WO2021166641A1 - めっき積層体 - Google Patents

めっき積層体 Download PDF

Info

Publication number
WO2021166641A1
WO2021166641A1 PCT/JP2021/003848 JP2021003848W WO2021166641A1 WO 2021166641 A1 WO2021166641 A1 WO 2021166641A1 JP 2021003848 W JP2021003848 W JP 2021003848W WO 2021166641 A1 WO2021166641 A1 WO 2021166641A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
plating
plated
metal
layer
Prior art date
Application number
PCT/JP2021/003848
Other languages
English (en)
French (fr)
Inventor
健児 吉羽
雄介 矢口
寛 蓑輪
Original Assignee
日本高純度化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本高純度化学株式会社 filed Critical 日本高純度化学株式会社
Priority to KR1020227030864A priority Critical patent/KR20220142464A/ko
Priority to US17/799,962 priority patent/US20230065609A1/en
Priority to CN202180014154.4A priority patent/CN115087760B/zh
Publication of WO2021166641A1 publication Critical patent/WO2021166641A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Definitions

  • the present invention relates to a method for manufacturing a plated laminate, and more particularly to a method for manufacturing a plated laminate formed on a conductor circuit or the like.
  • a semiconductor device has a conductor circuit made of a metal having a low electric resistance such as copper or silver.
  • solder bonding or wire bonding is performed on almost all conductor circuits.
  • a plating film is formed on the surface of the object to be plated on which the conductor circuit is formed, and solder bonding or wire bonding is performed on the plating film.
  • the methods for forming a film by these electroless platings are roughly classified into plating mainly consisting of a substitution reaction (hereinafter, may be referred to as “replacement plating”) and plating mainly consisting of a reduction reaction (hereinafter, “reduction plating”).
  • replacement plating a substitution reaction
  • reduction plating a reduction reaction
  • plating solution a liquid containing ions of a metal forming a plating film
  • the constituent metal of the object to be plated becomes metal ions.
  • the main reaction is that the electrons that are eluted into the plating solution and emitted at the same time are given to the metal ions that form the plating film, and the ions given the electrons are precipitated as metal on the surface of the object to be plated. ..
  • the number of specifications in which the film thickness is reduced to about 0.2 ⁇ m is increasing.
  • Substitution plating is often used when adding catalysts for palladium and its alloys.
  • a catalyst of palladium or its alloy is applied by replacement plating, the object to be plated is locally corroded when the catalyst is added, or an oxide layer is formed on the surface of the object to be plated, resulting in the formation of an oxide layer.
  • voids are likely to occur at the interface between the object to be plated and the plating layer.
  • the thickness of the nickel plating layer was about 5 ⁇ m, the occurrence of this void did not become a big problem, but in recent years, as the thickness of the nickel plating layer has been reduced to about 0.2 ⁇ m, the thickness of the nickel plating layer has been reduced to about 0.2 ⁇ m. Due to the presence of voids, the problem that good bondability cannot be obtained during solder bonding has become apparent.
  • Japanese Unexamined Patent Publication No. 2007-031826 Japanese Unexamined Patent Publication No. 2013-155410 Japanese Unexamined Patent Publication No. 2015-082534 Japanese Unexamined Patent Publication No. 2015-137418
  • the present invention has been made in view of the above background technology, and the subject thereof is a plating laminate (plating film laminate) to be applied to the surface of a conductor circuit or the like, and solder bonding is performed on the plating laminate. It is an object of the present invention to provide a plated laminate that can maintain high bonding strength and can be stably produced.
  • a plating laminate plat film laminate
  • the present inventor may cause local corrosion of the object to be plated when palladium or an alloy thereof is directly added to the object to be plated as a catalyst.
  • problems such as the formation of an oxide layer on the surface of the object to be plated are likely to occur
  • local corrosion of the object to be plated and the object to be plated are formed between the layer of palladium or its alloy (catalyst layer) and the object to be plated.
  • a layer protecting layer
  • the plating layer A contains palladium as the main component.
  • a method for producing a plating laminate in which a plating layer B is deposited and then a plating layer C containing nickel as a main component is deposited on the plating layer B.
  • the plating layer B is contained in a replacement plating solution. It is a replacement plating layer formed by a substitution reaction between the palladium ion contained in the plating body and the first metal contained in the object to be plated or the second metal contained in the plating layer A.
  • the present invention provides a method for producing a plating laminate, wherein the plating layer C is a reduction plating layer formed by an oxidation-reduction reaction between a reducing agent contained in a reduction plating solution and nickel ions.
  • the present invention is a plating laminate (a laminate of plating films) applied to the surface of a conductor circuit or the like, and good bondability can be maintained when solder-bonded onto the plating laminate. Further, it is possible to provide a plated laminate that can be stably produced.
  • the thickness of the nickel plating layer is thin, defects in solder bonding due to the generation of voids are likely to occur.
  • voids are less likely to occur even when the nickel plating layer is thin. It can be soldered well, the amount of expensive nickel used can be saved, and the cost can be reduced.
  • a plating layer A containing a second metal as a main component is deposited on a body S to be plated containing a first metal as a main component, and then plating containing palladium as a main component is performed on the plating layer A.
  • the present invention relates to a method for producing a plating laminate in which a layer B is precipitated, and then a plating layer C containing a metal as a main component is precipitated on the plating layer B.
  • FIG. 1 shows the structure of the plated laminate produced by the present invention.
  • the "plating layer” is a metal layer formed by plating.
  • the “plating layer” is not limited to a film-like material having no pores, and a film-like material having holes and a nuclei-like material are also included in the "plating layer”.
  • the "first metal” and the “second metal” constituting the plating layer in the present invention are different metals from each other. Further, the “first metal” and the “second metal” are not nickel (Ni) or palladium (Pd).
  • the "metal” constituting the plating layer in the present invention is not limited to a pure metal, but may be an alloy. Further, the plating layer in the present invention may contain elements other than metals (for example, phosphorus (P), sulfur (S), boron (B), carbon (C), etc.).
  • the phrase "mainly composed of metal X” means that among the “metals" constituting the plating layer, the metal having the largest amount on a molar basis is metal X.
  • the content of the main component metal is preferably 70 mol% or more, more preferably 80 mol% or more, and 90 mol% or more, based on the amount of the metal constituting each plating layer. Most preferably, it is mol% or more.
  • Examples of the plating layer in the present invention include a substitution plating layer formed by a substitution reaction, a reduction plating layer formed by a redox reaction, and the like.
  • Form by a substitution reaction includes not only the case where the plating layer is formed only by the substitution reaction but also the case where the substitution reaction and the redox reaction occur at the same time to form the plating layer.
  • 60% or more of the metal in the plating layer is preferably formed by the substitution reaction, more preferably 80% or more is formed by the substitution reaction, and 90% or more. Is particularly preferably formed by a substitution reaction.
  • Form by redox reaction includes not only the case where the plating layer is formed only by the redox reaction but also the case where the redox reaction and the substitution reaction occur at the same time to form the plating layer.
  • the redox reaction and the substitution reaction occur at the same time, it is preferable that 60% or more of the metal in the plating layer is formed by the redox reaction, and more preferably 80% or more is formed by the redox reaction. It is particularly preferable that 90% or more is formed by a redox reaction.
  • the body S to be plated refers to a substrate on which a plating layer is formed.
  • the body S to be plated contains the first metal as a main component.
  • the first metal is a metal that forms a conductor circuit, and examples thereof include copper (Cu) and silver (Ag).
  • the plating layer A is a plating layer deposited on the body S to be plated.
  • the plating layer A contains a second metal as a main component.
  • the second metal is a metal that can be deposited from the plating solution onto the object S to be plated without local corrosion of the object S to be plated or formation of an oxide layer on the surface of the body S to be plated.
  • the second metal is not particularly limited as long as it can exist stably in an aqueous solution.
  • Examples of the second metal include gold (Au), silver (Ag), platinum (Pt), rhodium (Rh), iridium (Ir), indium (In), tin (Sn), ruthenium (Ru), and iron ( Fe), zinc (Zn), cobalt (Co) and the like.
  • Gold, silver or platinum can be easily formed on the surface of the object to be plated as the plating layer A, and has an effect of preventing local corrosion of the object S to be plated and the formation of an oxide layer on the surface of the body S to be plated. Due to its large size, it is particularly preferred to use it as a secondary metal.
  • the plating solution for forming the plating layer A is not particularly limited as long as it does not locally corrode the object to be plated when the plating layer A is formed and does not form an oxide film on the object to be plated.
  • the plating solution for forming the plating layer A may be a replacement plating solution or a reduction plating solution.
  • the replacement plating solution for forming the plating layer A contains a water-soluble metal salt (salt of the second metal) of a metal having an ionization tendency that can be replaced with the first metal.
  • the second metal has a lower ionization tendency than the first metal.
