WO2021153443A1 - ベーパーチャンバ - Google Patents
ベーパーチャンバ Download PDFInfo
- Publication number
- WO2021153443A1 WO2021153443A1 PCT/JP2021/002195 JP2021002195W WO2021153443A1 WO 2021153443 A1 WO2021153443 A1 WO 2021153443A1 JP 2021002195 W JP2021002195 W JP 2021002195W WO 2021153443 A1 WO2021153443 A1 WO 2021153443A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vapor chamber
- container
- heat transport
- function
- plate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2029—Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
- H05K7/20336—Heat pipes, e.g. wicks or capillary pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0007—Casings
- H05K9/002—Casings with localised screening
- H05K9/0022—Casings with localised screening of components mounted on printed circuit boards [PCB]
- H05K9/0024—Shield cases mounted on a PCB, e.g. cans or caps or conformal shields
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0007—Casings
- H05K9/0049—Casings being metallic containers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Definitions
- the present invention relates to a vapor chamber having other functions in addition to the heat transport function which is the original function.
- heating elements such as electronic components may be arranged in a narrow space.
- a vapor chamber which is a flat heat transport device, may be used as a method for cooling a heating element such as an electronic component arranged in a narrow space.
- the vapor chamber is required to have excellent heat transport characteristics. Therefore, for example, a container, a pillar arranged in the internal space of the container so as to support the container from the inside, a working fluid enclosed in the internal space of the container, and a wick structure arranged in the internal space of the container.
- a vapor chamber has been proposed in which at least a part of the inner surface of the container is exposed to the internal space of the container and has pores having an average depth of 10 nm or more (Patent Document 1).
- Patent Document 1 by trapping the impurity gas in the pores, the amount of the impurity gas adhering to the wick structure is reduced, and the flowability of the working fluid is improved. By improving the flowability of the working fluid, the heat transport characteristics of the vapor chamber are improved.
- an object of the present invention is to provide a vapor chamber capable of saving space and weight of equipment on which the vapor chamber is mounted.
- the gist of the structure of the present invention is as follows. [1] In a vapor chamber having a container in which a cavity is formed by one plate and the other plate facing the one plate, and a working fluid enclosed in the cavity. A heat transport section in which the container heat-transports due to a phase change of the working fluid, and an extension section extending outward from the heat transport section and having a function other than the heat transport function. Equipped with a vapor chamber. [2] A joint portion is formed on the peripheral edge of the container by joining the one plate-like body and the other plate-like body to seal the cavity, and the extending portion is the joint portion.
- the vapor chamber according to [1] which is located outside the.
- the metal is fixed to a wick structure housed in the container or the cavity, and an alloy portion is formed between the metal and the container or the wick structure [12] to [17]. ]
- the metal is fixed to the wick structure housed in the container or the cavity by welding, and an alloy portion is formed between the metal and the container or the wick structure [12] to The vapor chamber according to any one of [18].
- the heat transport unit is a portion that exerts the heat transport function which is the function of the conventional vapor chamber, and cools the heating element to be cooled.
- the extending portion is a portion that exerts another function different from the function of the conventional vapor chamber, and has a function other than the function of cooling the heating element.
- the heat transport section and the extension section are continuous and integrated.
- the heat transport section for cooling the heating element to be cooled and the extension section having a function other than the heat transport function Since it also has a function other than the transport function, it is not necessary to separately install other parts having a function other than the heat transport function, and it is possible to save space and reduce the weight of the equipment on which the vapor chamber is mounted. .. Further, since it is not necessary to separately install other parts having a function other than the heat transport function, the number of parts of the device on which the vapor chamber is mounted can be reduced.
- the heating element to be cooled is an electronic component that emits electromagnetic waves, and it is necessary to shield the electromagnetic waves emitted from the heating element. Even if there is, it is not necessary to separately install an electromagnetic shield plate that shields the electromagnetic waves emitted from the heating element as another component. Therefore, it is possible to save space and weight of the equipment on which the vapor chamber is mounted, and it is possible to reduce the number of parts.
- the thermal connectivity between the heating element to be cooled and the heat transporting portion is improved.
- the heat transport unit can exhibit excellent cooling characteristics for the heating element.
- the heat of the heating element to be cooled is transferred through the vapor chamber of the present invention because the tip of the extending portion having the electromagnetic shielding function is in contact with another member. Since it can be transmitted to other members, the extending portion can exert not only an electromagnetic shielding function but also a cooling function for a heating element.
- the vapor chamber of the present invention by forming a part of the housing in which the heating element is housed, it is not necessary to separately install the vapor chamber on the outer surface of the housing, so that the housing is mounted. It is possible to save space and reduce the weight of the equipment to be used. Further, since the vapor chamber constitutes a part of the housing, the thermal connectivity between the heating element housed in the housing and the vapor chamber is improved, so that excellent cooling performance can be exhibited for the heating element. ..
- the extending portion is a cover of a blower device that supplies cooling air to the heat transport section, it is not necessary to separately provide a cover of the blower device as another component. Therefore, it is possible to save space and weight of the equipment on which the vapor chamber is mounted, and it is possible to reduce the number of parts.
- the extension portion has an attachment portion of a fixing member for fixing the heat transport portion in a predetermined position, so that the fixing member is separately attached as another component. There is no need to attach the part to the vapor chamber. Therefore, it is possible to save space and weight of the equipment on which the vapor chamber is mounted, and it is possible to reduce the number of parts.
- the extending portion has a positioning portion for fixing the heat transport portion at a predetermined position, it is necessary to separately mount the positioning portion on the vapor chamber as another component. There is no. Therefore, it is possible to save space and weight of the equipment on which the vapor chamber is mounted, and it is possible to reduce the number of parts.
- the joint portion is a welded portion joined by welding with a fiber laser, the joint strength of the joint portion can be improved and excellent sealing performance can be imparted to the container. Further, since it is possible to prevent a heat load on the container at the time of joining one plate-shaped body and the other plate-shaped body, it is possible to impart excellent mechanical strength to the container.
- FIG. 1 is an explanatory view showing an outline of the vapor chamber according to the first embodiment of the present invention.
- the vapor chamber 1 has two opposing plate-shaped bodies, that is, one plate-shaped body 11 and the other plate-shaped body 11 facing each other. It has a flat container 10 in which a hollow portion 13 is formed by overlapping the plate-shaped bodies 12 of the above, and a working fluid (not shown) enclosed in the hollow portion 13. Further, a wick structure 15 having a capillary structure is housed in the internal space of the cavity 13. Further, the space between the inner surface of the container 10 and the wick structure 15 is a steam flow path 18 through which the working fluid of the gas phase flows.
- One plate-shaped body 11 has a flat plate shape as a whole including the central portion 31 and the peripheral edge portion 32 located on the peripheral edge of the central portion 31.
- the other plate-shaped body 12 is also flat, but the central portion 41 is plastically deformed in a convex shape, and the peripheral edge portion 42 located at the peripheral edge of the central portion 41 is recessed in a stepped shape with respect to the central portion 41.
- the central portion 41 has a flat flat plate shape.
- the central portion 41 of the other plate-shaped body 12, which protrudes outward and is plastically deformed in a convex shape, is the convex portion 14 of the container 10, and the inside of the convex portion 14 is the hollow portion 13.
- the convex portion 14 of the container 10 extends in a plane shape with a predetermined thickness.
- the container 10 which is a closed container is formed, and the cavity 13 is sealed.
- the method of forming the joint portion 23 is not particularly limited, and examples thereof include diffusion welding, brazing, laser welding, ultrasonic welding, friction welding, and pressure welding. Of these, laser welding is preferable from the viewpoint of excellent productivity and sealing performance of the container 10.
- the one plate-shaped body 11 and the other plate-shaped body 12 Laser welding with a fiber laser is particularly preferable because it can prevent a heat load on the container 10 at the time of joining and impart excellent mechanical strength to the container 10.
- the cavity 13 is depressurized by the degassing treatment.
- the wick structure 15 is a member housed in the cavity 13 that generates capillary force.
- the wick structure 15 has a capillary structure because it is porous. Further, the wick structure 15 is a planar member and extends along the plane of the convex portion 14 of the container 10.
- the container 10 of the vapor chamber 1 includes a heat transport unit 20 having a heat transport function, and an extension unit 21 extending outward from the heat transport unit 20 and having a function other than the heat transport function. There is.
- the heat transport section 20 and the extension section 21 are continuous and integrated.
- the heat transport portion 20 is located inside the joint portion 23 that joins one plate-like body 11 and the other plate-like body 12, and the extension portion 21 is located outside the joint portion 23. Therefore, the joint portion 23 forms a boundary between the heat transport portion 20 and the extension portion 21.
- the heat transport unit 20 corresponds to the convex portion 14 of the container 10, that is, the hollow portion 13 in which the working fluid is sealed. Therefore, the heat transport unit 20 extends in a plane with a predetermined thickness. As will be described later, the heat transport unit 20 transports the heat received from the heating element 100 at the heat receiving unit of the heat transport unit 20 from the heat receiving unit to the heat radiating unit of the heat transport unit 20 by the phase change of the working fluid. , Exhibits cooling characteristics for cooling the heating element 100. Further, the heat transport unit 20 exerts a function as a heat equalizing plate by diffusing the heat received from the heating element 100 in the heat receiving unit over the entire area of the heat transport unit 20 by the phase change of the working fluid.
- the shape of the heat transport unit 20 in a plan view is not particularly limited, and a circular shape, a long fence shape, a polygonal shape, or the like can be appropriately selected depending on the usage conditions of the vapor chamber 1 and the like.
- the "planar view” means a state in which the heat transport unit 20 is visually recognized from the vertical direction with respect to the plane.
- the extending portion 21 having a function other than the heat transport function may be formed by extending the peripheral edge portion 32 of one plate-shaped body 11 outward from the joint portion 23, and the other plate-shaped body 12 may be formed.
- the peripheral edge portion 42 of the above may be formed so as to extend outward from the joint portion 23, and both the peripheral edge portion 32 of one plate-shaped body 11 and the peripheral edge portion 42 of the other plate-shaped body 12 are joint portions. It may be formed by extending outward from 23.
