WO2021168978A1 - 一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法 - Google Patents
一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法 Download PDFInfo
- Publication number
- WO2021168978A1 WO2021168978A1 PCT/CN2020/081737 CN2020081737W WO2021168978A1 WO 2021168978 A1 WO2021168978 A1 WO 2021168978A1 CN 2020081737 W CN2020081737 W CN 2020081737W WO 2021168978 A1 WO2021168978 A1 WO 2021168978A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- powder
- gas
- oxygen
- alloy powder
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4417—Methods specially adapted for coating powder
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/442—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4481—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
- C23C16/4488—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/14—Formation of a green body by jetting of binder onto a bed of metal powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2202/00—Treatment under specific physical conditions
- B22F2202/15—Use of fluidised beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the invention belongs to the field of powder metallurgy titanium, and provides a method for realizing oxygen-free passivation of titanium and titanium alloy powder by gas-solid fluidization.
- Powder metallurgy titanium and titanium alloys have uniform structure, fine grains, and have the characteristics of near net shape, which have attracted widespread attention from titanium workers in the world.
- the finer titanium and titanium alloy powders due to the large specific surface area of the powder, especially the finer titanium and titanium alloy powders, they are extremely sensitive to interstitial elements such as oxygen, nitrogen and hydrogen, and impurity elements such as oxygen and nitrogen are easily adsorbed on the surface of the titanium powder, resulting in the impurity content of the titanium powder.
- the interstitial oxygen (O) content is one of the key factors that affect the mechanical properties of titanium, and the more inexpensive hydrogenated dehydrogenation powder is due to the irregular shape of the powder and the increase in oxygen content during the forming and processing process.
- titanium powder with low oxygen content has higher requirements for oxygen content control during transportation and storage, resulting in higher product packaging, storage and transportation costs. Therefore, the passivation protection of titanium powder controls the adsorption of oxygen atoms on the titanium surface to form an oxide film, improves the application environment and technology of irregular fine powder, reduces the storage and transportation cost of titanium powder, and prepares titanium products with excellent comprehensive performance. At present, an important research direction of low-cost powder metallurgy titanium and titanium alloys.
- Patent CN201810200270.5, CN201910133682.6, etc. propose to use organic matter to coat titanium powder to control the degree of oxygen increase in the later use and transportation of the powder.
- this kind of coating with liquid organic matter has a problem that it is difficult to control. Too high solution concentration will cause too much powder surface coating, which is difficult to remove after sintering, and too low solution concentration will hardly achieve the coating effect.
- the patent CN202010006974.6 proposes to use the liquid phase method to purify the particle surface of the metal chloride titanium powder, but the patent uses the metal halide to physically coat the surface of the titanium powder to achieve powder passivation, and the liquid phase passivation process uses organic Solvent preparation coating liquid.
- the present invention proposes a gas-solid fluidization method for oxygen-free passivation of titanium and titanium alloy powders.
- a fluidized bed is used to convert low-boiling metal halides ( MX a , M stands for metal element, X is F, Cl, Br, I halogen group element) vaporization, at a certain temperature to achieve gaseous metal chloride oxygen-free passivation of titanium powder, by adjusting the gas-solid fluidization temperature, make titanium
- the Ti-MX oxygen-free passivation layer or Ti-M metal passivation layer is formed on the surface of the powder, and finally the titanium powder is oxygen-free passivation through Ti-MX or Ti-M.
- the oxygen-free passivation layer can be uniformly deposited on the surface of the titanium powder to prevent uneven passivation caused by the agglomeration and adhesion of the powder.
- the purpose of the present invention is to provide a gas-solid fluidization method for oxygen-free passivation of titanium and titanium alloy powders.
- the method vaporizes metal halides through a fluidized bed, and the titanium powder reacts with the metal halides at a certain temperature.
- An oxygen-free passivation layer of Ti-MX or Ti-M is formed on the surface of the titanium powder, which effectively realizes the low gap control of the titanium powder; at the same time, the generation of gaseous TiX x O y is beneficial to break the oxide film on the surface of the titanium powder and purify the titanium powder particles
- the surface promotes sintering densification, and the metal element M is conducive to further sintering densification or microalloying of titanium products, thereby improving the overall performance of titanium products.