  • the reducing plating solution for forming the plating layer A contains a water-soluble metal salt (salt of the second metal) and a reducing agent.
  • a water-soluble metal salt salt of the second metal
  • a reducing agent examples include hydrazine, sodium borohydride, formaldehyde, and the like.
  • the reducing agent may be used alone or in combination of two or more.
  • the water-soluble metal salt (salt of the second metal) contained in the plating solution for forming the plating layer A is not particularly limited.
  • the secondary metal is gold, gold cyanide, gold chloride, gold sulfite, gold thiosulfate and the like can be mentioned.
  • the secondary metal is silver, silver cyanide, silver nitrate, silver methanesulfonic acid and the like can be mentioned.
  • the secondary metal is platinum, chloroplatinate, dinitrodiammine platinum, hexahydroxoplatinate and the like can be mentioned.
  • the concentration of the water-soluble metal salt (salt of the second metal) in the plating solution for forming the plating layer A is not particularly limited, but is preferably 5 ppm or more, more preferably 10 ppm or more. , 20 ppm or more is particularly preferable. Further, it is preferably 5000 ppm or less, more preferably 2000 ppm or less, and particularly preferably 1000 ppm or less. When it is equal to or more than the above lower limit, the forming speed of the plating layer A becomes sufficiently high. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the pH of the plating solution for forming the plating layer A is preferably 2.5 or more, more preferably 3 or more, and particularly preferably 4 or more. Further, it is preferably 9.5 or less, more preferably 9 or less, and particularly preferably 8 or less. Within the above range, local corrosion of the object to be plated and formation of an oxide layer on the surface of the object to be plated are unlikely to occur, and the plated laminate is likely to be maintained in high quality.
  • the film thickness of the plating layer A is not particularly limited, but is preferably 0.0003 ⁇ m or more, more preferably 0.0005 ⁇ m or more, and particularly preferably 0.001 ⁇ m or more. Further, it is preferably 0.05 ⁇ m or less, more preferably 0.04 ⁇ m or less, and particularly preferably 0.02 ⁇ m or less. When it is at least the above lower limit, local corrosion of the object to be plated and formation of an oxide layer on the surface of the object to be plated are less likely to occur when the plating layer B is formed in the next step, and the plated laminate is likely to be maintained in high quality. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the plating layer A is not the outermost layer, it does not have to be a flat film, and may be a film having holes or a nuclei.
  • film thickness means “average film thickness” (the same shall apply hereinafter in the present specification).
  • the temperature of the plating solution when forming the plating layer A is preferably 10 ° C. or higher, more preferably 15 ° C. or higher, and particularly preferably 20 ° C. or higher. Further, it is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and particularly preferably 90 ° C. or lower.
  • the time for forming the plating layer A is preferably 0.5 minutes or more, more preferably 1 minute or more, and particularly preferably 2 minutes or more. Further, it is preferably 30 minutes or less, more preferably 20 minutes or less, and particularly preferably 10 minutes or less. When the temperature of the plating solution and the plating time are within the above ranges, the film thickness is likely to be within the above ranges.
  • the plating layer A since the plating layer A does not require a thickness, it is preferable to form the plating layer A with a replacement plating solution in order to avoid the influence of the reducing agent and the cost. That is, the plating layer A is a substitution plating layer formed by a substitution reaction between the ions of the second metal contained in the substitution plating solution and the first metal contained in the object to be plated. preferable.
  • the plating layer B is a plating layer deposited on the plating layer A.
  • the plating layer B contains palladium as a main component. Palladium, which is the main component of the plating layer B, easily undergoes a reduction reaction on its surface, so that a nickel layer (plating layer C) is likely to be formed on the plating layer B by reduction plating.
  • the plating layer B is a substitution formed by a substitution reaction between the palladium ion contained in the replacement plating solution and the first metal contained in the object S to be plated or the second metal contained in the plating layer A. It is a plating layer.
  • the plating layer A may be a film having holes or a nucleated layer. Therefore, the substitution reaction for forming the plating layer B may occur between the palladium ion and the first metal contained in the object S to be plated.
  • the water-soluble palladium salt contained in the plating solution (substituted palladium plating solution) for forming the plating layer B is not particularly limited, and examples thereof include palladium chloride, dichlorotetraammine palladium salt, and dinitrotetraammine palladium salt.
  • the concentration of the water-soluble palladium salt in the plating solution for forming the plating layer B is not particularly limited, but is preferably 5 ppm or more, more preferably 10 ppm or more, and more preferably 20 ppm or more. Especially preferable. Further, it is preferably 5000 ppm or less, more preferably 2000 ppm or less, and particularly preferably 1000 ppm or less. When it is equal to or more than the above lower limit, the forming speed of the plating layer B becomes sufficiently high. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the pH of the plating solution for forming the plating layer B is preferably 2.5 or more, more preferably 3 or more, and particularly preferably 4 or more. Further, it is preferably 9.5 or less, more preferably 9 or less, and particularly preferably 8 or less. Within the above range, local corrosion of the object to be plated and formation of an oxide layer on the surface of the object to be plated are unlikely to occur, and the plated laminate is likely to be maintained in high quality.
  • the film thickness of the plating layer B is not particularly limited, but is preferably 0.0003 ⁇ m or more, more preferably 0.0005 ⁇ m or more, and particularly preferably 0.001 ⁇ m or more. Further, it is preferably 0.05 ⁇ m or less, more preferably 0.04 ⁇ m or less, and particularly preferably 0.02 ⁇ m or less. When it is at least the above lower limit, the formation of the plating layer C in the next step tends to proceed stably. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the temperature of the plating solution when forming the plating layer B is preferably 10 ° C. or higher, more preferably 15 ° C. or higher, and particularly preferably 20 ° C. or higher. Further, it is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and particularly preferably 90 ° C. or lower.
  • the time for forming the plating layer B is preferably 0.5 minutes or more, more preferably 1 minute or more, and particularly preferably 2 minutes or more. Further, it is preferably 30 minutes or less, more preferably 20 minutes or less, and particularly preferably 10 minutes or less. When the temperature of the plating solution and the plating time are within the above ranges, the film thickness is likely to be within the above ranges.
  • the plating layer C is a plating layer deposited on the plating layer B.
  • the plating layer C contains nickel as a main component.
  • the plating layer C is a reduction plating layer formed by a redox reaction between a reducing agent contained in the reduction plating solution and nickel ions.
  • the plating solution (reduced nickel plating solution) for forming the plating layer C contains a water-soluble nickel salt and a reducing agent.
  • the reducing agent include hypophosphorous acid and salts thereof, dimethylamine borane, hydrazine, and the like.
  • the reducing agent may be used alone or in combination of two or more.
  • the water-soluble nickel salt contained in the plating solution for forming the plating layer C is not particularly limited, and nickel chloride, nickel sulfate, nickel sulfamate, nickel carbonate, nickel acetate, nickel hypophosphite, nickel citrate, etc. And so on.
  • the concentration of the water-soluble nickel salt in the plating solution for forming the plating layer C is not particularly limited, but is preferably 50 ppm or more, more preferably 100 ppm or more, and more preferably 200 ppm or more. Especially preferable. Further, it is preferably 50,000 ppm or less, more preferably 20,000 ppm or less, and particularly preferably 10,000 ppm or less. When it is equal to or more than the above lower limit, the forming speed of the plating layer C becomes sufficiently high. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the plating layer C may contain phosphorus as an impurity.
  • phosphorus derived from the reducing agent is contained in the plating layer C.
  • the phosphorus content is preferably about 2% by mass to 25% by mass.
  • the pH of the plating solution for forming the plating layer C is preferably 2.5 or more, more preferably 3 or more, and particularly preferably 4 or more. Further, it is preferably 9.5 or less, more preferably 9 or less, and particularly preferably 8 or less. If it is within the above range, metal salt precipitation and metal precipitation in the plating tank due to an abnormal reaction in the plating solution are unlikely to occur.
  • the plating layer C is a layer formed for the purpose of preventing diffusion of the first metal constituting the object to be plated onto the surface of the plating laminate, its film thickness is higher than that of the plating layer A and the plating layer B. thick.
  • the plating layer C is formed by reduction plating capable of forming a thick film.
  • the film thickness of the plating layer C is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and particularly preferably 0.03 ⁇ m or more. .. Further, it is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less. When it is at least the above lower limit, the performance as a film can be sufficiently exhibited. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the temperature of the plating solution when forming the plating layer C is preferably 10 ° C. or higher, more preferably 15 ° C. or higher, and particularly preferably 20 ° C. or higher. Further, it is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and particularly preferably 90 ° C. or lower.
