WO2021164539A1 - 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用 - Google Patents

一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021164539A1
WO2021164539A1 PCT/CN2021/074814 CN2021074814W WO2021164539A1 WO 2021164539 A1 WO2021164539 A1 WO 2021164539A1 CN 2021074814 W CN2021074814 W CN 2021074814W WO 2021164539 A1 WO2021164539 A1 WO 2021164539A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
foamed
based mofs
situ
foamed nickel
Prior art date
Application number
PCT/CN2021/074814
Other languages
English (en)
French (fr)
Inventor
刘宏利
丁心
安太成
李桂英
赵惠军
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Priority to US17/904,720 priority Critical patent/US20230080563A1/en
Publication of WO2021164539A1 publication Critical patent/WO2021164539A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0258Other waste gases from painting equipments or paint drying installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Definitions

  • the invention belongs to the technical field of photocatalytic materials, and more specifically, relates to a photocatalyst for in-situ growth of nickel-based MOFs film on the surface of foamed nickel, and a preparation method and application thereof.
  • VOCs Volatile organic compounds
  • They are an important source of air pollution. They are not only important species involved in haze, photochemical pollution and important precursors of secondary organic aerosols, but also have biological toxicity and "three effects". Become one of the three major killers of air pollution today. Therefore, how to economically and effectively purify various growing VOCs pollution problems has become an urgent problem that the Chinese government and the public need to solve.
  • the photocatalytic oxidation method is a new VOCs treatment technology with good application prospects. It mainly uses semiconductors as photocatalysts. Under the action of light, the O 2 and H 2 O in the air are excited to form strong oxidizing ⁇ OH - and ⁇ O 2 radical, VOCs finally decomposed into secondary pollution CO 2 and H 2 O.
  • Metal-organic frameworks are a kind of organic-inorganic hybrid nanoporous materials with regular pore structure formed by self-assembly of metal ions and organic ligands.
  • MOFs have the characteristics of large specific surface area, high porosity and adjustable structural properties, and have shown good application prospects in the fields of gas storage and separation, gas adsorption, and catalysis.
  • MOFs materials show excellent photocatalytic activity.
  • the present invention provides a method for preparing a composite material, which uses commercial nickel foam with high electrical conductivity/thermal conductivity, light weight and a 3D cross-linked grid structure as a substrate, and in-situ growth of nickel-based MOFs film (abbreviated as It is Ni-MOF/NF).
  • the composite material is not only beneficial to increase the light transmittance of the photocatalyst, but also beneficial to the adsorption and diffusion of VOCs, and the good electrical conductivity of the foamed nickel is beneficial to the transport of photogenerated electrons, reducing the electron-hole bulk recombination, thereby improving The separation efficiency of photo-generated carriers is thus achieved to improve the photocatalytic degradation of VOCs.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a photocatalyst for in-situ growth of nickel-based MOFs film on the surface of foamed nickel.
  • Another object of the present invention is to provide a method for preparing the nickel-based MOFs film photocatalyst grown in situ on the surface of the foamed nickel prepared by the above method.
  • the method uses commercial nickel foam as the nickel source, and uses MOFs to construct ligands to etch the foam nickel.
  • the nickel ions are released from the foam nickel, and then nickel ions and organic ligands are used on the surface of the nickel foam. Perform self-assembly and grow MOFs film in situ.
  • Another object of the present invention is to provide the application of the nickel-based MOFs film photocatalyst grown in situ on the surface of the foamed nickel.
  • a kind of nickel-based MOFs film photocatalyst grown in situ on the surface of foamed nickel is to first immerse the foamed nickel in dilute acid and then use deionized water. Clean and dry to obtain surface-activated foamed nickel; soak the surface-activated foamed nickel in a mixture of imidazole compounds, sodium formate and solvent, and react at 100 ⁇ 180°C to make imidazole compounds and foam.
  • the nickel ions released by etching on the nickel surface are coordinated to obtain an unactivated nickel-based MOFs film on the foamed nickel surface. After cooling to room temperature, it is taken out and immersed in an organic solvent for activation and dried.
  • the imidazole compound is at least one of 2-methylimidazole, imidazole, benzimidazole or 2-ethylimidazole.
  • the dilute acid is nitric acid, hydrochloric acid or sulfuric acid; the concentration of the dilute acid is 0.5-6 mol/L.
  • the molar ratio of the imidazole compound, sodium formate and solvent is (1-10):1:(100-200).