- step (3) The oxygen-free passivated titanium powder obtained in step (3) is formed by powder metallurgy technology to obtain a green body;
- step (4) The green body obtained in step (4) is sintered in a vacuum or argon atmosphere according to its molding technology. After the temperature rise treatment, it is densified and sintered. The sintering temperature is 1070-1400°C, and the holding time is 0.5-5h. Finally, high-performance titanium parts are produced.
- the metal halide described in step (1) is anhydrous SnF 4 , SnCl 4 , SnBr 4 , SnI 4 , FeCl 3 , and VCl 4 .
- the titanium powder described in step (1) includes various commercially available pure titanium powders or titanium alloy powders.
- the heating temperature of the vaporizer in step (2) is 50-400° C., and the gas flow rate is 100-300 ml/min.
- the heating temperature of the fluidized bed in step (3) is 100-500°C.
- step (4) includes compression molding, isostatic pressing, 3D printing, injection molding, gel injection molding, 3D cold printing or glue-spraying molding technology.
- the heating treatment described in step (5) specifically includes: raising from room temperature to 100-650° C. and keeping the temperature for 120 min-240 min, and the heating rate is 0.5° C./min-3° C./min.
- the low boiling point metal halide is vaporized through a fluidized bed to form an oxygen-free passivation layer on the surface of the titanium powder, and the formed Ti-MX oxygen-free passivation layer or Ti-M metal passivation layer has no negative effect on the properties of the titanium powder As a result, various processes can be used for subsequent forming.
- the Ti-M-X or Ti-M oxygen-free passivation layer on the surface of the titanium powder can be controlled.
- a suitable oxygen-free passivation layer can be selected according to actual production needs.
- the oxygen-free passivation layer produced can effectively inhibit and control the adsorption of oxygen atoms on the surface of titanium powder, improve the application environment and technology of irregular fine powder, reduce the storage and transportation cost of titanium powder, and prepare titanium products with excellent comprehensive performance.
- the method has strong applicability, has no restrictions on the particle size distribution, shape and type of titanium powder, has a wide range of applications and a simple process, and can be continuously operated in large quantities.
- the mass ratio of 30 ⁇ m hydrodehydrogenation (HDH) pure titanium powder to VCl 4 is 80:20.
- the specific preparation steps are as follows:
- the oxygen-free passivated titanium powder obtained in step (3) is formed by an injection molding process using a polyoxymethylene-based binder system to obtain a green body;
- step (4) The green body obtained in step (4) is first subjected to acid removal at 120°C, and then heated to 450°C for 120 minutes at 2°C/min, and then heated to 1270°C for 2.5 hours to obtain high-performance injection molded titanium The whole process of the parts is carried out in a vacuum degreasing and sintering furnace.
- the mass ratio of 20 ⁇ m gas atomized Ti-40Al titanium alloy powder to SnCl 4 is 92:8, and the whole operation and the device are carried out under an argon atmosphere.
- the specific preparation steps are as follows:
- step (3) The oxygen-free passivated titanium powder obtained in step (3) is press-formed by cold isostatic pressing;
- step (4) Put the green body obtained in step (4) in a vacuum furnace with a vacuum degree of 10 -3 MPa and heat it to 350°C for 180 minutes at 2.5°C/min and then heat it to 1400°C for 2 hours to obtain high-performance titanium aluminum Alloy parts.
- the mass ratio of -500 mesh spheroidized TC4 powder to SnCl 4 is 95:5, and the whole operation and the device are carried out under an argon protective atmosphere.