  • the time for forming the plating layer C is preferably 0.5 minutes or more, more preferably 1 minute or more, and particularly preferably 2 minutes or more. Further, it is preferably 240 minutes or less, more preferably 120 minutes or less, and particularly preferably 60 minutes or less. When the temperature of the plating solution and the plating time are within the above ranges, the film thickness is likely to be within the above ranges.
  • FIG. 2 shows the structure of the plated laminate produced in this way.
  • the plating layer D is a plating layer deposited on the plating layer C.
  • the main component metal of the plating layer D is different from nickel, which is the main component metal of the plating layer C.
  • the metal constituting the plating layer D may be a simple substance metal or an alloy.
  • the metal as the main component of the plating layer D is a metal that can be precipitated from the plating solution, and is not particularly limited as long as it can be stably present in the aqueous solution, and can be selected according to the purpose of forming the plating laminate.
  • gold, palladium, or the like can be used for the purpose of preventing oxidation of the film surface.
  • the plating solution for forming the plating layer D may be a replacement plating solution or a reduction plating solution.
  • the plating solution for forming the plating layer D contains a water-soluble metal salt.
  • the water-soluble metal salt is not particularly limited.
  • the main component metal of the plating layer D is gold
  • gold cyanide, gold chloride, gold sulfite, gold thiosulfate and the like can be mentioned.
  • the main component metal of the plating layer D is palladium
  • examples thereof include palladium chloride, dichlorotetraammine palladium salt, and dinitrotetraammine palladium salt.
  • the concentration of the water-soluble metal salt in the plating solution for forming the plating layer D is not particularly limited, but is preferably 5 ppm or more, more preferably 10 ppm or more, and more preferably 20 ppm or more. Especially preferable. Further, it is preferably 5000 ppm or less, more preferably 2000 ppm or less, and particularly preferably 1000 ppm or less. When it is equal to or more than the above lower limit, the forming speed of the plating layer D becomes sufficiently high. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the pH of the plating solution for forming the plating layer D is preferably 2.5 or more, more preferably 3 or more, and particularly preferably 4 or more. Further, it is preferably 9.5 or less, more preferably 9 or less, and particularly preferably 8 or less. If it is within the above range, metal salt precipitation and metal precipitation in the plating tank due to an abnormal reaction in the plating solution are unlikely to occur.
  • the film thickness of the plating layer D is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and particularly preferably 0.03 ⁇ m or more. Further, it is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less. When it is at least the above lower limit, the performance as a film can be sufficiently exhibited. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the temperature of the plating solution when forming the plating layer D is preferably 10 ° C. or higher, more preferably 15 ° C. or higher, and particularly preferably 20 ° C. or higher. Further, it is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and particularly preferably 90 ° C. or lower.
  • the time for forming the plating layer D is preferably 0.5 minutes or more, more preferably 1 minute or more, and particularly preferably 2 minutes or more. Further, it is preferably 240 minutes or less, more preferably 120 minutes or less, and particularly preferably 60 minutes or less. When the temperature of the plating solution and the plating time are within the above ranges, the film thickness is likely to be within the above ranges.
  • the plating layer E having a metal as a main component different from the metal as the main component of the plating layer D may be deposited on the plating layer D.
  • FIG. 3 shows the structure of the plated laminate produced in this way.
  • the plating layer E is a plating layer deposited on the plating layer D.
  • the main component metal of the plating layer D is different from the main component metal of the plating layer D.
  • the metal constituting the plating layer E may be a simple substance metal or an alloy.
  • the metal as the main component of the plating layer E is a metal that can be precipitated from the plating solution, and is not particularly limited as long as it can be stably present in the aqueous solution, and can be selected according to the purpose of forming the plating laminate.
  • gold or the like can be used for the purpose of improving the bondability of the gold wire.
  • the plating solution for forming the plating layer E may be a replacement plating solution or a reduction plating solution.
  • the plating solution for forming the plating layer E contains a water-soluble metal salt.
  • the water-soluble metal salt is not particularly limited.
  • the main component metal of the plating layer E is gold, gold cyanide, gold chloride, gold sulfite, gold thiosulfate and the like can be mentioned.
  • the concentration of the water-soluble metal salt in the plating solution for forming the plating layer E is not particularly limited, but is preferably 5 ppm or more, more preferably 10 ppm or more, and more preferably 20 ppm or more. Especially preferable. Further, it is preferably 5000 ppm or less, more preferably 2000 ppm or less, and particularly preferably 1000 ppm or less. When it is equal to or more than the above lower limit, the forming speed of the plating layer D becomes sufficiently high. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the pH of the plating solution for forming the plating layer E is preferably 2.5 or more, more preferably 3 or more, and particularly preferably 4 or more. Further, it is preferably 9.5 or less, more preferably 9 or less, and particularly preferably 8 or less. If it is within the above range, metal salt precipitation and metal precipitation in the plating tank due to an abnormal reaction in the plating solution are unlikely to occur.
  • the film thickness of the plating layer E is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more, and particularly preferably 0.03 ⁇ m or more. Further, it is preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less, and particularly preferably 0.5 ⁇ m or less. When it is at least the above lower limit, the performance as a film can be sufficiently exhibited. Further, if it is not more than the above upper limit, it is advantageous in terms of cost.
  • the temperature of the plating solution when forming the plating layer E is preferably 10 ° C. or higher, more preferably 15 ° C. or higher, and particularly preferably 20 ° C. or higher. Further, it is preferably 100 ° C. or lower, more preferably 95 ° C. or lower, and particularly preferably 90 ° C. or lower.
  • the time for forming the plating layer E is preferably 0.5 minutes or more, more preferably 1 minute or more, and particularly preferably 2 minutes or more. Further, it is preferably 240 minutes or less, more preferably 120 minutes or less, and particularly preferably 60 minutes or less. When the temperature of the plating solution and the plating time are within the above ranges, the film thickness is likely to be within the above ranges.
  • the plated laminate produced by the production method of the present invention can maintain high bonding strength when solder-bonded onto the plated laminate, and the action and principle of stable production are not clear, but the following: Can be considered.
  • the present invention is not limited to the following scope of action / principle.
  • voids are provided. Can be suppressed. By suppressing the generation of voids, it is presumed that the solder bondability is improved even when the nickel layer on the layer of palladium or its alloy is thin.
  • Example 1 [Preparation of plated laminate] A substrate (40 mm ⁇ 40 mm ⁇ 1 mmt) in which a copper foil is attached to a glass cloth epoxy material (FR-4) and an opening system having a diameter of 0.5 mm is provided by a solder resist is used as an object to be plated, and is coated as follows. A plating laminate was prepared in which the plating body, the plating layer A, the plating layer B, the plating layer C, and the plating layer D were laminated in this order.
  • the object to be plated was degreased, soft-etched and pickled.
  • Solvent degreasing was carried out at 50 ° C. for 10 minutes using a commercially available cleaning solution (PAC-200, manufactured by Murata Co., Ltd.).
  • Soft etching was performed at 30 ° C. for 5 minutes using a commercially available soft etching agent (MEOX, manufactured by Murata Co., Ltd.).
  • Pickling was carried out at room temperature for 1 minute using 10 v / v% sulfuric acid.
  • the plating solution for forming the plating layer A As the plating solution for forming the plating layer A, a replacement gold plating solution (IM-GOLD PC, manufactured by Japan High Purity Chemical Co., Ltd.) was used to form the plating layer A.
  • the temperature of the plating solution for forming the plating layer A was 80 ° C., and the plating time was 5 minutes.
  • a substituted palladium plating solution (IM-Pd NCA, manufactured by Japan High Purity Chemical Co., Ltd.) was used to form the plating layer B.
  • the temperature of the plating solution for forming the plating layer B was 55 ° C., and the plating time was 5 minutes.
  • an electroless nickel plating solution (ICP-Nicolon GM, manufactured by In The Back Pharmaceutical Industry Co., Ltd.) was used as a plating solution for forming the plating layer C to form the plating layer C.
  • the temperature of the plating solution for forming the plating layer C was 85 ° C., and the plating time was 1 minute.
  • a replacement gold plating solution (IM-GOLD CN, manufactured by Japan High Purity Chemical Co., Ltd.) was used to form the plating layer D.
  • the temperature of the plating solution for forming the plating layer D was 80 ° C., and the plating time was 5 minutes.
  • the thickness of each of the formed plating layers was measured by a fluorescent X-ray spectroscopic analyzer (FT-150, manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the film thickness of the plating layer A obtained in Example 1 is 0.005 ⁇ m
  • the film thickness of the plating layer B is 0.005 ⁇ m
  • the film thickness of the plating layer C is 0.2 ⁇ m
  • the film thickness of the plating layer D is 0.03 ⁇ m.
  • a focused ion beam is irradiated from above the plating laminate prepared by laminating a plating layer on the body to be plated to prepare holes having a length of 50 ⁇ m, a width of 50 ⁇ m, and a depth of 20 ⁇ m, and the cross section of the plating laminate is exposed. I let you. The exposed cross section was observed with a scanning electron microscope at a magnification of 30,000 times to confirm the presence or absence of voids.