- the extending portion 21 having a function other than the heat transport function is formed by extending the peripheral portion 42 of the other plate-shaped body 12 outward from the joint portion 23.
- the extension unit 21 has a function different from that of the heat transport unit 20. That is, the extending portion 21 has a function other than the heat transport function. Therefore, the vapor chamber 1 has other functions in addition to the heat transport function due to the phase change of the working fluid.
- the extending portion 21 has a function as an electromagnetic shield plate that shields electromagnetic waves emitted from a heating element 100 to be cooled.
- the electromagnetic waves emitted from the heating element 100 operate on other components (not shown) located around the circuit board 101.
- the extending portion 21 since the extending portion 21 has a function as an electromagnetic shield plate, it is not necessary to install an electromagnetic shield plate which is a separate component.
- the extending portion 21 has a bent portion 24 bent in the thickness direction of the extending portion 21.
- the bent portion 24 to the tip 25 of the extending portion 21 extend in a direction substantially orthogonal to the plane direction of the heat transport portion 20.
- the bent portion 24 to the tip 25 of the extending portion 21 have a function as an electromagnetic shield plate.
- the tip 15 of the extending portion 21 is a free end that is not in contact with the circuit board 101. There is a slight gap between the tip 15 of the extending portion 21 and the surface of the circuit board 101. Therefore, since the heat transport unit 20 can come into contact with the heating element 100 to be cooled without being interfered with by the extension unit 21, the thermal connectivity between the heating element 100 and the heat transport unit 20 is improved.
- the heat transport unit 20 can exhibit excellent cooling characteristics with respect to the heating element 100, and also improves the function as a heat soaking plate.
- the tip 15 of the extending portion 21 may be in contact with the circuit board 101 instead of the free end not in contact with the circuit board 101. Since the tip 15 of the extending portion 21 is in contact with the circuit board 101, the heat of the heating element 100 to be cooled is transferred to the circuit board 101 via the vapor chamber 1, so that the extending portion 21 has an extension portion 21. Not only the electromagnetic shield function but also the cooling function for the heating element 100 can be exhibited.
- the extension unit 21 may extend outward from the entire circumferential direction of the heat transport unit 20, or may extend from a part of the heat transport unit 20 in the circumferential direction.
- the extension unit 21 may extend from the four sides of the heat transport unit 20, and extends only from a part of the sides (for example, two opposite sides). You may put it out.
- the heat transport portion 20 has a rectangular shape in a plan view, and the extending portion 21 extends from two opposite sides.
- Examples of the material of the container 10 include stainless steel, copper, aluminum, titanium, iron, nickel, copper alloy, aluminum alloy, titanium alloy, iron alloy, nickel alloy and the like. These may be used alone or in combination of two or more. Of these, stainless steel is preferable from the viewpoint of balance of lightness, mechanical strength, and workability such as bending.
- the working fluid sealed in the cavity 13 can be appropriately selected depending on the compatibility with the material of the container 10, and examples thereof include water, CFC substitutes, fluorocarbons, cyclopentane, ethylene glycol and the like. can. These may be used alone or in combination of two or more.
- the wick structure 15 is not particularly limited as long as it is a structure that generates capillary force, and is, for example, a metal powder sintered body, a metal short fiber sintered body, a metal mesh, or a braided metal wire. Examples thereof include a strip of metal fine wire, a plurality of fine grooves formed on the inner surface of the cavity 13, and the like.
- a metal mesh is used as the wick structure 15.
- the material of the wick structure can be appropriately selected, and examples thereof include titanium, titanium alloy, copper, copper alloy, iron, iron alloy, stainless steel, aluminum, aluminum alloy, nickel, and nickel alloy.
- the thickness of the heat transport portion 20 of the vapor chamber for example, 0.2 mm to 1.0 mm can be mentioned. Further, the average thickness of one plate-shaped body 11 and the other plate-shaped body 12 may be the same or different, and examples thereof include 0.05 mm to 0.1 mm, respectively.
- a portion thermally connected to the heating element 100 functions as a heat receiving unit.
- the heat transport unit 20 receives heat from the heating element 100
- the working fluid of the liquid phase enclosed in the cavity 13 changes phase from the liquid phase to the gas phase at the heat receiving unit, and the phase-changed working fluid of the gas phase changes. It flows through the steam flow path 18 and moves from the heat receiving portion of the heat transporting unit 20 to the heat radiating portion (a portion separated from the contact portion between the heating element 100 and the heat transporting unit 20 by a predetermined distance).
- the working fluid of the gas phase that has moved from the heat receiving section to the heat radiating section dissipates latent heat at the heat radiating section, and undergoes a phase change from the gas phase to the liquid phase.
- the latent heat released in the heat radiating section is further released to the external environment of the vapor chamber 1.
- the working fluid whose phase has changed from the gas phase to the liquid phase in the heat radiating section is returned from the heat radiating section to the heat receiving section by the capillary force of the wick structure 15 housed in the heat transport section 20.
- an electromagnetic shield plate that shields the electromagnetic waves emitted from the heating element 100 is separately installed as another component. Since it is not necessary to do so, it is possible to save space and weight of the equipment on which the vapor chamber 1 is mounted, and it is possible to reduce the number of parts. Further, by thermally connecting the heat transport unit 20 of the vapor chamber 1 to the heating element 100, an electromagnetic shield plate can be installed around the heating element 100, which simplifies the manufacture of equipment on which the vapor chamber 1 is mounted. Will be done.
- an electronic component 102 other than the heating element 100 to be cooled is also mounted on the circuit board 101, and the other electronic component 102 is located between the heat transport unit 20 and the circuit board 101.
- the extension 21 can also shield electromagnetic waves emitted from other electronic components 102. Therefore, in the vapor chamber 1, it is possible to further improve the shielding property against electromagnetic waves emitted from the electronic components mounted on the circuit board 101.
- FIG. 2 is an explanatory diagram showing an outline of the vapor chamber according to the second embodiment of the present invention.
- the vapor chamber 2 is a part of the housing 200 in which the heating element 100 is housed.
- An internal space 202 that is closed to the outside is formed by the housing portion 201 and the vapor chamber 2 that form a part of the housing 200, and the heating element 100 is housed in the internal space 202.
- the outer surface and the extending portion 21 of the heat transport portion 20 of the vapor chamber 2 are a part of the inner surface of the housing 200. Therefore, the extending portion 21 has a function as a part of the housing 200.
- the heat transport unit 20 also has a function as a part of the housing 200.
- the heating element 100 housed in the housing 200 is thermally connected to the heat transporting unit 20 of the vapor chamber 2 which is a part of the inner surface of the housing 200, so that the heat transporting function of the heat transporting unit 20 Cools the heating element 100.
- the extending portion 21 having a function other than the heat transport function is formed by extending the peripheral portion 32 of one plate-shaped body 11 outward from the joint portion 23. Further, the tip 25 of the extending portion 21 is in contact with the end portion 203 of the housing portion 201 forming a part of the housing 200.
- the vapor chamber 2 it is not necessary to separately install the vapor chamber on the outer surface of the housing 200, so that the space and weight of the vapor chamber 2 and the equipment on which the housing 200 is mounted can be reduced. Further, since the vapor chamber 2 constitutes a part of the housing 200, the thermal connectivity between the heating element 100 housed in the housing 200 and the vapor chamber 2 is improved, which is excellent for the heating element 100. Can demonstrate cooling performance.
- Examples of the housing 200 containing the heating element 100 include a shield case containing a battery (storage battery) of an electric vehicle, a personal computer containing electronic components such as a central processing unit, and a portable information terminal. Examples include a housing.
- the heating element 100 is an electronic component such as a central processing unit
- the housing 200 is a housing of a personal computer in which an electronic component such as a central processing unit is housed.
- a housing of a personal computer in which electronic components such as a central processing unit are housed for example, a housing provided with a liquid crystal screen can be mentioned.
- the vapor chamber 2 is also a lid portion of the housing 200, and the heat transport portion 20 is located at the center of the lid portion of the housing 200 and extends to the peripheral portion of the lid portion of the housing 200.
- the exit 21 is located.
- the convex portion 14 of the container 10 is located on the outer surface of the lid portion of the housing 200.
- FIG. 3 is an explanatory diagram showing an outline of the vapor chamber according to the third embodiment of the present invention.
- the extension unit 21 supplies the cooling air F to the heat transport unit 20 thermally connected to the heating element 100. It is a cover for the vessel (not shown).
- the extension portion 21 covers the upper surface and both side surfaces of the blower device.
- the portion facing the heating element 100 is opened, and the installation space of the blower device and the space in which the heating element 100 is mounted are communicated with each other.
- the heat transport unit 20 cools the heating element 100 by its heat transport function, and the cooling air F from the blower device is the heat transport unit 20 along the extension section 21 that functions as a cover of the blower device. Distribute in the direction.
- Examples of the heating element 100 include electronic components mounted on the circuit board 101, and examples of the blower device include a blower fan.
- the extension portion 21 is a cover for the blower device that supplies the cooling air F to the heat transport section 20, it is not necessary to separately provide a cover for the blower device as another component. Therefore, it is possible to save space and weight of the equipment on which the vapor chamber 3 is mounted, and it is possible to reduce the number of parts.
- FIG. 4 is an explanatory view showing an outline of the vapor chamber according to the fourth embodiment of the present invention.
- the extension portion 21 has an attachment portion 50 of a fixing member for fixing the heat transport portion 20 at a predetermined position. is doing. Therefore, the extending portion 21 of the vapor chamber 4 has a function of fixing the heat transporting portion 20.
- a plurality of notches formed in the extending portion 21 are attachment portions 50 for fixing members.
- attachment portions 50 for fixing members are provided at four locations. Further, for convenience of explanation, in FIG. 4, one attachment portion 50 for a fixing member is provided on each side of the vapor chamber 4 having a rectangular shape in a plan view. Further, in the vapor chamber 4, the extending portion 21 is not provided with a bent portion in the thickness direction and is flat.
- the vapor chamber 4 can be fixed at a predetermined position by screwing or the like. Since the extending portion 21 has the attachment portion 50 for the fixing member, it is not necessary to separately attach the attachment member for the fixing member to the vapor chamber as another component. Therefore, it is possible to save space and weight of the equipment on which the vapor chamber 4 is mounted, and it is possible to reduce the number of parts.