- the specific preparation steps are as follows:
- step (4) The green body obtained in step (4) is heated to 450°C for 140 minutes at 2°C/min in argon, and then heated to 1230°C for 3 hours to obtain high-performance TC4 titanium parts.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法,属于粉末冶金钛领域。提出了将低沸点金属卤化物通过流化床实现气-固流化,使金属卤化物与钛粉末反应,在钛粉末表面均匀沉积一层厚度可控且均匀的无氧钝化层,有效实现钛粉末的低间隙控制;同时,气态TiX xO y的生成有利于破除钛粉末表面的氧化膜,净化钛粉末颗粒表面,促进烧结致密化,并且金属合金元素有利于实现钛制品的进一步烧结致密化或微合金化,从而提高钛制品的综合性能。使用流化床气-固流化可以防止粉末的团聚粘连而导致的钝化不均匀,对钛粉末的粒径分布、形状及种类没有限制,应用广泛且工艺简单,可大批量连续作业。
Description
本发明属于粉末冶金钛领域,提供了一种气-固流化实现无氧钝化钛及钛合金粉末的方法。
粉末冶金钛及钛合金组织均匀、晶粒细小,且具有近净成形的特点,引起世界钛工作者的广泛关注。但是由于粉末的比表面积大,尤其是粒径更细的钛及钛合金粉末,对氧氮氢等间隙元素极其敏感,杂质元素如氧氮等容易在钛粉末表面吸附,造成钛粉末的杂质含量增加。一方面间隙原子氧(O)含量是影响钛的机械性能的关键因素之一,而价格更为低廉的氢化脱氢粉末因粉末较细形状不规则更在成形、加工过程中氧含量增加,造成性能难以达到使用要求而限制了低成本钛粉的使用;另一方面低氧含量的钛粉对运输、贮存过程中的氧含量控制要求更高,导致产品包装、储存和运输成本更高。因此,对钛粉进行钝化保护控制氧原子在钛表面的吸附而形成氧化膜,提高不规则细粉的应用环境及工艺,减少钛粉的贮存运输成本,制备综合性能优良的钛制品,是目前低成本粉末冶金钛及钛合金的一个重要研究方向。
当前对钛粉进行表面钝化处理的研究较少,专利CN201810200270.5、CN201910133682.6等提出通过有机物包覆钛粉末达到度控制粉末在后期使用和运输过程中的增氧问题。但是这种使用液体有机物包覆存在难控制的问题,过高的溶液浓度会导致粉体表面包覆量过多,后期烧结难以脱除,过低的溶液浓度则难以达到包覆效果。此外,专利CN202010006974.6提出采用液相法实现金属氯化物钛粉末净化颗粒表面,但是该专利是通过金属卤化物物理包覆在钛粉末表面实现粉末钝化,且液相钝化过程中采用有机溶剂配制包覆液。为了实现钛粉末的化学钝化,且不使用有机溶剂,本发明提出了一种气-固流化实现无氧钝化钛及钛合金粉末的方法,采用流化床将低沸点金属卤化物(MX
a,M代表金属元素,X为F、Cl、Br、I卤族元素)汽化,在一定温度下实现气态金属氯化物无氧钝化钛粉末,通过调控气-固流化温度,使钛粉末表面形成Ti-M-X无氧钝化层,或Ti-M 金属钝化层,最终通过Ti-M-X或Ti-M实现钛粉末无氧钝化。同时,通过气-固流化可以使无氧钝化层均匀的沉积在钛粉末表层,防止粉末的团聚粘连而导致的钝化不均匀。
发明内容
本发明的目的在于提供一种气-固流化实现无氧钝化钛及钛合金粉末的方法,该方法通过流化床使金属卤化物汽化,在一定温度下钛粉末与金属卤化物反应,在钛粉末表面形成Ti-M-X或Ti-M无氧钝化层,有效实现钛粉末的低间隙控制;同时,气态TiX
xO
y的生成有利于破除钛粉末表面的氧化膜,净化钛粉末颗粒表面,促进烧结致密化,并且金属元素M有利于实现钛制品的进一步烧结致密化或微合金化,从而提高钛制品的综合性能。
为了获得上述的一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法,其特征在于:钛及钛合金粉末与金属卤化物的质量比为80:20-98:2,具体制备步骤如下:
(1)将符合配方要求的金属卤化物和钛粉末分别置于气化器和流化床反应器中;
(2)加热气化器至一定温度,使金属卤化物气化,按照一定流速将干燥的氩气和卤化物气体按照体积比10:90-90:10一块通入流化床反应器中;
(3)打开流化床,并将流化床加热到一定温度,通入氩气和金属卤化物气体后使钛粉末流化10-300min,冷却后得到金属氯化物无氧钝化的钛粉末;
(4)将步骤(3)中得到的无氧钝化钛粉末通过粉末冶金技术将其成型得到生坯;
(5)将步骤(4)中得到的生坯根据其成型技术进行真空或氩气气氛烧结,经过升温处理后,进行致密化烧结,烧结温度为1070-1400℃,保温时间为0.5-5h,最终制得高性能钛制品部件。
进一步地,步骤(1)中所述的金属卤化物为无水SnF
4、SnCl
4、SnBr
4、SnI
4、FeCl
3、VCl
4。
进一步地,步骤(1)中所述的钛粉末包括为各种市售的纯钛粉或钛合金粉末。
进一步地,步骤(2)中所述的气化器加热温度为50-400℃,气体流速为100-300ml/min。
进一步地,步骤(3)中所述的流化床加热温度为100-500℃。
进一步地,步骤(4)中所述的粉末冶金技术包括模压成形、等静压成形、3D打印、注射成形、凝胶注模成形、3D冷打印或喷胶粘粉成形技术。
