WO2021159646A1 - 镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用 - Google Patents

镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用 Download PDF

Info

Publication number
WO2021159646A1
WO2021159646A1 PCT/CN2020/096567 CN2020096567W WO2021159646A1 WO 2021159646 A1 WO2021159646 A1 WO 2021159646A1 CN 2020096567 W CN2020096567 W CN 2020096567W WO 2021159646 A1 WO2021159646 A1 WO 2021159646A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
rare earth
chloride
lanthanide rare
mixture
Prior art date
Application number
PCT/CN2020/096567
Other languages
English (en)
French (fr)
Inventor
朱陆益
谢永帅
彭影
王新强
张光辉
许东
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2021159646A1 publication Critical patent/WO2021159646A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/10Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material by decomposition of organic substances

Definitions

  • the invention relates to a lanthanide series rare earth-organic polymer precursor, a lanthanide series rare earth oxide fiber and a preparation method, in particular to a method for preparing a corresponding oxide fiber from a rare earth-organic polymer precursor with a linear polymerization structure, belonging to New material technology field.
  • Lanthanide rare earth oxides refer to the oxides of 15 elements from lanthanum to lutetium in group IIIB of the periodic table. Because rare earth elements have the characteristics of high electricity price, large radius, rich electronic energy level, susceptibility to polarization, positive correlation between refractive index and polarization intensity, and good thermal stability of rare earth oxides, they are used in catalysis, lighting, nuclear industry, laser, storage, etc. , Sensing, display, biomarkers, ceramic materials and refractory materials have a wide range of application prospects. At present, the research on rare earth oxides mainly focuses on powder, ceramic block, single crystal and so on. The preparation methods of rare earth oxide fibers include hydrothermal, solvothermal, electrospinning, etc.
  • the fibers prepared by hydrothermal and solvothermal methods are short in length, brittle, and limited in use; electrospinning technology is an effective method for preparing fibers In recent years, it has received extensive attention from researchers. However, for rare earth oxide fibers, flexibility and purity are currently the main problems that limit their practical applications.
  • Chinese patent document CN101912582A discloses a method for preparing La 2 O 3 :Tb 3+ submicron green fluorescent fiber.
  • Lanthanum acetate and terbium acetate are dissolved in water, and polyoxygenated with a mass of 1 to 1.2 times the total amount of acetate is added. Ethylene is stirred for 4 hours to obtain a spinning solution. After electrospinning and subsequent heat treatment, La 2 O 3 :Tb 3+ fiber is obtained.
  • the decomposition of organic matter causes more defects on the surface of the fiber, which affects the flexibility of the fiber.
  • the present invention proposes lanthanide rare earth-organic polymer precursors, lanthanide rare earth oxide fibers, and preparation methods and applications.
  • the prepared lanthanide rare earth oxide fiber material has high purity and good flexibility.
  • the preparation method of the lanthanide rare earth-organic polymer precursor includes the following steps:
  • the molar ratio of metal source: ligand: triethylamine is 1:0.5 to 1.2: 1.5 to 4, and the mass of anhydrous methanol added per 100 g of metal source is 300 to 600 g;
  • the reduced-pressure drying temperature after adding triethylamine is 30-40°C;
  • the addition amount of the extractant is based on 2000-3000 milliliters per mole of the metal source, and the standing time is 48-96 hours.
  • the metal source is a lanthanum source, a cerium source, a spectrum source, a neodymium source, a samarium source, a europium source, a gadolinium source, a terbium source, a dysprosium source, a holmium source, an erbium source, a thulium source, and a ytterbium source. Or one or more of lutetium sources;
  • the lanthanum source is one or a mixture of crystalline lanthanum chloride and anhydrous lanthanum chloride;
  • the cerium source is one or a mixture of crystalline cerium chloride and anhydrous cerium chloride;
  • the spectrum source is one or a mixture of crystalline praseodymium chloride and anhydrous praseodymium chloride;
  • the neodymium source is one or a mixture of crystalline neodymium chloride and anhydrous neodymium chloride;
  • the samarium source is one or a mixture of crystalline samarium chloride and anhydrous samarium chloride;
  • the europium source is one or a mixture of crystalline europium chloride and anhydrous europium chloride;
  • the gadolinium source is one or a mixture of crystalline gadolinium chloride and anhydrous gadolinium chloride;
  • the terbium source is one or a mixture of crystalline terbium chloride and anhydrous terbium chloride;
  • the dysprosium source is one or a mixture of crystalline dysprosium chloride and anhydrous dysprosium chloride;
  • the holmium source is one or a mixture of crystalline holmium chloride and anhydrous holmium chloride;
  • the erbium source is one or a mixture of crystalline erbium chloride and anhydrous erbium chloride;
  • the thulium source is one or a mixture of crystalline thulium chloride and anhydrous thulium chloride;
  • the ytterbium source is one or a mixture of crystalline ytterbium chloride and anhydrous ytterbium chloride;
  • the lutetium source is one or a mixture of crystalline lutetium chloride and anhydrous lutetium chloride.
  • the ligand is one or a mixture of two or more of ⁇ -diketones such as acetylacetone, ethyl acetoacetate, and methyl acetoacetate;
  • the extraction agent is one or a mixture of acetone and tetrahydrofuran.
  • the lanthanide rare earth-organic polymer precursor prepared as described above is also provided.
  • a method for preparing lanthanide rare earth oxide fiber includes the following steps:
  • a lanthanide rare earth-organic polymer precursor is added to a spinning aid, a spinning solution is prepared in an organic solvent, and the spinning solution is electrostatically spun to obtain a precursor fiber, which is then heat treated to obtain a lanthanide rare earth oxide fiber.
  • the mass ratio of the rare earth-organic polymer precursor, spinning aid, and organic solvent is 50-150:1:100-800.
  • the organic solvent is one or more of anhydrous methanol, anhydrous ethanol, and N,N-dimethylformamide (DMF);
  • the spinning aid is one or a mixture of polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO).
  • PVP polyvinylpyrrolidone
