠近轮毂12 的区域蜗舌22间隙变大,噪音变小,远离轮毂12的区域蜗舌22间隙变小,做功效率增加。
具体的,该离心风机100可以是多翼离心风机,多翼离心风机可以为左旋离心风机,也可以为右旋离心风机。从电动机一侧正视,叶轮顺时针旋转,称为右旋离心风机,逆时针旋转,称为左旋离心风机。在某些实施方式中,离心风机100可以为双吸离心风机,双吸离心风机包括两个蜗壳20以及两个叶轮组件10,叶轮组件10与蜗壳20一一对应。优选的,双吸离心风机包括一个电机30,该电机30设于两蜗壳20以及两叶轮组件10中间。如此,电机30可以同时为两个叶轮组件10供能,有效节约成本并减小双吸离心风机的体积。值得说明的是,双吸离心风机具有四个气流吸入口和两个气流出口,即叶轮组件10的两端为两个气流吸入口,有两个叶轮组件10即有四个气流吸入口。值得注意的是,双吸离心风机靠近电机30的两气流吸入口因为受到电机30的阻碍,因而双吸离心风机靠近电机30的两气流吸入口相较于双吸离心风机远离电机30的两气流吸入口的气流量小。此外,双吸离心风机靠近电机30的两气流吸入口还可以用于为电机30通风散热,起到降低电机30温度的作用。
第一段11a可以与第一侧面121的周缘连接,即第一段11a靠近第一侧面121的一端的直径与第一侧面121的直径相同;第一段11a也可以与第一侧面121的中部连接,即第一段11a靠近第一侧面121的一端的直径小于第一侧面121的直径;第一段11a还可以部分与第一侧面121的周缘连接,另一部分与第一侧面121的中部连接,即第一段11a靠近第一侧面121的一端的直径小于第一侧面121的直径但第一段11a与第一侧面121的周缘相切设置,第一段11a与第一侧面121的连接位置有很多,在此不做具体限制。
第二段11b可以与第二侧面122的周缘连接,即第二段11b靠近第二侧面122的一端的直径与第二侧面122的直径相同;第二段11b也可以与第二侧面122的中部连接,即第二段11b靠近第二侧面122的一端的直径小于第二侧面122的直径;第二段11b还可以部分与第二侧面122的周缘连接,另一部分与第二侧面122的中部连接,即第二段11b靠近第二侧面122的一端的直径小于第二侧面122的直径但第二段11b与第二侧面122的周缘相切设置,第二段11b与第二侧面122的连接位置有很多,在此不做具体限定。
值得说明的是,第一段11a靠近第一侧面121的一端的直径可以与第二段11b靠近第二侧面122的一端的直径相同,第一段11a靠近第一侧面121的一端的直径也可以与第二段11b靠近第二侧面122的一端的直径不同。优选的,第一段11a靠近第一侧面121的直径、第二段11b靠近第二侧面122的直径相同,且第一段11a靠近第一侧面121的一端与第一侧面121的周缘连接,第二段11b靠近第二侧面122的一端与第二侧面122的周缘连接。
第一段11a的直径d1沿远离轮毂12的方向可以等距增大,即第一段11a与轴向方向位于同一平面的外轮廓线呈直线;第一段11a的直径d1沿远离轮毂12的方向也可以不等距增大,即第一段11a与轴向方向位于同一平面的外轮廓线可以呈凹圆弧、凸圆弧、波浪状等形状,第一段11a与轴向方向位于同一平面的外轮廓线的形状有很多种,在此不做具体限制。
第二段11b的直径d2沿远离轮毂12的方向可以等距增大,即第二段11b与轴向方向位于同一平面的外轮廓线呈直线;第二段11b的直径d2沿远离轮毂12的方向也可以不等距增大,即第二段11b与轴向方向位于同一平面的外轮廓线可以呈凹圆弧、凸圆弧、波浪状等形状,第二段11b与轴向方向位于同一平面的外轮廓线的形状有很多种,在此不做具体限制。
第一段11a与轴向方向位于同一平面的外轮廓线的形状可以与第二段11b与轴向方向位于同一平面的外轮廓线的形状相同,也可以不同,在此不做具体限制。
第一段11a包括多个第一扇叶,第一扇叶的数量可以为10个、20个、30个、40个、50个、100个等,其具体数量根据需要进行调整,在此不做具体限定。第一扇叶可以为前向扇叶,也可以为后向扇叶,还可以为平直扇叶,在此不做具体限定。
第二段11b包括多个第二扇叶,第二扇叶的数量可以为10个、20个、30个、40个、50个、100个等,其具体数量根据需要进行调整,在此不做具体限定。第二扇叶的数量可以与第一扇叶的数量相同,也可以不同。
蜗壳本体21的形状有很多种,其可以呈圆柱、圆台等形状,蜗壳本体21的形状与叶轮本体11的形状相适应,在此不做具体限制。蜗壳本体21可以包括蜗板、侧板和支腿等,蜗壳本体21具有支撑和保 护作用。
蜗舌22用于防止部分气体在蜗壳20内循环流动,蜗舌22与叶轮组件10间隔设置,以避免蜗舌22阻碍叶轮组件10运动。
电机30与轮毂12的连接方式有很多,例如,轮毂12设有通孔,电机30的输出轴与通孔配合;又如,电机30的输出轴与轮毂12卡接配合;再如,电机30的输出轴通过与叶轮本体11连接实现与轮毂12的间接连接。
需要说明的是,上述所举例的例子以及具体数值是为方便说明本申请的实施,不应理解为对本申请保护范围的限定。
在某些实施方式中,请参阅图1至图3,电机30位于第二侧面122所在的一侧,第一段11a的长度为B1,第二段11b的长度为B2,B1>B2且B1、B2>0。沿叶轮本体11的轴向方向的两端为叶轮组件10的进风口,即第一段11a远离轮毂12的一端以及第二段11b远离轮毂12的一端皆为进风口。电机30位于第二侧面122所在的一侧,会影响位于第二段11b的进风口的进风,使得第二段11b的进气量相较于无风机阻碍的第一段11a的进气量要小,从而使得整个叶轮本体11的主要增压区域不位于叶轮本体11的中间,而位于比叶轮本体11的中间更靠近电机30的位置。将B1>B2设置,即将轮毂12设置于叶轮本体11的主要增压区域,从而使得主要增压区域处的第一段11a以及第二段11b的直径d2较小,即主要增压区域处的第一段11a以及第二段11b的蜗舌22间隙较大,有效降低主要增压区域的噪音。
值得说明的是,第一段11a的长度B1意为第一段11a沿叶轮本体11的轴向方向的大致长度,即第一段11a的不同位置的沿叶轮本体11的轴向方向的长度不一定都相等,B1取第一段11a沿叶轮本体11的轴向方向的大致的长度即可。第二段11b的长度B2意为第二段11b沿叶轮本体11的轴向方向的大致长度,即第二段11b的不同位置的沿叶轮本体11的轴向方向的长度不一定都相等,B2取第二段11b沿叶轮本体11的轴向方向的大致长度即可。
在某些实施方式中,请参阅图3和图4,第一段11a的外径与第一段11a的轴向方向的夹角为a1,第二段11b的外径与第二段11b的轴向方向的夹角为a2,a1<a2,a1≥0°且0°<a2<10°。若a1或a2的角度过大,会使得位于主要做功区域的第一段11a的直径d1或第二段11b的直径d2过小,从而影响离心风机100的风量性能。将a1<a2,a1≥0°且0°<a2<10°设置,使得叶轮本体11能够倾斜一定角度,保证叶轮本体11主要做功区域的外径较远离轮毂12的外径小,从而加大主要做功区域的蜗舌22间隙,降低主要做功区域的噪音。
a1、a2的角度有很多种,a1可以为0°、3°、5°、9°、9.5°等角度,a2可以为0.5°、2°、4°、6°、8°、9.5°等角度,在此不做具体限制。
值得说明的是,第一段11a的外径意为与轴向方向位于同一平面上的第一段11a的外轮廓线,该外轮廓线可以为直线,也可以为曲线,当外轮廓线为曲线时,可以通过将外轮廓线的起点和终点连接取得第一段11a的外径,也可以通过将外轮廓线的起点和中点连线取得第一段11a的外径,还可以通过将外轮廓线的某处切线作为第一段11a的外径,第一段11a的外径与外轮廓线的延伸方向大致相同即可,在此不做具体限制。
第二段11b的外径意为与轴向方向位于同一平面上的第二段11b的外轮廓线,该外轮廓线可以为直线,也可以为曲线,当外轮廓线为曲线时,可以通过将外轮廓线的起点和终点连接取得第二段11b的外径,也可以通过将外轮廓线的起点和中点连线取得第二段11b的外径,还可以通过将外轮廓线的某处切线作为第二段11b的外径,第二段11b的外径与外轮廓线的延伸方向大致相同即可,在此不做具体限制。