  • the solvent is one or two of methanol, water or DMF, and the organic solvent is methanol or ethanol.
  • the ultrasound time is 5-60 min; the reaction time is 4-18h; the activation time is 12-48h.
  • the preparation method of in-situ growth of nickel-based MOFs film photocatalyst on the surface of foamed nickel includes the following steps:
  • the nickel foam is soaked in dilute acid for ultrasonic, then washed with deionized water, and dried to obtain surface activated nickel foam;
  • step S2 Immerse the surface-activated nickel foam obtained in step S1 in a mixture of imidazole compounds, sodium formate and a solvent, and react at 100 to 180°C, so that the imidazole compounds and the nickel ions released by the etching on the surface of the foam nickel are matched Position function to obtain an unactivated nickel-based MOFs film on the surface of the foamed nickel;
  • the volatile organic compounds are VOCs emitted by the paint spraying industry.
  • the VOCs emitted by the paint spraying industry are ethyl acetate.
  • a nickel-based MOFs film photocatalyst material grown in situ on the surface of the foamed nickel is prepared by using the foamed nickel with good electrical conductivity/thermal conductivity as a substrate and a solvothermal synthesis method.
  • the film material can efficiently catalyze and degrade low-concentration VOCs under sunlight driving, and has excellent stability. This is because the MOFs film is highly dispersed on the surface of the foamed nickel with large pores, which not only enhances the absorption and utilization of light, but also improves the mass transfer of VOC; and the conductivity of the foamed nickel is conducive to the transmission of photo-generated electrons and reduces electrons.
  • the bulk-phase recombination of holes can effectively improve the separation efficiency of photo-generated carriers, thereby improving the photocatalytic activity and stability of the composite photocatalyst.
  • the large pore structure of the nickel foam not only facilitates the mass transfer of VOCs but also enhances the transmission of light.
  • the conductive/thermal conductive foamed nickel and MOFs have a good relationship.
  • the interface contact is conducive to the rapid transfer of photo-generated electrons, thereby improving the separation of photo-generated carriers, so that the composite material exhibits high photocatalytic degradation performance for VOCs under the driving of sunlight, and is a visible light response catalyst for high-efficiency photocatalytic degradation of VOCs. Provides positive guiding significance.
  • the present invention has the following beneficial effects:
  • the present invention combines the MOFs with semiconductor characteristics and good VOCs adsorption capacity and foamed nickel with good electrical/thermal conductivity to prepare a MOFs photocatalyst film grown in situ on the surface of foamed nickel. Since the nickel foam itself is directly provided as the nickel source during the synthesis process, no additional nickel source and other auxiliary synthesis steps are required, which significantly improves the atom utilization rate; and because foamed nickel has a large number of three-dimensional pore structure and good electronic conductivity, compared with Compared with the corresponding powdered nickel-based MOF, the composite photocatalyst provided by the present invention has better light permeability, rapid molecular mass transfer and photogenerated carrier separation capabilities.
  • the in-situ growth nickel-based MOFs film photocatalyst on the surface of the foamed nickel prepared by the present invention exhibits a certain adsorption capacity and excellent catalytic activity for typical VOCs ethyl acetate.
  • the dark adsorption experiment results show that the composite material reaches the equilibrium of adsorption and desorption for ethyl acetate within 60 minutes.
  • the photocatalytic experiment results show that the degradation efficiency of the composite material for gas phase ethyl acetate is still as high as 95% after 360 minutes, and the corresponding mineralization rate is still maintained at 40%.
  • the preparation of the composite catalyst provides a new idea for the photocatalyst design of high-efficiency VOCs, and also provides a scientific idea for its engineering application.
  • Figure 1 is a scanning electron micrograph of Ni-MOF/NF obtained in Example 1;
  • Figure 2 shows the adsorption kinetic curve and photocatalytic degradation kinetic curve of the Ni-MOF/NF film photocatalyst obtained in Example 1 on the gas phase ethyl acetate.
  • Fig. 1 is a scanning electron micrograph of the Ni-MOF/NF obtained in Example 1. It can be seen from Fig. 1 that the nickel-based MOFs are grown in situ on the foamed nickel and are evenly distributed in the form of flakes.
  • Figure 2 shows the adsorption kinetic curve and photocatalytic degradation kinetic curve of the gas phase ethyl acetate on the nickel-based MOFs film photocatalyst (Ni-MOF/NF) synthesized in situ on the surface of the foamed nickel obtained in this example.