  • PEO polyethylene oxide
  • the electrospinning conditions are: spinning voltage 5-20kV, distance between spinneret and receiving device 10-30cm, spinning dope advancing speed 0.5-4ml/h, ambient temperature 5 ⁇ 45°C, humidity 20-75%.
  • Various forms of precursor fibers can be obtained through different receiving devices.
  • the electrospinning conditions are: spinning voltage 6-18kV, injection pump advancing speed 0.8-3ml/h, spinning environment temperature 15-40°C, spinning environment humidity 20-55 %.
  • the heat treatment process is performed in an air environment
  • the heat treatment temperature is 600 to 1200°C.
  • the heat treatment process is: raising the temperature to the heat treatment temperature at 0.5-5° C./min, keeping the temperature at the highest temperature for 10 to 240 minutes, and then cooling with the furnace.
  • the present invention also provides a lanthanide rare earth oxide fiber material prepared by the above preparation method.
  • the lanthanide rare earth oxide fiber material has excellent characteristics such as high purity, high strength, good flexibility, uniform and adjustable diameter, etc.
  • the lanthanide rare earth oxide fiber material is used in the fields of catalysis, lighting, nuclear industry, laser, storage, sensing, display, biomarking, ceramic materials and refractory materials.
  • the present invention firstly proposes a universal preparation method of lanthanide rare earth-organic polymer precursor and its oxide fiber.
  • the prepared rare earth-organic polymer precursor has an oxide content of more than 60%, which greatly increases the content of the precursor.
  • the content of lanthanide rare earth oxides helps to increase the density of oxide fibers in the subsequent heat treatment process, ensuring that they have excellent flexibility and higher strength.
  • the rare earth-organic polymer precursor prepared by the present invention has stable properties and is stored for one year at room temperature without deterioration.
  • the spinning solution prepared with it is clear and transparent, and can be placed at room temperature for one year without precipitation or turbidity.
  • the present invention can obtain various application forms of lanthanide rare earth oxide fiber materials by adopting different collection methods.
  • the lanthanide rare earth oxide fiber prepared by the invention has high purity, high strength, uniform and adjustable diameter, good flexibility, compact structure, no pores, cracks and other defects.
  • the invention does not need to perform complicated heat treatment, does not need atmosphere protection, has a simple preparation process, and is easy for industrial production.
  • Figure 1 is a photo of the lutetium-organic polymer precursor prepared in Example 2.
  • Example 2 is the TG curve of the lutetium-organic polymer precursor prepared in Example 2.
  • FIG. 3 is an optical photograph of the lutetium oxide fiber prepared in Example 2.
  • Example 4 is an X-ray diffraction (XRD) pattern of the lutetium oxide fiber prepared in Example 2.
  • FIG. 5 is an SEM photograph of the lutetium oxide fiber prepared in Example 2.
  • the raw materials used in the examples are all conventional commercially available products.
  • a preparation method of lanthanum-organic polymer precursor and lanthanum oxide fiber includes the following steps:
  • the precursor spinning solution is obtained by electrostatic spinning Precursor fiber, in which the spinning voltage is 7kV, the injection pump speed is 2ml/h, the ambient humidity is 40%, and the spinning process is carried out at room temperature;
  • the precursor fiber prepared in (4) is heated to 800°C at 1°C/min in a heat treatment furnace and kept at 800°C for 1 hour, and then cooled with the furnace.
  • the obtained flexible lanthanum oxide fiber has a dense and smooth surface, a purity of up to 99.9%, a uniform diameter, and a diameter of about 600 nanometers.
  • a preparation method of lutetium-organic polymer precursor and lutetium oxide fiber includes the following steps:
  • the precursor spinning solution is obtained by electrostatic spinning Precursor fiber, in which the spinning voltage is 10kV, the injection pump speed is 2.5ml/h, the environmental humidity is 55%, and the spinning process is carried out at room temperature;
  • the precursor fiber prepared in (4) is heated to 900°C at 1°C/min in a heat treatment furnace and kept at 900°C for 1 hour, and then cooled with the furnace.
  • the optical photo of the lutetium oxide fiber prepared in this example is shown in FIG. 3, the X-ray diffraction (XRD) pattern of the lutetium oxide fiber is shown in FIG. 4, and the SEM photo of the lutetium oxide fiber is shown in FIG. It can be seen that the obtained lutetium oxide fiber has a dense and smooth surface, good flexibility, a purity of up to 99.95%, a uniform diameter, and a diameter of about 450 nanometers.
  • XRD X-ray diffraction
  • Example 3-17 The preparation steps of Examples 3-17 are the same as those of Example 1, wherein the preparation parameters of the rare earth-organic polymer precursor, the spinning solution preparation parameters, and the diameter and purity of the flexible rare earth oxide fibers are shown in Table 1-3.
  • Stirring time 1 stirrring time after adding ligand
  • Stirring time 2 stirring time after adding triethylamine
  • Drying temperature 1 the drying temperature of the precursor solution containing triethylamine hydrochloride
  • Drying temperature 2 the drying temperature of the precursor solution obtained by filtration after extraction with the extractant.
  • step (1) of Example 2 dissolve 100 g of crystalline lutetium chloride in 300 g of anhydrous methanol, add 20 g of acetylacetone to the solution after it is completely dissolved, and after stirring for 2 hours, add 77 g dropwise After the addition of triethylamine, stirring was continued for 2 hours, and the obtained solution was milky white. It shows that the low amount of ligand will cause the precursor to hydrolyze.
  • the precursor fiber prepared in (4) was heated to 900° C. at 200° C./min in a heat treatment furnace and kept at 900° C. for 1 hour, and then cooled with the furnace.
  • the obtained lutetium oxide fiber has many pores. During the heat treatment process, the heating rate is too fast, which will easily lead to the increase of fiber porosity and the decrease of strength and toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用,制备过程包括:1)镧系稀土-有机聚合物前驱体的制备;2)静电纺丝制备前驱体纤维:以稀土-有机聚合物前驱体为原料,用有机溶剂溶解后加入纺丝助剂获得前驱体纺丝液,纺丝液在5~20kV的电压下静电纺丝获得前驱体纤维;3)将前驱体纤维在空气中热处理获得镧系稀土氧化物纤维。本发明的纤维纯度高、强度高、直径均匀且可调、柔韧性好、结构致密、无气孔、裂纹等缺陷,在催化、照明、核工业、激光、存储、传感、显示、生物标记、陶瓷材料及耐火材料等领域具有广泛的应用前景。