- a fixing member such as a screw
- the attachment portion 50 of the fixing member of the vapor chamber 4 functions as a positioning portion for positioning the heat transport portion 20 at a predetermined position by inserting a positioning member such as a pin. Therefore, the extending portion 21 of the vapor chamber 4 can have a positioning function of the heat transporting portion 20.
- the extending portion 21 has a positioning portion for fixing the heat transport portion 20 at a predetermined position, it is not necessary to separately mount the positioning member on the vapor chamber as another component. Therefore, it is possible to save space and weight of the equipment on which the vapor chamber 4 is mounted, and it is possible to reduce the number of parts.
- FIG. 5 is an explanatory view showing an outline of the vapor chamber according to the fifth embodiment of the present invention.
- the extending portion 21 functions as a fixing portion of the vapor chamber 5.
- the flat and flat extending portion 21 is fixed by being placed along the step 401 on the fixing portion 400 having the step 401 provided at a desired fixed position. Therefore, the extending portion 21 of the vapor chamber 5 has a fixing function of fixing the heat transporting portion 20 at a predetermined position.
- both the peripheral edge portion 32 of one plate-shaped body 11 and the peripheral edge portion 42 of the other plate-shaped body 12 are formed so as to extend outward from the joint portion 23 in a surface contact state.
- the extending portion 21 is not provided with a bent portion in the thickness direction and is flat.
- the vapor chamber 5 is thermally connected to the heating element 100 located above in the direction of gravity.
- the extending portion 21 has a fixing function for fixing the vapor chamber 5 at a predetermined position, it is not necessary to separately attach a fixing member to the vapor chamber as another component. Therefore, it is possible to save space and weight of the equipment on which the vapor chamber 5 is mounted, and it is possible to reduce the number of parts.
- the vapor chamber of the present invention is provided with a heat transport section for cooling the heating element to be cooled and an extension section having a function other than the heat transport function, thereby transporting heat. Since it has not only the function but also the function other than the heat transport function, it is not necessary to separately install other parts having the function other than the heat transport function, and the space saving and light weight of the equipment on which the vapor chamber is mounted are saved. It becomes possible to change. Further, since it is not necessary to separately install other parts having a function other than the heat transport function, the number of parts of the device on which the vapor chamber is mounted can be reduced.
- a metal that absorbs hydrogen at 350 ° C. or lower and does not release hydrogen at 350 ° C. or lower may be arranged in the cavity of the container.
- the metal absorbs a non-condensable gas such as hydrogen gas, resulting in excellent heat over a long period of time. It is possible to obtain a vapor chamber that exhibits transport characteristics.
- the location and number of arrangements of a metal that absorbs hydrogen at 350 ° C or lower and does not release hydrogen at 350 ° C or lower are not particularly limited.
- Non-condensable gas such as hydrogen gas does not condense even in the condensing part of the container and remains in the gas phase. That is, it tends to accumulate in the condensing part without returning to the evaporating part of the working fluid). Therefore, from the viewpoint of efficiently absorbing a non-condensable gas such as hydrogen gas, the hydrogen absorbing metal is preferably arranged at least a part of the condensed portion of the working fluid.
- the hydrogen absorbing metal is fixed to the container by welding it to the inner surface of the container. Further, by welding the hydrogen absorbing metal to the inner surface of the container, an alloy portion containing the hydrogen absorbing metal component and the container component is formed on the inner surface of the container and the hydrogen absorbing metal.
- the alloy part is the part where the container and the hydrogen absorbing metal are melted and integrated.
- the portion of the hydrogen absorbing metal that does not contribute to the formation of the alloy portion remains the original component of the hydrogen absorbing metal.
- both the alloy part and the hydrogen absorbing metal part that does not contribute to the formation of the alloy part are arranged on the inner surface of the container in a state of being exposed to the hollow part of the container, and operate directly. It is in contact with the fluid.
- the ratio of the hydrogen absorbing metal arranged inside the container to form the alloy portion with the container is not particularly limited, but the lower limit is the smooth introduction of hydrogen into the hydrogen absorbing metal not forming the alloy portion. 2% by mass is preferable from the point, 5% by mass is more preferable, and 8% by mass is particularly preferable from the viewpoint of quickly and surely capturing the generated hydrogen gas.
- the upper limit of the ratio of hydrogen absorbing metal charged inside the container to form an alloy part with the container is 50% by mass from the viewpoint of surely preventing a decrease in hydrogen absorption capacity at 350 ° C. or lower.