  • solder bondability The plating laminate produced by laminating a plating layer on the object to be plated is preheated, and then a solder ball (manufactured by Senju Metal Industry Co., Ltd., SAC405, ⁇ 0.6 mm) is placed in the SR opening. It was mounted using a reflow device (RF-430-M2, manufactured by Nippon Pulse Technology Laboratory Co., Ltd.), and a ball-pull test was performed using a bond tester (Bond tester SERIES4000 OPTIMA, manufactured by Dage) to evaluate the breaking mode. The ball-pull test was carried out at 20 points for each plated laminate. The failure in the solder was regarded as "good”, the failure at the solder-base interface was regarded as "defective”, the ratio of "good” was calculated, and the solder joint non-defective product rate (%) was calculated.
  • solder mounting The conditions such as solder mounting are as follows. ⁇ Reflow environment: Nitrogen atmosphere ⁇ Heating before reflow: 175 °C, 4 hours ⁇ Number of reflows before mounting: 3 times ⁇ Flux: KESTER, TSF6502 ⁇ Test speed: 5000 ⁇ m / sec ⁇ Aging after solder mounting: 1 hour
  • Example 1 In the plated laminate obtained in Example 1, the solder bondability of the obtained plated laminate was good.
  • Example 2 A plated laminate was prepared and evaluated in the same manner as in Example 1 except that the plating time for forming the plating layer A was set to 10 minutes.
  • the film thickness of the obtained plating layer A was 0.01 ⁇ m
  • the film thickness of the plating layer B was 0.005 ⁇ m
  • the film thickness of the plating layer C was 0.2 ⁇ m
  • the film thickness of the plating layer D was 0.03 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • Example 3 A plated laminate was prepared and evaluated in the same manner as in Example 1 except that the plating time for forming the plating layer B was set to 10 minutes.
  • the film thickness of the obtained plating layer A was 0.005 ⁇ m
  • the film thickness of the plating layer B was 0.01 ⁇ m
  • the film thickness of the plating layer C was 0.2 ⁇ m
  • the film thickness of the plating layer D was 0.03 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • Example 4 A plated laminate was prepared and evaluated in the same manner as in Example 1 except that the plating time for forming the plating layer C was 0.5 minutes.
  • the film thickness of the obtained plating layer A was 0.005 ⁇ m
  • the film thickness of the plating layer B was 0.005 ⁇ m
  • the film thickness of the plating layer C was 0.1 ⁇ m
  • the film thickness of the plating layer D was 0.03 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • Example 5 A substituted silver plating solution (IM-SILVER, manufactured by Japan High Purity Chemical Co., Ltd.) was used as the plating solution for forming the plating layer A, the temperature of the plating solution was 45 ° C., and the plating time was 1 minute.
  • a plated laminate was prepared and evaluated in the same manner as in Example 1 except for the above.
  • the film thickness of the obtained plating layer A was 0.005 ⁇ m
  • the film thickness of the plating layer B was 0.005 ⁇ m
  • the film thickness of the plating layer C was 0.2 ⁇ m
  • the film thickness of the plating layer D was 0.03 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • Example 6 A commercially available substituted platinum plating solution (weakly acidic platinum chloride-based plating solution) was used as the plating solution for forming the plating layer A, and the temperature of the plating solution was set to 45 ° C. in the same manner as in Example 1.
  • a plated laminate was prepared and evaluated. The film thickness of the obtained plating layer A was 0.005 ⁇ m, the film thickness of the plating layer B was 0.005 ⁇ m, the film thickness of the plating layer C was 0.2 ⁇ m, and the film thickness of the plating layer D was 0.03 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • Example 7 Same as Example 1 except that a reduced gold plating solution (HY-GOLD CN, manufactured by Japan High Purity Chemical Co., Ltd.) was used as the plating solution for forming the plating layer A, and the plating time was set to 1 minute. Then, a plated laminate was prepared and evaluated. The film thickness of the obtained plating layer A was 0.005 ⁇ m, the film thickness of the plating layer B was 0.005 ⁇ m, the film thickness of the plating layer C was 0.2 ⁇ m, and the film thickness of the plating layer D was 0.03 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • HY-GOLD CN manufactured by Japan High Purity Chemical Co., Ltd.
  • Example 8 A commercially available reduced silver plating solution (weakly alkaline silver nitrate plating solution) was used as the plating solution for forming the plating layer A, and the plating solution temperature was 50 ° C. and the plating time was 1 minute.
  • a plated laminate was prepared and evaluated in the same manner as in Example 1.
  • the film thickness of the obtained plating layer A was 0.005 ⁇ m
  • the film thickness of the plating layer B was 0.005 ⁇ m
  • the film thickness of the plating layer C was 0.2 ⁇ m
  • the film thickness of the plating layer D was 0.03 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • Example 9 A reduced platinum plating solution (OT-1, manufactured by Japan High Purity Chemical Co., Ltd.) was used as the plating solution for forming the plating layer A, the temperature of the plating solution was 30 ° C., and the plating time was 1 minute.
  • a plated laminate was prepared and evaluated in the same manner as in Example 1 except for the above.
  • the film thickness of the obtained plating layer A was 0.005 ⁇ m
  • the film thickness of the plating layer B was 0.005 ⁇ m
  • the film thickness of the plating layer C was 0.2 ⁇ m
  • the film thickness of the plating layer D was 0.03 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • Example 10 Same as Example 1 except that a reduced gold plating solution (HY-GOLD CN, manufactured by Japan High Purity Chemical Co., Ltd.) was used as the plating solution for forming the plating layer D, and the plating time was set to 10 minutes. Then, a plated laminate was prepared and evaluated. The film thickness of the obtained plating layer A was 0.005 ⁇ m, the film thickness of the plating layer B was 0.005 ⁇ m, the film thickness of the plating layer C was 0.2 ⁇ m, and the film thickness of the plating layer D was 0.05 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • HY-GOLD CN manufactured by Japan High Purity Chemical Co., Ltd.
  • Example 11 A reduced palladium plating solution (Neoparabright, manufactured by Japan High Purity Chemical Co., Ltd.) was used as the plating solution for forming the plating layer D, the temperature of the plating solution was 70 ° C., and the plating time was 10 minutes.
  • a plated laminate was prepared and evaluated in the same manner as in Example 1. The film thickness of the obtained plating layer A was 0.005 ⁇ m, the film thickness of the plating layer B was 0.005 ⁇ m, the film thickness of the plating layer C was 0.2 ⁇ m, and the film thickness of the plating layer D was 0.1 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • Example 12 In Example 11, after the plating layer D is formed, the plating layer E is formed by using a reduced gold plating solution (HY-GOLD CN, manufactured by Japan High Purity Chemical Co., Ltd.) as the plating solution for forming the plating layer E. bottom.
  • the temperature of the plating solution for forming the plating layer E was 80 ° C., and the plating time was 10 minutes.
  • the produced plated laminate was evaluated in the same manner as in Example 1.
  • the obtained plating layer A has a film thickness of 0.005 ⁇ m
  • the plating layer B has a film thickness of 0.005 ⁇ m
  • the plating layer C has a film thickness of 0.2 ⁇ m
  • the plating layer D has a film thickness of 0.1 ⁇ m
  • the plating layer E has a film thickness of 0.1 ⁇ m.
  • the film thickness of was 0.05 ⁇ m. No voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also good.
  • Comparative Example 1 A plated laminate was prepared and evaluated in the same manner as in Example 1 except that the plating layer A was not formed and the plating layer B was directly formed on the object to be plated.
  • the film thickness of the obtained plating layer B was 0.005 ⁇ m
  • the film thickness of the plating layer C was 0.2 ⁇ m
  • the film thickness of the plating layer D was 0.03 ⁇ m. Voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also poor.
  • Comparative Example 2 A plated laminate was prepared and evaluated in the same manner as in Example 11 except that the plating layer A was not formed and the plating layer B was directly formed on the object to be plated.
  • the film thickness of the obtained plating layer B was 0.005 ⁇ m
  • the film thickness of the plating layer C was 0.2 ⁇ m
  • the film thickness of the plating layer D was 0.1 ⁇ m. Voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also poor.
  • Comparative Example 3 A plated laminate was prepared and evaluated in the same manner as in Example 12 except that the plating layer A was not formed and the plating layer B was directly formed on the object to be plated.
  • the film thickness of the obtained plating layer B was 0.005 ⁇ m
  • the film thickness of the plating layer C was 0.2 ⁇ m
  • the film thickness of the plating layer D was 0.1 ⁇ m
  • the film thickness of the plating layer E was 0.05 ⁇ m. Voids were confirmed in the cross section of the obtained plated laminate, and the solder bondability was also poor.
  • Comparative Example 4 Similar to Example 12, except that the plating layer B was formed directly on the object to be plated without forming the plating layer A, and the plating time for forming the plating layer C was set to 25 minutes. A plated laminate was prepared and evaluated. The film thickness of the obtained plating layer B was 0.005 ⁇ m, the film thickness of the plating layer C was 5 ⁇ m, the film thickness of the plating layer D was 0.1 ⁇ m, and the film thickness of the plating layer E was 0.05 ⁇ m. Voids were confirmed in the cross section of the obtained plated laminate, but the solder bondability was good.
  • Table 1 shows the results of each example and comparative example.
  • the plating layer C is formed without the generation of voids, and the plating layer C (nickel layer). Good solder bondability was observed even when the thickness was reduced.
  • the method for manufacturing a plated laminate of the present invention can stably manufacture a plated laminate having the performance required for the surface of a conductor circuit or the like while maintaining high solder joint strength, the present invention provides electrical and electronic component manufacturing. It is widely used in such fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