Description

镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用 技术领域:
本发明涉及一种镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法,特别是一种具有线性聚合结构的稀土-有机聚合物前驱体制备相应氧化物纤维的方法,属于新材料技术领域。
背景技术:
镧系稀土氧化物是指元素周期表中的ⅢB族从镧到镥15种元素的氧化物。由于稀土元素具有电价高、半径大、电子能级丰富、易受极化且折射率与极化强度呈正相关、稀土氧化物热稳定性好等特点,在催化、照明、核工业、激光、存储、传感、显示、生物标记、陶瓷材料及耐火材料等领域都有广泛的应用前景。目前对于稀土氧化物的研究主要集中在粉体、陶瓷块体、单晶等方面。稀土氧化物纤维的制备方法包括水热、溶剂热、静电纺丝等,其中水热、溶剂热法所制备的纤维长度短、脆性大、使用受限;静电纺丝技术作为制备纤维的有效方法,近年来受到研究者们的广泛关注。然而对稀土氧化物纤维而言柔性和纯度是当前限制其实际应用的主要问题。
中国专利文件CN101912582A公开了一种La 2O 3:Tb 3+亚微米绿色荧光纤维的制备方法,将醋酸镧和醋酸铽溶解在水中,加入质量为醋酸盐总量1~1.2倍的聚氧化乙烯,搅拌4小时后获得纺丝液,经静电纺丝及后续热处理获得La 2O 3:Tb 3+纤维,该纤维直径分布离散性较大,且由于前驱体中氧化物含量较低,大量的有机物分解导致纤维表面缺陷较多,这影响了纤维的柔韧性。R.Thangappan等人采用PVA为结构模板以硝酸钆为金属源制备了Gd 2O 3纳米纤维(参见:Applied Surface Science 261(2012)770-773),该纤维具有很好的光学性质,但表面气孔较多,长度较短,强度较差。中国专利文件CN104153124A公开了一种柔性稀土氧化物纳米纤维膜的制备方法,该方法获得了柔性较好的稀土纳米纤维膜,但在制备过程中需要加入非稀土稳定剂和硅烷偶联剂,极大的降低了稀土氧化物纳米纤维膜的纯度。
发明内容:
针对目前稀土氧化物纤维制备技术的不足,本发明提出镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用。制备的镧系稀土氧化物纤维材料纯度高、柔韧性好。
本发明的技术方案如下:
镧系稀土-有机聚合物前驱体的制备方法,包括步骤如下:
将稀土金属源溶于无水甲醇中,按金属源:配体摩尔比为1:0.5~2加入配体,搅拌30~200分钟,按金属源:三乙胺摩尔比为1:1~4逐滴加入三乙胺,继续搅拌,然后在25~40℃下减压干燥;产物用萃取剂浸泡,静置24~144小时后过滤,除去滤渣,将滤液在25℃~40℃下减压干燥,得到稀土-有机聚合物前驱体。该前驱体性质稳定,具有一定的可纺性。
根据本发明,优选的,金属源:配体:三乙胺摩尔比为1:0.5~1.2:1.5~4,每100克金属源加入无水甲醇的质量为300~600克;
优选的,加入三乙胺后的减压干燥温度为30~40℃;
优选的,萃取剂加入量按每摩尔金属源2000~3000毫升计,静置时间为48~96小时。
根据本发明,优选的,所述金属源为镧源、铈源、谱源、钕源、钐源、铕源、钆源、铽源、镝源、钬源、铒源、铥源、镱源或镥源中的一种或几种;
进一步优选的,镧源为结晶氯化镧、无水氯化镧中的一种或混合物;
铈源为结晶氯化铈、无水氯化铈中的一种或混合物;
谱源为结晶氯化镨、无水氯化镨中的一种或混合物;
钕源为结晶氯化钕、无水氯化钕中的一种或混合物;
钐源为结晶氯化钐、无水氯化钐中的一种或混合物;
铕源为结晶氯化铕、无水氯化铕中的一种或混合物;
钆源为结晶氯化钆、无水氯化钆中的一种或混合物;
铽源为结晶氯化铽、无水氯化铽中的一种或混合物;