进一步地,步骤(5)中所述的升温处理具体包括:从室温升至100-650℃并保温120min-240min,升温速率为0.5℃/min-3℃/min。
本发明的优点:
(1)通过气-固流化工艺对钛及钛合金粉末进行化学钝化,无需液体介质且不使用有机溶剂,使钛粉钝化工艺更加简单且容易控制,并且不会因有机溶剂介质造成二次粉末污染。
(2)通过流化床将低沸点金属卤化物汽化,在钛粉末表面形成无氧钝化层,形成的Ti-M-X无氧钝化层或Ti-M金属钝化层对钛粉性质没有负面影响,后续可采用多种工艺进行后续成形。
(3)可通过调节流化温度,实现钛粉末表面Ti-M-X或Ti-M无氧钝化层调控,可根据实际生产需要选择适合的无氧钝化层。
(4)产生的无氧钝化层可以有效抑制控制氧原子在钛粉表面的吸附,提高不规则细粉的应用环境及工艺,减少钛粉的贮存运输成本,制备综合性能优良的钛制品。
(5)采用流化工艺,可以使钛及钛合金粉末表面形成的无氧钝化层更加均匀、致密,不会因粉末粒径及形状等团聚作用而影响钛粉末的无氧钝化效果。
(6)该方法适用性强,对钛粉末的粒径分布、形状及种类没有限制,应用广泛且工艺简单,可大批量连续作业。
实施例1:
30μm氢化脱氢(HDH)纯钛粉与VCl
4的质量比为80:20,具体制备步骤如下:
(1)将符合配方要求的VCl
4和HDH纯钛粉末分别置于气化器和流化床反应器中;
(2)加热气化器至180℃,使VCl
4气化,将VCl
4和干燥的氩气按照体积比20:80一块通入流化床反应器中;
(3)打开流化床,并将流化床加热到300℃,通入氩气和金属卤化物气体后使钛粉末流化80min,冷却后得到无氧钝化的钛粉末;
(4)将步骤(3)中得到的无氧钝化钛粉末使用聚甲醛基粘结剂体系,通过注射成形工艺进行成形得到生坯;
(5)将步骤(4)中得到的生坯先在120℃下进行酸脱,然后按照2℃/min加热至450℃保温120min,之后加热至1270℃保温2.5h,得到注射成形高性能钛部件,全程在真空脱脂烧结炉中进行。
实施例2:
20μm气雾化Ti-40Al钛合金粉与SnCl
4的质量比为92:8,其中全程操作及装置在氩气保护气氛下进行。具体制备步骤如下:
(1)将符合配方要求的SnCl
4和Ti-40Al钛粉末分别置于气化器和流化床反应器中;
(2)加热气化器至120℃,使SnCl
4气化,将SnCl
4和干燥的氩气按照体积比15:85一块通入流化床反应器中;
(3)打开流化床,并将流化床加热到150℃,通入氩气和金属卤化物气体后使钛粉末流化50min,冷却后得到无氧钝化的Ti-40Al钛粉末;
(4)将步骤(3)中得到的无氧钝化钛粉末使用冷等静压进行压制成形;
(5)将步骤(4)中得到的生坯在真空炉中,真空度为10
-3MPa按照2.5℃/min加热至350℃保温180min,之后加热至1400℃保温2h,得到高性能钛铝合金部件。
实施例3:
-500目的离子球化TC4粉与SnCl
4的质量比为95:5,全程操作及装置在氩气保护气氛下进行。具体制备步骤如下:
(1)将符合配方要求的金属卤化物和TC4粉分别置于气化器和流化床反应器中;
(2)加热气化器至150℃,使SnCl
4气化,将SnCl
4和干燥的氩气按照体积比10:90一块通入流化床反应器中;
(3)打开流化床,并将流化床加热到500℃,通入氩气和金属卤化物气体后使钛粉末流化30min,冷却后得到无氧钝化的钛粉末;
(4)将步骤(3)中得到的无氧钝化钛粉末使用低分子量凝胶体系进行凝胶注模成形;
(5)将步骤(4)中得到的生坯在氩气中按照2℃/min加热至450℃保温140min,之后加热至1230℃保温3h,得到高性能TC4钛部件。
Claims (7)
- 一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法,其特征在于:具体制备步骤如下:(1)将符合配方要求的金属卤化物和钛粉末分别置于气化器和流化床反应器中;钛及钛合金粉末与金属卤化物的质量比为80:20-98:2,(2)加热气化器至一定温度,使金属卤化物气化,按照一定流速将干燥的氩气和卤化物气体按照体积比10:90-90:10一块通入流化床反应器中;(3)打开流化床,并将流化床加热到一定温度,通入氩气和金属卤化物气体后使钛粉末流化10-300min,冷却后得到金属氯化物无氧钝化的钛粉末;(4)将步骤(3)中得到的无氧钝化钛粉末通过粉末冶金技术将其成型得到生坯;(5)将步骤(4)中得到的生坯根据其成型技术进行真空或氩气气氛烧结,经过升温处理后,进行致密化烧结,烧结温度为1070-1400℃,保温时间为0.5-5h,最终制得高性能钛制品部件。
- 根据权利要求1所述的一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法,其特征在于:步骤(1)中所述的金属卤化物为无水SnF 4、SnCl 4、SnBr 4、SnI 4、FeCl 3、VCl 4。
- 根据权利要求1所述的一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法,其特征在于:步骤(1)中所述的钛粉末包括为各种市售的纯钛粉或钛合金粉末。
- 根据权利要求1所述的一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法,其特征在于:步骤(2)中所述的气化器加热温度为50-400℃,气体流速为100-300ml/min。