在某些实施方式中,请参阅图1至图3,叶轮本体11的两端的直径相等,即第一段11a远离轮毂12的一端的直径与第二段11b远离轮毂12的一端的直径相等。如此设置,蜗壳20设置成便于生产的圆柱即可,方便离心风机100的生产。优选的,第一段11a靠近轮毂12的直径d1与第二段11b靠近轮毂12的直径d2相同,第一段11a远离轮毂12的直径d1与第二段11b远离轮毂12的直径d2也相同,如此设置,不仅方便生产,还提高了电机的工作效率。
在某些实施方式中,请参阅图3,叶轮组件10的最大外径为D1,第二段11b的长度为B2,0.4*D1≤B2≤D1且D1、B2>0。第二段11b的长度如果太小,会使得第二段11b的增压效果较差,无法起到良好的增压功能,而第二段11b的长度如果太大,又会形成较大的漩涡区或产生倒流,因而,如此设 置,使得第二段11b的长度保证了增压效果的同时兼顾增压效率。同理,第一段11a的长度不能过大也不能过小,B1的长度也可以在0.4*D1至D1的区间内取值。
在某些实施方式中,请参阅图2以及图5,蜗舌22与蜗壳本体21的连接处的半径为蜗壳20半径,蜗壳20半径沿靠近轮毂12的方向逐渐增大。蜗舌22半径越大,气流流至蜗舌22的转折越小,从而使得气流流至蜗舌22的噪音越小,将蜗壳20半径沿靠近轮毂12的方向逐渐增大设置,使得靠近轮毂12的位置的噪音降低。
在某些实施方式中,请参阅图5以及图7至图9,蜗壳20靠近电机30处的蜗壳20半径为R1,蜗壳20远离电机30处的蜗壳20半径为R2,蜗壳20靠近轮毂12处的蜗壳20半径为R3,R1<R2<R3且R1、R2、R3>0。在离心风机100中,轮毂12位于离心风机100的主要增压区域,因而轮毂12处的气流较大,而远离电机30处的进风口无风机阻挡,较靠近电机30处的进风口气流大,因而蜗壳20靠近电机30处的气流、蜗壳20远离风机处的气流以及蜗壳20靠近轮毂12处的气流依次增大,从而将蜗壳20靠近电机30处的蜗壳20半径R1、蜗壳20远离电机30处的蜗壳20半径R2以及蜗壳20靠近轮毂12处的蜗壳20半径R3依次增大设置,有效降低离心风机100的噪音。
在某些实施方式中,请参阅图6,蜗舌深度沿远离轮毂12的方向逐渐增加。蜗舌深度与离心风机100的噪音密切相关,通常蜗舌深度大,噪音较高但气动性能较好,反之,则噪音较小。靠近轮毂12的蜗舌深度β1较小,有效降低该处噪音,而远离轮毂12的位置的蜗舌深度β2较大,有效提高该处气动性能。
值得说明的是,靠近轮毂12的蜗舌深度β1较小的意思为,靠近轮毂12的位置为浅舌,远离轮毂12的位置的蜗舌深度β2较大的意思为,远离轮毂12的位置为深舌。深舌与浅舌的标准不固定,只要保证靠近轮毂12的位置比远离轮毂12的位置蜗舌深度大即可。
值得补充的是,蜗舌深度是穿过叶轮组件10的圆心的直线与穿过蜗舌22圆心以及叶轮组件10的圆心的直线的夹角,穿过叶轮组件10的圆心的直线通常为沿竖直方向延伸或沿水平方向延伸的直线。蜗舌深度的正向为叶轮组件10旋转方向的反方向,即以穿过叶轮组件10的圆心的直线为基准,沿叶轮组件10旋转方向的反方向延伸越多的蜗舌22,其蜗舌深度越大,反之亦然。
在某些实施方式中,请参阅图2以及图3,叶轮组件10还包括加强筋13,加强筋13安装于叶轮本体11。加强筋13用于固定叶轮本体11,加强叶轮本体11的结构稳定性。该加强筋13可以沿叶轮本体11的周向延伸,该加强筋13也可以与叶轮本体11的周向呈一定角度延伸,例如,加强筋13与叶轮本体11的周向呈5°、10°、15°、20°、30°、40°等角度,在此不做具体限制。
叶轮组件10可以包括一个加强筋13,也可以包括多个加强筋13,例如2个、3个、4个等数量,多个加强筋13的延伸方向可以不同,多个加强筋13的延伸方向也可以相同,多个加强筋13可以相交也可以相互间隔,只要加强筋13可以起到加强叶轮本体11的结构稳定性的作用即可,在此不做具体限定。
在图示的实施方式中,由于第一段11a较第二段11b长,因此,加强筋13在第一段11a的中间沿第一段11a周向360度连接第一段11a的周向侧面,一方面,可以保证第一段11a的结构强度,另一方面,在轴向和径向上,加强筋13对第一段11a转动稳定性不会造成额外的震动。
本申请实施方式还公开一种家用电器,具体的,家用电器包括但不限于油烟设备、集成灶等具有排油烟供能的电器以及吹风机、吸尘器等具有离心风机100的电器。以家用电器为油烟设备为例进行说明。该家用电器可以为可以为上排式厨房设备,也可以是下排式厨房设备,还可以是侧排式厨房设备,在此不做具体限定。
具体的,该家用电器包括离心风机100,该家用电器还包括但不限于箱体、导流板、止回阀等组件,导流板、离心风机100以及止回阀皆安装于箱体上,油烟通过导流板进入箱体,箱体内设置的离心风机100工作,油烟在离心风机100的离心力作用下被吸入离心风机100并从离心风机100的气流出口排出进入止回阀,止回阀防止油烟倒灌回离心风机100,从而实现油烟的排出。可以理解的是,止回阀是指启闭件为圆形阀瓣并靠自身重量及介质压力产生动作来阻断介质倒流的一种阀门。止回阀可为升降式止回阀和旋启式止回阀。
在相关技术中,离心风机风量大、成本低,被广泛应用于工业设备上;其往往具有较大的轴向宽度,这导致气流在轴向的不平衡特性增加,进而导致整个风机的气动特性和噪声特性受到影响;对于离心风机而言,蜗舌结构对上述两种性能起到至关作用,然而,往往上述两种性能很难做到兼顾。
如图10所涉及的离心风机100',其至少包括有一个中间分布的电机10',用于给风机100'提供动力;在电机10'左右两侧各有一套叶轮11'和蜗壳12',蜗壳12'通过风机支架13'进行固定,该风机100'为轴向进风径向出风的离心形式,因此,在电机10'两侧为风机100'的进风口14',一方面起到增大风量效果,另一方面该风口气流对电机10'起到散热效果。且如图2所示,风机100'只有一个蜗舌15'的设计,蜗舌15'与叶轮11'最小距离为t,该蜗舌15'对离心风机100'的气动和噪声性能影响巨大,这种传统结构很难做到综合性能的最优化。
为了解决上述问题,本申请提出一种离心风机100。下面参照图12-26描述本申请一些实施例的离心风机100。
如图12-15所示,本申请的实施例提供了一种离心风机100,该离心风机100可以应用在比如抽油烟机、微波炉等家用电器上,该离心风机100可以是双吸离心风机,当然该离心风机还可以是单吸离心风机,当本实施例中的离心风机100为双吸离心风机时,该离心风机100可以包括:两个蜗壳10、两个叶轮11、一个电机12以及离心风机用固定机构,其中,该离心风机用固定机构可以同时把蜗壳10和电机12加以固定,具体地,该离心风机用固定机构包括第一风机支架13以及第二风机支架14,所述第一风机支架13上设置有第一固定杆15,所述第二风机支架14上设置有第二固定杆16,第一固定杆15与第二固定杆16卡接,以将电机12固定在第一风机支架13与第二风机支架14之间。
在本实施例中,两个蜗壳10的设计提高了离心风机100的排风量,每个蜗壳10均具有容纳腔,两个叶轮11与两个蜗壳10一一对应,每个蜗壳10的容纳腔内均设置有一个叶轮11,叶轮11的轴线与容纳腔的轴线平行或者重合,两个蜗壳10分别位于电机12的相对两侧,每个蜗壳10均具有排风口101以及相对设置的两个进风口102,电机12包括相对设置的第一转动轴120以及第二转动轴121,第一转动轴120与第二转动轴121分别与两个叶轮11连接,以驱动叶轮11的转动。其中电机12位于蜗壳10外,当然,本申请不限于此,电机12的至少部分还可以位于蜗壳10的容纳腔内。电机12驱动叶轮11转动,叶轮11驱动气流流动并从进风口102流向排风口101。
可选地,电机12的径向尺寸小于容纳腔的径向尺寸。因此,电机12设在容纳腔内,还是容纳腔外,电机12的周壁与容纳腔的内壁在径向方向上均具有间隙,可以避免电机12封挡容纳腔的轴向一端,使得蜗壳10可以具有相对的两个进风口102,可以提高离心风机100的工作效率。
值得一提的是,继续参照图14,第一转动轴120、第二转动轴121可以同步转动,当然,第一转动轴120、第二转动轴121也可以独立控制,由此可以增加离心风机100结构的多样性。