- 40% by mass is more preferable, and 30% by mass is particularly preferable, from the viewpoint of obtaining excellent hydrogen absorption capacity at 350 ° C. or lower.
- the material of the hydrogen absorbing metal is not particularly limited, and examples thereof include titanium alloys, palladium alloys, vanadium alloys, calcium alloys, and composites of these alloys.
- the alloy portion also contains, for example, iron, nickel, chromium, titanium and any of the metals.
- At least a part of the hydrogen absorbing metal has the ability of the hydrogen absorbing metal to absorb hydrogen at 350 ° C or lower and not release hydrogen at 350 ° C or lower, that is, hydrogen at 350 ° C or lower. Since the absorption capacity of the hydrogen gas is improved, it is possible to prevent the non-condensable gas such as hydrogen gas from accumulating in the cavity of the container and lowering the vacuum state. Therefore, it is possible to obtain a vapor chamber having excellent heat transport characteristics. Further, since a metal that absorbs hydrogen at 350 ° C or lower and does not release hydrogen at 350 ° C or lower is provided even if the temperature reaches nearly 300 ° C by processing such as soldering or welding in the vapor chamber manufacturing process.
- the amount of hydrogen gas accumulated in the cavity of the container is 10% by volume or less of the total amount of gas in the cavity at an operating temperature of 50 ° C. ..
- the hydrogen absorbing metal is fixed to the container by welding the hydrogen absorbing metal to the inner surface of the container, but instead, the hydrogen absorbing metal is welded to the surface of the wick structure. Therefore, it may be fixed to the wick structure.
- an alloy portion containing a component of the hydrogen absorbing metal and a component of the wick structure is formed on the surfaces of the wick structure and the hydrogen absorbing metal.
- the absorption capacity of the hydrogen absorbing metal for non-condensable gas such as hydrogen gas at 350 ° C. or lower is improved, and thus excellent heat transport characteristics can be obtained.
- the vapor chamber of the present invention can save space and reduce the weight of the device on which the vapor chamber is mounted, it can be used not only in the fields of the above embodiments but also in a wide range of fields.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Devices For Medical Bathing And Washing (AREA)
Abstract
ベーパーチャンバが搭載される機器の省スペース化と軽量化が可能なベーパーチャンバを提供する。 一方の板状体と該一方の板状体と対向する他方の板状体とにより空洞部が形成されたコンテナと、前記空洞部に封入された作動流体と、を有するベーパーチャンバであって、前記コンテナが、前記作動流体の相変化により熱輸送する熱輸送部と、該熱輸送部から外方へ延出した、熱輸送機能以外の他の機能を有する延出部と、を備えるベーパーチャンバ。
Description
本発明は、本来の機能である熱輸送機能に加えて、他の機能も備えたベーパーチャンバに関するものである。
電気・電子機器に搭載されている半導体素子等の電子部品は、高機能化に伴って発熱量が増大しており、電子部品の誤作動防止等の点から、その冷却がより重要となっている。また、電気・電子機器の小型化や電子部品の高密度搭載等により、電子部品等の発熱体は、狭小空間に配置されることがある。狭小空間に配置された電子部品等の発熱体の冷却方法として、平面型の熱輸送装置であるベーパーチャンバが使用されることがある。
また、近年、環境負荷の低減等から、例えば、内燃機関に代えてバッテリを搭載した電気自動車(EV)等の電気を動力とした輸送機器が普及してきている。また、電気を動力とした輸送機器の高性能化に伴って、バッテリの発熱量が増大しており、バッテリの正常な稼働を維持するために、その冷却がより重要となっている。また、電気自動車の乗り心地を向上させるために、座席空間のさらなる拡大が求められていることから、バッテリの設置空間のさらなる低減が要求されている。限られた空間に搭載されたバッテリ等の発熱体の冷却方法として、平面型の熱輸送装置であるベーパーチャンバが使用されることがある。
上記から、ベーパーチャンバには、優れた熱輸送特性が要求される。そこで、例えば、コンテナと、コンテナを内側から支持するようにコンテナの内部空間に配置された柱と、コンテナの内部空間に封入された作動流体と、コンテナの内部空間に配置されたウィック構造体とを有し、コンテナの内面の少なくとも一部分が、コンテナの内部空間に露出し、平均深さが10nm以上の細孔を有しているベーパーチャンバが提案されている(特許文献1)。特許文献1では、細孔に不純物ガスがトラップされることで、ウィック構造体に付着する不純物ガスの量が低減し、作動流体の流通性を向上させるものである。作動流体の流通性が向上することで、ベーパーチャンバの熱輸送特性の向上を図っている。
一方で、ベーパーチャンバの冷却対象である発熱体の周辺には、ベーパーチャンバの他に、熱輸送機能以外の機能を備えた他の部品も設置される。また、上記の通り、ベーパーチャンバは狭い空間に設置され、また、輸送機器といった移動体に設置されることが多いので、ベーパーチャンバ及びベーパーチャンバ周辺の他の部品全体として、省スペース化、軽量化が要求されている。しかし、特許文献1のような従来のベーパーチャンバでは、熱輸送特性の向上は図られているものの、ベーパーチャンバが搭載される機器の省スペース化と軽量化に寄与する点で改善の余地があった。
上記事情に鑑み、本発明は、ベーパーチャンバが搭載される機器の省スペース化と軽量化が可能なベーパーチャンバを提供することを目的とする。
本発明の構成の要旨は、以下の通りである。
[1]一方の板状体と該一方の板状体と対向する他方の板状体とにより空洞部が形成されたコンテナと、前記空洞部に封入された作動流体と、を有するベーパーチャンバであって、前記コンテナが、前記作動流体の相変化により熱輸送する熱輸送部と、該熱輸送部から外方へ延出した、熱輸送機能以外の他の機能を有する延出部と、を備えるベーパーチャンバ。
[2]前記コンテナの周縁部に、前記一方の板状体と前記他方の板状体が接合されて前記空洞部が封止された接合部が形成され、前記延出部が、前記接合部の外方に位置する[1]に記載のベーパーチャンバ。
[3]前記延出部が、電磁シールド機能を有する[1]または[2]に記載のベーパーチャンバ。
[4]前記延出部が、該延出部の厚さ方向の曲げ部を有し、該延出部の先端が自由端である[3]に記載のベーパーチャンバ。
[5]前記延出部が、該延出部の厚さ方向の曲げ部を有し、該延出部の先端が他の部材と接している[3]に記載のベーパーチャンバ。
[6]発熱体が収容された筐体の一部を構成する[1]または[2]に記載のベーパーチャンバ。
[7]前記延出部が、発熱体に熱的に接続される前記熱輸送部に冷却風を供給する送風機器のカバーである、[1]または[2]に記載のベーパーチャンバ。
[8]前記延出部が、前記熱輸送部を所定の位置に固定するための固定用部材の取り付け部を有する[1]または[2]に記載のベーパーチャンバ。
[9]前記延出部が、前記熱輸送部を所定の位置に位置決めするための位置決め部を有する[1]または[2]に記載のベーパーチャンバ。
[10]前記延出部が、前記ベーパーチャンバの固定用部位を有する[1]または[2]に記載のベーパーチャンバ。
[11]前記接合部が、ファイバレーザによる溶接にて接合された溶接部である[2]乃至[10]のいずれか1つに記載のベーパーチャンバ。
[12]前記空洞部に、350℃以下で水素を吸収し且つ350℃以下で水素を放出しない金属が設けられた[1]乃至[11]のいずれか1つに記載のベーパーチャンバ。
[13]前記コンテナの材質が、銅、銅合金、鉄、鉄合金、ステンレス鋼、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、チタンまたはチタン合金である[1]乃至[12]のいずれか1つに記載のベーパーチャンバ。
[14]前記コンテナの材質が、ステンレス鋼である[1]乃至[13]のいずれか1つに記載のベーパーチャンバ。
[15]前記金属が、チタン系、パラジウム系、バナジウム系、カルシウム系またはこれらの複合系の合金である[12]乃至[14]のいずれか1つに記載のベーパーチャンバ。
[16]前記金属が、チタン系の合金である[12]乃至[15]のいずれか1つに記載のベーパーチャンバ。
[17]前記金属が、前記作動流体の凝縮する部位に配置されている[12]乃至[16]のいずれか1つに記載のベーパーチャンバ。
[18]前記金属が、前記コンテナまたは前記空洞部に収容されたウィック構造体に固定され、前記金属と前記コンテナまたは前記ウィック構造体との間に合金部が形成された[12]乃至[17]のいずれか1つに記載のベーパーチャンバ。
[19]前記金属が、溶接により前記コンテナまたは前記空洞部に収容されたウィック構造体に固定され、前記金属と前記コンテナまたは前記ウィック構造体との間に合金部が形成された[12]乃至[18]のいずれか1つに記載のベーパーチャンバ。
[20]前記合金部が、鉄、ニッケル、クロム、チタン及び前記金属のいずれかを含む[18]または[19]に記載のベーパーチャンバ。
[21]前記合金部が、前記金属の2質量%~50質量%である[18]乃至[20]のいずれか1つに記載のベーパーチャンバ。
[22]前記空洞部の水素ガス量が、作動温度50℃における前記空洞部内の全ガス量の10体積%以下である[1]乃至[21]のいずれか1つに記載のベーパーチャンバ。
[23]前記ウィック構造体の材質が、チタンまたはチタン合金である[18]乃至[22]のいずれか1つに記載のベーパーチャンバ。
[24]前記合金部が、前記コンテナまたは前記ウィック構造体と前記金属が溶融して一体となって形成された[18]乃至[23]のいずれか1つに記載のベーパーチャンバ。