導体回路等の表面に付与するめっき積層体(めっき皮膜の積層体)であって、該めっき積層体の上にはんだ接合した際に高い接合強度を維持することができ、また、安定的に製造できるようなめっき積層体を提供する。 第一金属を主成分とする被めっき体Sの上に第二金属を主成分とするめっき層Aを析出させた後、めっき層Aの上にパラジウムを主成分とするめっき層Bを置換反応により析出させ、その後更に、めっき層Bの上に、ニッケルを主成分とするめっき層Cを酸化還元反応により析出させる。第一金属は、例えば、銅である。第二金属は、例えば、金、白金又は銀である。

Description

めっき積層体
 本発明は、めっき積層体の製造方法に関し、更に詳しくは、導体回路等の上に形成するめっき積層体の製造方法に関する。
 一般的に、半導体装置は、銅や銀等の電気抵抗の低い金属からなる導体回路を有している。また、ほぼ全ての導体回路に対して、はんだ接合又はワイヤ接合が行われる。
 しかし、これら導体回路表面が酸化した場合、はんだ接合やワイヤ接合が困難となる。
 このため、導体回路を形成する被めっき体の表面にめっき皮膜を形成し、そのめっき皮膜に対してはんだ接合やワイヤ接合を行うことが行われている。
 特に、近年の配線の微細化や高密度化に伴い、電解めっき用配線を必要としない無電解めっき技術の適用が一般に行われている。
 中でも、はんだ接合性、ワイヤ接合性に優れた導体回路の表面に形成する皮膜として、無電解ニッケル、無電解パラジウム及び無電解金からなる3層皮膜(ENEPIG皮膜)が多用されている(例えば、特許文献1~特許文献3)。
 これらの無電解めっきによる皮膜の形成方法には、大別して置換反応を主とするめっき(以下、「置換めっき」という場合がある。)、還元反応を主とするめっき(以下、「還元めっき」という場合がある。)の二種類が知られている。
 置換めっきは、めっき皮膜を形成する金属のイオンを含む液(以下、「めっき液」という場合がある。)中に被めっき体を浸漬した際に、被めっき体の構成金属が金属イオンとなってめっき液中に溶出し、同時に放出される電子がめっき皮膜を形成する金属のイオンに与えられ、電子を与えられたイオンが被めっき体表面に金属として析出する反応を主とするものである。
 還元めっきは、還元剤を含むめっき液中に被めっき体を浸漬した際に、還元剤の酸化反応が進行し、同時に放出される電子がめっき皮膜を形成する金属のイオンに与えられ、電子を与えられたイオンが被めっき体表面に金属として析出する反応を主とするものである。
 従来、ENEPIG皮膜の膜厚はニッケル/パラジウム/金=5μm/0.1μm/0.1μm程度の仕様が多用されてきたが、配線の更なる微細化、高密度化に伴い、近年、ニッケルの膜厚を0.2μm程度まで薄くした仕様が増加している。
 無電解ニッケルめっきを行う被めっき体の表面が銅等である場合、めっき反応が進行しない又は進行しにくい場合が多い。
 このため、銅等の被めっき体の表面に無電解ニッケルめっきを行う際には、パラジウムやその合金等を、触媒として被めっき体に付加した後に、無電解ニッケルめっきを行うことが提案されている。
 このパラジウムやその合金等の触媒の付加の際には、置換めっきが使用されることが多い(例えば、特許文献4)。
 パラジウムやその合金の触媒の付加の際には、多くの場合置換めっきが使用される。
 しかし、置換めっきによりパラジウムやその合金の触媒を付与する際には、触媒の付加時に被めっき体が局所的に腐食されたり、被めっき体の表面に酸化層が形成されたりし、その結果として、被めっき体とめっき層の界面にボイドが発生しやすいという問題点があった。
 ニッケルめっき層の膜厚が5μm程度の場合にはこのボイドの発生はさほど大きな問題になることは無かったが、近年、ニッケルめっき層の膜厚が0.2μm程度まで薄膜化したことに伴い、ボイドの存在により、はんだ接合時に良好な接合性が得られないという問題が顕在化してきた。
 近年、導体回路の配線の微細化や高密度化はますます進行していることから、かかる導体回路のはんだ接合を信頼性高く施すことのできる技術の開発が望まれている。
特開2007-031826号公報 特開2013-155410号公報 特開2015-082534号公報 特開2015-137418号公報
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、導体回路等の表面に付与するめっき積層体(めっき皮膜の積層体)であって、該めっき積層体の上にはんだ接合した際に高い接合強度を維持することができ、また、安定的に製造できるようなめっき積層体を提供することにある。
 本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、パラジウムやその合金を触媒として直接被めっき体に付加した場合には、被めっき体の局所的な腐食が発生したり、被めっき体表面への酸化層が形成されたりといった問題が発生しやすいところ、パラジウムやその合金の層(触媒層)と被めっき体の間に、被めっき体の局所的な腐食や被めっき体表面への酸化層の形成を防止するための層(保護層)を設けることにより、かかる問題を防止できることを見出した。その結果、該触媒層上に、ボイドの発生しにくいニッケルの層を安定的に製造することができ、このようにして製造されためっき積層体は、はんだ接合性が良好となることを見出して、本発明を完成するに至った。
 すなわち、本発明は、第一金属を主成分とする被めっき体の上に第二金属を主成分とするめっき層Aを析出させた後、該めっき層Aの上にパラジウムを主成分とするめっき層Bを析出させ、その後更に、該めっき層Bの上に、ニッケルを主成分とするめっき層Cを析出させるめっき積層体の製造方法であって、該めっき層Bが、置換めっき液中に含有されるパラジウムイオンと、該被めっき体に含有される該第一金属又は該めっき層Aに含有される該第二金属との間の置換反応によって形成される置換めっき層であり、該めっき層Cが、還元めっき液中に含有される還元剤とニッケルイオンとの酸化還元反応によって形成される還元めっき層であることを特徴とするめっき積層体の製造方法を提供するものである。
 本発明によれば、導体回路等の表面に付与するめっき積層体(めっき皮膜の積層体)であって、該めっき積層体の上にはんだ接合した際に良好な接合性を維持することができ、また、安定的に製造できるようなめっき積層体を提供することができる。
 特に、ニッケルめっき層の膜厚が薄いと、ボイドの発生に起因するはんだ接合の不良が生じやすいところ、本発明によれば、ニッケルめっき層が薄い場合であっても、ボイドを発生しにくく、良好にはんだ接合でき、高価なニッケルの使用量を節約でき、コストダウンが可能となる。
本発明により製造されるめっき積層体の構造を示す模式図である。 本発明により製造されるめっき積層体(めっき層Dを有する場合)の構造を示す模式図である。 本発明により製造されるめっき積層体(めっき層D及びめっき層Eを有する場合)の構造を示す模式図である。
 以下、本発明について説明するが、本発明は以下の実施の形態に限定されるものではなく、任意に変形して実施することができる。
 本発明は、第一金属を主成分とする被めっき体Sの上に第二金属を主成分とするめっき層Aを析出させた後、該めっき層Aの上にパラジウムを主成分とするめっき層Bを析出させ、その後更に、該めっき層Bの上に、ニッケルを主成分とするめっき層Cを析出させるめっき積層体の製造方法に関する。図1に、本発明により製造されるめっき積層体の構造を示す。
 本明細書において、「めっき層」とは、めっきによって形成される金属の層である。「めっき層」は、孔の無い皮膜状の物に限られるわけではなく、孔のある皮膜状の物や、核状の物も「めっき層」に含まれる。
 本発明におけるめっき層を構成する「第一金属」と「第二金属」は、互いに異なる金属である。また、「第一金属」及び「第二金属」は、ニッケル(Ni)、パラジウム(Pd)ではない。
 本発明におけるめっき層を構成する「金属」は、純金属には限られず、合金であってもよい。また、本発明におけるめっき層には、金属以外の元素(例えば、リン(P)、硫黄(S)、ホウ素(B)、炭素(C)等)が含まれていてもよい。
 「金属Xを主成分とする」とは、そのめっき層を構成する「金属」のうち、モル基準で最も量の多い金属が金属Xであることを意味する。
 本発明においては、各めっき層を構成する金属の量に対して、主成分となる金属の含有率が、70モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であることが最も好ましい。
 本発明におけるめっき層としては、置換反応によって形成される置換めっき層や、酸化還元反応によって形成される還元めっき層、等が挙げられる。
 「置換反応によって形成される」とは、置換反応のみによってめっき層が形成される場合のみならず、置換反応と酸化還元反応が同時に起こってめっき層が形成される場合も含まれる。置換反応と還元反応が同時に起こる場合、めっき層中の金属のうち、60%以上が置換反応によって形成されるのが好ましく、80%以上が置換反応によって形成されるのがより好ましく、90%以上が置換反応によって形成されるのが特に好ましい。
 「酸化還元反応によって形成される」とは、酸化還元反応のみによってめっき層が形成される場合のみならず、酸化還元反応と置換反応が同時に起こってめっき層が形成される場合も含まれる。酸化還元反応と置換反応が同時に起こる場合、めっき層中の金属のうち、60%以上が酸化還元反応によって形成されるのが好ましく、80%以上が酸化還元反応によって形成されるのがより好ましく、90%以上が酸化還元反応によって形成されるのが特に好ましい。
<被めっき体S>
 被めっき体Sは、その上にめっき層を形成されるための基体をいう。被めっき体Sは、第一金属を主成分とする。第一金属は、導体回路を形成する金属であり、例えば、銅(Cu)、銀(Ag)等が例示できる。
<めっき層A>
 めっき層Aは、被めっき体Sの上に析出するめっき層である。めっき層Aは、第二金属を主成分とする。
 第二金属は、被めっき体Sの局所的な腐食や被めっき体Sの表面への酸化層の形成を伴わずに、めっき液から被めっき体Sに析出可能な金属である。第二金属は、水溶液中で安定に存在できるものであれば特に限定は無い。
 第二金属としては、例えば、金(Au)、銀(Ag)、白金(Pt)、ロジウム(Rh)、イリジウム(Ir)、インジウム(In)、スズ(Sn)、ルテニウム(Ru)、鉄(Fe)、亜鉛(Zn)、コバルト(Co)等が挙げられる。
 金、銀又は白金は、めっき層Aとして被めっき体表面に形成するのが容易であり、被めっき体Sの局所的な腐食や被めっき体Sの表面への酸化層の形成の防止効果が大きいため、第二金属として使用するのが特に好ましい。
 めっき層Aを形成するためのめっき液は、めっき層Aの形成時に被めっき体を局所的に腐食せず、被めっき体上に酸化膜を形成しないものであれば特に限定はない。めっき層Aを形成するためのめっき液は、置換めっき液でもよいし、還元めっき液でもよい。
 めっき層Aを形成するための置換めっき液は、第一金属と置換可能なイオン化傾向を有する金属の水溶性の金属塩(第二金属の塩)を含有するものである。言い換えれば、めっき層Aを置換めっき液により形成する場合、第二金属は、第一金属よりもイオン化傾向が小さい。
 めっき層Aを形成するための還元めっき液は、水溶性の金属塩(第二金属の塩)及び還元剤を含有する。
 還元剤としては、ヒドラジン、水素化ホウ素ナトリウム、ホルムアルデヒド、等が例示される。還元剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 めっき層Aを形成するためのめっき液が含有する水溶性の金属塩(第二金属の塩)に特に限定は無い。
 第二金属が金の場合、シアン化金塩、塩化金塩、亜硫酸金塩、チオ硫酸金塩等が挙げられる。
 第二金属が銀の場合、シアン化銀塩、硝酸銀塩、メタンスルホン酸銀塩等が挙げられる。
 第二金属が白金の場合、塩化白金酸塩、ジニトロジアンミン白金、ヘキサヒドロキソ白金酸塩等が挙げられる。
 めっき層Aを形成するためのめっき液中における水溶性の金属塩(第二金属の塩)の濃度は、特に限定は無いが、5ppm以上であることが好ましく、10ppm以上であることがより好ましく、20ppm以上であることが特に好ましい。また、5000ppm以下であることが好ましく、2000ppm以下であることがより好ましく、1000ppm以下であることが特に好ましい。
 上記下限以上であると、めっき層Aの形成速度が十分な大きさとなる。また、上記上限以下であると、コスト的に有利である。
 めっき層Aを形成するためのめっき液のpHは、2.5以上であることが好ましく、3以上であることがより好ましく、4以上であることが特に好ましい。また、9.5以下であることが好ましく、9以下であることがより好ましく、8以下であることが特に好ましい。
 上記範囲内であると、被めっき体の局所腐食や被めっき体表面上での酸化層の形成を引き起こしにくく、めっき積層体を高品質に保ちやすい。
 めっき層Aの膜厚は、特に限定は無いが、0.0003μm以上であることが好ましく、0.0005μm以上であることがより好ましく、0.001μm以上であることが特に好ましい。また、0.05μm以下であることが好ましく、0.04μm以下であることがより好ましく、0.02μm以下であることが特に好ましい。