继续参照图14-15,第一风机支架13、第二风机支架14均呈中空矩形支架,第一风机支架13、第二风机支架14分别套设在两个蜗壳10的端部,且第一风机支架13、第二风机支架14的部分位于排风口101处以使得两个蜗壳10的靠近彼此的进风口102与相应的的排风口101间隔开。
在本实施例中,如图16-20所示,所述第一固定杆15的卡接端开设有凹槽150,所述凹槽150内设置有弹性件17,所述弹性件17的上方设有滑块18,所述第二固定杆16上开设与所述第一固定杆15适配的滑道160,所述滑块18的顶面凸出设置于所述凹槽150,且与所述滑道160的内顶面与所述滑块18的顶面抵接,以对所述弹性件17产生压力,所述滑道160具有入口端以及出口端,于所述出口端的上方设置卡接部19,其中,所述卡接部19的底面与所述滑块18的顶面抵接。具体地,当需要将电机12进行固定时,可以将第一固定杆15的卡接端自入口端滑入第二固定杆16的滑道160,在第一固定杆15的卡接端在滑道160内滑动的过程中,滑块18的顶面与滑道160的内顶面抵接,以对滑块18产生向下的压力,从而压缩弹性件17变形,直至第一固定杆15的卡接端从出口端滑出滑道160,滑道160的内顶面不在对滑块18产生向下的压力,弹性件17将滑块18弹起,弹起18的滑块18与卡接部19的底面抵接,进而与卡接部19形成过盈配合,从而实现第一固定杆15与第二固定杆16的卡接固定。相应地,当需要将卸下电机12,可以向下按压滑块18,此时弹性件17被压缩变形,滑块18自出口端滑入滑道160内,在滑道160内滑动的过程中,滑块18受到滑道160内顶面的作用力而压缩弹性件17,直至滑块18自入口端滑出滑道160之外,滑块18解除对弹性件17的压缩,弹性件17恢复形变,使得第一固定杆15脱离第二固定杆16,从而实现电机12的拆卸。
值得一提的是,在本申请的其他实施例中,所述第一固定杆15与第二固定杆16还可以使用以下结构实现卡接,具体的配合结构如下:所述第一固定杆15的末端开设有凹槽150,所述凹槽150内设置有 弹性件17,所述弹性件17的上方设有滑块18,所述第二固定杆16开设与所述第一固定杆15适配的滑道160,所述滑块18的顶面凸出设置于所述凹槽150,且与所述滑道160的内顶面与所述滑块18的顶面抵接,以对所述弹性件17产生压力,于所述滑道160的上方开设与所述滑道160连通的限位孔,所述限位孔与所述滑块18适配。具体地,当需要将电机12进行固定时,可以将第一固定杆15的卡接端自入口端滑入第二固定杆16的滑道160,在第一固定杆15的卡接端在滑道160内滑动的过程中,滑块18的顶面与滑道160的内顶面抵接,以对滑块18产生向下的压力,从而压缩弹性件17变形,直至滑块18沿着滑道160滑动至限位孔处时,由于滑道160接触对滑块18的抵接,弹性件17恢复形变,将滑块18弹出限位孔,此时滑块18的顶部被卡在限位孔内,从而实现第一固定杆15与第二固定杆16的卡接固定。相应地,当需要将卸下电机12,可以向下按压滑块18,此时弹性件17被压缩变形,滑块18自限位孔滑入滑道160内,在滑道160内滑动的过程中,滑块18受到滑道160内顶面的作用力而压缩弹性件17,直至滑块18滑出滑道160之外,滑块18解除对弹性件17的压缩,弹性件17恢复形变,使得第一固定杆15脱离第二固定杆16,从而实现电机12的拆卸。
此外,在本申请的其他实施例中,所述第一固定杆15还可以设有卡扣,所述第二固定杆16上还可以设有卡槽,第一固定杆15与第二固定杆16通过卡扣、卡槽实现卡接。本申请对第一固定杆15、第二固定杆16的卡接方式不做限定,只要能够满足第一固定杆15、第二固定杆16的卡接均在本申请的保护范围之内。
需要注意的是,继续参照图18-19,所述第一固定杆15的截面呈T形,所述第一固定杆15包括条形第一底座151以及于所述第一底座151垂直连接的加强筋条152,所述凹槽150开设于所述加强筋条152上,所述第二固定杆16开设有截面呈T形的滑道160。其中,第一底座151的一端固定在第一固定杆15上,且于加强筋条152远离凹槽150的一端开设第一限位槽153,环绕第一风机支架13的中空位置第一环形限位件130,第一限位槽153与第一环形限位件130卡接,从而实现第一固定杆15与第一风机支架13的固定。
进一步地,继续参照图20,第二固定杆16包括T形第二底座161以及于第二底座161的顶部设置的卡接部19,卡接部19的底面与第二底座161的表面构成第二限位槽162,环绕第二风机支架14的中空位置第二环形限位件140,第二限位槽162与第二环形限位件140卡接,从而实现第二固定杆16与第二风机支架14的固定。
值得一提的是,继续参照图14-15,第一风机支架13的第一环形限位件130上均匀设置3个第一固定杆15,相应地,在第二风机支架14的第二环形限位件140的对应位置也设置3个第二固定杆16,这样第一风机支架13、第二风机支架14通过其上的固定杆将电机12稳定固定在第一风机支架13、第二风机支架14之间。
在本实施例中,继续参照图14-15,第一风机支架13的至少两个边角处设置第一定位筋131,第二风机支架14的对应位置设置第二定位筋141,第一定位筋131与第二定位筋141可拆卸连接。具体地,在将第一固定杆15与第二固定杆16进行卡接之前,可以先通过第一定位筋131与第二定位筋141将第一风机支架13与第二风机支架14进行定位,然后再进行第一固定杆15、第二固定杆16的卡接,从而提高了第一固定杆15与第二固定杆16的装配效率。
需要说明的是,继续参照图19-20,所述滑块18的顶面为弧形过渡面180,所述滑道160的入口端具有与所述弧形过渡面180配合的弧形表面163。具体地,弧形表面163可以对弧形过渡面180起到导向的作用,当滑块18滑入滑道160时,可以通过弧形过渡面180与弧形表面163的配合减少滑块18滑入滑道160的阻力,使得滑块18能够顺利的滑入滑道160内。
如图21-23所示,本实施例中的蜗壳10包括壳体103和阶梯状蜗舌结构104。具体而言,壳体103包括前板105、后板106以及设置在前板105、后板106之间的围板107,前板105在正对叶轮11的位置开设有进风口102,后板16在正对叶轮11的位置开设有另一个进风口102,围板107形成为开环形,阶梯状蜗舌结构104的一端与围板107周向方向的一端连接以共同形成容纳腔,阶梯状蜗舌结构104的另一端与围板107周向方向的另一端间隔开以形成排风口101。气体在叶轮11的作用下从进风口102进入容纳腔内,再从排风口101流出。
在本申请中,阶梯状蜗舌结构104包括至少两个朝靠近所述排风口101的方向倾斜排布的蜗舌108, 通过蜗壳上设置阶梯状蜗舌结构,这样阶梯状蜗舌中位于下方的蜗舌与叶轮间隙较小,可以保证蜗壳的集流作用,使得风机的风压和流量不受损失,提高风机的气动性能,位于上方的蜗舌与叶轮间隙较大,避免气流对蜗舌的强烈冲击,从而可有效降低气动噪声。
需要说明的是,两个蜗舌108可以一体成型形成阶梯状蜗舌结构104,也可以将两个蜗舌108单独成型,再进行组装形成阶梯状蜗舌结构104。
具体地,本实施例以两个蜗舌108构成的阶梯状蜗舌结构104为例进行说明。本实施例中两个蜗舌108的形状可以相同,也可以不同,本实施例对此不做限定。为了便于描述,本实施例将两个蜗舌108分别定义成第一蜗舌R1以及第二蜗舌R2。
在本申请的一个实施例中,如图23所示,第二蜗舌R2位于第一蜗舌R1的上方,第一蜗舌R1以及第二蜗舌R2可以均为向外凸出的直线形蜗舌,即第一蜗舌R1以及第二蜗舌R2的半径不变,且R2不等于R1。这样一来,第二蜗舌R2更靠近排风口,即与叶轮间隙较大,这样可以避免气流对蜗舌的强烈冲击,从而可有效降低气动噪声。相应地,第一蜗舌R1更靠近叶轮,可以保证蜗壳的集流作用,使得风机的风压和流量不受损失,提高风机的气动性能。
在本申请的另一个实施例中,如图24所示,第一蜗舌R1以及第二蜗舌R2的形状相同,且均为曲线形蜗舌,上述曲线形蜗舌为朝远离所述排风口的方向内凹、且非对称的圆弧形蜗舌。