[1]一方の板状体と該一方の板状体と対向する他方の板状体とにより空洞部が形成されたコンテナと、前記空洞部に封入された作動流体と、を有するベーパーチャンバであって、前記コンテナが、前記作動流体の相変化により熱輸送する熱輸送部と、該熱輸送部から外方へ延出した、熱輸送機能以外の他の機能を有する延出部と、を備えるベーパーチャンバ。
[2]前記コンテナの周縁部に、前記一方の板状体と前記他方の板状体が接合されて前記空洞部が封止された接合部が形成され、前記延出部が、前記接合部の外方に位置する[1]に記載のベーパーチャンバ。
[3]前記延出部が、電磁シールド機能を有する[1]または[2]に記載のベーパーチャンバ。
[4]前記延出部が、該延出部の厚さ方向の曲げ部を有し、該延出部の先端が自由端である[3]に記載のベーパーチャンバ。
[5]前記延出部が、該延出部の厚さ方向の曲げ部を有し、該延出部の先端が他の部材と接している[3]に記載のベーパーチャンバ。
[6]発熱体が収容された筐体の一部を構成する[1]または[2]に記載のベーパーチャンバ。
[7]前記延出部が、発熱体に熱的に接続される前記熱輸送部に冷却風を供給する送風機器のカバーである、[1]または[2]に記載のベーパーチャンバ。
[8]前記延出部が、前記熱輸送部を所定の位置に固定するための固定用部材の取り付け部を有する[1]または[2]に記載のベーパーチャンバ。
[9]前記延出部が、前記熱輸送部を所定の位置に位置決めするための位置決め部を有する[1]または[2]に記載のベーパーチャンバ。
[10]前記延出部が、前記ベーパーチャンバの固定用部位を有する[1]または[2]に記載のベーパーチャンバ。
[11]前記接合部が、ファイバレーザによる溶接にて接合された溶接部である[2]乃至[10]のいずれか1つに記載のベーパーチャンバ。
[12]前記空洞部に、350℃以下で水素を吸収し且つ350℃以下で水素を放出しない金属が設けられた[1]乃至[11]のいずれか1つに記載のベーパーチャンバ。
[13]前記コンテナの材質が、銅、銅合金、鉄、鉄合金、ステンレス鋼、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、チタンまたはチタン合金である[1]乃至[12]のいずれか1つに記載のベーパーチャンバ。
[14]前記コンテナの材質が、ステンレス鋼である[1]乃至[13]のいずれか1つに記載のベーパーチャンバ。
[15]前記金属が、チタン系、パラジウム系、バナジウム系、カルシウム系またはこれらの複合系の合金である[12]乃至[14]のいずれか1つに記載のベーパーチャンバ。
[16]前記金属が、チタン系の合金である[12]乃至[15]のいずれか1つに記載のベーパーチャンバ。
[17]前記金属が、前記作動流体の凝縮する部位に配置されている[12]乃至[16]のいずれか1つに記載のベーパーチャンバ。
[18]前記金属が、前記コンテナまたは前記空洞部に収容されたウィック構造体に固定され、前記金属と前記コンテナまたは前記ウィック構造体との間に合金部が形成された[12]乃至[17]のいずれか1つに記載のベーパーチャンバ。
[19]前記金属が、溶接により前記コンテナまたは前記空洞部に収容されたウィック構造体に固定され、前記金属と前記コンテナまたは前記ウィック構造体との間に合金部が形成された[12]乃至[18]のいずれか1つに記載のベーパーチャンバ。
[20]前記合金部が、鉄、ニッケル、クロム、チタン及び前記金属のいずれかを含む[18]または[19]に記載のベーパーチャンバ。
[21]前記合金部が、前記金属の2質量%~50質量%である[18]乃至[20]のいずれか1つに記載のベーパーチャンバ。
[22]前記空洞部の水素ガス量が、作動温度50℃における前記空洞部内の全ガス量の10体積%以下である[1]乃至[21]のいずれか1つに記載のベーパーチャンバ。
[23]前記ウィック構造体の材質が、チタンまたはチタン合金である[18]乃至[22]のいずれか1つに記載のベーパーチャンバ。
[24]前記合金部が、前記コンテナまたは前記ウィック構造体と前記金属が溶融して一体となって形成された[18]乃至[23]のいずれか1つに記載のベーパーチャンバ。
上記[1]のベーパーチャンバの態様では、熱輸送部が、従来のベーパーチャンバの機能である熱輸送機能を発揮する部位であり、冷却対象である発熱体を冷却する。また、延出部は、従来のベーパーチャンバの機能とは異なる他の機能を発揮する部位であり、発熱体を冷却する機能以外の機能を有する。また、熱輸送部と延出部は、連続しており、一体となっている。
本発明のベーパーチャンバの態様によれば、冷却対象である発熱体を冷却する熱輸送部と熱輸送機能以外の他の機能を有する延出部とを備えることにより、熱輸送機能だけでなく熱輸送機能以外の機能も有するので、別途、該熱輸送機能以外の機能を備えた他の部品を設置しなくてもよく、ベーパーチャンバが搭載される機器の省スペース化と軽量化が可能となる。また、別途、該熱輸送機能以外の機能を備えた他の部品を設置しなくてもよいので、ベーパーチャンバが搭載される機器の部品点数を低減できる。
本発明のベーパーチャンバの態様によれば、延出部が電磁シールド機能を有することにより、冷却対象である発熱体が電磁波を放出する電子部品であり、発熱体から放出される電磁波をシールドする必要があっても、別途、他の部品として、発熱体から放出される電磁波をシールドする電磁シールド板を設置する必要がない。従って、ベーパーチャンバが搭載される機器の省スペース化と軽量化が可能となり、また、部品点数を低減できる。
本発明のベーパーチャンバの態様によれば、電磁シールド機能を有する延出部の先端が自由端であることにより、冷却対象である発熱体と熱輸送部との熱的接続性が向上して、熱輸送部は発熱体に対して優れた冷却特性を発揮できる。
本発明のベーパーチャンバの態様によれば、電磁シールド機能を有する延出部の先端が他の部材と接していることにより、冷却対象である発熱体の熱が、本発明のベーパーチャンバを介して他の部材へ伝達可能となるので、延出部は、電磁シールド機能だけでなく、発熱体に対する冷却機能も発揮できる。
本発明のベーパーチャンバの態様によれば、発熱体が収容された筐体の一部を構成することにより、筐体の外面に、別途、ベーパーチャンバを設置する必要がないので、筐体が搭載される機器の省スペース化と軽量化が可能となる。また、ベーパーチャンバが筐体の一部を構成することにより、筐体に収容された発熱体とベーパーチャンバとの熱的接続性が向上するので、発熱体に対して優れた冷却性能を発揮できる。
本発明のベーパーチャンバの態様によれば、延出部が熱輸送部に冷却風を供給する送風機器のカバーであることにより、別途、他の部品として、送風機器のカバーを設ける必要がない。従って、ベーパーチャンバが搭載される機器の省スペース化と軽量化が可能となり、また、部品点数を低減できる。
本発明のベーパーチャンバの態様によれば、延出部が熱輸送部を所定の位置に固定するための固定用部材の取り付け部を有することにより、別途、他の部品として、固定用部材の取り付け部をベーパーチャンバに装着する必要がない。従って、ベーパーチャンバが搭載される機器の省スペース化と軽量化が可能となり、また、部品点数を低減できる。
本発明のベーパーチャンバの態様によれば、延出部が熱輸送部を所定の位置に固定するための位置決め部を有することにより、別途、他の部品として、位置決め部をベーパーチャンバに装着する必要がない。従って、ベーパーチャンバが搭載される機器の省スペース化と軽量化が可能となり、また、部品点数を低減できる。
本発明のベーパーチャンバの態様によれば、接合部がファイバレーザによる溶接にて接合された溶接部であることにより、接合部の接合強度が向上してコンテナに優れた封止性を付与でき、また、一方の板状体と他方の板状体の接合時におけるコンテナへの熱負荷を防止できるので、コンテナに優れた機械的強度を付与できる。
以下に、本発明の第1実施形態例に係るベーパーチャンバについて、図面を用いながら説明する。なお、図1は、本発明の第1実施形態例に係るベーパーチャンバの概要を示す説明図である。
図1に示すように、本発明の第1実施形態例に係るベーパーチャンバ1は、対向する2枚の板状体、すなわち、一方の板状体11と一方の板状体11と対向する他方の板状体12とを重ねることにより空洞部13が形成された、平面型であるコンテナ10と、空洞部13内に封入された作動流体(図示せず)と、を有している。また、空洞部13の内部空間には、毛細管構造を有するウィック構造体15が収容されている。また、コンテナ10の内面とウィック構造体15との間の空間部が、気相の作動流体が流通する蒸気流路18となっている。
一方の板状体11は、中央部31と中央部31の周縁に位置する周縁部32を含めて全体が平板状である。他方の板状体12も平板状であるが、中央部41が凸状に塑性変形され、中央部41の周縁に位置する周縁部42は、中央部41に対して段差状に窪んでいる。また、他方の板状体12では、中央部41は平坦な平板状となっている。他方の板状体12の、外側に向かって突出し、凸状に塑性変形された中央部41が、コンテナ10の凸部14であり、凸部14の内部が空洞部13となっている。コンテナ10の凸部14は、所定の厚さにて平面状に延在している。
一方の板状体11の周縁部32と他方の板状体12の周縁部42を重ね合わせた状態で、凸部14の外縁に沿って周縁部32、42の全周を接合して接合部23を形成することで、密閉容器であるコンテナ10が形成され、空洞部13が封止される。接合部23の形成方法としては、特に限定されず、例えば、拡散接合、ろう付け、レーザ溶接、超音波溶接、摩擦接合、圧接接合等を挙げることができる。このうち、優れた生産性とコンテナ10の封止性の点から、レーザ溶接が好ましい。また、一方の板状体11と他方の板状体12間の接合強度が向上してコンテナ10に優れた封止性を付与しつつ、一方の板状体11と他方の板状体12の接合時におけるコンテナ10への熱負荷を防止してコンテナ10に優れた機械的強度を付与できる点から、ファイバレーザによるレーザ溶接が特に好ましい。空洞部13は、脱気処理により減圧されている。
ウィック構造体15は、空洞部13に収容された、毛細管力を生じる部材である。ウィック構造体15は、多孔質であることで毛細管構造を有している。また、ウィック構造体15は、平面状の部材であり、コンテナ10の凸部14の平面に沿って延在している。
ベーパーチャンバ1のコンテナ10は、熱輸送機能を有する熱輸送部20と、熱輸送部20から外方へ延出した、熱輸送機能以外の他の機能を有する延出部21と、を備えている。熱輸送部20と延出部21は、連続しており、一体となっている。熱輸送部20は、一方の板状体11と他方の板状体12を接合した接合部23の内方に位置し、延出部21は、接合部23の外方に位置している。従って、接合部23は、熱輸送部20と延出部21の境界を形成している。
熱輸送部20は、コンテナ10の凸部14、すなわち、作動流体が封入された空洞部13に対応する。従って、熱輸送部20は、所定の厚さにて平面状に延在している。後述するように、熱輸送部20は、熱輸送部20の受熱部にて発熱体100から受けた熱を作動流体の相変化によって、受熱部から熱輸送部20の放熱部へ輸送することで、発熱体100を冷却する冷却特性を発揮する。また、熱輸送部20は、受熱部にて発熱体100から受けた熱を作動流体の相変化によって、熱輸送部20全域に拡散させることによって均熱板としての機能を発揮する。
熱輸送部20の平面視の形状は、特に限定されず、ベーパーチャンバ1の使用条件等により、円形状、長柵状、多角形状等、適宜選択可能である。なお、「平面視」とは、熱輸送部20の平面に対して鉛直方向から視認した状態を意味する。
熱輸送機能以外の他の機能を有する延出部21は、一方の板状体11の周縁部32が接合部23から外方へ延出して形成されていてもよく、他方の板状体12の周縁部42が接合部23から外方へ延出して形成されていてもよく、また、一方の板状体11の周縁部32と他方の板状体12の周縁部42の両方が接合部23から外方へ延出して形成されていてもよい。なお、ベーパーチャンバ1では、熱輸送機能以外の他の機能を有する延出部21は、他方の板状体12の周縁部42が接合部23から外方へ延出して形成されている。
延出部21は、熱輸送部20とは異なる機能を有している。すなわち、延出部21は、熱輸送機能以外の他の機能を有している。従って、ベーパーチャンバ1は、作動流体の相変化による熱輸送機能に加えて、他の機能も備えている。
図1に示すように、ベーパーチャンバ1では、延出部21は、冷却対象である発熱体100から放出される電磁波をシールドする電磁シールド板としての機能を有している。例えば、発熱体100が回路基板101に搭載された中央演算処理装置(CPU)の場合、発熱体100から放出される電磁波が回路基板101の周辺に位置する他の部品(図示せず)の動作に悪影響を与えることを防止するために、別途、発熱体100の周囲に電磁シールド板を設置する必要がある。しかし、ベーパーチャンバ1では、延出部21が電磁シールド板としての機能を有していることから、別部品である電磁シールド板を設置する必要がない。