- 根据权利要求1所述的一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法,其特征在于:步骤(3)中所述的流化床加热温度为100-500℃。
- 根据权利要求1所述的一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法,其特征在于:步骤(4)中所述的粉末冶金技术包括模压成形、等静压成形、3D打印、注射成形、凝胶注模成形、3D冷打印或喷胶粘粉成形技术。
- 根据权利要求1所述的气-固流化制备无氧钝化钛及钛合金粉末制品的方法,其特征在于:步骤(5)中所述的升温处理具体包括:从室温升至100-650℃ 并保温120min-240min,升温速率为0.5℃/min-3℃/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/275,198 US11612936B2 (en) | 2020-02-24 | 2020-03-27 | Method for preparing oxygen-free passivated titanium or titanium-alloy powder product by means of gas-solid fluidization |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010114056.5 | 2020-02-24 | ||
CN202010114056.5A CN111283215B (zh) | 2020-02-24 | 2020-02-24 | 一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021168978A1 true WO2021168978A1 (zh) | 2021-09-02 |
Family
ID=71029354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/081737 WO2021168978A1 (zh) | 2020-02-24 | 2020-03-27 | 一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11612936B2 (zh) |
CN (1) | CN111283215B (zh) |
WO (1) | WO2021168978A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115464136A (zh) * | 2022-08-29 | 2022-12-13 | 陕西斯瑞新材料股份有限公司 | 一种球形铜铬合金粉工艺用高纯净电极的制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112605382A (zh) * | 2020-11-06 | 2021-04-06 | 中国科学院过程工程研究所 | 一种包覆氧杂质吸附剂的钛粉体及其制备方法 |
CN113414390B (zh) * | 2021-06-09 | 2023-01-10 | 北京科技大学 | 一种钛合金注射喂料的生产方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1852997A (zh) * | 2003-09-19 | 2006-10-25 | 思研(Sri)国际顾问与咨询公司 | 通过还原金属卤化物生产金属组合物的方法和装置 |
CN101035923A (zh) * | 2004-08-13 | 2007-09-12 | M&G聚合物意大利有限公司 | 制备蒸气沉积的氧清除颗粒的方法 |
US7435282B2 (en) * | 1994-08-01 | 2008-10-14 | International Titanium Powder, Llc | Elemental material and alloy |
CN101568398A (zh) * | 2006-12-22 | 2009-10-28 | 国际钛粉有限责任公司 | 金属粉末的直接钝化 |
CN108465806A (zh) * | 2018-03-12 | 2018-08-31 | 北京科技大学 | 一种有机物包覆合金粉末制备高性能粉末冶金制品的方法 |
CN109848405A (zh) * | 2019-02-22 | 2019-06-07 | 北京科技大学 | 粉末表面处理剂、钛或钛合金粉表面处理方法及复合粉末 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5314185A (en) * | 1976-07-15 | 1978-02-08 | Mitsubishi Gas Chem Co Inc | Production of oxygen absorbent |
JPS6447844A (en) * | 1987-08-12 | 1989-02-22 | Toyota Central Res & Dev | Method and apparatus for treating surface |