值得一提的是,曲线形蜗舌包括前端面、蜗舌面、后端面和固定面,前端面与前板105贴近或接触,后端面与后板106贴近或接触,蜗舌面位于排风口101的一侧,固定面位于与蜗舌面相对的一侧,本实施例中,围板107的前后端的轮廓线沿电机12轴向投影重合,围板107在靠近排风口101的位置设置有固定板,第一蜗舌R1的固定面与固定板接触,且第一蜗舌R1的固定面与固定板通过螺钉固定连接。
优选的,继续参照图24,每个蜗舌108的蜗舌面由平滑过渡连接的前倾斜圆弧面108a以及后倾斜圆弧面108b连接构成,且所述前倾斜圆弧面108a以及后倾斜圆弧面108b的交线108c处为所述曲线形蜗舌的最凹处,其中,所述前倾斜圆弧面108a为朝远离电机12的方向倾斜形成的弧面,所述后倾斜圆弧面108b为朝靠近电机12的方向倾斜形成的弧面。
在本实施例中,如图24所示,每个蜗舌108的前端面的轮廓线具有第一圆弧段108d,所述后端面的轮廓线具有第二圆弧段108e,所述前倾斜圆弧面108a以及后倾斜圆弧面108b的交线108c轮廓线具有第三圆弧段108f,所述前端面的轮廓线和所述交线轮廓线之间连成的平滑曲面构成所述前倾斜圆弧面108a,所述后端面的轮廓线和所述交线轮廓线之间连成的平滑曲面构成后倾斜圆弧面108b;所述第一圆弧段108d的半径R5大于所述第二圆弧段108e的半径R3且小于所述第三圆弧段108f的半径R4。具体地,沿电机12的轴向上,蜗舌108的半径不断变化,且蜗舌108靠近电机12的一侧的半径R3最小,蜗舌108位于中部交线的半径R4最大,蜗舌108靠近一侧进风口102的半径R5介于两者之间。具体地,家用电器本身会产生噪音,蜗舌108处的气流形成一个新的噪音源,通过R4>R5>R3,可以使得家用电器本身的噪音与蜗舌产生的噪音尽可能接近,以便于更好的抵消家用电器原来的噪音。
在本实施例中,如图11所示,定义所述叶轮11的圆心为O点,所述第一圆弧段108d、所述第二圆弧段108e、所述第三圆弧段108f、所述前倾斜圆弧面108a以及后倾斜圆弧面108b具有与所述叶轮11外缘距离最小的点定义为A点,其中,所述A点与O点的连线与过O点的水平面之间的夹角a的范围值为60-95°。
进一步地,继续参照图11,所述第一圆弧段108d、所述第二圆弧段108e上的A点与O点的连线与过O点的水平面之间的夹角为a1、a2,所述第三圆弧段108f上的A点与O点的连线与过O点的水平面之间的夹角为a3,所述前倾斜圆弧面108a以及后倾斜圆弧面108b上的A点与O点的连线与过O点的水平面之间的夹角为a4、a5,其中,所述a1、a2大于a3、a4、a5中的任一个,且所述a4、a5大于a3。具体地,蜗舌108不同位置处的蜗舌起始角a亦不相同,a较大时称为深舌,a适当时称为浅舌,a较小时称为平舌;一般地,R4(第三圆弧段108f)处采用平舌,R3(第二圆弧段108e)和R5(第一圆弧段108d)采用深舌,过渡区(前倾斜圆弧面108a以及后倾斜圆弧面108b)采用浅舌,克服了由于叶轮出口速度分布不均匀引起的问题,有利于提高风量、风压和效率。
继续参照图25,叶轮11包括前端圈110、后端圈111、设置在前端圈110和后端圈111之间的分割圈112、设置在前端圈110与所述分割圈112之间的多个第一叶片113以及设置在所述分割圈112与所述 后端圈111之间的多个第二叶片114,其中,前倾斜圆弧面108a以及后倾斜圆弧面108b的交线108c与所述分割圈112位置对应。具体地,叶轮11在分割圈112的气流流速较大,对应的交线108c处的截面面积大,使得截面面积大的位置气流流速快,进而使得排风口各处的气流流动更加均匀,避免了蜗壳由于气流流动不均匀导致的振动。
需要说明的是,第一叶片113靠近排风口101而设,第二叶片114远离排风口101而设,靠近排风口101的第一叶片113将流体由外界输送到蜗壳10内,其速度方向更偏向于叶轮11的轴线方向,以增大离心风机100的风量,远离排风口101的部分的第二叶片114110一般为将流体甩出蜗壳10,也即其速度方向更偏向于叶轮11的径向方向,给流体提供向排风口101流动的压力,以增大流体向排风口101流动的速度,因此排风口101中间部分的流体的流量大于排风口101两端的流体的流量。此时为了避免排风口101气流流动不均匀导致的振动,本实施例的前倾斜圆弧面108a以及后倾斜圆弧面108b的交线108c与所述分割圈112位置对应。
继续参照图25,在所述叶轮11的轴向上,所述第一叶片113的长度大于所述第二叶片114的长度;具体地,所述第一叶片113的长度大于所述第二叶片114的长度可以大大增大整个风机的吸风量。
继续参照图25-26,在本实施例中,第一叶片113被分割成入口段113a、中部段113b以及后部段113c,其中,在所述叶轮11的径向上,所述入口段113a、中部段113b以及后部段113c的长度依次减小。具体地,由于气流从轴向进入叶轮,最后径向排出叶轮,因此其气流角从0°向90°逐渐偏转,将第一叶片113分割成径向长度逐渐增加的入口段113a、中部段113b以及后部段113c,可以提高叶片的做功效率。
在相关技术中,离心风机相比传统离心风机一般采用双侧入口,具有较大的叶轮宽度,但是,受限于入口宽度,电机的性能无法被最大化的开拓出来,叶轮宽度也并不能无限扩大,否则也并不能起到增大流量的效果。
OTR(over the range,位于炉灶上方)微波炉是指兼具吸油烟机功能的微波炉,其一般悬挂在灶具的上方,可吸收下方的灶具在加热过程中产生的烟气、水蒸汽等。OTR微波炉中设置有用于吸收油烟的风机,风机多采用多翼离心叶轮,OTR微波炉的外形尺寸一定,其腔体容积是重要的指标之一,而多翼离心叶轮的直径是限制腔体容积最重要的因素,设计上一般推荐离心叶轮外直径与叶轮宽度比值在0.4-0.6之间,否则将会造成风机效率变低。由于OTR的安装结构,导致在风机直径不变的情况下,进风量和吸风量小,吸油烟效果差。
为了解决上述问题,本申请提出一种离心风机。如图27至图33所示,根据本申请一个实施例的离心风机,包括:
壳体1,壳体1上设置有第一进风口13、第二进风口14和出风口15,出风口15位于第一进风口13与第二进风口14之间;
驱动组件4,驱动组件4连接在壳体1上并靠近第二进风口14;
至少两个叶轮,每一叶轮均包括轮毂21、第一段体22和第二段体23,轮毂21连接在驱动组件4上,第一段体22和第二段体23分别连接在轮毂21的两侧,第二段体23靠近驱动组件4设置,第一段体22的轴向长度与第二段体23的轴向长度之比在1.0-2.5之间。
根据本申请实施例的离心风机,离心风机适用任何需要进行换气的设备,例如微波炉、烤箱、吸油烟机、空调、换气扇等。通过一个驱动组件4实现对至少两个叶轮的驱动,提高了离心风机的整体出风量和出风效率,无需采用更大功率或体积的驱动组件4,从叶轮数量上进行改变,也无需改变离心叶轮的宽度,在保证原有外径宽度比值的前提下也就是保证叶轮的最优尺寸的前提下,降低了离心风机的成本,提高了离心风机的整体出风量和出风效率。具体的,两个叶轮的结构完全相同,每一叶轮均包括轮毂21、第一段体22和第二段体23,轮毂21连接在驱动组件4上,轮毂21作为叶轮与驱动组件4的连接部分,通过驱动组件4带动轮毂21运动以实现叶轮的转动。壳体1上设置有第一进风口13、第二进风口14和出风口15,叶轮还包括第一段体22和第二段体23,第一段体22和第二段体23分别位于轮毂21的两侧,从第一进风口13进入的气流进入到第一段体22中,再从出风口15流出,从第二进风口14进入的气流进入到第二段体23中,再从出风口15流出。在驱动组件4的作用下,外界中的气流同时从第一进风口13和第二进风口14进入到第一段体22和第二段体23中,经过第一段体22和第二段体23后从出风口15流出,通过第一进风口13和第二进风口14实现双向进风,通过出风口15实现单向出风,进一步增大 了离心风机的进风量和出风量。驱动组件4连接在壳体1上,壳体1作为驱动组件4的安装基础,以为至少两个叶轮提供稳定的动力输出。至少两个叶轮可以是串联上下游的关系连接在驱动组件4的一侧上,也可以是平行并联的关系连接在驱动组件4的一侧上,还可以是两个独立的叶轮,互不影响的关系连接在驱动组件4的两侧。