镝源为结晶氯化镝、无水氯化镝中的一种或混合物;
钬源为结晶氯化钬、无水氯化钬中的一种或混合物;
铒源为结晶氯化铒、无水氯化铒中的一种或混合物;
铥源为结晶氯化铥、无水氯化铥中的一种或混合物;
镱源为结晶氯化镱、无水氯化镱中的一种或混合物;
镥源为结晶氯化镥、无水氯化镥中的一种或混合物。
根据本发明,优选的,所述的配体为乙酰丙酮、乙酰乙酸乙酯、乙酰乙酸甲酯等β-二酮中的一种或两种以上混合;
优选的,所述的萃取剂为丙酮、四氢呋喃中的一种或混合物。
根据本发明,还提供上述制备得到的镧系稀土-有机聚合物前驱体。
根据本发明,一种镧系稀土氧化物纤维的制备方法,包括步骤如下:
将镧系稀土-有机聚合物前驱体加入纺丝助剂,在有机溶剂中配制纺丝液,将纺丝液静电纺丝,得到前驱体纤维,然后经过热处理,获得镧系稀土氧化物纤维。
根据本发明,优选的,稀土-有机聚合物前驱体、纺丝助剂、有机溶剂的质量比为:50~150:1:100~800。
根据本发明,优选的,所述有机溶剂为无水甲醇、无水乙醇、N,N-二甲基甲酰胺(DMF)中的一种或几种;
优选的,所述的纺丝助剂为聚乙烯吡咯烷酮(PVP)、聚氧化乙烯(PEO)中的一种或混合物。
根据本发明,优选的,静电纺丝条件为:纺丝电压5~20kV,喷丝头与接收装置间的距离为10~30cm,纺丝液推进速度为0.5~4ml/h,环境温度5~45℃,湿度20~75%。可通过不同的接收装置获得多种形式的前驱体纤维。
根据本发明,优选的,静电纺丝条件为:纺丝电压6~18kV,注射泵的推进速度为0.8~3ml/h,纺丝环境温度为15~40℃,纺丝环境湿度为20~55%。
根据本发明,优选的,所述热处理过程在空气环境下进行;
优选的,热处理温度为600~1200℃。
根据本发明,优选的,所述热处理过程为:以0.5~5℃/min升温至热处理温度,并在最高温度下保温10~240分钟,然后随炉冷却。
本发明还提出一种通过以上制备方法制备的镧系稀土氧化物纤维材料,所述的镧系稀土氧化物纤维材料具有纯度高、强度高、柔性好、直径均匀且可调等优异特性,可通过采用不同的收集方式得到多种材料应用形式,获得的纤维内部晶粒尺寸均匀,排布致密,纤维表面无气孔、裂纹等缺陷。
根据本发明,所述的镧系稀土氧化物纤维材料在催化、照明、核工业、激光、存储、传感、显示、生物标记、陶瓷材料及耐火材料领域中的应用。
本发明的技术特点及优良效果:
1.本发明首先提出镧系稀土-有机聚合物前驱体及其氧化物纤维的普适制备方法,所制备的稀土-有机聚合物前驱体中氧化物含量大于60%,大大提高了前驱体中镧系稀土氧化物的含量,有助于在后续热处理过程中提高氧化物纤维的致密度,保证其具有优异的柔韧性和较高的强度。
2.本发明制备的稀土-有机聚合物前驱体性质稳定,在室温下保存一年不变质,用其配置的纺丝液清澈透明,可以在室温下放置一年不出现沉淀、浑浊等现象。
3.本发明可通过采用不同的收集方式得到多种镧系稀土氧化物纤维材料应用形式。
4.本发明制备的镧系稀土氧化物纤维纯度高、强度高、直径均匀且可调、柔韧性好、结构致密、无气孔、裂纹等缺陷。本发明不需要进行复杂的热处理,不需气氛保护,制备工艺简单,易于工业化生产。
附图说明
图1为实施例2所制备的镥-有机聚合物前驱体照片。
图2为实施例2所制备的镥-有机聚合物前驱体TG曲线。
图3为实施例2所制备的氧化镥纤维光学照片。
图4为实施例2所制备的氧化镥纤维X射线衍射(XRD)图。
图5为实施例2所制备的氧化镥纤维SEM照片。
具体实施方式:
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。同时应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
实施例中所用原料均为常规市购产品。