US5227195A (en) * | 1989-04-04 | 1993-07-13 | Sri International | Low temperature method of forming materials using one or more metal reactants and a halogen-containing reactant to form one or more reactive intermediates |
RU1802752C (ru) * | 1991-04-22 | 1993-03-15 | Московский институт стали и сплавов | Способ плакировани порошковых материалов тугоплавкими металлами |
US5855678A (en) * | 1997-04-30 | 1999-01-05 | Sri International | Fluidized bed reactor to deposit a material on a surface by chemical vapor deposition, and methods of forming a coated substrate therewith |
US6720259B2 (en) * | 2001-10-02 | 2004-04-13 | Genus, Inc. | Passivation method for improved uniformity and repeatability for atomic layer deposition and chemical vapor deposition |
DE102004028922A1 (de) * | 2003-06-16 | 2005-02-03 | Corus Aluminium N.V. | Aluminiumlegierungserzeugnis |
CN100557044C (zh) * | 2004-07-30 | 2009-11-04 | 联邦科学和工业研究组织 | 通过金属卤化物与还原剂反应由相应的金属卤化物生产金属的方法和装置 |
SI1851349T1 (sl) * | 2005-01-27 | 2010-08-31 | Peruke Proprietary Ltd | Postopek pridobivanja titana |
US9777347B2 (en) * | 2007-06-11 | 2017-10-03 | Advance Material Products, Inc. | Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen |
CN102888493A (zh) * | 2011-07-18 | 2013-01-23 | 江苏正达炉料有限公司 | 一种钝化镁的制备方法 |
FR3038623B1 (fr) * | 2015-07-10 | 2017-06-30 | Fives | Procede permettant de retirer les oxydes presents a la surface des nodules d'une poudre metallique avant l'utilisation de celle-ci dans un procede industriel |
AU2017280093B2 (en) * | 2016-06-20 | 2022-07-07 | D-Block Coating Pty Ltd | Coating process and coated materials |
CN107570723B (zh) * | 2017-08-10 | 2019-12-03 | 湖南工业大学 | 一种碳酸钴流态化还原生产硬质合金用超细钴粉的方法及其生产系统 |
CN109360889B (zh) * | 2018-07-28 | 2020-04-28 | 西安交通大学 | 一种高填充因子的钙钛矿太阳能电池及其制备方法 |
CN111101019B (zh) | 2020-01-03 | 2021-04-16 | 北京科技大学 | 金属卤化物净化颗粒表面制备高性能钛及钛合金的方法 |
-
2020
- 2020-02-24 CN CN202010114056.5A patent/CN111283215B/zh active Active
- 2020-03-27 WO PCT/CN2020/081737 patent/WO2021168978A1/zh active Application Filing
- 2020-03-27 US US17/275,198 patent/US11612936B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7435282B2 (en) * | 1994-08-01 | 2008-10-14 | International Titanium Powder, Llc | Elemental material and alloy |