  • Ni-MOF/NF adsorption of ethyl acetate by Ni-MOF/NF reaches the equilibrium of adsorption and desorption within 60 minutes, and the photocatalytic degradation efficiency of Ni-MOF/NF on gas phase ethyl acetate reaches 95% within 60 minutes.
  • the results show that the nickel-based MOFs film photocatalyst has certain adsorption performance and high photocatalytic activity.
  • the nickel-based MOFs film photocatalyst grown in situ on the surface of foamed nickel can be a new type of material with a certain adsorption capacity for VOCs and high photocatalytic activity.
  • the unactivated nickel-based MOFs film grown on the surface of the obtained foamed nickel is cross-washed with alcohols and deionized water, and then placed in a vacuum drying oven at 120°C for 48h to obtain nickel grown on the surface of the foamed nickel.
  • Based MOFs film photocatalyst.
  • the unactivated nickel-based MOFs film grown on the surface of the obtained foamed nickel is cross-washed with alcohols and deionized water, and then placed in a vacuum drying oven at 150°C for 24h to obtain nickel grown in situ on the surface of the foamed nickel.
  • Based MOFs film photocatalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)

Abstract

一种在泡沫镍表面上原位生长镍基MOFs膜光催化剂及其制备方法和应用。所述在泡沫镍表面原位生长的镍基MOFs膜光催化剂是先将泡沫镍置于稀酸中浸泡超声,然后用去离子水清洗干净,经干燥制得表面活化处理的泡沫镍;将该表面活化处理的泡沫镍浸泡在咪唑类化合物、甲酸钠和溶剂的混合液中,在100~180℃下反应,在泡沫镍表面得到未活化的镍基MOFs膜,冷却至室温后,取出将其浸泡在有机溶剂中活化,干燥制得。在泡沫镍上原位合成的膜光催化剂,不仅能增大材料的比表面积,有利于VOCs的吸附与扩散,并且有更多的催化位点暴露,以至于能在太阳光的驱动下有效地降解VOCs。

Description

一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用 技术领域
本发明属于光催化材料技术领域,更具体地,涉及一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用。
背景技术
挥发性有机物(VOCs)作为大气污染的一个重要污染源,它不仅是参与灰霾、光化学污染的重要物种和二次有机气溶胶的重要前体物,而且具有生物毒性及“三致作用”,已成为当今大气污染的三大杀手之一。因此,如何经济、有效地净化各种日益增长的VOCs污染问题,已成为我国政府和社会公众迫切需要解决的问题。光催化氧化法是一种新兴的具有良好应用前景的VOCs治理技术,其主要利用半导体为光催化剂,在光照作用下使空气中的O 2和H 2O被激发形成具有强氧化性的·OH -和·O 2自由基,最终将VOCs分解为无二次污染的CO 2和H 2O。然而,目前已报道的半导体光催化剂大部分仅可以利用紫外光(占太阳光的不足5%)激发下才表现出光催化活性,这极大地限制了他们的实际应用;另一方面,由于实际大气中VOCs浓度较低,而常用半导体催化剂的比表面积小、光生载流子复合率高,致使其对VOCs的降解效率较低。因此,研发具有可见光响应的可高效光催化降解VOCs的催化剂是目前亟待解决的问题。