 上記下限以上であると、次工程のめっき層Bの形成時に、被めっき体の局所腐食や被めっき体表面への酸化層の形成を引き起こしにくく、めっき積層体を高品質に保ちやすい。また、上記上限以下であると、コスト的に有利である。
 なお、めっき層Aは、最外層ではないので、平坦な皮膜である必要はなく、孔のある皮膜であってもよいし、核状であってもよい。
 上記「膜厚」とは、「平均膜厚」をいう(本明細書において、以下同じ)。
 めっき層Aを形成する際のめっき液の温度は、10℃以上であることが好ましく、15℃以上であることがより好ましく、20℃以上であることが特に好ましい。また、100℃以下であることが好ましく、95℃以下であることがより好ましく、90℃以下であることが特に好ましい。
 また、めっき層Aを形成する時間(めっき時間)は、0.5分以上であることが好ましく、1分以上であることがより好ましく、2分以上であることが特に好ましい。また、30分以下であることが好ましく、20分以下であることがより好ましく、10分以下であることが特に好ましい。
 めっき液の温度やめっき時間が上記範囲内であると、膜厚を前記した範囲にしやすい。
 上記のように、めっき層Aは、厚さを必要とするものではないので、コストの面や、還元剤による影響を避けるために、めっき層Aは、置換めっき液で形成するのが好ましい。すなわち、めっき層Aは、置換めっき液中に含有される第二金属のイオンと、上記被めっき体に含有される第一金属との間の置換反応によって形成される置換めっき層であることが好ましい。
<めっき層B>
 めっき層Bは、めっき層Aの上に析出するめっき層である。めっき層Bは、パラジウムを主成分とする。
 めっき層Bの主成分となるパラジウムは、その表面で還元反応が容易に進行するので、めっき層Bの上に還元めっきによってニッケルの層(めっき層C)を形成しやすい。
 めっき層Bは、置換めっき液中に含有されるパラジウムイオンと、被めっき体Sに含有される第一金属又はめっき層Aに含有される第二金属との間の置換反応によって形成される置換めっき層である。
 上記のように、めっき層Aは、孔のある皮膜や核状の層であってもよい。このため、めっき層Bを形成するための置換反応は、パラジウムイオンと、被めっき体Sに含有される第一金属との間で起こることがある。
 めっき層Bを形成するためのめっき液(置換パラジウムめっき液)が含有する水溶性のパラジウム塩に特に限定は無く、塩化パラジウム、ジクロロテトラアンミンパラジウム塩、ジニトロテトラアンミンパラジウム塩等が挙げられる。
 めっき層Bを形成するためのめっき液中における水溶性のパラジウム塩の濃度は、特に限定は無いが、5ppm以上であることが好ましく、10ppm以上であることがより好ましく、20ppm以上であることが特に好ましい。また、5000ppm以下であることが好ましく、2000ppm以下であることがより好ましく、1000ppm以下であることが特に好ましい。
 上記下限以上であると、めっき層Bの形成速度が十分な大きさとなる。また、上記上限以下であると、コスト的に有利である。
 めっき層Bを形成するためのめっき液のpHは、2.5以上であることが好ましく、3以上であることがより好ましく、4以上であることが特に好ましい。また、9.5以下であることが好ましく、9以下であることがより好ましく、8以下であることが特に好ましい。
 上記範囲内であると、被めっき体の局所腐食や被めっき体表面上での酸化層の形成を引き起こしにくく、めっき積層体を高品質に保ちやすい。
 めっき層Bの膜厚は、特に限定は無いが、0.0003μm以上であることが好ましく、0.0005μm以上であることがより好ましく、0.001μm以上であることが特に好ましい。また、0.05μm以下であることが好ましく、0.04μm以下であることがより好ましく、0.02μm以下であることが特に好ましい。
 上記下限以上であると、次工程のめっき層Cの形成が安定して進行しやすい。また、上記上限以下であると、コスト的に有利である。
 めっき層Bを形成する際のめっき液の温度は、10℃以上であることが好ましく、15℃以上であることがより好ましく、20℃以上であることが特に好ましい。また、100℃以下であることが好ましく、95℃以下であることがより好ましく、90℃以下であることが特に好ましい。
 また、めっき層Bを形成する時間(めっき時間)は、0.5分以上であることが好ましく、1分以上であることがより好ましく、2分以上であることが特に好ましい。また、30分以下であることが好ましく、20分以下であることがより好ましく、10分以下であることが特に好ましい。
 めっき液の温度やめっき時間が上記範囲内であると、膜厚を前記した範囲にしやすい。
<めっき層C>
 めっき層Cは、めっき層Bの上に析出するめっき層である。めっき層Cは、ニッケルを主成分とする。
 めっき層Cは、還元めっき液中に含有される還元剤とニッケルイオンとの酸化還元反応によって形成される還元めっき層である。
 めっき層Cを形成するためのめっき液(還元ニッケルめっき液)は、水溶性のニッケル塩及び還元剤を含有する。
 還元剤としては、次亜リン酸やその塩、ジメチルアミンボラン、ヒドラジン、等が例示される。還元剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
 めっき層Cを形成するためのめっき液が含有する水溶性のニッケル塩に特に限定は無く、塩化ニッケル、硫酸ニッケル、スルファミン酸ニッケル、炭酸ニッケル、酢酸ニッケル、次亜リン酸ニッケル、クエン酸ニッケル、等が挙げられる。
 めっき層Cを形成するためのめっき液中における水溶性のニッケル塩の濃度は、特に限定は無いが、50ppm以上であることが好ましく、100ppm以上であることがより好ましく、200ppm以上であることが特に好ましい。また、50000ppm以下であることが好ましく、20000ppm以下であることがより好ましく、10000ppm以下であることが特に好ましい。
 上記下限以上であると、めっき層Cの形成速度が十分な大きさとなる。また、上記上限以下であると、コスト的に有利である。
 めっき層Cは、不純物としてリンを含んでいてもよい。還元剤として、次亜リン酸やその塩を使用した場合、めっき層C中に還元剤由来のリンが含まれる。
 リンの含有量は、2質量%~25質量%程度であるのが望ましい。
 めっき層Cを形成するためのめっき液のpHは、2.5以上であることが好ましく、3以上であることがより好ましく、4以上であることが特に好ましい。また、9.5以下であることが好ましく、9以下であることがより好ましく、8以下であることが特に好ましい。
 上記範囲内であると、金属塩の沈殿やめっき液中での異常反応によるめっき槽内への金属の析出を起こしにくい。
 めっき層Cは、被めっき体を構成する第一金属のめっき積層体表面への拡散の防止等の目的で形成される層であるので、その膜厚は、めっき層Aやめっき層Bよりも厚い。めっき層Cは、厚い皮膜を形成可能な還元めっきにより形成される。
 具体的には、めっき層Cの膜厚は、特に限定は無いが、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、0.03μm以上であることが特に好ましい。また、15μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが特に好ましい。
 上記下限以上であると、皮膜としての性能を十分に発揮することができる。また、上記上限以下であると、コスト的に有利である。
 めっき層Cを形成する際のめっき液の温度は、10℃以上であることが好ましく、15℃以上であることがより好ましく、20℃以上であることが特に好ましい。また、100℃以下であることが好ましく、95℃以下であることがより好ましく、90℃以下であることが特に好ましい。
 また、めっき層Cを形成する時間(めっき時間)は、0.5分以上であることが好ましく、1分以上であることがより好ましく、2分以上であることが特に好ましい。また、240分以下であることが好ましく、120分以下であることがより好ましく、60分以下であることが特に好ましい。
 めっき液の温度やめっき時間が上記範囲内であると、膜厚を前記した範囲にしやすい。
<めっき層D>
 本発明では、めっき層Cを析出させた後、めっき層Cの上に、めっき層Cのニッケルとは異なる金属を主成分とするめっき層Dを析出させてもよい。図2に、そのようにして製造されるめっき積層体の構造を示す。
 めっき層Dは、めっき層Cの上に析出するめっき層である。めっき層Dの主成分の金属は、めっき層Cの主成分の金属であるニッケルとは異なる。
 めっき層Dを構成する金属は、単体金属であってもよいし、合金であってもよい。
 めっき層Dの主成分の金属はめっき液から析出可能な金属であり、水溶液中で安定に存在できるものであれば特に限定は無く、めっき積層体の形成目的に応じて選択することができる。
 例えば、皮膜表面の酸化の防止を目的とする場合には、金、パラジウム等を使用することができる。
 めっき層Dを形成するためのめっき液は、置換めっき液でもよいし、還元めっき液でもよい。
 めっき層Dを形成するためのめっき液は、水溶性の金属塩を含有する。かかる水溶性の金属塩に特に限定は無い。
 例えば、めっき層Dの主成分の金属が金の場合、シアン化金塩、塩化金塩、亜硫酸金塩、チオ硫酸金塩等が挙げられる。めっき層Dの主成分の金属がパラジウムの場合、塩化パラジウム、ジクロロテトラアンミンパラジウム塩、ジニトロテトラアンミンパラジウム塩等が挙げられる。
 めっき層Dを形成するためのめっき液中における水溶性の金属塩の濃度は、特に限定は無いが、5ppm以上であることが好ましく、10ppm以上であることがより好ましく、20ppm以上であることが特に好ましい。また、5000ppm以下であることが好ましく、2000ppm以下であることがより好ましく、1000ppm以下であることが特に好ましい。
 上記下限以上であると、めっき層Dの形成速度が十分な大きさとなる。また、上記上限以下であると、コスト的に有利である。
 めっき層Dを形成するためのめっき液のpHは、2.5以上であることが好ましく、3以上であることがより好ましく、4以上であることが特に好ましい。また、9.5以下であることが好ましく、9以下であることがより好ましく、8以下であることが特に好ましい。
 上記範囲内であると、金属塩の沈殿やめっき液中での異常反応によるめっき槽内への金属の析出を起こしにくい。
 めっき層Dの膜厚は、特に限定は無いが、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、0.03μm以上であることが特に好ましい。また、1μm以下であることが好ましく、0.7μm以下であることがより好ましく、0.5μm以下であることが特に好ましい。
 上記下限以上であると、皮膜としての性能を十分に発揮することができる。また、上記上限以下であると、コスト的に有利である。
 めっき層Dを形成する際のめっき液の温度は、10℃以上であることが好ましく、15℃以上であることがより好ましく、20℃以上であることが特に好ましい。また、100℃以下であることが好ましく、95℃以下であることがより好ましく、90℃以下であることが特に好ましい。
 また、めっき層Dを形成する時間(めっき時間)は、0.5分以上であることが好ましく、1分以上であることがより好ましく、2分以上であることが特に好ましい。また、240分以下であることが好ましく、120分以下であることがより好ましく、60分以下であることが特に好ましい。
 めっき液の温度やめっき時間が上記範囲内であると、膜厚を前記した範囲にしやすい。
<めっき層E>
 本発明では、めっき層Dを析出させた後、めっき層Dの上に、めっき層Dの主成分の金属とは異なる金属を主成分とするめっき層Eを析出させてもよい。図3に、そのようにして製造されるめっき積層体の構造を示す。
 めっき層Eは、めっき層Dの上に析出するめっき層である。めっき層Dの主成分の金属は、めっき層Dの主成分の金属とは異なる。
 めっき層Eを構成する金属は、単体金属であってもよいし、合金であってもよい。
 めっき層Eの主成分の金属はめっき液から析出可能な金属であり、水溶液中で安定に存在できるものであれば特に限定は無く、めっき積層体の形成目的に応じて選択することができる。
 例えば、金ワイヤ接合性の向上を目的とする場合には、金等を使用することができる。
 めっき層Eを形成するためのめっき液は、置換めっき液でもよいし、還元めっき液でもよい。
 めっき層Eを形成するためのめっき液は、水溶性の金属塩を含有する。かかる水溶性の金属塩に特に限定は無い。
 例えば、めっき層Eの主成分の金属が金の場合、シアン化金塩、塩化金塩、亜硫酸金塩、チオ硫酸金塩等が挙げられる。
 めっき層Eを形成するためのめっき液中における水溶性の金属塩の濃度は、特に限定は無いが、5ppm以上であることが好ましく、10ppm以上であることがより好ましく、20ppm以上であることが特に好ましい。また、5000ppm以下であることが好ましく、2000ppm以下であることがより好ましく、1000ppm以下であることが特に好ましい。
 上記下限以上であると、めっき層Dの形成速度が十分な大きさとなる。また、上記上限以下であると、コスト的に有利である。