ベーパーチャンバ1では、延出部21が、延出部21の厚さ方向に曲げられた曲げ部24を有している。延出部21の曲げ部24から先端25までは、熱輸送部20の平面方向に対して略直交方向に伸延している。延出部21の曲げ部24から先端25までが、電磁シールド板としての機能を有している。
延出部21の先端15は、回路基板101と接触していない自由端となっている。延出部21の先端15と回路基板101の表面との間には、若干の隙間が存在している。従って、熱輸送部20は、延出部21に干渉されることなく、冷却対象である発熱体100と接触できるので、発熱体100と熱輸送部20との熱的接続性が向上して、熱輸送部20は発熱体100に対して優れた冷却特性を発揮でき、また、均熱板としての機能も向上する。
また、延出部21の先端15は、回路基板101と接触していない自由端に代えて、回路基板101と接している態様としてもよい。延出部21の先端15が回路基板101と接していることにより、冷却対象である発熱体100の熱が、ベーパーチャンバ1を介して回路基板101へ伝達されるので、延出部21は、電磁シールド機能だけでなく、発熱体100に対する冷却機能も発揮できる。
延出部21は、熱輸送部20の周方向の全体から外方へ延出していてもよく、熱輸送部20の周方向の一部分から延出していてもよい。例えば、熱輸送部20の平面視の形状が四角形の場合、延出部21は熱輸送部20の四辺から延出していてもよく、一部の辺(例えば、対向する二辺)からのみ延出していてもよい。なお、説明の便宜上、ベーパーチャンバ1では、熱輸送部20の平面視の形状は四角形状であり、延出部21は対向する二辺から延出している。
コンテナ10の材質としては、例えば、ステンレス鋼、銅、アルミニウム、チタン、鉄、ニッケル、銅合金、アルミニウム合金、チタン合金、鉄合金、ニッケル合金等を挙げることができる。これらは、単独で使用してもよく、2種以上を併用してもよい。これらのうち、軽量性、機械的強度、曲げ等の加工性のバランスの点から、ステンレス鋼が好ましい。
空洞部13に封入される作動流体としては、コンテナ10の材料との適合性に応じて、適宜選択可能であり、例えば、水、代替フロン、フルオロカーボン類、シクロペンタン、エチレングリコール等を挙げることができる。これらは単独で使用してもよく、2種以上を混合して使用してもよい。
ウィック構造体15としては、毛細管力を生じさせる構造であれば、特に限定されず、例えば、金属粉の焼結体、金属短繊維の焼結体、金属製のメッシュ、金属細線の編組体、金属細線の線条体、空洞部13の内面に形成された複数の細溝(グルーブ)等を挙げることができる。なお、ベーパーチャンバ1では、ウィック構造体15として、金属製のメッシュが使用されている。ウィック構造体の材質は、適宜選択可能であり、例えば、チタン、チタン合金、銅、銅合金、鉄、鉄合金、ステンレス鋼、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金等をあげることができる。
ベーパーチャンバ1の熱輸送部20の厚さとしては、例えば、0.2mm~1.0mmを挙げることができる。また、一方の板状体11と他方の板状体12の平均厚さは、同じでも異なっていてもよく、例えば、それぞれ、0.05mm~0.1mmを挙げることができる。
次に、熱輸送部20の動作について説明する。コンテナ10の熱輸送部20外面のうち、発熱体100と熱的に接続された部位(発熱体100と熱輸送部20外面が接触している部位)が受熱部として機能する。熱輸送部20が発熱体100から受熱すると、空洞部13に封入された液相の作動流体が、受熱部にて液相から気相へ相変化し、相変化した気相の作動流体が、蒸気流路18を流通して熱輸送部20の受熱部から放熱部(発熱体100と熱輸送部20の接触部から所定距離離れた部位)へ移動する。受熱部から放熱部へ移動した気相の作動流体は、放熱部にて潜熱を放熱して、気相から液相へ相変化する。放熱部にて放出された潜熱は、さらにベーパーチャンバ1の外部環境へ放出される。放熱部にて気相から液相へ相変化した作動流体は、熱輸送部20に収容されたウィック構造体15の毛細管力にて、放熱部から受熱部へ還流される。
このように、ベーパーチャンバ1の冷却対象である発熱体100が電磁波を放出する電子部品であっても、別途、他の部品として、発熱体100から放出される電磁波をシールドする電磁シールド板を設置する必要がないので、ベーパーチャンバ1が搭載される機器の省スペース化と軽量化が可能となり、また、部品点数を低減できる。また、ベーパーチャンバ1の熱輸送部20を発熱体100に熱的に接続することで、発熱体100の周囲に電磁シールド板も設置できるので、ベーパーチャンバ1が搭載される機器の製造が簡略化される。
また、図1に示すように、回路基板101に冷却対象である発熱体100以外の他の電子部品102も搭載されており、他の電子部品102が熱輸送部20と回路基板101の間に位置する場合、延出部21は、他の電子部品102から放出される電磁波もシールドできる。従って、ベーパーチャンバ1では、回路基板101に搭載された電子部品から放出される電磁波に対するシールド性をさらに向上させることができる。
次に、本発明の第2実施形態例に係るベーパーチャンバについて、図面を用いながら説明する。第2実施形態例に係るベーパーチャンバは、第1実施形態例に係るベーパーチャンバと主要な構成要素は共通するので、同じ構成要素については同じ符号を用いて説明する。なお、図2は、本発明の第2実施形態例に係るベーパーチャンバの概要を示す説明図である。
図2に示すように、本発明の第2実施形態例に係るベーパーチャンバ2では、発熱体100が収容された筐体200の一部となっている。筐体200の一部を構成する筐体部201とベーパーチャンバ2とで、外部に対して閉鎖された内部空間202が形成され、内部空間202に発熱体100が収容されている。ベーパーチャンバ2の熱輸送部20の外面と延出部21が、筐体200の内面の一部となっている。従って、延出部21は、筐体200の一部としての機能を有している。また、熱輸送部20も、筐体200の一部としての機能を有している。筐体200に収容された発熱体100が、筐体200の内面の一部となっているベーパーチャンバ2の熱輸送部20と熱的に接続されることで、熱輸送部20の熱輸送機能により発熱体100が冷却される。
ベーパーチャンバ2では、熱輸送機能以外の他の機能を有する延出部21は、一方の板状体11の周縁部32が接合部23から外方へ延出して形成されている。また、延出部21の先端25は、筐体200の一部を形成する筐体部201の端部203と接している。
ベーパーチャンバ2では、筐体200の外面に、別途、ベーパーチャンバを設置する必要がないので、ベーパーチャンバ2、ひいては、筐体200が搭載される機器の省スペース化と軽量化が可能となる。また、ベーパーチャンバ2が筐体200の一部を構成することにより、筐体200に収容された発熱体100とベーパーチャンバ2との熱的接続性が向上するので、発熱体100に対して優れた冷却性能を発揮できる。
発熱体100が収容された筐体200としては、例えば、電気自動車のバッテリ(蓄電池)が収容されたシールドケース、中央演算処理装置等の電子部品が収容されたパーソナルコンピュータや携帯用の情報端末の筐体等が挙げられる。なお、図2では、発熱体100は中央演算処理装置等の電子部品であり、筐体200は中央演算処理装置等の電子部品が収容されたパーソナルコンピュータの筐体である。また、中央演算処理装置等の電子部品が収容されたパーソナルコンピュータの筐体としては、例えば、液晶画面を備えた筐体が挙げられる。
図2に示すように、ベーパーチャンバ2は、筐体200の蓋部でもあり、筐体200の蓋部の中央部に熱輸送部20が位置し、筐体200の蓋部の周縁部に延出部21が位置している。また、コンテナ10の凸部14が、筐体200の蓋部の外面に位置している。発熱体100である中央演算処理装置等の電子部品が筐体200の蓋部の中央部に接触することで、ベーパーチャンバ2の熱輸送部20と熱的に接続される。
次に、本発明の第3実施形態例に係るベーパーチャンバについて、図面を用いながら説明する。第3実施形態例に係るベーパーチャンバは、第1、第2実施形態例に係るベーパーチャンバと主要な構成要素は共通するので、同じ構成要素については同じ符号を用いて説明する。なお、図3は、本発明の第3実施形態例に係るベーパーチャンバの概要を示す説明図である。
図3に示すように、本発明の第3実施形態例に係るベーパーチャンバ3では、延出部21が、発熱体100に熱的に接続される熱輸送部20に冷却風Fを供給する送風機器(図示せず)のカバーとなっている。図3では、延出部21は、送風機器の上面と両側面を覆っている。また、送風機器のうち、発熱体100と対向した部位が開放され、送風機器の設置空間と発熱体100の搭載された空間は連通している。ベーパーチャンバ3では、熱輸送部20がその熱輸送機能によって発熱体100を冷却し、送風機器のカバーとして機能する延出部21に沿って、送風機器からの冷却風Fが熱輸送部20の方向へ流通する。発熱体100としては、例えば、回路基板101に搭載された電子部品が挙げられ、送風機器としては、例えば、送風ファンが挙げられる。
ベーパーチャンバ3では、延出部21が熱輸送部20に冷却風Fを供給する送風機器のカバーであることにより、別途、他の部品として、送風機器のカバーを設ける必要がない。従って、ベーパーチャンバ3が搭載される機器の省スペース化と軽量化が可能となり、また、部品点数を低減できる。
次に、本発明の第4実施形態例に係るベーパーチャンバについて、図面を用いながら説明する。第4実施形態例に係るベーパーチャンバは、第1~第3実施形態例に係るベーパーチャンバと主要な構成要素は共通するので、同じ構成要素については同じ符号を用いて説明する。なお、図4は、本発明の第4実施形態例に係るベーパーチャンバの概要を示す説明図である。
図4に示すように、本発明の第4実施形態例に係るベーパーチャンバ4では、延出部21が、熱輸送部20を所定の位置に固定するための固定用部材の取り付け部50を有している。従って、ベーパーチャンバ4の延出部21は、熱輸送部20の固定機能を有している。ベーパーチャンバ4では、延出部21に形成された複数箇所の切り欠きが、固定用部材の取り付け部50となっている。なお、図4では、4箇所に固定用部材の取り付け部50が設けられている。また、説明の便宜上、図4では、平面視四角形状のベーパーチャンバ4の各辺に、1つずつの固定用部材の取り付け部50が設けられている。また、ベーパーチャンバ4では、延出部21には、厚さ方向の曲げ部は設けられておらず、平坦となっている。
固定用部材の取り付け部50に、ネジ等の固定用部材(図示せず)を挿入することで、ベーパーチャンバ4を所定位置にネジ止め等にて固定することができる。延出部21が固定用部材の取り付け部50を有することにより、別途、他の部品として、固定用部材の取り付け部材をベーパーチャンバに装着する必要がない。従って、ベーパーチャンバ4が搭載される機器の省スペース化と軽量化が可能となり、また、部品点数を低減できる。
また、ベーパーチャンバ4の固定用部材の取り付け部50は、ピン等の位置決め部材を挿入することで、熱輸送部20を所定の位置に位置決めするための位置決め部として機能する。従って、ベーパーチャンバ4の延出部21は、熱輸送部20の位置決め機能を有することができる。
延出部21が熱輸送部20を所定の位置に固定するための位置決め部を有することにより、別途、他の部品として、位置決め部材をベーパーチャンバに装着する必要がない。従って、ベーパーチャンバ4が搭載される機器の省スペース化と軽量化が可能となり、また、部品点数を低減できる。
次に、本発明の第5実施形態例に係るベーパーチャンバについて、図面を用いながら説明する。第5実施形態例に係るベーパーチャンバは、第1~第4実施形態例に係るベーパーチャンバと主要な構成要素は共通するので、同じ構成要素については同じ符号を用いて説明する。なお、図5は、本発明の第5実施形態例に係るベーパーチャンバの概要を示す説明図である。
図5に示すように、本発明の第5実施形態例に係るベーパーチャンバ5では、延出部21が、ベーパーチャンバ5の固定用部位として機能する。図5では、平坦な平面形状の延出部21が、所望の固定位置に設けられた段差401を有する固定部400に、段差401に沿って載置されることで固定される。従って、ベーパーチャンバ5の延出部21は、熱輸送部20の所定の位置に固定する固定機能を有している。ベーパーチャンバ5では、一方の板状体11の周縁部32と他方の板状体12の周縁部42の両方が、接合部23から外方へ面接触した状態で延出して形成されている。また、ベーパーチャンバ5では、延出部21には、厚さ方向の曲げ部は設けられておらず、平坦となっている。なお、ベーパーチャンバ5では、重力方向上方に位置する発熱体100と熱的に接続されている。