金属-有机骨架材料(Metal-organic frameworks,MOFs)是一类由金属离子与有机配体自组装而成的具有规则孔道结构的有机-无机杂化纳米多孔材料。与沸石分子筛等无机多孔材料相比,MOFs具有大的比表面积、高的孔隙率和结构性质可调等特性,已在气体储存与分离、气体吸附、催化等领域展现出良好的应用前景。尤其在VOCs光催化降解方面,MOFs材料表现出优异的光催化活性。但在实际应用中,宏观上呈现粉末状态的MOFs材料会存在传质阻力和光的遮蔽等问题,并不适用于实际环境中VOCs的光催化工程应用。因此本发明提供了一种复合材料的制备方法,以具有高导电性/导热性、重量轻和3D交联网格结构的商业泡沫镍为基底,在泡沫镍上原位生长镍基MOFs薄膜(简称为Ni-MOF/NF)。该复合材料不仅有利于增加光催化剂的透光性,也有利于VOCs的吸附与扩散,并且利用泡沫镍的良好导电性有利于光生电子的传输,减少电子-空穴的体相复 合,进而提高光生载流子的分离效率,从而达到提高光催化降解VOCs的目的。截至目前,未见关于在泡沫镍表面上原位生长镍基MOFs膜光催化剂及其在VOCs降解方面的相关研究和报道。
发明内容
本发明的目的是为了克服现有技术的缺陷,提供了一种在泡沫镍表面原位生长镍基MOFs膜光催化剂。
本发明的另一目的在于提供上述方法制备得到泡沫镍表面原位生长的镍基MOFs膜光催化剂的制备方法。该方法以商业的泡沫镍为镍源,利用MOFs构建配体对泡沫镍的刻蚀作用,在水热合成过程中使泡沫镍释放出镍离子,随后利用镍离子与有机配体在泡沫镍表面进行自组装,原位生长MOFs膜。
本发明的再一目的在于提供泡沫镍表面原位生长的镍基MOFs膜光催化剂的应用。
本发明上述目的通过以下技术方案予以实现:
一种在泡沫镍表面原位生长镍基MOFs膜光催化剂,所述在泡沫镍表面原位生长的镍基MOFs膜光催化剂是先将泡沫镍置于稀酸中浸泡超声,然后用去离子水清洗干净,经干燥制得表面活化处理的泡沫镍;将该表面活化处理的泡沫镍浸泡在咪唑类化合物、甲酸钠和溶剂的混合液中,在100~180℃下反应,使咪唑类化合物与泡沫镍表面被刻蚀释放的镍离子发生配位作用,在泡沫镍表面得到未活化的镍基MOFs膜,冷却至室温后,取出将其浸泡在有机溶剂中活化,干燥制得。
优选地,所述咪唑类化合物为2-甲基咪唑、咪唑、苯并咪唑或2‐乙基咪唑中的一种以上。
优选地,所述稀酸为硝酸、盐酸或硫酸;所述稀酸的浓度为0.5~6mol/L。
优选地,所述咪唑类化合物、甲酸钠和溶剂的摩尔比为(1~10):1:(100~200)。
优选地,所述溶剂为甲醇、水或DMF中的一种或任意两种,所述有机溶剂为甲醇或乙醇。
优选地,所述超声的时间为5~60min;所述反应的时间为4~18h;所述活化的时间为12~48h。
所述在泡沫镍表面原位生长镍基MOFs膜光催化剂的制备方法,包括如下步 骤:
S1.将泡沫镍置于稀酸中浸泡超声,然后用去离子水清洗干净,经干燥制得表面活化处理的泡沫镍;
S2.将步骤S1所得表面活化处理的泡沫镍浸在咪唑类化合物、甲酸钠和溶剂混合液中,在100~180℃下反应,使咪唑类化合物与泡沫镍表面被刻蚀释放的镍离子发生配位作用,在泡沫镍表面得到未活化的镍基MOFs膜;
S3.将在泡沫镍表面得到未活化的镍基MOFs膜冷却至室温后,取出将其浸泡在有机溶剂中活化,干燥,得到在泡沫镍表面原位生长的镍基MOFs膜光催化剂。
所述在泡沫镍表面原位生长镍基MOFs膜光催化剂在太阳光驱动下降解大气中挥发性有机物中的应用。
优选地,所述挥发性有机物为油漆喷涂行业排放的VOCs。
更为优选地,所述油漆喷涂行业排放的VOCs为乙酸乙酯。
本发明以具有良好导电/导热的泡沫镍为基底,通过溶剂热合成法,制备出一种新型的在泡沫镍表面原位生长的镍基MOFs膜光催化剂材料。该膜材料在太阳光驱动下可高效催化降解低浓度VOCs,并具有优异的稳定性。这是由于MOFs膜高度分散在具有大孔的泡沫镍表面,既增强了对光的吸收和利用,又提高了VOC的传质;而且由于泡沫镍的导电性有利于光生电子的传输,减少电子-空穴的体相复合,可有效提高光生载流子的分离效率,进而提高复合光催化剂的光催化活性和稳定性。
由于该光催化剂中MOFs膜在泡沫镍表面原位均匀生长,泡沫镍大的孔道结构不仅有利于VOCs的传质而且也有利于增强光的透过,同时导电/导热的泡沫镍与MOFs间良好的界面接触有利于光生电子的快速转移,进而提高光生载流子的分离,使复合材料在太阳光驱动下对VOCs表现出较高的光催化降解性能,为高效光催化降解VOCs的可见光响应催化剂提供了积极的指导意义。
与现有技术相比,本发明具有以下有益效果:
1.本发明结合半导体特性和良好VOCs吸附能力的MOFs,与具有良好导电/导热的泡沫镍相结合,制备出一种泡沫镍表面原位生长MOFs光催化剂膜。由于合成过程中直接以泡沫镍自身提供镍源,不需要额外的镍源及其他辅助合成步 骤,显著提高了原子利用率;而且由于泡沫镍具有大量三维孔道结构和良好的电子传导能力,相比于对应的粉末状镍基MOF,本发明提供的复合光催化剂具有更好的透光性、快速的分子传质和光生载流子分离能力。
2.本发明制备出的泡沫镍表面原位生长镍基MOFs膜光催化剂对典型VOCs乙酸乙酯展现出一定的吸附能力和优异的催化活性。暗吸附实验结果表明,在60min内,复合材料对乙酸乙酯达到吸脱附平衡。光催化实验结果表明,复合材料对气相乙酸乙酯的降解效率在360min后仍高达95%,对应的矿化率仍保持在40%。该复合催化剂的制备为高效VOCs的光催化剂设计提供了新的思路,也对其工程应用提供了科学思路。
附图说明
图1为实施例1所得Ni-MOF/NF的扫描电镜照片;
图2为实施例1所得Ni-MOF/NF膜光催化剂对气相乙酸乙酯的吸附动力学曲线和光催化降解动力学曲线。
具体实施方式
下面结合说明书附图和具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.使用稀盐酸(0.5mol/L)和去离子水分别浸泡超声尺寸为1cm 2的泡沫镍,洗去泡沫镍表面污渍、氧化膜和有机物等,让泡沫镍露出新鲜表面。然后,把洗净的泡沫镍放入真空干燥箱中60℃干燥,得到表面活化的泡沫镍。
2.将表面活化处理的泡沫镍浸入摩尔比为1:1:100的2-甲基咪唑、甲醇和甲酸钠混合液的聚四氟乙烯的反应釜中,放置烘箱中,设置程序,1℃/min升至120℃,并在此温度下保持12h,反应完成后,降温至室温,得到泡沫镍表面生长的未活化镍基MOFs膜;
3.将得到的泡沫镍表面生长的未活化镍基MOFs膜用醇类物质和去离子水交叉洗涤后,放入真空干燥箱中120℃,干燥24h,得到在泡沫镍上原位生长的 镍基MOFs膜光催化剂(Ni-MOF/NF)。
图1为实施例1所得Ni-MOF/NF的扫描电镜照片;从图1中可知,镍基MOFs材料原位生长在泡沫镍上且呈片状均匀分布。图2为本实施例所得泡沫镍表面原位合成的镍基MOFs膜光催化剂(Ni-MOF/NF)对气相乙酸乙酯的吸附动力学曲线和光催化降解动力学曲线。由图2可看出,在60min内,Ni-MOF/NF对乙酸乙酯的吸附达到吸脱附平衡,在60min内,Ni-MOF/NF对气相乙酸乙酯的光催化降解效率达到95%。结果表明,该镍基MOFs膜光催化剂具有一定的吸附性能,并且具有很高的光催化活性。在泡沫镍表面原位生长的镍基MOFs膜光催化剂可对VOCs具有一定吸附能力和高光催化活性的新型材料。
实施例2
1.使用稀盐酸(6mol/L)和去离子水分别浸泡超声尺寸为1cm 2的泡沫镍,洗去泡沫镍表面污渍、氧化膜和有机物等,让泡沫镍露出新鲜表面。然后,把洗净的泡沫镍放入真空干燥箱中60℃干燥,得到表面活化的泡沫镍;
2.将表面活化处理的泡沫镍浸入摩尔比为10:1:200的2-甲基咪唑、甲醇和甲酸钠混合加入带聚四氟乙烯的反应釜中,放置烘箱中,设置程序,5℃/min升至100℃,并且在此温度下保持12h,反应完成后,降温至室温,得到泡沫镍表面生长的未活化镍基MOFs膜;
3.将得到的泡沫镍表面生长的未活化镍基MOFs膜用醇类物质和去离子水交叉洗涤后,放入真空干燥箱中120℃,干燥24h,得到在泡沫镍表面原位生长的镍基MOFs膜光催化剂。
实施例3
1.使用稀盐酸(3mol/L)和去离子水分别浸泡超声尺寸为1cm 2的泡沫镍,洗去泡沫镍表面污渍、氧化膜和有机物等,让泡沫镍露出新鲜表面。然后,把洗净的泡沫镍放入真空干燥箱中60℃干燥,得到表面活化的泡沫镍;
2.将表面活化处理的泡沫镍浸入摩尔比为5:1:150的咪唑、DMF和甲酸钠混合加入带聚四氟乙烯的反应釜中,放置烘箱中,设置程序,10℃/min升至180℃,并且在此温度下保持4h,反应完成后,降温至室温,得到泡沫镍表面生长的未活化镍基MOFs膜;
3.将得到的泡沫镍表面生长的未活化镍基MOFs膜用醇类物质和去离子水 交叉洗涤后,放入真空干燥箱中120℃,干燥24h,得到在泡沫镍表面原位生长的镍基MOFs膜光催化剂。
实施例4
1.使用稀硝酸(1mol/L)和去离子水分别浸泡超声尺寸为4cm 2的泡沫镍,洗去泡沫镍表面污渍、氧化膜和有机物等,让泡沫镍露出新鲜表面。然后,把洗净的泡沫镍放入真空干燥箱中80℃干燥,得到表面活化的泡沫镍;
2.将表面活化处理的泡沫镍浸入摩尔比为2:1:150的苯并咪唑、甲醇和甲酸钠混合加入带聚四氟乙烯的反应釜中,放置烘箱中,设置程序,3℃/min升至140℃,并且在此温度下保持12h,反应完成后,降温至室温,得到泡沫镍表面生长的未活化镍基MOFs膜;
3.将得到的泡沫镍表面生长的未活化镍基MOFs膜用醇类物质和去离子水交叉洗涤后,放入真空干燥箱中120℃,干燥48h,得到在泡沫镍表面原位生长的镍基MOFs膜光催化剂。