实施例1:
一种镧-有机聚合物前驱体及氧化镧纤维的制备方法,包括步骤如下:
(1)将100克无水氯化镧溶解在600克无水甲醇中,待完全溶解后向溶液中加入41克乙酰丙酮,搅拌2小时后,逐滴加入100克三乙胺,滴加完后继续搅拌2小时,得到澄清的前驱体三乙胺溶液;
(2)将(1)中所制得澄清溶液转入圆底烧瓶中,在38℃减压浓缩至干粉,然后向圆底烧瓶中加入850克丙酮,封口静置72小时;
(3)过滤掉(2)中所述圆底烧瓶中不溶的盐酸三乙胺,获得镧-乙酰丙酮聚合物前驱体溶液,将其转入另一圆底烧瓶中,在32℃减压干燥,得到镧-乙酰丙酮聚合物前驱体粉末;
(4)取0.10克PEO溶解在20克无水甲醇中,加入6克镧-乙酰丙酮聚合物前驱体,搅拌,得到澄清透明的前驱体纺丝液,前驱体纺丝液经静电纺丝获得前驱体纤维,其中纺丝电压7kV,注射泵推进速度2ml/h,环境湿度40%,纺丝过程在室温下进行;
(5)将(4)所制备的前驱体纤维在热处理炉中以1℃/min升温至800℃并在800℃保温1小时,随炉冷却。
获得的柔性氧化镧纤维表面致密光滑,纯度可达99.9%,直径均匀,直径为600纳米左右。
实施例2:
一种镥-有机聚合物前驱体及氧化镥纤维的制备方法,包括步骤如下:
(1)将100克结晶氯化镥溶解在300克无水甲醇中,待完全溶解后向溶液中加入38克乙酰丙酮,搅拌2小时后,逐滴加入77克三乙胺,滴加完后继续搅拌2小时,得到澄清的前驱体三乙胺溶液;
(2)将(1)中所制得澄清溶液转入圆底烧瓶中,在38℃减压浓缩至干粉,然后向圆底烧瓶中加入750克四氢呋喃,封口静置72小时;
(3)过滤掉(2)中所述圆底烧瓶中不溶的盐酸三乙胺,获得镥-乙酰丙酮聚合物前驱体溶液,将其转入另一圆底烧瓶中,在32℃减压干燥,得到镥-乙酰丙酮聚合物前驱体粉末;镥-有机聚合物前驱体照片如图1所示,镥-有机聚合物的TG曲线如图2所示。
(4)取0.06克PEO溶解在20克无水乙醇中,加入10克镥-乙酰丙酮聚合物前驱体,搅拌,得到澄清透明的前驱体纺丝液,前驱体纺丝液经静电纺丝获得前驱体纤维,其中纺丝电压10kV,注射泵推进速度2.5ml/h,环境湿度55%,纺丝过程在室温下进行;
(5)将(4)所制备的前驱体纤维在热处理炉中以1℃/min升温至900℃并在900℃保温1小时,随炉冷却。
本实施例制备的氧化镥纤维光学照片如图3所示,氧化镥纤维X射线衍射(XRD)图如图4所示,氧化镥纤维的SEM照片如图5所示。可知,获得的氧化镥纤维表面致密光滑,柔韧性好,纯度可达99.95%,直径均匀,直径为450纳米左右。
实施例3-17
实施例3-17制备步骤同实施例1,其中稀土-有机聚合物前驱体制备参数、纺丝液配制参数及柔性稀土氧化物纤维的直径、纯度如表1-3所示。
注:搅拌时间1—加入配体后搅拌时间;搅拌时间2—加完三乙胺后搅拌时间;
干燥温度1—含有盐酸三乙胺的前驱体溶液干燥温度;
干燥温度2—萃取剂萃取后的过滤得到的前驱体溶液的干燥温度。
表1
Figure PCTCN2020096567-appb-000001
表2
Figure PCTCN2020096567-appb-000002
表3
Figure PCTCN2020096567-appb-000003
对比例1
如实施例2步骤(1)所述,将100克结晶氯化镥溶解在300克无水甲醇中,待完全溶解后向溶液中加入20克乙酰丙酮,搅拌2小时后,逐滴加入77克三乙胺,滴加完后继续搅拌2小时,得到的溶液呈乳白色。说明配体量偏低会导致前驱体水解。
对比例2
如实施例2步骤(5)所述,将(4)所制备的前驱体纤维在热处理炉中以200℃/min升温至900℃并在900℃保温1小时,随炉冷却。
所获得的氧化镥纤维气孔较多。热处理过程中,升温速率过快容易导致纤维气孔率增多,强度和韧性降低。