 めっき層Eを形成するためのめっき液のpHは、2.5以上であることが好ましく、3以上であることがより好ましく、4以上であることが特に好ましい。また、9.5以下であることが好ましく、9以下であることがより好ましく、8以下であることが特に好ましい。
 上記範囲内であると、金属塩の沈殿やめっき液中での異常反応によるめっき槽内への金属の析出を起こしにくい。
 めっき層Eの膜厚は、特に限定は無いが、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましく、0.03μm以上であることが特に好ましい。また、1μm以下であることが好ましく、0.7μm以下であることがより好ましく、0.5μm以下であることが特に好ましい。
 上記下限以上であると、皮膜としての性能を十分に発揮することができる。また、上記上限以下であると、コスト的に有利である。
 めっき層Eを形成する際のめっき液の温度は、10℃以上であることが好ましく、15℃以上であることがより好ましく、20℃以上であることが特に好ましい。また、100℃以下であることが好ましく、95℃以下であることがより好ましく、90℃以下であることが特に好ましい。
 また、めっき層Eを形成する時間(めっき時間)は、0.5分以上であることが好ましく、1分以上であることがより好ましく、2分以上であることが特に好ましい。また、240分以下であることが好ましく、120分以下であることがより好ましく、60分以下であることが特に好ましい。
 めっき液の温度やめっき時間が上記範囲内であると、膜厚を前記した範囲にしやすい。
 本発明の製造方法で製造しためっき積層体が、その上にはんだ接合した際に高い接合強度を維持することができ、また、安定的に製造できる作用・原理は明らかではないが、以下のことが考えられる。ただし本発明は、以下の作用・原理の範囲に限定されるわけではない。
 パラジウムやその合金の層(触媒層)を直接被めっき体に付加した場合には、被めっき体の局所的な腐食や被めっき体表面への酸化層の形成を生じてしまい、その結果として、被めっき体とめっき層の界面にボイドが発生しやすい。これに対して、触媒層と被めっき体の間に、被めっき体の局所的な腐食や被めっき体表面への酸化層の形成を防止するための層(保護層)を設けることにより、ボイドの発生を抑制することができる。
 ボイドの発生を抑制したことにより、パラジウムやその合金の層の上のニッケル層が薄い場合であっても、はんだ接合性が良好となるものと推察される。
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。
実施例1
[めっき積層体の作製]
 ガラスクロスエポキシ材(FR-4)に銅箔を張り付け、ソルダーレジストにてφ0.5mm径の開口系を設けた基板(40mm×40mm×1mmt)を被めっき体として、以下のようにして、被めっき体、めっき層A、めっき層B、めっき層C、めっき層Dの順で積層されためっき積層体を作製した。
 被めっき体に対し、脱脂、ソフトエッチング及び酸洗を行った。脱脂は、市販の洗浄液(PAC-200、(株)ムラタ製)を用い50℃で10分間行った。ソフトエッチングは、市販のソフトエッチング剤(MEOX、(株)ムラタ製)を用い30℃で5分間行った。酸洗は、10v/v%硫酸を用い、室温で1分間行った。
 めっき層Aの形成のためのめっき液として、置換金めっき液(IM-GOLD PC、日本高純度化学(株)製)を使用し、めっき層Aを形成した。めっき層Aの形成のためのめっき液の温度は80℃とし、めっき時間は5分とした。
 次に、めっき層Bの形成のためのめっき液として、置換パラジウムめっき液(IM-Pd NCA、日本高純度化学(株)製)を使用し、めっき層Bを形成した。めっき層Bの形成のためのめっき液の温度は55℃とし、めっき時間は5分とした。
 次に、めっき層Cの形成のためのめっき液として、無電解ニッケルめっき液(ICP-ニコロン GM、奥野製薬工業(株)製)を使用し、めっき層Cを形成した。めっき層Cの形成のためのめっき液の温度は85℃とし、めっき時間は1分とした。
 次に、めっき層Dの形成のためのめっき液として、置換金めっき液(IM-GOLD CN、日本高純度化学(株)製)を使用し、めっき層Dを形成した。めっき層Dの形成のためのめっき液の温度は80℃とし、めっき時間は5分とした。
[めっき層膜厚の測定]
 形成した各めっき層の厚さを、蛍光X線分光分析装置(FT-150、(株)日立ハイテクサイエンス製)により測定した。
 実施例1で得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.03μmであった。
[ボイドの評価]
 被めっき体にめっき層を積層することで作製した前記めっき積層体の上から集束イオンビームを照射し、縦50μm×横50μm×深さ20μm程度の穴を作製し、めっき積層体の断面を露出させた。
 露出させた断面を走査型電子顕微鏡で、30000倍の倍率で観察し、ボイドの有無を確認した。
 実施例1で得られためっき積層体では、得られためっき積層体の断面にボイドは確認されなかった。
[はんだ接合性の評価]
 被めっき体にめっき層を積層することで作製した前記めっき積層体に対して、前加熱を行い、その後、SR開口部にはんだボール(千住金属工業(株)製、SAC405、φ0.6mm)をリフロー装置((株)日本パルス技術研究所製、RF-430-M2)を用いて実装し、ボンドテスタ(Dage社製、ボンドテスタSERIES4000 OPTIMA)を用いてボールプル試験を行い、破断モードを評価した。
 ボールプル試験は、各めっき積層体につき20点で実施した。はんだ内での破壊を「良好」とし、はんだ-下地界面での破壊を「不良」とし、「良好」である割合を算出し、はんだ接合良品率(%)を計算した。
 はんだ実装等の条件については、以下の通りである。
・リフロー環境:窒素雰囲気下
・リフロー前加熱:175℃、4時間
・実装前リフロー回数:3回
・フラックス:KESTER製、TSF6502
・テストスピード:5000μm/秒
・はんだマウント後エージング:1時間
 実施例1で得られためっき積層体では、得られためっき積層体のはんだ接合性は良好であった。
実施例2
 めっき層Aの形成のためのめっき時間を10分とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.01μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.03μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例3
 めっき層Bの形成のためのめっき時間を10分とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.01μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.03μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例4
 めっき層Cの形成のためのめっき時間を0.5分とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.1μm、めっき層Dの膜厚は0.03μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例5
 めっき層Aの形成のためのめっき液として、置換銀めっき液(IM-SILVER、日本高純度化学(株)製)を使用し、めっき液の温度は45℃とし、めっき時間を1分とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.03μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例6
 めっき層Aの形成のためのめっき液として、市販の置換白金めっき液(弱酸性塩化白金酸系めっき液)を使用し、めっき液の温度は45℃とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.03μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例7
 めっき層Aの形成のためのめっき液として、還元金めっき液(HY-GOLD CN、日本高純度化学(株)製)を使用し、めっき時間を1分とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.03μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例8
 めっき層Aの形成のためのめっき液として、市販の還元銀めっき液(弱アルカリ性硝酸銀系めっき液)を使用し、めっき液の温度は50℃とし、めっき時間を1分とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.03μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例9
 めっき層Aの形成のためのめっき液として、還元白金めっき液(OT-1、日本高純度化学(株)製)を使用し、めっき液の温度は30℃とし、めっき時間を1分とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.03μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例10
 めっき層Dの形成のためのめっき液として、還元金めっき液(HY-GOLD CN、日本高純度化学(株)製)を使用し、めっき時間を10分とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.05μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例11
 めっき層Dの形成のためのめっき液として、還元パラジウムめっき液(ネオパラブライト、日本高純度化学(株)製)を使用し、めっき液の温度は70℃とし、めっき時間を10分とした以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.1μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
実施例12
 実施例11において、めっき層Dの形成後に、めっき層Eの形成のためのめっき液として還元金めっき液(HY-GOLD CN、日本高純度化学(株)製)を用い、めっき層Eを形成した。めっき層Eの形成のためのめっき液の温度は80℃とし、めっき時間は10分とした。作製しためっき積層体を、実施例1と同様に評価した。
 得られためっき層Aの膜厚は0.005μm、めっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.1μm、めっき層Eの膜厚は0.05μmであった。
 得られためっき積層体の断面にボイドは確認されず、はんだ接合性も良好であった。
比較例1
 めっき層Aを形成せず、被めっき体に直接めっき層Bを形成した以外は、実施例1と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.03μmであった。
 得られためっき積層体の断面にボイドが確認され、はんだ接合性も不良であった。
比較例2
 めっき層Aを形成せず、被めっき体に直接めっき層Bを形成した以外は、実施例11と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.1μmであった。
 得られためっき積層体の断面にボイドが確認され、はんだ接合性も不良であった。
比較例3
 めっき層Aを形成せず、被めっき体に直接めっき層Bを形成した以外は、実施例12と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Bの膜厚は0.005μm、めっき層Cの膜厚は0.2μm、めっき層Dの膜厚は0.1μm、めっき層Eの膜厚は0.05μmであった。
 得られためっき積層体の断面にボイドが確認され、はんだ接合性も不良であった。
比較例4
 めっき層Aを形成せず、被めっき体に直接めっき層Bを形成したこと、及び、めっき層Cの形成のためのめっき時間を25分としたこと以外は、実施例12と同様にして、めっき積層体を作製し、評価した。
 得られためっき層Bの膜厚は0.005μm、めっき層Cの膜厚は5μm、めっき層Dの膜厚は0.1μm、めっき層Eの膜厚は0.05μmであった。
 得られためっき積層体の断面にボイドが確認されたが、はんだ接合性は良好であった。
 各実施例・比較例の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 被めっき体にめっき層A、めっき層B、めっき層Cの順番でめっき層を形成して作製しためっき積層体は、ボイドの発生無くめっき層Cが形成され、めっき層C(ニッケルの層)を薄くした場合であっても、良好なはんだ接合性が認められた。
 本発明のめっき積層体の製造方法は、導体回路等の表面に必要とする性能を持つめっき積層体を高いはんだ接合強度を維持しながら安定的に製造できるので、本発明は、電気電子部品製造等の分野で広く利用されるものである。
 S 被めっき体
 A めっき層A
 B めっき層B
 C めっき層C
 D めっき層D
 E めっき層E