实施例5
1.使用稀硫酸(浓度4mol/L)和去离子水分别浸泡超声尺寸为4cm 2的泡沫镍,洗去泡沫镍表面污渍、氧化膜和有机物等,让泡沫镍露出新鲜表面。然后,把洗净的泡沫镍放入真空干燥箱中80℃干燥,得到表面活化的泡沫镍;
2.将表面活化处理的泡沫镍浸入摩尔比例为10:1:200的2-乙基咪唑、水和甲酸钠混合加入带聚四氟乙烯的反应釜中,放置烘箱中,设置程序,0.5℃/min升至140℃,并且在此温度下保持18h,反应完成后,降温至室温,得到泡沫镍表面生长的未活化镍基MOFs膜;
3.将得到的泡沫镍表面生长的未活化镍基MOFs膜用醇类物质和去离子水交叉洗涤后,放入真空干燥箱中150℃,干燥24h,得到在泡沫镍表面原位生长的镍基MOFs膜光催化剂。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂,其特征在于,所述在泡沫镍表面原位生长的镍基MOFs膜光催化剂是先将泡沫镍置于稀酸中浸泡超声,然后用去离子水清洗干净,经干燥制得表面活化处理的泡沫镍;将该表面活化处理的泡沫镍浸泡在咪唑类化合物、甲酸钠和溶剂的混合液中,在100~180℃下反应,使咪唑类化合物与泡沫镍表面被刻蚀释放的镍离子发生配位作用,在泡沫镍表面得到未活化的镍基MOFs膜,冷却至室温后,取出将其浸泡在有机溶剂中活化,干燥制得。
  2. 根据权利要求1所述的在泡沫镍表面原位生长镍基MOFs膜光催化剂,其特征在于,所述咪唑类化合物为2-甲基咪唑、咪唑、苯并咪唑或2-乙基咪唑中的一种以上。
  3. 根据权利要求1所述的在泡沫镍表面原位生长镍基MOFs膜光催化剂,其特征在于,所述稀酸为硝酸、盐酸或硫酸;所述稀酸的浓度为0.5~6mol/L。
  4. 根据权利要求1所述的在泡沫镍表面原位生长镍基MOFs膜光催化剂,其特征在于,所述咪唑类化合物、甲酸钠和溶剂的摩尔比为(1~10):1:(100~200)。
  5. 根据权利要求1所述的在泡沫镍表面原位生长镍基MOFs膜光催化剂,其特征在于,所述溶剂为甲醇、水或DMF中的一种或任意两种,所述有机溶剂为甲醇或乙醇。
  6. 根据权利要求1所述的在泡沫镍表面原位生长镍基MOFs膜光催化剂,其特征在于,所述超声的时间为5~60min;所述反应的时间为4~18h;所述活化的时间为12~48h。
  7. 一种根据权利要求1-6任一项所述在泡沫镍表面原位生长镍基MOFs膜光催化剂的制备方法,其特征在于,包括如下步骤:
    S1.将泡沫镍置于稀酸中浸泡超声,然后用去离子水清洗干净,经干燥制得表面活化处理的泡沫镍;
    S2.将步骤S1所得表面活化处理的泡沫镍浸在咪唑类化合物、甲酸钠和溶剂混合液中,在100~180℃下反应,使咪唑类化合物与泡沫镍表面被刻蚀释放的镍离子发生配位作用,在泡沫镍表面得到未活化的镍基MOFs膜;
    S3.将在泡沫镍表面得到未活化的镍基MOFs膜冷却至室温后,取出将其浸 泡在有机溶剂中活化,干燥,得到在泡沫镍表面原位生长的镍基MOFs膜光催化剂。
  8. 权利要求1-6任一项所述在泡沫镍表面原位生长镍基MOFs膜光催化剂在太阳光驱动下降解大气中挥发性有机物中的应用。
  9. 根据权力要求8所述的在泡沫镍表面原位生长镍基MOFs光催化剂膜在太阳光驱动下降解大气中挥发性有机物中的应用,其特征在于,所述挥发性有机物为油漆喷涂行业排放的VOCs。
  10. 根据权力要求9所述的在泡沫镍表面原位生长镍基MOFs光催化剂膜在太阳光驱动下降解大气中挥发性有机物中的应用,其特征在于,所述油漆喷涂行业排放的VOCs为乙酸乙酯。
PCT/CN2021/074814 2020-02-21 2021-02-02 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用 WO2021164539A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/904,720 US20230080563A1 (en) 2020-02-21 2021-02-02 Nickel-based mof film photocatalyst grown in-situ on foamed nickel surface, preparation method therefor, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010107308.1A CN111250170B (zh) 2020-02-21 2020-02-21 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用
CN202010107308.1 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021164539A1 true WO2021164539A1 (zh) 2021-08-26