为了保证离心风机的整体尺寸不会过大,将驱动组件4设置为靠近第二进风口14,导致了驱动组件4会对第二进风口14的进风量产生影响。在离心风机的进风量、出风量和尺寸之间寻找平衡点,以使离心风机的各方面性能达到最优,因此,将第一段体22的轴向长度和第二段体23的轴向长度进行改进,现有技术中,叶轮呈对称结构。在本申请实施例中,第二段体23的轴向长度大于第一段体22的轴向长度,也就是靠近驱动组件4的第二段体23的轴向长度要小于远离第一段体22的轴向长度。通过对叶轮的不同位置的轴向长度进行调整,以适应离心风机的结构。轮毂21与第一段体22围合形成第一容纳腔,轮毂21与第二段体23围合形成第二容纳腔,第二容纳腔的尺寸小于第一容纳腔的尺寸,在相同时间内,第一容纳腔能够输送更多的气流,也就是第一段体22的进风量、出风量和出风效率均大于第二段体23。叶轮不仅为分段设计,且在轴向长度上有所不同,最终使叶轮的做功能够最大化的发挥作用,增加了有效做功长度,增加了离心风机的风量和效率,且有利于实现离心风机的紧凑化和小型化。传统中的叶轮的外径与轴向长度的比值在0.4-0.6之间,超出该范围会导致叶轮的风量和效率降低。因此,在平衡进风量、出风量、效率和体积之后,将第一段体22的轴向长度与第二段体23的轴向长度之比在1.0-2.5之间。在比值1.0-2.5之间选值时,能够保证第一段体22的轴向长度与第二段体23的轴向长度不会出现悬殊过大的情况,使得第一段体22的外径与轴向长度的比值、第二段体23的外径与轴向长度的比值尽可能贴近0.4-0.6,以保证离心风机的左右性能。
需要说明的是,通过驱动组件4实现至少两个叶轮的转动,至少两个叶轮中的叶轮转速可以设置为相同,也可以设置为不同。
在本申请的一些实施例中,本申请实施例中包括至少两个叶轮。当包括两个叶轮时,两个叶轮可以是串联上下游的关系连接在驱动组件4的一侧上,也可以是平行并联的关系连接在驱动组件4的一侧上,还可以是两个独立的叶轮,互不影响的关系连接在驱动组件4的两侧。当包括三个叶轮时,可以是三个叶轮可以是串联上下游的关系连接在驱动组件4的一侧上,也可以是平行并联的关系连接在驱动组件4的一侧上,还可以是两个独立的叶轮,互不影响的关系连接在驱动组件4的两侧,另一个叶轮串联或并联在驱动组件4的一侧上,形成一侧有两个叶轮,一侧有一个叶轮的结构。当包括四个或四个以上叶轮时,可以参照两个或三个叶轮的设置方式,在此不再赘述。如图27至图29和图32所示,在一个实施例中,包括两个叶轮。至少两个叶轮包括第一叶轮2和第二叶轮3,第一叶轮2与第二叶轮3的结构完全相同,第一叶轮2包括轮毂21、第一段体22和第二段体23,第二叶轮3轮毂21、第一段体22和第二段体23,第一叶轮2和第二叶轮3中的第一段体22、第二段体23的尺寸设置方式即前文所提及的设置方式。
在本申请的一些实施例中,为了便于第一叶轮2和第二叶轮3的布置和安装,如图27至图29和图32所示,壳体1包括第一蜗壳11和第二蜗壳12,第一蜗壳11上设置有第一进风口13、第二进风口14和出风口15,第一叶轮2位于第一蜗壳11内,对于第一叶轮2来说,第一蜗壳11上设置有两个进风口和一个出风口15,分别为第一进风口13、第二进风口14和出风口15,在驱动组件4的作用下,第一叶轮2通过第一进风口13和第二进风口14实现双向进风,通过出风口15实现单向出风,进一步增大了离心风机的进风量和出风量。第一蜗壳11与第二蜗壳12的结构完全相同,第二蜗壳12上同样设置有第一进风口13、第二进风口14和出风口15,第二叶轮3位于第二蜗壳12内,对于第二叶轮3来说,第二蜗壳12上设置有两个进风口和一个出风口15,分别为第一进风口13、第二进风口14和出风口15,在驱动组件4的作用下,第二叶轮3和第二叶轮3都是通过第一进风口13和第二进风口14实现双向进风,通过出风口15实现单向出风,进一步增大了离心风机的进风量和出风量,第一蜗壳11的第二进风口14与第二蜗壳12的第二进风口14相对。驱动组件4位于第一蜗壳11和第二蜗壳12之间,并连接在第一蜗壳11和第二蜗壳12上,驱动组件4与第一蜗壳11的第二进风口14之间以及驱动组件4与第二蜗壳12的第二进风口14之间距离。在一定程度上,该距离的大小影响第二进风口14的进风量,也就是影响第一叶轮2的第二段体23和第二叶轮3的第二段体23的进风量、出风量和效率。
在本申请的一些实施例中,根据前文所述,驱动组件4与第一蜗壳11的第二进风口14之间以及驱动组件4与第二蜗壳12的第二进风口14之间的距离在一定程度上影响第二进风口14的进风量,距离的 大小与进风量的大小成正相关,与离心风机的体积成负相关。因此,需要平衡离心风机的体积和离心风机的整体进风量。在一个实施例中,与第一蜗壳11的第二进风口14之间以及驱动组件4与第二蜗壳12的第二进风口14之间的距离大于等于15mm。
在本申请的一些实施例中,在一个实施例中,第一叶轮2与第二叶轮3的转速相同,以实现均匀出风。驱动组件4同步驱动第一叶轮2和第二叶轮3运动,对于第一叶轮2和第二叶轮3可以共用同一个驱动件41,也可以由两个驱动件41对第一叶轮2和第二叶轮3进行单独驱动,在一个实施例如图27至图29和图32所示,中,第一叶轮2和第二叶轮3共用一个驱动件41。驱动组件4包括驱动件41、第一驱动轴42和第二驱动轴43,第一驱动轴42和第二驱动轴43分别位于驱动件41的两侧。更进一步的,第一蜗壳11与第二蜗壳12相对于驱动组件4呈对称结构,也就是第一叶轮2和第二叶轮3相对于驱动组件4呈对称结构,第一叶轮2和第二叶轮3分别连接在驱动组件4的两侧。在一个实施例中,驱动件41为电机,第一叶轮2连接在第一驱动轴42上,第二叶轮3连接在第二驱动轴43上。
在本申请的一些实施例中,在一个实施例中,第一段体22的轴向长度为55-153mm,第二段体23的轴向长度为30-60mm。更具体的,第一段体22的轴向长度为83mm,第二段体23的轴向长度为60mm。第一段体22和第二段体23的外径相同,均为85mm,第一段体22和第二段体23的内径相同,均为70mm,壳体1的最大外径为107mm。
在本申请的一些实施例中,下面对第一段体22和第二段体23的具体结构进行说明。如图27至图29和图32所示,第一段体22包括第一固定件221和多个第一叶片222,多个第一叶片222间隔均匀设置在轮毂21和第一固定件221之间,第一叶片222朝向第一进风口13。第二段体23包括第二固定件231和多个第二叶片232,多个第二叶片232间隔均匀设置在轮毂21和第二固定件231之间,第二叶片232朝向第二进风口14,第二叶片232的轴向长度小于第一叶片222的轴向长度,更进一步的,第一叶片222的轴向长度与第二叶片232的轴向长度之比在1.0-2.5之间。根据前文所述,第一段体22的宽度大于第二段体23的宽度以增加第一段体22的进风量和出风量,由于第一蜗壳11的第二进风口14和第二蜗壳12的第二进风口14相对设置,第一叶轮2的第二段体23和第二叶轮3的第二段体23共用一个进风通道,导致从第一进风口13进入的风量要大于从第二进风口14进入的风量,因此,将第一叶轮2的第一叶片222的轴向长度设置为大于第一叶轮2的第二叶片232的轴向长度,以提高对第一叶轮2的进风量和出风量的利用率,使第一叶片222的轴向长度能够匹配从第一进风口13所分配到的进风量,第二叶片232的轴向长度能够匹配从第二进风口14所分配的进风量。第一叶片222、轮毂21和第一固定件221围合形成第一容纳腔,第二叶片232、轮毂21和第二固定件231围合形成第二容纳腔,第一容纳腔的尺寸大于第二容纳腔的尺寸,通过将第一叶轮2进行分段处理,来提高对第一叶轮2对气流的利用率。
其中,第一叶片222和第二叶片232可以为独立的两个结构件,也可以将第一叶片222和第二叶片232设置有一体结构,通过轮毂21进行划分,靠近第一进风口13的一侧为第一叶片222,靠近第二进风口14的一侧为第二叶片232。在保证离心风机的出风量的基础上,可以改变第一叶片222和第二叶片232的不同轴向截面处的气流冲角,改善离心风机的流场情况,以此来改善离心风机的气动性能和噪声性能。使用本申请提供的离心风机能够满足400CFM(cubic feet per minute立方英尺每分钟在单位时间内通过的一定体积的气流量)的要求,第一叶片和第二叶片的数量均为48片。