CN1852997A (zh) * | 2003-09-19 | 2006-10-25 | 思研(Sri)国际顾问与咨询公司 | 通过还原金属卤化物生产金属组合物的方法和装置 |
CN101035923A (zh) * | 2004-08-13 | 2007-09-12 | M&G聚合物意大利有限公司 | 制备蒸气沉积的氧清除颗粒的方法 |
CN101568398A (zh) * | 2006-12-22 | 2009-10-28 | 国际钛粉有限责任公司 | 金属粉末的直接钝化 |
CN108465806A (zh) * | 2018-03-12 | 2018-08-31 | 北京科技大学 | 一种有机物包覆合金粉末制备高性能粉末冶金制品的方法 |
CN109848405A (zh) * | 2019-02-22 | 2019-06-07 | 北京科技大学 | 粉末表面处理剂、钛或钛合金粉表面处理方法及复合粉末 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115464136A (zh) * | 2022-08-29 | 2022-12-13 | 陕西斯瑞新材料股份有限公司 | 一种球形铜铬合金粉工艺用高纯净电极的制备方法 |
CN115464136B (zh) * | 2022-08-29 | 2023-10-20 | 陕西斯瑞铜合金创新中心有限公司 | 一种球形铜铬合金粉工艺用高纯净电极的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111283215B (zh) | 2021-06-11 |
US11612936B2 (en) | 2023-03-28 |
CN111283215A (zh) | 2020-06-16 |
US20210308765A1 (en) | 2021-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021168978A1 (zh) | 一种气-固流化制备无氧钝化钛及钛合金粉末制品的方法 | |
CN101429644B (zh) | 金属或金属氧化物纳米颗粒的薄膜制备方法 | |
WO2004024977A1 (ja) | 珪化鉄スパッタリングターゲット及びその製造方法 | |
CN112222419B (zh) | 一种调控形核和生长过程制备纳米钼粉的方法及应用 | |
Lepeshev et al. | Synthesis of nanosized titanium oxide and nitride through vacuum arc plasma expansion technique | |
JP2001098364A (ja) | スッパタリング用タングステンターゲット及びその製造方法 | |
CN109971982B (zh) | 原位自生陶瓷相增强钛基复合材料的制备方法及制品 | |
CN111101019B (zh) | 金属卤化物净化颗粒表面制备高性能钛及钛合金的方法 | |
JP5408823B2 (ja) | 金属微粒子の製造方法 | |
TW574377B (en) | Sintered tungsten target for sputtering and method for preparation thereof | |
CN109848406B (zh) | 钛基复合材料的粉末冶金制备方法及制品 | |
TW200400276A (en) | AlRu sputtering target and manufacturing method thereof | |
CN105316501A (zh) | 一种稀土—镁基储氢合金及其制备方法 | |
CN108585876B (zh) | 氮化钛纳米粉体的制备方法 | |
KR20120136227A (ko) | 고융점 금속의 저온 소결 방법 및 이를 이용하여 제조되는 고융점 금속 성형체 | |
KR101153961B1 (ko) | 공정합금을 이용한 탄탈럼(Ta) 분말의 제조방법 | |
JPH0639326B2 (ja) | 金属硼化物の超微粉の製造法 | |
CN101927349A (zh) | 一种纯铝真空蒸发生产球形铝粉的方法 | |
JP2010150049A (ja) | 酸化珪素製造用原料及びその製造方法、ならびに酸化珪素及びその製造方法 | |
CN111074097B (zh) | 一种Ti-N-O合金材料及其制备方法 | |
CN113996782A (zh) | 石墨烯包覆铜粉的复合材料及其制备方法 | |
CN115041691B (zh) | 一种低氧铝及铝合金粉末的制备方法和制备装置 | |
JPH04160047A (ja) | Ito焼結体の製造方法 | |
JP3134405B2 (ja) | 酸化インジウム・酸化スズ焼結体の製造方法 | |
CN111005023B (zh) | 一种磷化三钼涂层的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20921814 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20921814 Country of ref document: EP Kind code of ref document: A1 |