Family

ID=70941656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074814 WO2021164539A1 (zh) 2020-02-21 2021-02-02 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用

Country Status (3)

Country Link
US (1) US20230080563A1 (zh)
CN (1) CN111250170B (zh)
WO (1) WO2021164539A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578277A (zh) * 2021-09-10 2021-11-02 天津工业大学 一种Ni/Co MOF制备方法和在处理有色废水中的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111250170B (zh) * 2020-02-21 2021-08-24 广东工业大学 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用
CN112117469B (zh) * 2020-09-10 2022-02-15 广州大学 一种泡沫镍电催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348198A (zh) * 2015-09-29 2016-02-24 中能科泰(北京)科技有限公司 金属有机骨架膜及其制备方法
CN106984190A (zh) * 2017-05-04 2017-07-28 中能科泰(北京)科技有限公司 一种催化降解挥发性有机物的方法
CN107398187A (zh) * 2017-07-26 2017-11-28 华南理工大学 一种利用外加电场法超快速制备金属有机骨架膜的方法
CN107602474A (zh) * 2017-07-26 2018-01-19 华南理工大学 一种模板法制备具有特定取向的金属有机骨架薄膜的方法
CN109252180A (zh) * 2018-09-19 2019-01-22 安徽师范大学 一种三元mof纳米片阵列材料、制备方法及其应用
CN111250170A (zh) * 2020-02-21 2020-06-09 广东工业大学 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887180B (zh) * 2017-11-08 2019-07-02 哈尔滨工业大学 一种在泡沫镍上原位生长Ni-MOF-74的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105348198A (zh) * 2015-09-29 2016-02-24 中能科泰(北京)科技有限公司 金属有机骨架膜及其制备方法
CN106984190A (zh) * 2017-05-04 2017-07-28 中能科泰(北京)科技有限公司 一种催化降解挥发性有机物的方法
CN107398187A (zh) * 2017-07-26 2017-11-28 华南理工大学 一种利用外加电场法超快速制备金属有机骨架膜的方法
CN107602474A (zh) * 2017-07-26 2018-01-19 华南理工大学 一种模板法制备具有特定取向的金属有机骨架薄膜的方法
CN109252180A (zh) * 2018-09-19 2019-01-22 安徽师范大学 一种三元mof纳米片阵列材料、制备方法及其应用
CN111250170A (zh) * 2020-02-21 2020-06-09 广东工业大学 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAPPORELLO ROCÍO L., MIRÓ EDUARDO E., ZAMARO JUAN M.: "Secondary growth of ZIF-8 films onto copper-based foils. Insight into surface interactions", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 211, 1 July 2015 (2015-07-01), pages 64 - 72, XP055839495, ISSN: 1387-1811, DOI: 10.1016/j.micromeso.2015.02.049 *