在本申请的一些实施例中,叶片的入口安装角和出口安装角决定了叶片的形状和在轮毂21上相对位置,也会对气流的流动平稳性产生影响。因此,将入口安装角和出口安装角设置在合理的范围内,入口安装角和出口安装角合理配合,有利于气流的流动,使得在第一蜗壳11和第二蜗壳12的出风口15处的气流速度分布更加均匀,气流更加平稳,从而可以有效降低离心风机的气流流动形成的涡流噪音。在一个实施例中,第一叶片222的入口安装角为80°,出口安装角为15°,第二叶片232的入口安装角为75°,出口安装角为5°。
在本申请的一些实施例中,现有技术中的轮毂21为平板状,进入离心叶轮的气流会直接冲击到轮毂21上,再沿着轮毂21发生90°偏转流出,气流的垂直冲击容易导致轮毂21的损坏,且气流方向发生骤变,容易导致气流的流向不稳定,造成动能损失。因此,为了降低气流对轮毂21的冲击和动能损失,离心风机还包括第一导流板,通过第一导流板引导气流的流向。由于第一叶轮2的双向进风,单向出风,因此,可以在第一段体22内和第二段体23内均设置有第一导流板,也可以只在第一段体22或第二段体 23中设置有第一导流板,但要使第一导流板的位置尽可能靠近轮毂21的位置,以使第一段体22和/或第二段体23最大化,保证出风效率。根据前文所述,第一容纳腔的尺寸大于第二容纳腔的尺寸,可以确定,从第一容纳腔中流出的出风量更大,为了降低成本,只在第一容纳腔中设置有第一导流板,为了便于第一导流板的布置,将第一导流板连接在轮毂21朝向第一叶片222的一侧上。第一导流板的表面为朝向第一进风口13和出风口15的弧形面,当气流进入第一叶轮2后,气流与第一导流板接触,避免了气流与轮毂21的接触对轮毂21的直接冲击,再通过弧形面对气流进行导向,避免发生流动方向的骤变,气流沿着导流面逐渐过渡,降低了动能损失,使气流加快流出,提高了离心风机的效率。同理,在第二叶轮3的轮毂21朝向第一叶片222的一侧设置有第二导流板,第二导流板的结构和作用与前文所述类似,在此不再赘述。第二导流板连接在轮毂21上也能够起到增加轮毂21的强度和刚度的作用。
其中,第一导流板可以以可拆卸连接的方式连接在轮毂21上,可以为螺钉连接、插接或螺纹连接,便于进行装配或更换。第一导流板也可以以不可拆卸的方式连接在轮毂21上,可以为一体结构或粘接,减少内部的晃动对第一叶轮2的动平衡的影响。第二导流板可以以可拆卸连接的方式连接在轮毂21上,可以为螺钉连接、插接或螺纹连接,便于进行装配或更换。第二导流板也可以以不可拆卸的方式连接在轮毂21上,可以为一体结构或粘接,减少内部的晃动对第二叶轮3的动平衡的影响。
在本申请的一些实施例中,第一叶轮2的轮毂21的中间设置有第一轴孔,第一轴孔用于与第一驱动轴42配合,在第一驱动轴42带动第一叶轮2转动的过程中,轮毂21上越靠近第一轴孔的位置受力越大,更容易出现损坏,除了依靠第一导流板对轮毂21的强度和刚度的提升之外,在轮毂21上还可以设置有第一加强筋,第一加强筋的尺寸自第一轴孔向轮毂21的边缘逐渐降低,该尺寸可以是指第一加强筋沿轴线方向的尺寸,也可以是指沿径向方向的尺寸。第一加强筋可以只在轮毂21朝向第一叶片222的一侧设置,也可以只在轮毂21朝向第二叶片232的一侧设置,还可以在轮毂21的两侧同时设置有第一加强筋。同理,第二叶轮3的轮毂21的中间设置有第二轴孔,第二轴孔用于与第二驱动轴43配合,在轮毂21上还可以设置有第二加强筋,第二加强筋的尺寸自第二轴孔向轮毂21的边缘逐渐降低,该尺寸可以是指第二加强筋沿轴线方向的尺寸,也可以是指沿径向方向的尺寸。第二加强筋可以只在轮毂21朝向第一叶片222的一侧设置,也可以只在轮毂21朝向第二叶片232的一侧设置,还可以在轮毂21的两侧同时设置有第二加强筋。
在本申请的一些实施例中,在驱动件41驱动第一叶轮2和第二叶轮3的过程中,为了降低第一叶轮2和第二叶轮3内部所产生的震动对动平衡、出风量和出风效率的影响,第一驱动轴42与第一叶轮2和第二叶轮3之间可以设置为不可拆卸连接,通过胶粘或一体结构实现,也可以在第一驱动轴42或第二驱动轴43上设置有至少一个止转面,止转面为平面,第一叶轮2的第一轴孔与第一驱动轴42以及第二叶轮3的第二轴孔与第二驱动轴43以轮廓匹配的方式配合,通过止转面进行驱动扭矩的传递,减少第一叶轮2相对第一驱动轴42和第二叶轮3相对驱动轴的晃动和震动。
在本申请的一些实施例中,除了对第一叶轮2和第二叶轮3进行分段、入口安装角和出口安装角进行设计之外,还可对叶片的形态进行设计。根据前文所述,第一段体22的轴向尺寸大于第二段体23的轴向尺寸,因此,对第一段体22进行充分利用,能够提高离心风机的风量。具体的,第一叶片222和第二叶片232均包括入口段2221、中间段2222和后部段2223,入口段2221朝向第一进风口13,中间段2222连接在入口段2221上并位于入口段2221的下游,后部段2223的两端分别与中间段2222和轮毂21连接,在第一段体22中,沿气流的流动方向,气流依次经过入口段2221、中间段2222和后部段2223。气流随着轴向逐渐偏转,不同位置处的偏转角不同,由于第一叶片222的轴向尺寸大于第二叶片232的轴向尺寸,在第一叶片222上的偏转角和流动速度差异更为明显,在入口段2221处气流角偏向于轴向,而气流达到中间段2222和后部段2223时气流角转为径向,在入口段2221附近造成流动分离,因而,可以确定第一叶片222的中间段2222和后部段2223为第一叶片222的主要做功段,将入口段2221处的内外径之比大于中间段2222的内外径之比,中间段2222的内外径之比大于后部段2223的内外径之比。也就是说入口段2221的宽度小于中间段2222的宽度,中间段2222的宽度小于后部段2223的宽度,第一叶片222的形态参数随着轴向进行适应性的变化,起到减缓入口段2221流动分离的同时,增加中间段2222和后部段2223的做功能力,达到增大风量的目的。
在本申请的一些实施例中,在一个实施例中,入口段2221处的内外径之比为0.85-0.90,中间段2222 的内外径之比为0.80-0.85,后部段2223的内外径之比为0.70-0.80。入口段2221处的内外径之比、中间段2222的内外径之比和后部段2223的内外径之比的取值包括端点值。
在本申请的一些实施例中,入口段2221的入口安装角为60°-80°,出口安装角为0°-25°,中间段2222和后部段2223的入口安装角相同,为70°-90°,出口安装角相同,为0°-30°。
在本申请的一些实施例中,根据前文所述,第一叶片222的轴向长度大于第二叶片232的轴向长度,在第一叶轮2转动的过程中,因轴向长度较长容纳导致第一叶片222与第一固定件221和轮毂21之间的连接不可靠,因此,在轮毂21和第一固定件221之间还设置有第三固定件24,每一第一叶片222均与第三固定件24连接。第三固定件24可以设置在第一容纳腔的内部,也可以设置在第一容纳腔的外部,在一个实施例中,第三固定件24设置在第一容纳腔的外部,且第三固定件24为环形板。
本申请实施例还提出了一种烹饪器具,包括上述任一实施例中的离心风机。
本申请实施例的烹饪器具与上述实施例中的离心风机所具有的有益效果相同,在此不再赘述。在一个实施例中,烹饪器具为OTR微波炉。在保证OTR微波炉腔体容积的前提下,不改变离心风机的宽度,通过对第一叶轮2和第二叶轮3进行分段设计和第一叶片222的形态设计,以提升OTR微波炉的风量和效率。也就是说,在OTR微波炉的外形尺寸不变的情况下,采用本实施例的离心风机可以获得更大的风量,保证腔体容积。在OTR微波炉的外形尺寸增加的情况下,采用本实施例的离心风机可以同时获得更大的风量和更大的腔体容积,最大化开发了离心风机的特性,避免OTR微波炉为达到一定的风量要采用双风机的情况,从而降低了OTR的成本。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (31)

  1. 一种离心风机,其特征在于,包括:
    叶轮组件,包括叶轮本体以及轮毂,所述轮毂包括相背的第一侧面和第二侧面,所述叶轮本体包括第一段和第二段,所述第一段连接在所述第一侧面,所述第二段连接在所述第二侧面,所述第一段的直径和所述第二段的直径沿远离所述轮毂的方向逐渐增大;
    蜗壳,包括蜗壳本体以及蜗舌,所述叶轮组件安装于所述蜗壳本体内,所述蜗舌与所述叶轮组件间隔;
    电机,连接所述轮毂,用于驱动所述叶轮组件转动。
  2. 根据权利要求1所述的离心风机,其特征在于,所述电机位于所述第二侧面所在的一侧,所述第一段的长度为B1,所述第二段的长度为B2,B1>B2且B1、B2>0。
  3. 根据权利要求2所述的离心风机,其特征在于,所述第一段的外径与所述第一段的轴向方向的夹角为a1,所述第二段的外径与所述第二段的轴向方向的夹角为a2,a1<a2,a1≥0°且0°<a2<10°。
  4. 根据权利要求1所述的离心风机,其特征在于,所述叶轮本体的两端的直径相等。
  5. 根据权利要求1所述的离心风机,其特征在于,所述叶轮组件的最大外径为D1,所述第二段的长度为B2,0.4*D1≤B2≤D1且D1、B2>0。
  6. 根据权利要求1所述的离心风机,其特征在于,所述蜗舌与所述蜗壳本体的连接处的半径为蜗壳半径,所述蜗壳半径沿靠近所述轮毂的方向逐渐增大。
  7. 根据权利要求1所述的离心风机,其特征在于,所述蜗壳靠近所述电机处的蜗壳半径为R1,所述蜗壳远离所述电机处的蜗壳半径为R2,所述蜗壳靠近所述轮毂处的蜗壳半径为R3,R1<R2<R3且R1、R2、R3>0。
  8. 根据权利要求1所述的离心风机,其特征在于,所述蜗舌深度沿远离所述轮毂的方向逐渐增加。
  9. 根据权利要求1所述的离心风机,其特征在于,所述叶轮组件还包括加强筋,所述加强筋安装于所述叶轮本体。
  10. 一种家用电器,其特征在于,包括权利要求1至9任一项所述的离心风机。
  11. 一种蜗壳,其特征在于,包括:
    壳体,具有用于容纳叶轮的容纳腔,所述容纳腔的轴向两端形成所述蜗壳的两个进风口,所述壳体的侧部设有连通所述容纳腔以供气流排出的排风口;
    阶梯状蜗舌结构,设置在所述排风口的内侧边缘处,包括至少两个朝靠近所述排风口的方向倾斜排布的蜗舌。
  12. 根据权利要求11所述的蜗壳,其特征在于,所述蜗舌为直线形蜗舌或曲线形蜗舌。
  13. 根据权利要求12所述的蜗壳,其特征在于,至少两个所述蜗舌的形状相同或不同。
  14. 根据权利要求12所述的蜗壳,其特征在于,所述曲线形蜗舌朝远离所述排风口的方向凹陷。
  15. 根据权利要求14所述的蜗壳,其特征在于,所述曲线形蜗舌的蜗舌面由前倾斜圆弧面以及后倾斜圆弧面平滑过渡连接而成,且所述前倾斜圆弧面以及后倾斜圆弧面的交线处为所述曲线形蜗舌的最凹处,其中,所述前倾斜圆弧面为朝远离电机的方向倾斜形成的弧面,所述后倾斜圆弧面为朝靠近电机的方向倾斜形成的弧面,所述前倾斜圆弧面与后倾斜圆弧面相对于所述交线不对称。
  16. 根据权利要求15所述的蜗壳,其特征在于,所述曲线形蜗舌包括前端面与后端面,所述前端面的轮廓线具有第一圆弧段,所述后端面的轮廓线具有第二圆弧段,所述前倾斜圆弧面以及后倾斜圆弧面的交线轮廓线具有第三圆弧段,所述前端面的轮廓线和所述交线轮廓线之间连成的平滑曲面构成所述前倾斜圆弧面,所述后端面的轮廓线和所述交线轮廓线之间连成的平滑曲面构成后倾斜圆弧面;所述第一圆弧段的半径大于所述第二圆弧段的半径且小于所述第三圆弧段的半径。
  17. 根据权利要求16所述的蜗壳,其特征在于,定义所述叶轮的圆心为O点,所述第一圆弧段、所述第二圆弧段、所述第三圆弧段、所述前倾斜圆弧面以及后倾斜圆弧面具有与所述叶轮外缘距离最小的点定义为A点,其中,所述A点与O点的连线与过O点的水平面之间的夹角a的范围值为60-95°。
  18. 根据权利要求17所述的蜗壳,其特征在于,所述第一圆弧段、所述第二圆弧段上的A点与O点的连线与过O点的水平面之间的夹角为a1、a2,所述第三圆弧段上的A点与O点的连线与过O点的水平面之间的夹角为a3,所述前倾斜圆弧面以及后倾斜圆弧面上的A点与O点的连线与过O点的水平面之间的夹角为a4、a5,其中,所述a1、a2大于a3、a4或a5中的任一个,且所述a4、a5大于a3。
  19. 一种离心风机,其特征在于,包括叶轮、电机以及如权利要求11-18任一项所述的蜗壳,所述叶轮安装在所述电机的转轴上并置于所述容纳腔,所述壳体包括前板、后板以及设置在前板、后板之间的围板,两个进风口分别开设在前板、后板与所述叶轮对应的位置,所述叶轮包括前端圈、后端圈、设置在前端圈与所述后端圈之间的分割圈,所述前倾斜圆弧面以及后倾斜圆弧面的交线与所述分割圈位置对应。
  20. 根据权利要求19所述的离心风机,其特征在于,所述叶轮还包括设置在前端圈与所述分割圈之间的多个第一叶片以及设置在所述分割圈与所述后端圈之间的多个第二叶片,其中,在所述叶轮的轴向上,所述第一叶片的长度大于所述第二叶片的长度;所述第一叶片被分割成入口段、中部段以及后部段,其中,在所述叶轮的径向上,所述入口段、中部段以及后部段的长度依次减小。
  21. 一种家用电器,其特征在于,包括如权利要求19或20所述的离心风机。
  22. 一种离心风机,其特征在于,包括:
    壳体,所述壳体上设置有第一进风口、第二进风口和出风口,所述出风口位于所述第一进风口与所述第二进风口之间;
    驱动组件,所述驱动组件连接在所述壳体上并靠近所述第二进风口;
    至少两个叶轮,每一所述叶轮均包括轮毂、第一段体和第二段体,所述轮毂连接在所述驱动组件上,所述第一段体和所述第二段体分别连接在轮毂的两侧,所述第二段体靠近所述驱动组件设置,所述第一段体的轴向长度与所述第二段体的轴向长度之比在1.0-2.5之间。
  23. 根据权利要求22所述的离心风机,其特征在于,所述第一段体的轴向长度为55-153mm,所述第二段体的轴向长度为30-60mm。
  24. 根据权利要求23所述的离心风机,其特征在于,所述第一段体的轴向长度为83mm,所述第二段 体的轴向长度为60mm。
  25. 根据权利要求22所述的离心风机,其特征在于,所述第一段体包括第一固定件和多个第一叶片,多个所述第一叶片设置在所述轮毂和所述第一固定件之间,所述第一叶片朝向所述第一进风口;
    所述第二段体包括第二固定件和多个第二叶片,多个所述第二叶片设置在所述轮毂和所述第二固定件之间,所述第二叶片朝向所述第二进风口,所述第一叶片的轴向长度与所述第二叶片的轴向长度之比在1.0-2.5之间。
  26. 根据权利要求25所述的离心风机,其特征在于,所述驱动组件与所述第二进风口之间的距离大于等于15mm。
  27. 根据权利要求25所述的离心风机,其特征在于,所述第一叶片和所述第二叶片均包括:
    入口段,所述入口段朝向所述第一进风口;
    中间段,所述中间段连接在所述入口段上并位于所述入口段的下游;
    后部段,所述后部段的两端分别与所述中间段和所述轮毂连接,所述入口段的内外径之比大于所述中间段的内外径之比,所述中间段的内外径之比大于所述后部段的内外径之比。
  28. 根据权利要求27所述的离心风机,其特征在于,所述入口段的内外径之比为0.85-0.90,所述中间段的内外径之比为0.80-0.85,所述后部段的内外径之比为0.70-0.80。
  29. 根据权利要求27所述的离心风机,其特征在于,所述入口段的入口安装角为60°-80°,出口安装角为0°-25°,所述中间段和所述后部段的入口安装角为70°-90°,出口安装角为0°-30°。
  30. 根据权利要求22所述的离心风机,其特征在于,所述至少两个叶轮包括第一叶轮和第二叶轮,所述壳体包括第一蜗壳和第二蜗壳,所述第一蜗壳和所述第二蜗壳上均设置有所述第一进风口、第二进风口和出风口,所述驱动组件位于所述第一蜗壳和所述第二蜗壳之间,所述第一叶轮位于所述第一蜗壳内,所述第二叶轮位于所述第二蜗壳内。
  31. 一种烹饪器具,其特征在于,包括权利要求22-30任一项所述的离心风机。