延出部21がベーパーチャンバ5を所定の位置に固定する固定機能を有することにより、別途、他の部品として、固定部材をベーパーチャンバに装着する必要がない。従って、ベーパーチャンバ5が搭載される機器の省スペース化と軽量化が可能となり、また、部品点数を低減できる。
上記各実施形態例のように、本発明のベーパーチャンバでは、冷却対象である発熱体を冷却する熱輸送部と熱輸送機能以外の他の機能を有する延出部とを備えることにより、熱輸送機能だけでなく熱輸送機能以外の機能も有するので、別途、該熱輸送機能以外の機能を備えた他の部品を設置しなくてもよく、ベーパーチャンバが搭載される機器の省スペース化と軽量化が可能となる。また、別途、該熱輸送機能以外の機能を備えた他の部品を設置しなくてもよいので、ベーパーチャンバが搭載される機器の部品点数を低減できる。
また、本発明のベーパーチャンバでは、コンテナの空洞部に、350℃以下で水素を吸収し且つ350℃以下で水素を放出しない金属(図示せず)が配置されていてもよい。空洞部に350℃以下で水素を吸収し且つ350℃以下で水素を放出しない金属が設けられることにより、前記金属が、水素ガス等の非凝縮性ガスを吸収するため、長期にわたって、優れた熱輸送特性を発揮するベーパーチャンバを得ることができる。
350℃以下で水素を吸収し且つ350℃以下で水素を放出しない金属(以下、「水素吸収金属」ということがある。)の配置部位、配置数は、特に限定されない。水素ガス等の非凝縮性ガスは、コンテナの凝縮部においても凝縮せず気相のまま存在するので、熱輸送部の放熱部(すなわち、作動流体の凝縮部)から熱輸送部の受熱部(すなわち、作動流体の蒸発部)へ還流せずに凝縮部に溜まる傾向にある。従って、効率的に水素ガス等の非凝縮性ガスを吸収する点から、水素吸収金属は、作動流体の凝縮部の少なくとも一部に配置されることが好ましい。
また、水素吸収金属は、コンテナの内面に溶接されることで、コンテナに固定されている。さらに、水素吸収金属がコンテナの内面に溶接されることで、コンテナと水素吸収金属の内面に、水素吸収金属の成分とコンテナの成分とを含む合金部が形成されている。
合金部は、コンテナと水素吸収金属が溶融して一体となった部位である。一方で、合金部の形成に寄与していない水素吸収金属の部位は、当初の水素吸収金属の成分のままとなっている。
上記から、合金部及び合金部の形成に寄与していない水素吸収金属の部位は、いずれも、コンテナの内面上に、コンテナの空洞部に対して露出した状態で配置されており、直接、作動流体と接する態様となっている。
コンテナの内部に配置された水素吸収金属のうち、コンテナと合金部を形成する割合は、特に限定されないが、その下限値は、合金部を形成していない水素吸収金属へ円滑に水素を導入する点から2質量%が好ましく、発生した水素ガスを迅速且つ確実に捕捉する点から5質量%がより好ましく、8質量%が特に好ましい。一方で、コンテナの内部に仕込まれた水素吸収金属のうち、コンテナと合金部を形成する割合の上限値は、350℃以下における水素の吸収能力の低下を確実に防止する点から50質量%が好ましく、350℃以下において優れた水素の吸収能力を得る点から40質量%がより好ましく、30質量%が特に好ましい。
水素吸収金属の材質としては、特に限定されないが、例えば、チタン合金系、パラジウム合金系、バナジウム合金系、カルシウム合金系またはこれら合金の複合系等を挙げることができる。また、合金部は、例えば、鉄、ニッケル、クロム、チタン及び前記金属のいずれかを含む。
水素吸収金属の少なくとも一部が、コンテナと合金部を形成することで、水素吸収金属の、350℃以下で水素を吸収し且つ350℃以下で水素を放出しない能力、すなわち、350℃以下における水素の吸収能力が向上するので、コンテナの空洞部に水素ガス等の非凝縮性ガスが溜まって真空状態が低下することを防止する。従って、優れた熱輸送特性を有するベーパーチャンバを得ることができる。また、ベーパーチャンバの製造工程における半田付けや溶接等の加工で300℃近くの温度に達しても、350℃以下で水素を吸収し且つ350℃以下で水素を放出しない金属が設けられているので、上記加工工程における水素ガス等の非凝縮性ガス発生に対しても、水素等の非凝縮性ガスを空洞部に放出されることを防止できる。よって、上記加工工程を経ても、優れた熱輸送特性を有するベーパーチャンバを得ることができる。なお、コンテナの空洞部に水素吸収金属が設けられた熱輸送部の場合、コンテナの空洞部に溜まる水素ガス量としては、作動温度50℃における空洞部内の全ガス量の10体積%以下である。
上記態様では、コンテナの内面に水素吸収金属が溶接されることで水素吸収金属がコンテナに固定されていたが、これに代えて、水素吸収金属は、ウィック構造体の表面に溶接されており、従って、ウィック構造体に固定されていてもよい。水素吸収金属がウィック構造体の表面に溶接されることで、ウィック構造体と水素吸収金属の表面に、水素吸収金属の成分とウィック構造体の成分とを含む合金部が形成される。
上記態様のベーパーチャンバでも、水素吸収金属の、350℃以下における水素ガス等の非凝縮性ガスに対する吸収能力が向上し、ひいては、優れた熱輸送特性を得ることができる。
本発明のベーパーチャンバでは、ベーパーチャンバが搭載される機器の省スペース化と軽量化が可能なので、上記各実施形態例の分野に限らず、広汎な分野で利用可能である。
1、2、3、4、5 ベーパーチャンバ
10 コンテナ
11 一方の板状体
12 他方の板状体
13 空洞部
20 熱輸送部
21 延出部
23 接合部
10 コンテナ
11 一方の板状体
12 他方の板状体
13 空洞部
20 熱輸送部
21 延出部
23 接合部
Claims (19)
- 一方の板状体と該一方の板状体と対向する他方の板状体とにより空洞部が形成されたコンテナと、前記空洞部に封入された作動流体と、を有するベーパーチャンバであって、
前記コンテナが、前記作動流体の相変化により熱輸送する熱輸送部と、該熱輸送部から外方へ延出した、熱輸送機能以外の他の機能を有する延出部と、を備え、
前記延出部が、電磁シールド機能を有し、
前記延出部が、該延出部の厚さ方向の曲げ部を有し、該延出部の先端が自由端であるベーパーチャンバ。 - 一方の板状体と該一方の板状体と対向する他方の板状体とにより空洞部が形成されたコンテナと、前記空洞部に封入された作動流体と、を有するベーパーチャンバであって、
前記コンテナが、前記作動流体の相変化により熱輸送する熱輸送部と、該熱輸送部から外方へ延出した、熱輸送機能以外の他の機能を有する延出部と、を備え、
前記延出部が、電磁シールド機能を有し、
前記延出部が、該延出部の厚さ方向の曲げ部を有し、該延出部の先端が他の部材と接し、筐体の一部を構成する筐体部と前記ベーパーチャンバとで、外部に対して閉鎖された内部空間が形成され、前記内部空間に発熱体が収容され、前記ベーパーチャンバの前記熱輸送部の外面と前記延出部が、前記筐体の内面の一部となっているベーパーチャンバ。 - 一方の板状体と該一方の板状体と対向する他方の板状体とにより空洞部が形成されたコンテナと、前記空洞部に封入された作動流体と、を有するベーパーチャンバであって、
前記コンテナが、前記作動流体の相変化により熱輸送する熱輸送部と、該熱輸送部から外方へ延出した、熱輸送機能以外の他の機能を有する延出部と、を備え、
前記延出部に形成された複数箇所の切り欠きが、前記熱輸送部を所定の位置に固定するための固定用部材の取り付け部、または位置決め部材を挿入することで、前記熱輸送部を所定の位置に位置決めするための位置決め部となるベーパーチャンバ。 - 一方の板状体と該一方の板状体と対向する他方の板状体とにより空洞部が形成されたコンテナと、前記空洞部に封入された作動流体と、を有するベーパーチャンバであって、
前記コンテナが、前記作動流体の相変化により熱輸送する熱輸送部と、該熱輸送部から外方へ延出した、熱輸送機能以外の他の機能を有する延出部と、を備え、
平坦な平面形状の前記延出部が、所定の固定位置に設けられた段差を有する固定部に、前記段差に沿って載置されることで前記ベーパーチャンバの固定用部位となるベーパーチャンバ。 - 前記コンテナの周縁部に、前記一方の板状体と前記他方の板状体が接合されて前記空洞部が封止された接合部が形成され、前記延出部が、前記接合部の外方に位置する請求項1乃至4のいずれか1項に記載のベーパーチャンバ。
- 前記接合部が、ファイバレーザによる溶接にて接合された溶接部である請求項2に記載のベーパーチャンバ。
- 前記空洞部に、350℃以下で水素を吸収し且つ350℃以下で水素を放出しない金属が設けられた請求項1乃至6のいずれか1項に記載のベーパーチャンバ。
- 前記コンテナの材質が、銅、銅合金、鉄、鉄合金、ステンレス鋼、アルミニウム、アルミニウム合金、ニッケル、ニッケル合金、チタンまたはチタン合金である請求項1乃至7のいずれか1項に記載のベーパーチャンバ。
- 前記コンテナの材質が、ステンレス鋼である請求項1乃至8のいずれか1項に記載のベーパーチャンバ。
- 前記金属が、チタン系、パラジウム系、バナジウム系、カルシウム系またはこれらの複合系の合金である請求項7乃至9のいずれか1項に記載のベーパーチャンバ。
- 前記金属が、チタン系の合金である請求項7乃至10のいずれか1項に記載のベーパーチャンバ。
- 前記金属が、前記作動流体の凝縮する部位に配置されている請求項7乃至11のいずれか1項に記載のベーパーチャンバ。
- 前記金属が、前記コンテナまたは前記空洞部に収容されたウィック構造体に固定され、前記金属と前記コンテナまたは前記ウィック構造体との間に合金部が形成された請求項7乃至12のいずれか1項に記載のベーパーチャンバ。
- 前記金属が、溶接により前記コンテナまたは前記空洞部に収容されたウィック構造体に固定され、前記金属と前記コンテナまたは前記ウィック構造体との間に合金部が形成された請求項7乃至13のいずれか1項に記載のベーパーチャンバ。
- 前記合金部が、鉄、ニッケル、クロム、チタン及び前記金属のいずれかを含む請求項13または14に記載のベーパーチャンバ。
- 前記合金部が、前記金属の2質量%~50質量%である請求項13乃至15のいずれか1項に記載のベーパーチャンバ。
- 前記空洞部の水素ガス量が、作動温度50℃における前記空洞部内の全ガス量の10体積%以下である請求項1乃至16のいずれか1項に記載のベーパーチャンバ。
- 前記ウィック構造体の材質が、チタンまたはチタン合金である請求項13乃至17のいずれか1項に記載のベーパーチャンバ。
- 前記合金部が、前記コンテナまたは前記ウィック構造体と前記金属が溶融して一体となって形成された請求項13乃至18のいずれか1項に記載のベーパーチャンバ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202190000084.2U CN217058476U (zh) | 2020-01-31 | 2021-01-22 | 均热板 |
US17/571,407 US20220132697A1 (en) | 2020-01-31 | 2022-01-07 | Vapor chamber |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020015655A JP7132958B2 (ja) | 2020-01-31 | 2020-01-31 | ベーパーチャンバ |
JP2020-015655 | 2020-01-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/571,407 Continuation US20220132697A1 (en) | 2020-01-31 | 2022-01-07 | Vapor chamber |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021153443A1 true WO2021153443A1 (ja) | 2021-08-05 |
Family
ID=77079769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/002195 WO2021153443A1 (ja) | 2020-01-31 | 2021-01-22 | ベーパーチャンバ |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220132697A1 (ja) |
JP (3) | JP7132958B2 (ja) |
CN (1) | CN217058476U (ja) |
TW (1) | TWI824229B (ja) |