ZHAO JINGSHU, WANG YIN, ZHOU JUNWEN, QI PENGFEI, LI SIWU, ZHANG KEXIN, FENG XIAO, WANG BO, HU CHANGWEN: "A copper(II)-based MOF film for highly efficient visible-light-driven hydrogen production", JOURNAL OF MATERIALS CHEMISTRY A, vol. 4, no. 19, 13 April 2016 (2016-04-13), GB, pages 7174 - 7177, XP055839493, ISSN: 2050-7488, DOI: 10.1039/C6TA00431H *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113578277A (zh) * 2021-09-10 2021-11-02 天津工业大学 一种Ni/Co MOF制备方法和在处理有色废水中的应用
CN113578277B (zh) * 2021-09-10 2023-07-18 天津工业大学 一种Ni/Co MOF制备方法和在处理有色废水中的应用

Also Published As

Publication number Publication date
CN111250170A (zh) 2020-06-09
CN111250170B (zh) 2021-08-24
US20230080563A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2021164539A1 (zh) 一种在泡沫镍表面原位生长镍基MOFs膜光催化剂及其制备方法和应用
CN107824210B (zh) 一种氮掺杂介孔碳包裹的二氧化钛复合光催化剂及其制备方法和应用
WO2022041852A1 (zh) 一种在泡沫镍表面原位生长Ni-MOF薄膜光催化剂及其制备方法和应用
CN111389442B (zh) 负载于泡沫镍表面的p-n异质结复合材料及其制备方法与应用
CN108067281B (zh) 多孔g-C3N4光催化剂及其制备方法和应用
CN111346642B (zh) 高分散金属纳米颗粒/生物质碳复合电极材料及其制备方法与应用
CN112563515B (zh) 一种铁氮共掺杂碳与MXene复合物及其制备方法和应用
CN110735147B (zh) 一种普鲁士蓝类似物纳米片阵列材料及其电解水应用
CN110252352B (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
CN110975918A (zh) 一种硫化铟锌-氮掺杂石墨烯泡沫复合光催化材料及其制备方法和应用
CN111774058B (zh) 一种异质结复合光催化剂及其制备方法和应用
CN112844421B (zh) 一种利用等离子体增强MoS2电催化和/或光电催化性能的方法
CN112439416A (zh) 一种高分散铜负载二氧化钛纳米片的制备方法及其应用
CN110368968A (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
CN111450859A (zh) 一种La掺杂(BiO)2CO3光催化剂及其制备方法
CN104941666A (zh) 一种可见光响应的立方闪锌矿结构的CdxZn1-xS固溶体光催化剂的制备方法
CN107308973B (zh) 一种碱式磷酸钴纳米针复合lton光催化剂及其制备方法和应用
CN111957328A (zh) 一种催化剂模块、制备方法及应用
CN112023942A (zh) 一种NiMoO3S/泡沫镍复合材料及其制备方法和应用
CN108855193B (zh) TaN/BiVO4异质结复合材料及其制备方法和应用
CN112973743A (zh) 一种BC/Bi4O5Br2复合光催化材料的制备方法
CN113600216A (zh) 一种碳布负载磷酸铋/卤氧化铋的花状光催化剂的制备方法
CN116078437B (zh) 一种ZIF-8/rGO复合光催化剂及其制备方法与应用
CN115893531B (zh) 一种La、Rh共掺的SrTiO3纳米管阵列及其制备方法和应用
CN112138695B (zh) 一种Z型ZnO/Au/g-C3N4复合膜光催化材料的制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756560

Country of ref document: EP

Kind code of ref document: A1