Claims (15)

  1. 镧系稀土-有机聚合物前驱体的制备方法,包括步骤如下:
    将稀土金属源溶于无水甲醇中,按金属源:配体摩尔比为1:0.5~2加入配体,搅拌30~200分钟,按金属源:三乙胺摩尔比为1:1~4逐滴加入三乙胺,继续搅拌,然后在25~40℃下减压干燥;产物用萃取剂浸泡,静置24~144小时后过滤,除去滤渣,将滤液在25℃~40℃下减压干燥,得到稀土-有机聚合物前驱体。
  2. 根据权利要求1所述的镧系稀土-有机聚合物前驱体的制备方法,其特征在于,金属源:配体:三乙胺摩尔比为1:0.5~1.2:1.5~4,每100克金属源加入无水甲醇的质量为300~600克。
  3. 根据权利要求1所述的镧系稀土-有机聚合物前驱体的制备方法,其特征在于,萃取剂加入量按每摩尔金属源2000~3000毫升计。
  4. 根据权利要求1所述的镧系稀土-有机聚合物前驱体的制备方法,其特征在于,所述金属源为镧源、铈源、谱源、钕源、钐源、铕源、钆源、铽源、镝源、钬源、铒源、铥源、镱源或镥源中的一种或两种以上混合。
  5. 根据权利要求4所述的镧系稀土-有机聚合物前驱体的制备方法,其特征在于,镧源为结晶氯化镧、无水氯化镧中的一种或混合物;
    铈源为结晶氯化铈、无水氯化铈中的一种或混合物;
    谱源为结晶氯化镨、无水氯化镨中的一种或混合物;
    钕源为结晶氯化钕、无水氯化钕中的一种或混合物;
    钐源为结晶氯化钐、无水氯化钐中的一种或混合物;
    铕源为结晶氯化铕、无水氯化铕中的一种或混合物;
    钆源为结晶氯化钆、无水氯化钆中的一种或混合物;
    铽源为结晶氯化铽、无水氯化铽中的一种或混合物;
    镝源为结晶氯化镝、无水氯化镝中的一种或混合物;
    钬源为结晶氯化钬、无水氯化钬中的一种或混合物;
    铒源为结晶氯化铒、无水氯化铒中的一种或混合物;
    铥源为结晶氯化铥、无水氯化铥中的一种或混合物;
    镱源为结晶氯化镱、无水氯化镱中的一种或混合物;
    镥源为结晶氯化镥、无水氯化镥中的一种或混合物。
  6. 根据权利要求1所述的镧系稀土-有机聚合物前驱体的制备方法,其特征在于,所述的配体为乙酰丙酮、乙酰乙酸乙酯、乙酰乙酸甲酯等β-二酮中的一种或两种以上混合;
    所述的萃取剂为丙酮、四氢呋喃中的一种或混合物。
  7. 权利要求1-6任一项制备得到的镧系稀土-有机聚合物前驱体。
  8. 一种镧系稀土氧化物纤维的制备方法,包括使用权利要求1-6任一项制备得到的镧系稀土-有机聚合物前驱体,包括步骤如下:
    将镧系稀土-有机聚合物前驱体加入纺丝助剂,在有机溶剂中配制纺丝液,将纺丝液静电纺丝,得到前驱体纤维,然后经过热处理,获得镧系稀土氧化物纤维。
  9. 根据权利要求8所述的镧系稀土氧化物纤维的制备方法,其特征在于,稀土-有机聚合物前驱体、纺丝助剂、有机溶剂的质量比为:50~150:1:100~800。
  10. 根据权利要求8所述的镧系稀土氧化物纤维的制备方法,其特征在于,所述有机溶剂为无水甲醇、无水乙醇、N,N-二甲基甲酰胺(DMF)中的一种或两种以上混合;
    所述的纺丝助剂为聚乙烯吡咯烷酮(PVP)、聚氧化乙烯(PEO)中的一种或混合物。
  11. 根据权利要求8所述的镧系稀土氧化物纤维的制备方法,其特征在于,静电纺丝条件为:纺丝电压5~20kV,喷丝头与接收装置间的距离为10~30cm,纺丝液推进速度为0.5~4ml/h,环境温度5~45℃,湿度20~75%。
  12. 根据权利要求8所述的镧系稀土氧化物纤维的制备方法,其特征在于,所述热处理过程在空气环境下进行,热处理温度为600~1200℃。
  13. 根据权利要求8所述的镧系稀土氧化物纤维的制备方法,其特征在于,热处理过程为:以0.5~5℃/min升温至热处理温度,并在最高温度下保温10~240分钟,然后随炉冷却。
  14. 权利要求8-13任一项制备的镧系稀土氧化物纤维材料。
  15. 权利要求14所述的镧系稀土氧化物纤维材料在催化、照明、核工业、激光、存储、传感、显示、生物标记、陶瓷材料及耐火材料领域中的应用。
PCT/CN2020/096567 2020-02-14 2020-06-17 镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用 WO2021159646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010092984.6 2020-02-14
CN202010092984.6A CN111187424A (zh) 2020-02-14 2020-02-14 镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用