Claims (8)

  1.  第一金属を主成分とする被めっき体の上に第二金属を主成分とするめっき層Aを析出させた後、該めっき層Aの上にパラジウムを主成分とするめっき層Bを析出させ、その後更に、該めっき層Bの上に、ニッケルを主成分とするめっき層Cを析出させるめっき積層体の製造方法であって、該めっき層Bが、置換めっき液中に含有されるパラジウムイオンと、該被めっき体に含有される該第一金属又は該めっき層Aに含有される該第二金属との間の置換反応によって形成される置換めっき層であり、該めっき層Cが、還元めっき液中に含有される還元剤とニッケルイオンとの酸化還元反応によって形成される還元めっき層であることを特徴とするめっき積層体の製造方法。
  2.  上記第一金属が銅である請求項1に記載のめっき積層体の製造方法。
  3.  上記第二金属が金、白金又は銀である請求項1又は請求項2に記載のめっき積層体の製造方法。
  4.  上記めっき層Aが、置換めっき液中に含有される上記第二金属のイオンと、上記被めっき体に含有される上記第一金属との間の置換反応によって形成される置換めっき層である請求項1ないし請求項3の何れかの請求項に記載のめっき積層体の製造方法。
  5.  上記めっき層Cを析出させた後、該めっき層Cの上に、ニッケルとは異なる金属を主成分とするめっき層Dを析出させる請求項1ないし請求項4の何れかの請求項に記載のめっき積層体の製造方法。
  6.  上記めっき層Dの主成分の金属が金又はパラジウムである請求項5に記載のめっき積層体の製造方法。
  7.  上記めっき層Dを析出させた後、該めっき層Dの上に、該めっき層Dの主成分の金属とは異なる金属を主成分とするめっき層Eを析出させる請求項5又は請求項6に記載のめっき積層体の製造方法。
  8.  上記めっき層Eの主成分の金属が金である請求項7に記載のめっき積層体の製造方法。
PCT/JP2021/003848 2020-02-18 2021-02-03 めっき積層体 WO2021166641A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227030864A KR20220142464A (ko) 2020-02-18 2021-02-03 도금 적층체
US17/799,962 US20230065609A1 (en) 2020-02-18 2021-02-03 Plating stack
CN202180014154.4A CN115087760B (zh) 2020-02-18 2021-02-03 镀覆层叠体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020025109A JP6754152B1 (ja) 2020-02-18 2020-02-18 めっき積層体
JP2020-025109 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021166641A1 true WO2021166641A1 (ja) 2021-08-26

Family

ID=72333568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003848 WO2021166641A1 (ja) 2020-02-18 2021-02-03 めっき積層体

Country Status (6)

Country Link
US (1) US20230065609A1 (ja)
JP (1) JP6754152B1 (ja)
KR (1) KR20220142464A (ja)
CN (1) CN115087760B (ja)
TW (1) TW202134475A (ja)
WO (1) WO2021166641A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129612A (ja) * 2014-04-09 2014-07-10 Tdk Corp 被覆体及び電子部品

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596621B1 (en) * 2002-05-17 2003-07-22 International Business Machines Corporation Method of forming a lead-free tin-silver-copper based solder alloy on an electronic substrate
JP2005317729A (ja) * 2004-04-28 2005-11-10 Hitachi Chem Co Ltd 接続端子、その接続端子を用いた半導体パッケージ及び半導体パッケージの製造方法
JP2007031826A (ja) 2005-06-23 2007-02-08 Hitachi Chem Co Ltd 接続用端子、およびこれを有する半導体搭載用基板
EP2067878B1 (en) * 2007-07-31 2017-03-22 JX Nippon Mining & Metals Corporation Plated material having metal thin film formed by electroless plating, and method for production thereof
CN102605359A (zh) * 2011-01-25 2012-07-25 台湾上村股份有限公司 化学钯金镀膜结构及其制作方法、铜线或钯铜线接合的钯金镀膜封装结构及其封装工艺
JP5978587B2 (ja) * 2011-10-13 2016-08-24 日立化成株式会社 半導体パッケージ及びその製造方法
KR20130056629A (ko) * 2011-11-22 2013-05-30 삼성전기주식회사 기판 및 이의 제조방법
JP6061369B2 (ja) 2012-01-30 2017-01-18 凸版印刷株式会社 配線基板およびその製造方法、ならびにはんだ付き配線基板の製造方法
CN102912329A (zh) * 2012-11-15 2013-02-06 苏州正信电子科技有限公司 一种用于线路板的化学镀镍钯金工艺
JP6168281B2 (ja) * 2013-03-13 2017-07-26 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、液体噴射ヘッドの製造方法
CN103491716A (zh) * 2013-08-20 2014-01-01 鑫纮有限公司 图案导电线路的结构及形成方法
JP6201622B2 (ja) 2013-10-21 2017-09-27 日立化成株式会社 接続端子及びそれを用いた半導体チップ搭載用基板
JP6280754B2 (ja) 2014-01-24 2018-02-14 株式会社クオルテック 配線基板、及び配線基板の製造方法
CN105112892A (zh) * 2015-02-13 2015-12-02 河源西普电子有限公司 一种用于印刷电路板的化学镀镍钯金工艺
CN104862677B (zh) * 2015-05-13 2017-08-11 电子科技大学 一种活化pcb电路表面实现化学镀镍的方法
JP6329589B2 (ja) * 2016-06-13 2018-05-23 上村工業株式会社 皮膜形成方法
CN108866548B (zh) * 2018-07-12 2021-07-16 深圳市化讯半导体材料有限公司 一种金属镀层及其制备方法和应用
CN109449087A (zh) * 2018-10-24 2019-03-08 深圳粤通应用材料有限公司 一种铜镀钯再镀镍键合丝及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129612A (ja) * 2014-04-09 2014-07-10 Tdk Corp 被覆体及び電子部品

Also Published As

Publication number Publication date
JP6754152B1 (ja) 2020-09-09
KR20220142464A (ko) 2022-10-21
US20230065609A1 (en) 2023-03-02
CN115087760B (zh) 2024-08-23
TW202134475A (zh) 2021-09-16
CN115087760A (zh) 2022-09-20
JP2021130834A (ja) 2021-09-09

Similar Documents

Publication Publication Date Title
WO2007040191A1 (ja) ウィスカ抑制表面処理方法
JPWO2011001737A1 (ja) 電気部品の製造方法及び電気部品
US10006125B2 (en) Gold plate coated material
US12018378B2 (en) Electroless plating process
US20080138528A1 (en) Method for Depositing Palladium Layers and Palladium Bath Therefor
US20140076618A1 (en) Method of forming gold thin film and printed circuit board
KR102116055B1 (ko) 무전해 니켈 스트라이크 도금액
JP2013108180A (ja) 基板及びその製造方法
US20050123784A1 (en) Terminal having surface layer formed of Sn-Ag-Cu ternary alloy formed thereon, and part and product having the same
WO2021166641A1 (ja) めっき積層体
JP6020070B2 (ja) 被覆体及び電子部品
WO2021166640A1 (ja) めっき積層体
JP2005163153A (ja) 無電解ニッケル置換金めっき処理層、無電解ニッケルめっき液、および無電解ニッケル置換金めっき処理方法
US11718916B2 (en) Electroless Co—W plating film
JP2020105543A (ja) 置換金めっき液および置換金めっき方法
JP7441263B2 (ja) 無電解Co-Wめっき皮膜、および無電解Co-Wめっき液
CN114901867A (zh) 无电解镀敷工艺及双层镀膜
JP2005264261A (ja) 電子部品材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227030864

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756983

Country of ref document: EP

Kind code of ref document: A1