PCT/CN2021/140408 2020-12-31 2021-12-22 离心风机、家用电器、蜗壳和烹饪器具 WO2022143328A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202011638814.X 2020-12-31
CN202011638814.XA CN112780599A (zh) 2020-12-31 2020-12-31 离心风机以及烹饪器具
CN202120942818.0 2021-04-30
CN202120942818.0U CN215109673U (zh) 2021-04-30 2021-04-30 蜗壳、离心风机以及家用电器
CN202110605278.1 2021-05-31
CN202110605278.1A CN113309714B (zh) 2021-05-31 2021-05-31 多翼离心风机和家用电器
CN202121204407.8 2021-05-31
CN202121204407.8U CN215293002U (zh) 2021-05-31 2021-05-31 叶轮组件、多翼离心风机和家用电器

Publications (1)

Publication Number Publication Date
WO2022143328A1 true WO2022143328A1 (zh) 2022-07-07

Family

ID=82260259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140408 WO2022143328A1 (zh) 2020-12-31 2021-12-22 离心风机、家用电器、蜗壳和烹饪器具

Country Status (1)

Country Link
WO (1) WO2022143328A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117267169A (zh) * 2023-11-23 2023-12-22 广东顺威精密塑料股份有限公司 一种变进口角的多翼离心叶轮及使用其的离心风机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201771854U (zh) * 2010-08-31 2011-03-23 广东美的电器股份有限公司 有效降低噪音的贯流风轮及具有该贯流风轮的空气设备
US20130011247A1 (en) * 2011-07-07 2013-01-10 Jin-Hsun Liu Centrifugal fan with a multistage impeller
CN105257598A (zh) * 2015-11-16 2016-01-20 上海林内有限公司 倾斜阶梯蜗舌风机蜗壳
JP2019090344A (ja) * 2017-11-13 2019-06-13 ミネベアミツミ株式会社 ブロワ装置
CN111396356A (zh) * 2020-04-20 2020-07-10 宁波奥克斯电气股份有限公司 叶轮组件和空调器
CN212005949U (zh) * 2019-12-27 2020-11-24 宁波奥克斯电气股份有限公司 一种离心风机、新风装置和空调器
CN112780599A (zh) * 2020-12-31 2021-05-11 广东美的厨房电器制造有限公司 离心风机以及烹饪器具
CN113309714A (zh) * 2021-05-31 2021-08-27 广东美的厨房电器制造有限公司 多翼离心风机和家用电器
CN215109673U (zh) * 2021-04-30 2021-12-10 广东美的厨房电器制造有限公司 蜗壳、离心风机以及家用电器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201771854U (zh) * 2010-08-31 2011-03-23 广东美的电器股份有限公司 有效降低噪音的贯流风轮及具有该贯流风轮的空气设备
US20130011247A1 (en) * 2011-07-07 2013-01-10 Jin-Hsun Liu Centrifugal fan with a multistage impeller
CN105257598A (zh) * 2015-11-16 2016-01-20 上海林内有限公司 倾斜阶梯蜗舌风机蜗壳
JP2019090344A (ja) * 2017-11-13 2019-06-13 ミネベアミツミ株式会社 ブロワ装置
CN212005949U (zh) * 2019-12-27 2020-11-24 宁波奥克斯电气股份有限公司 一种离心风机、新风装置和空调器
CN111396356A (zh) * 2020-04-20 2020-07-10 宁波奥克斯电气股份有限公司 叶轮组件和空调器
CN112780599A (zh) * 2020-12-31 2021-05-11 广东美的厨房电器制造有限公司 离心风机以及烹饪器具
CN215109673U (zh) * 2021-04-30 2021-12-10 广东美的厨房电器制造有限公司 蜗壳、离心风机以及家用电器
CN113309714A (zh) * 2021-05-31 2021-08-27 广东美的厨房电器制造有限公司 多翼离心风机和家用电器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117267169A (zh) * 2023-11-23 2023-12-22 广东顺威精密塑料股份有限公司 一种变进口角的多翼离心叶轮及使用其的离心风机
CN117267169B (zh) * 2023-11-23 2024-03-12 广东顺威精密塑料股份有限公司 一种变进口角的多翼离心叶轮及使用其的离心风机

Similar Documents

Publication Publication Date Title
CN104196761A (zh) 一种双进风离心风机
US11116367B2 (en) Electric fan and vacuum cleaner having same
CN112780599A (zh) 离心风机以及烹饪器具
WO2022143328A1 (zh) 离心风机、家用电器、蜗壳和烹饪器具
EP3943754A1 (en) Fan and electric appliance
CN102261341A (zh) 小型双出风离心风机
US20230332604A1 (en) Fan Assembly and Vacuum Cleaner
CN202194839U (zh) 小型双出风离心风机
CN102937112A (zh) 抽油烟机的风机蜗壳中间板导叶进风结构
CN215109624U (zh) 组合风机以及烹饪器具
CN113309714B (zh) 多翼离心风机和家用电器
CN207673580U (zh) 一种新型节能的混流通风机
CN201080925Y (zh) 风扇的导流架构
CN114352574B (zh) 一种具有防涡片的离心风机
CN110500317A (zh) 一种可装配多扇叶的风扇
WO2019011315A1 (zh) 离心叶轮和具有其的离心风机、吸尘器
CN215109623U (zh) 组合风机以及烹饪器具
WO2019144736A1 (zh) 叶轮、风机组件以及电器
CN215293002U (zh) 叶轮组件、多翼离心风机和家用电器
CN102979765A (zh) 中间板多层导叶进风结构的风机蜗壳
CN214366855U (zh) 组合风机以及烹饪器具
CN213016936U (zh) 混合型叶轮和风机
CN203051230U (zh) 抽油烟机的风机蜗壳中间板导叶进风结构
CN218151505U (zh) 一种空气净化器用混流风机
CN113107898B (zh) 离心风机用叶片、叶轮、离心风机以及家用电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.11.2023)