WO (1) | WO2021153443A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022071483A1 (ja) * | 2020-09-30 | 2022-04-07 | 日本電産株式会社 | 熱伝導ユニットおよび冷却装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220029909A (ko) * | 2020-09-02 | 2022-03-10 | 삼성전자주식회사 | 방열 구조물 및 그를 포함하는 전자 장치 |
TWI778881B (zh) | 2021-12-03 | 2022-09-21 | 欣興電子股份有限公司 | 電路板及其製造方法 |
CN114705071B (zh) * | 2022-05-13 | 2022-09-09 | 华为技术有限公司 | 移动终端、均温板和均温板的制作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999053254A1 (en) * | 1998-04-13 | 1999-10-21 | Furukawa Electric Co., Ltd. | Plate type heat pipe and its mounting structure |
JP2013174376A (ja) * | 2012-02-24 | 2013-09-05 | Furukawa Electric Co Ltd:The | シート状ヒートパイプ、及びシート状ヒートパイプを備えた電子機器 |
JP2016035348A (ja) * | 2014-08-01 | 2016-03-17 | 古河電気工業株式会社 | 平面型ヒートパイプ |
WO2017150356A1 (ja) * | 2016-02-29 | 2017-09-08 | 古河電気工業株式会社 | ヒートパイプ |
JP2018162949A (ja) * | 2017-03-27 | 2018-10-18 | 大日本印刷株式会社 | ベーパーチャンバ、ベーパーチャンバ搭載基板およびベーパーチャンバ用金属シート |
JP2018185094A (ja) * | 2017-04-26 | 2018-11-22 | レノボ・シンガポール・プライベート・リミテッド | プレート型熱輸送装置、電子機器及びプレート型熱輸送装置の製造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS618595A (ja) * | 1984-06-22 | 1986-01-16 | Showa Alum Corp | ヒ−トパイプ |
JPH04284694A (ja) * | 1991-03-14 | 1992-10-09 | Fuji Electric Co Ltd | 電力変換装置の収納装置 |
JP3503975B2 (ja) * | 1993-12-27 | 2004-03-08 | 富士通テン株式会社 | パワーユニットの筺体への取付構造 |
JP3669792B2 (ja) * | 1996-10-24 | 2005-07-13 | 松下電器産業株式会社 | ヒートシンク及びその製造方法 |
JPH11237193A (ja) * | 1998-02-19 | 1999-08-31 | Furukawa Electric Co Ltd:The | 板型ヒートパイプとそれを用いた実装構造 |
US6302192B1 (en) * | 1999-05-12 | 2001-10-16 | Thermal Corp. | Integrated circuit heat pipe heat spreader with through mounting holes |
JP2004037001A (ja) * | 2002-07-03 | 2004-02-05 | Fujikura Ltd | 平板型ヒートパイプおよび電子素子の冷却装置 |
JP2004095684A (ja) * | 2002-08-29 | 2004-03-25 | Fujikura Ltd | ヒートシンク |
US7306027B2 (en) * | 2004-07-01 | 2007-12-11 | Aavid Thermalloy, Llc | Fluid-containing cooling plate for an electronic component |
JP2006222388A (ja) * | 2005-02-14 | 2006-08-24 | Toshiba Corp | 電子機器の放熱装置及び放熱方法 |
CN201210787Y (zh) * | 2008-06-13 | 2009-03-18 | 鸿富锦精密工业(深圳)有限公司 | 散热装置组合 |
CN101765352B (zh) * | 2008-12-23 | 2013-04-24 | 富瑞精密组件(昆山)有限公司 | 扁平型热导管及使用该热导管的散热模组 |
US20130002987A1 (en) * | 2010-03-16 | 2013-01-03 | Sharp Kabushiki Kaisha | Edge light type planar light source device and liquid crystal display device |
US20160135336A1 (en) * | 2014-11-12 | 2016-05-12 | Asia Vital Components Co., Ltd. | Emi shielding structure for electronic components |
JP6636791B2 (ja) * | 2015-12-18 | 2020-01-29 | 株式会社フジクラ | 放熱モジュール |
JP6623296B2 (ja) * | 2016-07-01 | 2019-12-18 | 古河電気工業株式会社 | ベーパーチャンバ |
CN107205330A (zh) * | 2016-11-28 | 2017-09-26 | 东莞市明骏智能科技有限公司 | 一种电子元器件 |
JP2019113227A (ja) * | 2017-12-21 | 2019-07-11 | 株式会社フジクラ | 冷却モジュール |
JP6588599B1 (ja) * | 2018-05-29 | 2019-10-09 | 古河電気工業株式会社 | ベーパーチャンバ |
CN209643211U (zh) * | 2018-10-30 | 2019-11-15 | 歌尔科技有限公司 | 一种柔性均热结构和电子产品 |
-
2020
- 2020-01-31 JP JP2020015655A patent/JP7132958B2/ja active Active
-
2021
- 2021-01-22 WO PCT/JP2021/002195 patent/WO2021153443A1/ja active Application Filing
- 2021-01-22 CN CN202190000084.2U patent/CN217058476U/zh active Active
- 2021-01-27 TW TW110102995A patent/TWI824229B/zh active
-
2022
- 2022-01-07 US US17/571,407 patent/US20220132697A1/en active Pending
- 2022-05-24 JP JP2022084823A patent/JP7354351B2/ja active Active
- 2022-05-24 JP JP2022084822A patent/JP2022118002A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999053254A1 (en) * | 1998-04-13 | 1999-10-21 | Furukawa Electric Co., Ltd. | Plate type heat pipe and its mounting structure |
JP2013174376A (ja) * | 2012-02-24 | 2013-09-05 | Furukawa Electric Co Ltd:The | シート状ヒートパイプ、及びシート状ヒートパイプを備えた電子機器 |
JP2016035348A (ja) * | 2014-08-01 | 2016-03-17 | 古河電気工業株式会社 | 平面型ヒートパイプ |
WO2017150356A1 (ja) * | 2016-02-29 | 2017-09-08 | 古河電気工業株式会社 | ヒートパイプ |
JP2018162949A (ja) * | 2017-03-27 | 2018-10-18 | 大日本印刷株式会社 | ベーパーチャンバ、ベーパーチャンバ搭載基板およびベーパーチャンバ用金属シート |
JP2018185094A (ja) * | 2017-04-26 | 2018-11-22 | レノボ・シンガポール・プライベート・リミテッド | プレート型熱輸送装置、電子機器及びプレート型熱輸送装置の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022071483A1 (ja) * | 2020-09-30 | 2022-04-07 | 日本電産株式会社 | 熱伝導ユニットおよび冷却装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI824229B (zh) | 2023-12-01 |
JP7354351B2 (ja) | 2023-10-02 |
JP2022118003A (ja) | 2022-08-12 |
JP7132958B2 (ja) | 2022-09-07 |
TW202134587A (zh) | 2021-09-16 |
CN217058476U (zh) | 2022-07-26 |
JP2021124209A (ja) | 2021-08-30 |
US20220132697A1 (en) | 2022-04-28 |
JP2022118002A (ja) | 2022-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021153443A1 (ja) | ベーパーチャンバ | |
TWI711798B (zh) | 蒸氣腔室以及散熱裝置 | |
JP6623296B2 (ja) | ベーパーチャンバ | |
JP6696631B2 (ja) | ベーパーチャンバー | |
JP5379874B2 (ja) | シート状ヒートパイプ、及びシート状ヒートパイプを備えた電子機器 | |
JP2021036175A (ja) | ベーパーチャンバー | |
JP7396435B2 (ja) | ベーパーチャンバおよびベーパーチャンバ搭載基板 | |
JP6598977B2 (ja) | ヒートパイプ | |
TW202037872A (zh) | 冷卻裝置 | |
WO2018056439A1 (ja) | 断熱構造体 | |
JP6216838B1 (ja) | 放熱モジュール及びその製造方法 | |
JPWO2020026907A1 (ja) | ベーパーチャンバー | |
WO2021153444A1 (ja) | ベーパーチャンバ | |
WO2020230499A1 (ja) | ヒートシンク | |
WO2021090840A1 (ja) | ベーパーチャンバ | |
JP2018123987A (ja) | ベーパーチャンバ | |
WO2022004618A1 (ja) | ベーパーチャンバおよびベーパーチャンバの製造方法 | |
JP6877513B2 (ja) | ベーパーチャンバ | |
EP1863085A2 (en) | Two-phase cooling system for cooling power electronic components | |
JP6928860B1 (ja) | ベーパーチャンバ | |
JP7079361B1 (ja) | ベーパーチャンバ | |
WO2022097417A1 (ja) | 熱拡散デバイス | |
WO2018139656A1 (ja) | ベーパーチャンバ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21748020 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21748020 Country of ref document: EP Kind code of ref document: A1 |