Publications (1)

Publication Number Publication Date
WO2021159646A1 true WO2021159646A1 (zh) 2021-08-19

Family

ID=70703810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096567 WO2021159646A1 (zh) 2020-02-14 2020-06-17 镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用

Country Status (2)

Country Link
CN (1) CN111187424A (zh)
WO (1) WO2021159646A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187424A (zh) * 2020-02-14 2020-05-22 山东大学 镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用
CN111978550A (zh) * 2020-09-10 2020-11-24 山东大学 钇/铝-有机聚合物前驱体、钇铝石榴石连续纤维及制备方法
CN113083214B (zh) * 2021-03-30 2022-11-25 山东大学 一种介孔锆/镧双氢氧化物纤维的制备方法及其在净化磷酸盐废水中的应用
CN113087729B (zh) * 2021-04-01 2022-11-04 山东大学 一种镧配合物前驱体、氧化镧纤维及其衍生的锆酸镧纤维的制备方法与应用
CN115286809A (zh) * 2022-08-11 2022-11-04 西北工业大学 柔性稀土锆酸盐高熵陶瓷纤维膜及其制备和应用
CN115787138B (zh) * 2022-11-17 2023-09-19 南京邮电大学 一种低热导率隔热纤维毡及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255224A (ja) * 1988-08-19 1990-02-23 Asahi Glass Co Ltd 酸化物超伝導体を製造するための溶液
WO2009135446A2 (en) * 2008-05-06 2009-11-12 Elmarco S.R.O. Method for production of anorganic nanofibres and/or nanofibrous structures comprising tin, anorganic nanofibres and/or nanofibrous structures comprising tin
WO2010122049A1 (de) * 2009-04-21 2010-10-28 Basf Se Wasserbasierte herstellung von metalloxid- und metall-nanofasern
CN102041584A (zh) * 2010-12-16 2011-05-04 中南大学 一种磁性自组装介孔纤维及其制备方法
CN102084044A (zh) * 2008-05-06 2011-06-01 埃尔马科有限公司 通过静电纺丝生产无机纳米纤维的方法
CN104178822A (zh) * 2014-07-30 2014-12-03 东华大学 柔性无机纤维材料及其制备方法
CN104961763A (zh) * 2015-07-17 2015-10-07 山东大学 一步溶剂法制备光催化性能优异的二氧化钛纤维、前驱体及纺丝溶液的方法
CN106929947A (zh) * 2015-12-30 2017-07-07 山东大学 聚醋酸氧锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法
CN108315838A (zh) * 2018-02-06 2018-07-24 山东大学 一种钇聚合物前驱体制备氧化钇纳米纤维的方法
CN109095894A (zh) * 2018-06-22 2018-12-28 西安工程大学 柔性金属氧化物纳米纤维磷酸化肽富集材料的制备方法
CN111187424A (zh) * 2020-02-14 2020-05-22 山东大学 镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255224A (ja) * 1988-08-19 1990-02-23 Asahi Glass Co Ltd 酸化物超伝導体を製造するための溶液
WO2009135446A2 (en) * 2008-05-06 2009-11-12 Elmarco S.R.O. Method for production of anorganic nanofibres and/or nanofibrous structures comprising tin, anorganic nanofibres and/or nanofibrous structures comprising tin
CN102084044A (zh) * 2008-05-06 2011-06-01 埃尔马科有限公司 通过静电纺丝生产无机纳米纤维的方法
WO2010122049A1 (de) * 2009-04-21 2010-10-28 Basf Se Wasserbasierte herstellung von metalloxid- und metall-nanofasern
CN102041584A (zh) * 2010-12-16 2011-05-04 中南大学 一种磁性自组装介孔纤维及其制备方法
CN104178822A (zh) * 2014-07-30 2014-12-03 东华大学 柔性无机纤维材料及其制备方法
CN104961763A (zh) * 2015-07-17 2015-10-07 山东大学 一步溶剂法制备光催化性能优异的二氧化钛纤维、前驱体及纺丝溶液的方法
CN106929947A (zh) * 2015-12-30 2017-07-07 山东大学 聚醋酸氧锆前驱体溶胶纺丝液及亚微米氧化锆晶体纤维的制备方法
CN108315838A (zh) * 2018-02-06 2018-07-24 山东大学 一种钇聚合物前驱体制备氧化钇纳米纤维的方法
CN109095894A (zh) * 2018-06-22 2018-12-28 西安工程大学 柔性金属氧化物纳米纤维磷酸化肽富集材料的制备方法
CN111187424A (zh) * 2020-02-14 2020-05-22 山东大学 镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用

Also Published As

Publication number Publication date
CN111187424A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2021159646A1 (zh) 镧系稀土-有机聚合物前驱体、镧系稀土氧化物纤维及制备方法与应用
CN108315838B (zh) 一种钇聚合物前驱体制备氧化钇纳米纤维的方法
Zhao et al. Studies of electrospinning process of zirconia nanofibers
CN114751737A (zh) 一种锆酸稀土基高熵陶瓷纳米纤维及其制备方法和应用
CN101792170B (zh) 一种二氧化铈多晶纳米带的制备方法
JP3465706B1 (ja) 可視光活性を有するシリカ基光触媒繊維及びその製造方法
CN111995393A (zh) 一种钛-铝聚合物前驱体制备钛酸铝陶瓷纤维的方法
CN114230341B (zh) 一种柔性高熵陶瓷纳米纤维及其无聚合物模板制备方法
CN101850947B (zh) 稀土离子掺杂钆镓石榴石多孔纳米带及其制备方法
CN102392322A (zh) 一种制备掺铕硫氧化钆发光纳米纤维的方法
CN102817114B (zh) 一种制备掺铕八氟钇钡红色发光纳米纤维的方法
CN102817113B (zh) 掺铽八氟钇钡绿色发光纳米纤维的制备方法
CN109868526B (zh) 一种锆-钇聚合物前驱体制备锆酸钇纳米纤维的方法
CN109750388B (zh) 一种缺陷型萤石相锆酸钆纤维的制备方法
US20030118502A1 (en) Inorganic hollow fibers
CN102618966B (zh) 一种制备掺铕四氟钇钠红色发光纳米纤维的方法
CN104593905A (zh) 掺铒二氧一氰氨化镧上转换发光纳米纤维及其制备方法
CN113151924B (zh) 一种具有高效圆偏振发光性能的手性聚合物/钙钛矿杂化纳米纤维制备方法
CN102817109B (zh) 一种掺铕焦硅酸钇红色发光纳米带的制备方法
Thangappan et al. Fabrication of Gd2O3 nanofibers by electrospinning technique using PVA as a structure directing template
KR101945491B1 (ko) 질화붕소 나노섬유 제조방법
CN102817094A (zh) 一种制备掺铕焦硅酸钇红色发光纳米纤维的方法
CN104562295A (zh) 掺铒硫氧化钇上转换发光空心纳米纤维及其制备方法
CN102443881B (zh) 一种掺铽硫氧化钇荧光纳米纤维的制备方法
CN102502882B (zh) 一种制备La2Fe2S5亚微米棒的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919216

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2023).

122 Ep: pct application non-entry in european phase

Ref document number: 20919216

Country of ref document: EP

Kind code of ref document: A1